research communications
Crystal structures and Hirshfeld surface analyses of bis(4,5-dihydrofuran-2-yl)dimethylsilane and (4,5-dihydrofuran-2-yl)(methyl)diphenylsilane
aTechnische Universität Dortmund, Fakultät für Chemie und chemische Biologie, Anorganische Chemie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de
The title compounds, C10H16O2Si (1) and C17H18OSi (2), are classified as dihydrofurylsilanes, which show great potential as building blocks for various functionalized They both crystallize in the P in the triclinic Analyses of the Hirshfeld surfaces show packing-determining interactions for both compounds, resulting in a polymeric chain along the [011] for silane 1 and a layered-interconnected structure along the b-axis direction for silane 2.
1. Chemical context
Dihydrofurylsilanes are interesting starting materials for tailor-made silicon compounds. First presented in the 1980s by Lukevics (Lukevics et al., 1985), they turned out to be versatile building blocks for multiple silicon compound classes. Tetrasubstituted silicon compounds are obtainable as a result of the excellent nature of the dihydrofuryl (DHF) substituent as a in various nucleophilic substitutions at the silicon atom. Si—C(DHF) bond cleavages under substitution of the dihydrofuryl group was observed for the reactions with C-nucleophiles (e.g. organolithium compounds) (Gevorgyan et al., 1992), H-nucleophiles (e.g. LiAlH4, NaH, NaBH4) (Gevorgyan et al., 1989, 1990), O-nucleophiles (e.g. t-butanol) and N-nucleophiles [e.g. LiN(Et)2] (Lukevics et al., 1997). By means of this efficient pathway, a noteworthy approach to pentacoordinated organyl silatranes has been made (Gevorgyan et al., 1997), as well as for (α-aminomethyl)silanes (Labrecque et al., 1994). Along with their easy preparation and hydrolytical and chromatographical stability (Gevorgyan et al., 1997), dihydrofurylsilanes offer the potential to be useful reagents as protecting groups for the synthesis of aminomethylsilazanes (Colquhoun et al., 2011; Colquhoun & Strohmann, 2012).
Herein, we report the structures of two further dihydrofurylsilanes, bis(4,5-dihydrofuran-2-yl)dimethylsilane (1) and (4,5-dihydrofuran-2-yl)(methyl)diphenylsilane (2) and their structural analysis, supplemented by a Hirshfeld surface analysis.
2. Structural commentary
The molecular structure of 1 is given in Fig. 1 and selected bond lengths and angles are given in Table 1. Compound 1 shows C2 molecular symmetry. The lengths of the Si—C(DHF) bonds are similar but slightly longer than the lengths of the Si—C(Me) bonds. However, all bonds have characteristic dimensions (Allen et al., 1987). Furthermore, the length of the C=C double bond corresponds well with literature values (Allen et al., 1987) and is clearly shortened in comparison to the C—C single bonds in the dihydrofuranyl substituent. The silicon atom is tetrahedrally surrounded by its substituents, however slightly distorted as evident from the slight deviations from the ideal angle of 109.47°. These deviations are congruent with a former publication on dihydrofurylsilanes (Krupp et al., 2020). Both DHF planes display planarity while the C1–C4/O1 ring has an r.m.s. deviation of 0.0197 Å from an ideal least-squares plane with atom C4 showing the largest deviation of −0.0269 (2) Å. The C5–C8/O2 ring deviates more strongly from an ideal least-square plane with an r.m.s. deviation of 0.0608 Å, with the C8 atom deviating the most by 0.0838 (2) Å. The angle between the normals of the least-squares planes through the DHF rings is 78.943 (15)°.
