research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 6,6′-((1E,1′E)-{[1,4-phenyl­enebis(methyl­ene)]bis­(aza­nylyl­­idene)}bis­­(methane­ylyl­­idene))bis­­(2-meth­­oxy­phenol)

crossmark logo

aSamsun University, Faculty of Engineering, Department of Fundamental Sciences, 55420, Samsun, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Samsun, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, dDepartment of Computer and Electronic Engineering Technology, Sanaa Community, College, Sanaa, Yemen, eOndokuz Mayıs University, Faculty of Engineering, Department of Electrical and Electronic Engineering, 55139, Samsun, Turkey, and fOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Samsun, Turkey
*Correspondence e-mail: sevgi.kansiz@samsun.edu.tr, eiad.saif@scc.edu.ye

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 1 November 2021; accepted 15 December 2021; online 1 January 2022)

The Schiff base compound, C24H24N2O4, was synthesized by the inter­action of 2-hy­droxy-3-meth­oxy benzaldehyde and 1,4-benzene dimethanamine in ethanol, and crystallizes in the monoclinic space group P21/n with Z′ = 0.5. The mol­ecule is not planar, the 1,4-di­ethyl­benzene and the phenol rings are twisted with respect to each other, making a dihedral angle of 74.27 (5)°. The mol­ecular structure is stabilized by an O—H⋯N hydrogen bond, forming an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, resulting in the formation of sheets parallel to the bc plane. A Hirshfeld surface analysis was undertaken to investigate the various inter­molecular contacts controlling the supra­molecular topology, suggesting the H⋯O (18%) contacts to be the most significant inter­actions, whereas the H⋯H (50.5%) and C⋯H (24.3%) inter­actions are less significant.

1. Chemical context

Schiff bases are used as pigments and dyes, catalysts, inter­mediates in organic synthesis, and as polymer stabilizers (Supuran et al., 1996[Supuran, C., Barboiu, M., Luca, C., Pop, E., Brewster, M. & Dinculescu, A. (1996). Eur. J. Med. Chem. 31, 597-606.]). In azomethine derivatives, the C=N linkage is essential for biological activity and several azo­methines have been reported to possess remarkable anti­bacterial, anti­fungal, anti­cancer and diuretic activities (Gaur, 2003[Gaur, S. (2003). Asian J. Chem. 15, 250-254.]). Schiff bases having an azomethine group of general formula C=N– contain various substituted groups (Schiff, 1864[Schiff, H. (1864). Justus Liebigs Ann. Chem. 131, 118-119.]). Of particular inter­est are the two different tautomeric structures for o-hy­droxy Schiff bases, which are expressed as keto-amine and phenol-imine, with intrinsic N—H⋯O or O—H⋯N hydrogen bonds, (Filarowski et al., 2004[Filarowski, A., Koll, A., Karpfen, A. & Wolschann, P. (2004). Chem. Phys. 297, 323-332.]). There are many studies in the literature on the synthesis of Schiff bases and investigation of tautomeric structures. Phenol-imine and keto-amine tautomeric structures exhibit features of photochromism and thermochromism (Hadjoudis et al., 2004[Hadjoudis, E. A., Rontoyianni, A., Ambroziak, K., Dziembowska, T. & Mavridis, I. M. (2004). J. Photochem. Photobiol. A, 162-521.]). Tetra­dentate salen-type ligands have been used in almost all areas of coordination chemistry to prepare complexes that have catalytic and biological activity or which feature inter­esting structural, electrochemical or magnetic properties (Abd El-Hamid et al., 2019[Abd El-Hamid, S. M., Sadeek, S. A. & Abd El-Latif, N. S. (2019). Appl. Organomet. Chem. 33, e5010-e5023.]). In this study, a symmetrical tetra­dentate Schiff base ligand bearing ONNO donor atoms, 6,6′-((1E,1′E)-{[1,4-phenyl­enebis(methyl­ene)]bis­(aza­nylylidene)}bis­(methane­ylyl­idene))bis­(2-meth­oxy­phenol) was synthesized by the inter­action of 2-hy­droxy-3-meth­oxy benzaldehyde and 1,4-benzene dimethanamine in ethanol and its crystal structure determined by single-crystal X-ray diffraction.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title Schiff base derivative is illustrated in Fig. 1[link]. The asymmetric unit of the title compound contains one-half of the centrosymmetric mol­ecule (Z′ = 0.5). There is an intra­molecular O2—H2⋯N1 hydrogen bond (Table 1[link] and Fig. 1[link]); this is a common feature also observed in related phenol-imine Schiff bases. It forms an S(6) ring motif and also induces the phenol ring and the Schiff base to be nearly coplanar, as indicated by the C6—C8—N1—C9 torsion angle of 178.54 (13)°. The mol­ecule is non-planar, the 1,4-di­ethyl­benzene ring being inclined to the phenol ring by 74.27 (5)°. The C7—C6—C8—N1 torsion angle [3.8 (2)°] further supports the co-planarity of the phenol ring and the Schiff base. The C7—O2 distance is 1.3438 (17) Å, which is close to normal values reported for single C—O bonds in phenols and salicyl­idene­amines (Kaştaş & Albayrak Kaştaş, 2019[Kaştaş, G. & Albayrak Kaştaş, Ç. (2019). J. Mol. Struct. 1184, 427-434.]). The N1—C8 bond is short at 1.2717 (17) Å, strongly indicating a C=N double bond, while the long C6—C8 bond [1.451 (2) Å] implies a single bond. All of these data support the existence of the phenol–imine tautomer for the title compound in the crystalline state.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.86 (1) 1.79 (2) 2.5877 (18) 154 (2)
C8—H8⋯O2i 0.93 2.51 3.410 (2) 162
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level. Symmetry code: (i) −x + 2, −y + 1, −z + 1.