|
The molecular structure of 2 is given in Fig. 2 and selected bond lengths and angles are given in Table 2. The length of the Si—C(DHF) bond is in the range of the lengths of the Si—C(Ph) bonds, which are again slightly longer than the Si—C(Me) bond. The bond lengths of the dihydrofuran ring are consistent with those of structure 1. Again, a slightly distorted tetrahedral environment at the silicon atom is observed. The DHF ring is less planar than the phenyl rings, with an r.m.s. deviation from the least-squares plane of 0.0426 Å with the C4 atom having the largest deviation of −0.0582 (7) Å. The phenyl rings show r.m.s. deviations of 0.0066 and 0.0047 Å. The angle between the normals of the least-squares planes of the DHF ring and the C5–C10 phenyl ring is 87.68 (4)° and the angle between the normals of the least-squares planes of the phenyl rings is 60.03 (4)°.
|
3. Supramolecular features
The crystal packing of compound 1 is defined by C10—H10A⋯C2i van der Waals interactions as can be seen in Fig. 3. The interactions show relatively large distances [C10⋯C2i = 3.6208 (5) Å, H10A⋯C2i = 2.752 (10) Å and C10—H10A⋯C2i = 148.4 (8)°; symmetry code: (i) −x + 1, −y + 2, −z]. As a result of the interactions between carbon atom C2 and hydrogen atom H10A, a polymeric chain structure along the [011] direction is formed (Fig. 4). The interactions can be displayed by a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) generated by CrystalExplorer21 (Spackman et al., 2021), here indicated by the red spots (Fig. 5). The Hirshfeld surface mapped over dnorm is in the range from −0.0783 to 1.0981 a.u. The contributions of the different types of intermolecular interactions for 1 are shown in the two-dimensional fingerprint plots (McKinnon et al., 2007) in Fig. 6. The contribution of the H⋯ H interactions, with a value of 76.4%, has the largest share of the crystal packing of 1. The O⋯H/H⋯O interactions have a smaller share with a 15% contribution and the C⋯H/H⋯C interactions with a 8.6% contribution. Both heteronuclear interactions appear as spikes.
The structure of compound 2 is more strongly defined by C—H⋯O hydrogen bonds (Fig. 7, Table 3). Two different layers are formed along the b-axis direction and interconnected by hydrogen bonds between the O1 atom and the H17C atom. An additional interaction in each of the layers is observed by C—H⋯O hydrogen bonds between the O1 atom and the H15 atom. The C17—H17C⋯O1ii hydrogen bond can be described by the R22(10) graph-set motif and the C15—H15⋯O1i hydrogen bond by the C11(7) graph-set motif (Etter et al., 1990). Both C—H⋯O hydrogen bonds can be identified as weak interactions according to Desiraju & Steiner (2001). A Hirshfeld analysis, carried out analogously as for structure 1, was used to further study the crystal packing. In Fig. 8, the nearest contacts are shown in red. The Hirshfeld surface mapped over dnorm is in the range from −0.0717 to 1.0768 a.u. By analysis of the two-dimensional fingerprint plots (Fig. 9), again, the biggest contribution to the crystal packing can be assigned to H⋯H interactions (66%). Although the closest contacts were identified as C—H⋯O hydrogen bonds, O⋯H/H⋯O interactions contribute only 6.4% to the crystal packing, while C⋯H/H⋯C interactions have a larger share of 27%.
4. Database survey
A search of the Cambridge Crystallographic Database (WebCSD, November 2021; Groom et al., 2016) for 2-(4,5-dihydrofuryl)silanes revealed solely the structures of tris(4,5-dihydrofuran-2-yl)methylsilane and tris(4,5-dihydrofuran-2-yl)phenylsilane published by our group previously (Krupp et al., 2020). A more extended search for 3-(4,5-dihydrofuryl)silane gave some structures with substituted dihydrofuran rings, such as [4-(4-fluorophenyl)-5-(4-nitrophenyl)-4,5-dihydrofuran-3-yl](trimethyl)silane (JIVLIM; Li & Zhang, 2018), rac-5-phenyl-4-(t-butyldiphenylsilyl)-2,3-dihydrofuran-2-carboxylic acid ethyl ester (PUXCAM; Evans et al., 2001) and (1′S,2R)-5-methyl-4-(t-butyldiphenylsilyl)-2,3-dihydrofuran-2-carboxylic acid (1′-phenylethyl)amide (PUXCEQ; Evans et al., 2001). Contrary to the here and previously presented 2-(4,5-dihydrofuryl)silanes (Krupp et al., 2020), the published 3-(4,5-dihydrofuryl)silanes do not show an elongated Si—C(DHF) bond in comparison to the other substituents at the silicon atom. This can be attributed to the changed connection on the DHF ring. The slightly distorted tetrahedral silicon atom can be observed in all structures as well as the shortened C=C double bond in the DHF ring.