3. Supra­molecular features

In the crystal, mol­ecules are connected into sheets extending in the bc plane by C8—H8⋯O2i hydrogen bonds (Table 1[link]; Fig. 2[link]).

[Figure 2]
Figure 2
A view of the crystal packing of the title compound in a view parallel to the bc plane. C—H⋯O hydrogen bonds are shown as dashed blue lines.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.42, update of May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the (1,4-phenyl­ene)bis­(N-ethyl­idenemethanamine) moiety revealed some related structures. The most similar structures are 1,4-bis­(2-pyridyl­methyl­ene­amino­meth­yl)benzene (GOLJUN; Li et al., 2009[Li, C., Sun, F.-A., He, M.-Y., Xu, H. & Chen, Q. (2009). Acta Cryst. E65, o286.]), 1,4-bis­(3-pyridyl­methyl­ene­amino­meth­yl)benzene (GOLJOH; He et al., 2009[He, M.-Y., Li, C., Xu, H., Hu, Z.-J. & Chen, Q. (2009). Acta Cryst. E65, o285.]) and 1,4-bis­(3,5-di-t-butyl-2-hy­droxy­benzyl­idene­amino­meth­yl)benzene (OCAPAK; Tooke et al., 2004[Tooke, D. M., Song, Y., Albada, G. A. van, Reedijk, J. & Spek, A. L. (2004). Acta Cryst. E60, o1907-o1908.]). In GOLJUN and GOLJOH, the mol­ecules have similar shapes to the title compound. The C—N bond lengths [1.253 (2) Å in GOLJOH and 1.256 (2) Å in GOLJUN] are typical for an azomethine C=N bond and shorter than in the title compound [1.2717 (19) Å]. The torsion angles involving the C—C=N—C units are −177.26 (11)° and 115.21 (13)° in GOLJUN. These values are similar to those observed in the title compound. In OCAPAK, a t-butyl group is present, different from the title compound. In addition, there is an intra­molecular O—H⋯N contact in the title compound. Similarly, in OCAPAK, the hydroxyl H atom is involved in an intra­molecular O—H⋯N hydrogen bond, forming an S(6) ring motif as in the title compound. The length of intra­molecular O—H⋯N hydrogen bond in OCAPAK is especially short [1.65 (2) Å] compared to that in the title compound [1.789 (15) Å].