5. Synthesis and crystallization
Bis(4,5-dihydrofuran-2-yl)dimethylsilane (1) as already described by Lukevics and co-workers (Lukevics et al., 1985) was synthesized by adding tBuLi (1.9 M in pentane, 8.16 mL, 15.5 mmol, 2.0 eq.) to a solution of 2,3-dihydrofuran (1.09 g, 15.5 mmol, 2.0 eq.) in diethyl ether at 243 K and subsequent stirring for an hour. Dichlorodimethylsilane (1.00 g, 7.75 mmol, 1.0 eq.) was added at 243 K and warmed to room temperature under stirring for 2 h. All solids were filtered off inertly and all volatile components were removed in vacuo. After cleaning by Kugelrohr distillation (temperature: 373 K, pressure: 2.1 × 10−1 mbar), bis(4,5-dihydrofuran-2-yl)dimethylsilane (1) (1.50 g, 7.65 mmol, 99%) was obtained as a colorless oil. By crystallization from diethyl ether at 193 K, colorless blocks were obtained.
1H NMR (400.25 MHz, C6D6): δ = 0.39 [s, 6H; Si(CH3)2], 2.27 [dt, 3JHH = 2.57 Hz, 3JHH = 9.78 Hz, 4H; Si(CCHCH2)2], 4.07 [t, 3JHH = 9.78 Hz, 4H; Si(COCH2)2], 5.31 [t, 3JHH = 2.57 Hz, 2H; Si(CCH)2] ppm.
{1H}13C NMR (100.6 MHz, C6D6): δ = −3.8 [2C; (SiCH3)2], 31.6 [2C; Si(CCHCH2)2)], 71.8 [2C; Si(COCH2)2], 113.4 [2C; Si(COCH2)2], 160.0 [2C; Si(CO)2] ppm.
{1H}29Si NMR (79.52 MHz, C6D6): δ = −22.29 [1Si; Si(DHF)2] ppm.
GC/EI–MS: tR = 3.94 min [353 K (1 min) – 40 K min−1 – 543 K (5.5 min)]; m/z (%): 196 (94) [M+], 181 (2) [(M − Me)+], 167 (14) [(M − CHO)+], 153 (40) [(M − C2H3O)+], 97 (100) [(SiDHF)+].
(4,5-Dihydrofuran-2-yl)(methyl)diphenylsilane (2), already described by Tsai and co-workers (Tsai et al., 1992) by cyclization of a haloacylsilane, was synthesized analogously to 1. tBuLi (1.90 M in pentane, 21.5 mmol, 11.3 mL, 1.00 eq.) was slowly added dropwise to a solution of 2,3-dihydrofuran (1.51 g, 21.5 mmol, 1.00 eq.) in diethyl ether (80 mL) at 243 K and the reaction solution was stirred for 1h at this temperature. Methyldiphenylchlorosilane (5.00 g, 21.5 mmol, 1.00 eq.) was then added at 243 K and the reaction solution was stirred at room temperature overnight. All solids were separated by inert filtration and the solvent was removed in vacuo. The residue was purified by Kugelrohr distillation (temperature: 453 K, pressure: 2.0 × 10−1 mbar) and the product 2 (5.11 g, 19.2 mmol, 89%) was obtained as a colorless liquid. By crystallization from pentane at 193 K, colorless platelets were obtained.
1H NMR (400.25 MHz, C6D6): δ = 0.69 (s, 3H; SiCH3), 2.24 (dt, 3JHH = 2.57Hz, 3JHH = 9.66 Hz, 2H; SiCCHCH2), 4.07 (t, 3JHH = 9.66 Hz, 2H; SiCOCH2), 5.20 (t, 3JHH = 2.57 Hz, 1H; SiCCH), 7.18–7.21 (m, 6H; CHortho,para), 7.71–7.73 (m, 4H; CHmeta) ppm.
{1H}13C NMR (100.65 MHz, C6D6): δ = −3.9 (1C; SiCH3), 31.3 (1C; SiCCHCH2), 71.1 (1C; SiCOCH2), 115.5 (1C; SiCCH), 128.5 (2C, Cortho), 130.2 (1C, Cpara), 135.8 (2C, Cmeta), 135.8 (1C, Cipso), 160.2 (1C, SiCO) ppm.
{1H}29Si NMR (79.52 MHz, C6D6): δ = −19.51 (s, 1Si; SiDHF) ppm.
GC/EI–MS: tR = 5.97 min [353 K (1 min) – 40 K min−1 – 543 K (5.5 min)]; m/z (%): 266 (100) [M+], 251 (33) [(M − Me)+], 238 (27) [(M − C2H4)+], 222 (20) [(M − C2H4O)+], 197 (75) [(M − DHF)+], 105 (52) [(SiPh)+], 77 (6) [(Ph)+].
6. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) for CH2 and CH hydrogen atoms and Uiso(H) = 1.5Ueq(C) for CH3 hydrogen atoms. Hydrogen atoms H2 and H6 for compound 1 and H2, H15 and H17C for compound 2 were refined independently.
details are summarized in Table 4Supporting information
https://doi.org/10.1107/S2056989021012548/vm2257sup1.cif
contains datablocks 1, 2. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989021012548/vm22571sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989021012548/vm22572sup2.hkl
For both structures, data collection: APEX2 (Bruker, 2018); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), CrystalExplorer21 (Spackman et al., 2021), publCIF (Westrip, 2010), Mercury (Macrae et al., 2020).C10H16O2Si | Z = 2 |
Mr = 196.32 | F(000) = 212 |
Triclinic, P1 | Dx = 1.231 Mg m−3 |
a = 8.2422 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.3075 (4) Å | Cell parameters from 8689 reflections |
c = 8.2940 (4) Å | θ = 2.5–20.9° |
α = 94.149 (2)° | µ = 0.19 mm−1 |
β = 103.012 (1)° | T = 100 K |
γ = 104.909 (1)° | Block, colourless |
V = 529.55 (4) Å3 | 0.72 × 0.66 × 0.59 mm |
Bruker D8 Venture diffractometer | 11412 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 10306 reflections with I > 2σ(I) |
Mirror optics monochromator | Rint = 0.032 |
Detector resolution: 7.9 pixels mm-1 | θmax = 50.7°, θmin = 2.6° |
ω and φ scans | h = −16→17 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −18→18 |
Tmin = 0.519, Tmax = 0.576 | l = −18→18 |
256332 measured reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | H_atoms_treated_by_a_mixture_of_independent_and_constrained_refinement. |