5. Hirshfeld surface analysis

Hirshfeld surface analysis was used to analyse the various inter­molecular inter­actions in the title compound, through mapping of the normalized contact distance (dnorm) using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface.net.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). Hirshfeld surface analysis is a valuable tool for assessing the strength of inter­molecular inter­actions, predicting the properties of a crystal and its potential applications (Al-Resayes et al., 2020[Al-Resayes, S. I., Azam, M., Trzesowska-Kruszynska, A., Kruszynski, R., Soliman, S. M., Mohapatra, R. K. & Khan, Z. (2020). ACS Omega, 5, 27227-27234.]). The Hirshfeld surface was generated using a standard (high) surface resolution with the three-dimensional dnorm surface mapped over a fixed color scale of −0.175 (red) to 1.404 a.u. (blue). The packing of mol­ecules is mainly dependent on H⋯H (50.5%) and C⋯H (24.3%) inter­actions and the significant C—H⋯O inter­actions (18%). Blue regions in the dnorm map indicate inter­molecular inter­actions with distances longer than van der Waals radius sum of the inter­acting elements (Fig. 3[link]). The C—H⋯O inter­actions, which appear as red spots in the dnorm map, have contact distances shorter than the sum of the van der Waals radii of the oxygen and hydrogen atoms

[Figure 3]
Figure 3
The Hirshfeld surface analysis of the title compound mapped with dnorm over −0.175 to 1.404 a.u. showing the C—H⋯O hydrogen-bonded contacts.

6. Synthesis and crystallization

0.0225 g (0.148 mmol) of 2-hy­droxy-3-meth­oxy benzaldehyde was dissolved in 20 mL of ethanol and mixed with 0.0100 g (0.074 mmol) of 1,4-benzene dimethanamine dissolved in 20 mL of ethanol (Fig. 4[link]). The reaction mixture was refluxed for 6 h and at the end of the reaction, the solution was allowed to cool. The yellow product obtained was washed with ether and crystallized in ethanol at room temperature (m.p. = 431–434 K, yield 85%).

[Figure 4]
Figure 4
The synthesis of the title compound.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The O–bound H atom was located in a difference-Fourier map and refined with with Uiso(H) = 1.5Ueq(O) and a distance restraint. The C-bound H atoms were positioned geometrically (C—H = 0.93, 0.96 and 0.97 Å) and refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C24H24N2O4
Mr 404.45
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 4.7339 (10), 18.406 (4), 11.880 (2)
β (°) 98.47 (3)
V3) 1023.8 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.61 × 0.45 × 0.23
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.963, 0.992
No. of measured, independent and observed [I > 2σ(I)] reflections 6766, 1863, 1315
Rint 0.034
(sin θ/λ)max−1) 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.092, 1.01
No. of reflections 1863
No. of parameters 140
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.11, −0.09
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020).