wR(F2) = 0.089 | w = 1/[σ2(Fo2) + (0.0535P)2 + 0.0207P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.002 |
11412 reflections | Δρmax = 0.68 e Å−3 |
182 parameters | Δρmin = −0.32 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.64185 (2) | 0.82439 (2) | 0.20897 (2) | 0.01354 (2) | |
O1 | 0.28272 (3) | 0.68623 (3) | 0.09023 (4) | 0.02227 (4) | |
O2 | 0.70145 (4) | 0.71875 (3) | 0.52219 (3) | 0.02213 (4) | |
C1 | 0.41042 (3) | 0.81964 (3) | 0.19462 (3) | 0.01504 (3) | |
C2 | 0.34535 (4) | 0.92843 (4) | 0.26763 (4) | 0.01740 (4) | |
C3 | 0.14995 (4) | 0.87390 (4) | 0.21112 (4) | 0.02057 (4) | |
H3A | 0.0906 (12) | 0.8525 (12) | 0.3024 (12) | 0.033 (2)* | |
H3B | 0.1063 (12) | 0.9549 (11) | 0.1543 (11) | 0.032 (2)* | |
C4 | 0.11591 (4) | 0.70688 (5) | 0.10008 (5) | 0.02242 (5) | |
H4A | 0.0538 (11) | 0.6100 (11) | 0.1453 (11) | 0.032 (2)* | |
H4B | 0.0486 (12) | 0.6963 (12) | −0.0129 (12) | 0.037 (2)* | |
C5 | 0.70144 (3) | 0.67768 (3) | 0.35736 (3) | 0.01419 (3) | |
C6 | 0.73403 (4) | 0.52967 (3) | 0.32841 (3) | 0.01609 (4) | |
C7 | 0.75301 (4) | 0.44890 (4) | 0.48628 (4) | 0.01889 (4) | |
H7A | 0.8533 (11) | 0.4108 (11) | 0.5151 (11) | 0.0284 (18)* | |
H7B | 0.6498 (10) | 0.3515 (11) | 0.4771 (10) | 0.0251 (17)* | |
C8 | 0.75865 (6) | 0.59310 (5) | 0.61494 (4) | 0.02397 (6) | |
H8A | 0.6831 (12) | 0.5602 (11) | 0.6876 (12) | 0.033 (2)* | |
H8B | 0.8762 (14) | 0.6488 (14) | 0.6853 (14) | 0.048 (3)* | |
C9 | 0.77560 (4) | 1.04490 (4) | 0.28985 (5) | 0.02162 (5) | |
H9A | 0.7566 (12) | 1.0847 (12) | 0.3964 (12) | 0.037 (2)* | |
H9B | 0.9008 (14) | 1.0571 (13) | 0.3185 (14) | 0.048 (3)* | |
H9C | 0.7555 (14) | 1.1226 (14) | 0.2124 (13) | 0.047 (3)* | |
C10 | 0.66177 (4) | 0.74698 (4) | 0.00048 (4) | 0.01893 (4) | |
H10A | 0.6108 (13) | 0.8064 (13) | −0.0859 (13) | 0.040 (2)* | |
H10B | 0.6006 (14) | 0.6296 (14) | −0.0355 (13) | 0.045 (3)* | |
H10C | 0.7765 (13) | 0.7669 (12) | −0.0041 (12) | 0.036 (2)* | |
H6 | 0.7325 (10) | 0.4798 (10) | 0.2272 (10) | 0.0225 (16)* | |
H2 | 0.4137 (12) | 1.0273 (11) | 0.3403 (11) | 0.033 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.01424 (3) | 0.01281 (3) | 0.01491 (3) | 0.00527 (2) | 0.00450 (2) | 0.00244 (2) |
O1 | 0.01651 (7) | 0.02070 (9) | 0.02720 (10) | 0.00574 (6) | 0.00287 (7) | −0.00545 (7) |
O2 | 0.03579 (12) | 0.02135 (9) | 0.01466 (7) | 0.01572 (9) | 0.00835 (7) | 0.00268 (6) |
C1 | 0.01497 (7) | 0.01501 (7) | 0.01637 (8) | 0.00611 (6) | 0.00417 (6) | 0.00253 (6) |
C2 | 0.01676 (8) | 0.01709 (8) | 0.01982 (9) | 0.00723 (7) | 0.00523 (7) | 0.00100 (7) |
C3 | 0.01692 (9) | 0.02220 (11) | 0.02551 (12) | 0.00930 (8) | 0.00669 (8) | 0.00381 (9) |
C4 | 0.01543 (9) | 0.02642 (13) | 0.02320 (11) | 0.00544 (8) | 0.00243 (8) | −0.00117 (9) |
C5 | 0.01579 (7) | 0.01407 (7) | 0.01381 (7) | 0.00590 (6) | 0.00406 (6) | 0.00171 (5) |
C6 | 0.01916 (9) | 0.01436 (8) | 0.01617 (8) | 0.00689 (6) | 0.00502 (7) | 0.00142 (6) |
C7 | 0.02225 (10) | 0.01595 (8) | 0.02068 (10) | 0.00752 (7) | 0.00644 (8) | 0.00561 (7) |
C8 | 0.03680 (17) | 0.02108 (11) | 0.01494 (9) | 0.01061 (11) | 0.00498 (9) | 0.00432 (8) |
C9 | 0.02043 (10) | 0.01447 (9) | 0.02932 (13) | 0.00399 (7) | 0.00669 (9) | 0.00107 (8) |
C10 | 0.02063 (10) | 0.02226 (10) | 0.01611 (9) | 0.00769 (8) | 0.00686 (7) | 0.00360 (7) |
Si1—C1 | 1.8742 (3) | C4—H4B | 0.961 (10) |
Si1—C5 | 1.8693 (3) | C5—C6 | 1.3409 (4) |
Si1—C9 | 1.8631 (3) | C6—C7 | 1.5093 (4) |
Si1—C10 | 1.8579 (3) | C6—H6 | 0.904 (8) |
O1—C1 | 1.3915 (4) | C7—H7A | 0.947 (9) |
O1—C4 | 1.4479 (4) | C7—H7B | 0.996 (8) |
O2—C5 | 1.3849 (3) | C7—C8 | 1.5298 (5) |
O2—C8 | 1.4525 (4) | C8—H8A | 0.965 (9) |
C1—C2 | 1.3370 (4) | C8—H8B | 0.984 (11) |
C2—C3 | 1.5075 (4) | C9—H9A | 0.980 (10) |
C2—H2 | 0.945 (9) | C9—H9B | 0.982 (11) |
C3—H3A | 0.992 (9) | C9—H9C | 0.961 (11) |
C3—H3B | 0.948 (9) | C10—H10A | 0.978 (10) |
C3—C4 | 1.5331 (5) | C10—H10B | 0.965 (11) |
C4—H4A | 0.984 (9) | C10—H10C | 0.927 (10) |
C5—Si1—C1 | 108.189 (12) | C6—C5—O2 | 113.03 (2) |
C9—Si1—C1 | 106.801 (14) | C5—C6—C7 | 109.72 (2) |
C9—Si1—C5 | 110.770 (15) | C5—C6—H6 | 125.3 (5) |
C10—Si1—C1 | 109.191 (13) | C7—C6—H6 | 124.7 (5) |
C10—Si1—C5 | 108.128 (13) | C6—C7—H7A | 114.8 (5) |
C10—Si1—C9 | 113.628 (16) | C6—C7—H7B | 110.3 (5) |
C1—O1—C4 | 107.60 (2) | C6—C7—C8 | 101.18 (2) |
C5—O2—C8 | 107.15 (2) | H7A—C7—H7B | 107.9 (7) |
O1—C1—Si1 | 117.093 (19) | C8—C7—H7A | 111.6 (5) |
C2—C1—Si1 | 129.94 (2) | C8—C7—H7B | 110.9 (5) |
C2—C1—O1 | 112.95 (2) | O2—C8—C7 | 106.95 (2) |
C1—C2—C3 | 110.20 (3) | O2—C8—H8A | 107.7 (6) |
C1—C2—H2 | 124.1 (5) | O2—C8—H8B | 106.9 (6) |
C3—C2—H2 | 125.7 (5) | C7—C8—H8A | 113.7 (6) |
C2—C3—H3A | 114.7 (5) | C7—C8—H8B | 113.2 (6) |
C2—C3—H3B | 111.8 (5) | H8A—C8—H8B | 108.0 (8) |
C2—C3—C4 | 101.57 (2) | Si1—C9—H9A | 111.7 (5) |
H3A—C3—H3B | 106.4 (7) | Si1—C9—H9B | 113.1 (6) |
C4—C3—H3A | 108.8 (5) | Si1—C9—H9C | 113.1 (6) |
C4—C3—H3B | 113.8 (5) | H9A—C9—H9B | 102.7 (8) |
O1—C4—C3 | 107.47 (3) | H9A—C9—H9C | 108.8 (8) |
O1—C4—H4A | 108.9 (5) | H9B—C9—H9C | 106.8 (9) |
O1—C4—H4B | 106.6 (6) | Si1—C10—H10A | 111.1 (6) |
C3—C4—H4A | 112.4 (5) | Si1—C10—H10B | 112.9 (6) |
C3—C4—H4B | 116.7 (6) | Si1—C10—H10C | 112.3 (6) |
H4A—C4—H4B | 104.5 (8) | H10A—C10—H10B | 105.1 (8) |
O2—C5—Si1 | 116.686 (18) | H10A—C10—H10C | 104.8 (8) |
C6—C5—Si1 | 130.12 (2) | H10B—C10—H10C | 110.1 (8) |
Si1—C1—C2—C3 | 177.42 (2) | C5—O2—C8—C7 | −13.01 (4) |
Si1—C5—C6—C7 | −172.51 (2) | C5—C6—C7—C8 | −10.06 (3) |
O1—C1—C2—C3 | −1.01 (4) | C6—C7—C8—O2 | 13.68 (4) |
O2—C5—C6—C7 | 2.56 (4) | C8—O2—C5—Si1 | −177.44 (2) |
C1—Si1—C5—O2 | −64.48 (2) | C8—O2—C5—C6 | 6.78 (4) |
C1—Si1—C5—C6 | 110.44 (3) | C9—Si1—C1—O1 | 160.08 (2) |
C1—O1—C4—C3 | 4.15 (4) | C9—Si1—C1—C2 | −18.30 (3) |
C1—C2—C3—C4 | 3.38 (4) | C9—Si1—C5—O2 | 52.26 (3) |
C2—C3—C4—O1 | −4.46 (4) | C9—Si1—C5—C6 | −132.81 (3) |
C4—O1—C1—Si1 | 179.30 (2) | C10—Si1—C1—O1 | 36.82 (3) |
C4—O1—C1—C2 | −2.04 (4) | C10—Si1—C1—C2 | −141.56 (3) |
C5—Si1—C1—O1 | −80.64 (2) | C10—Si1—C5—O2 | 177.38 (2) |
C5—Si1—C1—C2 | 100.98 (3) | C10—Si1—C5—C6 | −7.70 (3) |
C17H18OSi | Z = 2 |
Mr = 266.40 | F(000) = 284 |
Triclinic, P1 | Dx = 1.227 Mg m−3 |
a = 8.7737 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.1715 (4) Å | Cell parameters from 8775 reflections |
c = 9.8130 (4) Å | θ = 2.5–36.3° |
α = 102.219 (2)° | µ = 0.15 mm−1 |
β = 90.613 (2)° | T = 100 K |
γ = 110.280 (2)° | Plate, colourless |
V = 720.85 (6) Å3 | 0.51 × 0.19 × 0.07 mm |
Bruker D8 Venture diffractometer | 5826 independent reflections |
Radiation source: microfocus sealed X-ray tube, INCOATEC microfocus sealed tube, Iys 3.0 | 4937 reflections with I > 2σ(I) |
Multilayer optics monochromator | Rint = 0.030 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 34.0°, θmin = 2.8° |
φ and ω scans | h = −11→13 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −14→14 |
Tmin = 0.713, Tmax = 0.747 | l = −15→15 |
20409 measured reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | H_atoms_treated_by_a_mixture_of_independent_and_constrained_refinement. |
wR(F2) = 0.105 | w = 1/[σ2(Fo2) + (0.0391P)2 + 0.2951P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
5826 reflections | Δρmax = 0.48 e Å−3 |
244 parameters | Δρmin = −0.27 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.69854 (3) | 0.37535 (3) | 0.34297 (3) | 0.01325 (7) | |
O1 | 0.92417 (10) | 0.22237 (9) | 0.28540 (9) | 0.02194 (16) | |
C1 | 0.86366 (11) | 0.32897 (11) | 0.24356 (10) | 0.01447 (16) | |
C2 | 0.93945 (12) | 0.38813 (13) | 0.13924 (11) | 0.01886 (18) | |
C3 | 1.07424 (14) | 0.32450 (15) | 0.10108 (13) | 0.0250 (2) | |
H3A | 1.182 (2) | 0.410 (2) | 0.1241 (18) | 0.035 (4)* | |
H3B | 1.068 (2) | 0.282 (2) | 0.0052 (19) | 0.037 (4)* | |
C4 | 1.04574 (14) | 0.20014 (14) | 0.19082 (13) | 0.0241 (2) | |
H4A | 1.003 (2) | 0.091 (2) | 0.1329 (18) | 0.037 (4)* | |
H4B | 1.143 (2) | 0.213 (2) | 0.2498 (17) | 0.034 (4)* | |
C5 | 0.50711 (11) | 0.19477 (11) | 0.29840 (10) | 0.01461 (16) | |
C6 | 0.44747 (12) | 0.11776 (12) | 0.15886 (10) | 0.01701 (17) | |
H6 | 0.4976 (18) | 0.1611 (17) | 0.0857 (15) | 0.021 (3)* | |
C7 | 0.31274 (12) | −0.02389 (13) | 0.12562 (11) | 0.01983 (19) | |
H7 | 0.276 (2) | −0.0716 (19) | 0.0290 (17) | 0.030 (4)* | |
C8 | 0.23486 (13) | −0.09184 (13) | 0.23187 (13) | 0.0221 (2) | |
H8 | 0.1407 (19) | −0.1954 (19) | 0.2088 (16) | 0.028 (4)* | |
C9 | 0.28960 (13) | −0.01617 (13) | 0.37054 (12) | 0.0235 (2) | |
H9 | 0.232 (2) | −0.063 (2) | 0.4496 (17) | 0.034 (4)* | |
C10 | 0.42448 (12) | 0.12571 (13) | 0.40346 (11) | 0.01958 (18) | |
H10 | 0.4595 (19) | 0.1741 (18) | 0.5007 (16) | 0.025 (4)* | |
C11 | 0.68003 (11) | 0.55198 (11) | 0.28740 (10) | 0.01557 (16) | |
C12 | 0.54668 (13) | 0.54371 (13) | 0.20270 (11) | 0.01901 (18) | |
H12 | 0.4588 (18) | 0.4466 (18) | 0.1690 (15) | 0.021 (3)* | |
C13 | 0.53731 (15) | 0.67991 (14) | 0.16669 (12) | 0.0236 (2) | |
H13 | 0.447 (2) | 0.6702 (19) | 0.1106 (17) | 0.029 (4)* | |
C14 | 0.66219 (15) | 0.82626 (14) | 0.21337 (12) | 0.0239 (2) | |
H14 | 0.6560 (19) | 0.9203 (19) | 0.1908 (17) | 0.029 (4)* | |
C15 | 0.79733 (14) | 0.83698 (13) | 0.29579 (13) | 0.0234 (2) | |
C16 | 0.80543 (13) | 0.70145 (12) | 0.33290 (12) | 0.02067 (19) | |
H16 | 0.902 (2) | 0.7112 (19) | 0.3922 (17) | 0.029 (4)* | |
C17 | 0.76169 (14) | 0.42855 (14) | 0.53383 (11) | 0.02152 (19) | |
H17A | 0.779 (2) | 0.341 (2) | 0.5607 (19) | 0.042 