6,6'-((1E,1'E)-{[1,4-Phenylenebis(methylene)]bis(azanylylidene)}bis(methaneylylidene))bis(2-methoxyphenol) top
Crystal data top
C24H24N2O4F(000) = 428
Mr = 404.45Dx = 1.312 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.7339 (10) ÅCell parameters from 7423 reflections
b = 18.406 (4) Åθ = 1.7–31.5°
c = 11.880 (2) ŵ = 0.09 mm1
β = 98.47 (3)°T = 296 K
V = 1023.8 (4) Å3Plate, yellow
Z = 20.61 × 0.45 × 0.23 mm
Data collection top
Stoe IPDS 2
diffractometer
1863 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1315 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.034
rotation method scansθmax = 25.3°, θmin = 2.1°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 55
Tmin = 0.963, Tmax = 0.992k = 2222
6766 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: mixed
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.049P)2]
where P = (Fo2 + 2Fc2)/3
1863 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.11 e Å3
1 restraintΔρmin = 0.09 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.6966 (3)0.21666 (6)0.38262 (9)0.0633 (3)
H20.817 (4)0.2501 (10)0.4060 (16)0.095*
O10.3093 (3)0.11352 (6)0.35977 (10)0.0722 (4)
N11.0411 (3)0.30049 (6)0.51303 (11)0.0550 (3)
C70.6181 (3)0.18967 (7)0.47846 (12)0.0499 (4)
C60.7362 (3)0.21470 (8)0.58611 (12)0.0528 (4)
C101.1273 (3)0.43140 (8)0.51623 (13)0.0533 (4)
C80.9571 (3)0.26998 (8)0.59825 (13)0.0561 (4)
H81.0403450.2835930.6710140.067*
C20.4103 (3)0.13480 (8)0.46848 (13)0.0560 (4)
C121.1668 (4)0.47353 (9)0.42431 (14)0.0620 (4)
H121.2795890.4562510.3723340.074*
C91.2603 (4)0.35690 (8)0.53440 (15)0.0629 (4)
H9A1.4005520.3502260.4834190.075*
H9B1.3574880.3528330.6119390.075*
C110.9593 (4)0.45861 (9)0.59194 (14)0.0634 (4)
H110.9302410.4310020.6547960.076*
C50.6416 (4)0.18568 (10)0.68255 (14)0.0697 (5)
H50.7190870.2022470.7544510.084*
C30.3230 (4)0.10710 (9)0.56514 (17)0.0702 (5)
H30.1863330.0704450.5589800.084*
C40.4365 (4)0.13326 (11)0.67187 (16)0.0786 (5)
H40.3720610.1148630.7364330.094*
C10.0961 (4)0.05885 (10)0.34579 (18)0.0816 (6)
H1A0.0441480.0483110.2662970.122*
H1B0.0689760.0755600.3764570.122*
H1C0.1686480.0156540.3851640.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0715 (8)0.0674 (7)0.0513 (6)0.0180 (6)0.0096 (5)0.0000 (5)
O10.0729 (8)0.0703 (7)0.0742 (8)0.0230 (6)0.0139 (6)0.0124 (6)
N10.0550 (8)0.0453 (7)0.0626 (8)0.0025 (6)0.0021 (6)0.0016 (6)
C70.0525 (8)0.0459 (7)0.0519 (8)0.0048 (7)0.0102 (7)0.0047 (6)
C60.0519 (9)0.0532 (8)0.0523 (8)0.0089 (7)0.0044 (7)0.0069 (6)
C100.0448 (9)0.0483 (8)0.0641 (9)0.0039 (6)0.0012 (7)0.0083 (7)
C80.0562 (9)0.0560 (9)0.0532 (9)0.0104 (7)0.0019 (7)0.0021 (7)
C20.0540 (9)0.0503 (8)0.0644 (10)0.0024 (7)0.0110 (8)0.0020 (7)
C120.0607 (10)0.0598 (9)0.0670 (10)0.0024 (8)0.0146 (8)0.0071 (8)
C90.0535 (9)0.0523 (9)0.0805 (11)0.0008 (7)0.0022 (8)0.0051 (8)
C110.0675 (11)0.0570 (9)0.0665 (10)0.0020 (8)0.0128 (9)0.0029 (7)
C50.0690 (11)0.0868 (12)0.0527 (9)0.0083 (10)0.0066 (8)0.0126 (8)
C30.0629 (11)0.0631 (10)0.0865 (13)0.0018 (8)0.0170 (10)0.0180 (9)
C40.0742 (12)0.0940 (14)0.0699 (12)0.0043 (11)0.0188 (10)0.0333 (10)
C10.0695 (12)0.0710 (12)0.1064 (15)0.0183 (9)0.0202 (11)0.0169 (10)
Geometric parameters (Å, º) top
O2—C71.3438 (17)C2—C31.375 (2)
O2—H20.858 (13)C12—C11i1.386 (2)
O1—C21.3668 (19)C12—H120.9300
O1—C11.418 (2)C9—H9A0.9700
N1—C81.2717 (19)C9—H9B0.9700
N1—C91.463 (2)C11—H110.9300
C7—C61.396 (2)C5—C41.361 (3)
C7—C21.403 (2)C5—H50.9300
C6—C51.396 (2)C3—C41.388 (3)
C6—C81.451 (2)C3—H30.9300
C10—C121.374 (2)C4—H40.9300
C10—C111.379 (2)C1—H1A0.9600
C10—C91.511 (2)C1—H1B0.9600
C8—H80.9300C1—H1C0.9600
C7—O2—H2104.1 (13)C10—C9—H9A109.6
C2—O1—C1117.26 (13)N1—C9—H9B109.6
C8—N1—C9118.17 (14)C10—C9—H9B109.6
O2—C7—C6122.05 (13)H9A—C9—H9B108.1
O2—C7—C2118.20 (14)C10—C11—C12i120.95 (15)
C6—C7—C2119.75 (13)C10—C11—H11119.5
C7—C6—C5119.45 (15)C12i—C11—H11119.5
C7—C6—C8120.53 (13)C4—C5—C6120.35 (17)
C5—C6—C8120.02 (15)C4—C5—H5119.8
C12—C10—C11118.18 (14)C6—C5—H5119.8
C12—C10—C9121.52 (14)C2—C3—C4120.71 (17)
C11—C10—C9120.30 (15)C2—C3—H3119.6
N1—C8—C6122.40 (14)C4—C3—H3119.6
N1—C8—H8118.8C5—C4—C3120.38 (16)
C6—C8—H8118.8C5—C4—H4119.8
O1—C2—C3125.21 (15)C3—C4—H4119.8
O1—C2—C7115.45 (13)O1—C1—H1A109.5
C3—C2—C7119.34 (16)O1—C1—H1B109.5
C10—C12—C11i120.88 (14)H1A—C1—H1B109.5
C10—C12—H12119.6O1—C1—H1C109.5
C11i—C12—H12119.6H1A—C1—H1C109.5
N1—C9—C10110.42 (13)H1B—C1—H1C109.5
N1—C9—H9A109.6
O2—C7—C6—C5178.60 (14)C11—C10—C12—C11i0.1 (3)
C2—C7—C6—C51.3 (2)C9—C10—C12—C11i179.25 (15)
O2—C7—C6—C81.9 (2)C8—N1—C9—C10102.38 (16)
C2—C7—C6—C8178.27 (13)C12—C10—C9—N1108.69 (17)
C9—N1—C8—C6178.54 (13)C11—C10—C9—N170.69 (19)
C7—C6—C8—N13.8 (2)C12—C10—C11—C12i0.1 (3)
C5—C6—C8—N1176.65 (14)C9—C10—C11—C12i179.26 (15)
C1—O1—C2—C30.4 (2)C7—C6—C5—C40.2 (2)
C1—O1—C2—C7179.17 (14)C8—C6—C5—C4179.33 (15)
O2—C7—C2—O10.7 (2)O1—C2—C3—C4179.08 (16)
C6—C7—C2—O1179.47 (13)C7—C2—C3—C40.5 (2)
O2—C7—C2—C3178.96 (14)C6—C5—C4—C31.2 (3)
C6—C7—C2—C30.9 (2)C2—C3—C4—C51.6 (3)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.86 (1)1.79 (2)2.5877 (18)154 (2)
C8—H8···O2ii0.932.513.410 (2)162
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

Author contributions are as follows. Conceptualization, SK, EA and ES; synthesis, SY and EA; writing (review and editing of the manuscript) SK and SY; formal analysis, SY, EA, ND and SK; crystal-structure determination, SY, SK and ND; validation, SY, EA and ES; project administration, EA, SY and SK.

Funding information

Funding for this research was provided by Samsun University under Project No. BAP·MÜF.5501.2020.004.

References

First citationAbd El-Hamid, S. M., Sadeek, S. A. & Abd El-Latif, N. S. (2019). Appl. Organomet. Chem. 33, e5010–e5023.  Google Scholar
First citationAl-Resayes, S. I., Azam, M., Trzesowska-Kruszynska, A., Kruszynski, R., Soliman, S. M., Mohapatra, R. K. & Khan, Z. (2020). ACS Omega, 5, 27227–27234.  CAS PubMed Google Scholar
First citationFilarowski, A., Koll, A., Karpfen, A. & Wolschann, P. (2004). Chem. Phys. 297, 323–332.  Web of Science CrossRef CAS Google Scholar
First citationGaur, S. (2003). Asian J. Chem. 15, 250–254.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E. A., Rontoyianni, A., Ambroziak, K., Dziembowska, T. & Mavridis, I. M. (2004). J. Photochem. Photobiol. A, 162–521.  Google Scholar
First citationHe, M.-Y., Li, C., Xu, H., Hu, Z.-J. & Chen, Q. (2009). Acta Cryst. E65, o285.  CSD CrossRef IUCr Journals Google Scholar
First citationKaştaş, G. & Albayrak Kaştaş, Ç. (2019). J. Mol. Struct. 1184, 427–434.  Google Scholar
First citationLi, C., Sun, F.-A., He, M.-Y., Xu, H. & Chen, Q. (2009). Acta Cryst. E65, o286.  CSD CrossRef IUCr Journals Google Scholar
First citationSchiff, H. (1864). Justus Liebigs Ann. Chem. 131, 118–119.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationSupuran, C., Barboiu, M., Luca, C., Pop, E., Brewster, M. & Dinculescu, A. (1996). Eur. J. Med. Chem. 31, 597–606.  CrossRef CAS Google Scholar
First citationTooke, D. M., Song, Y., Albada, G. A. van, Reedijk, J. & Spek, A. L. (2004). Acta Cryst. E60, o1907–o1908.  CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds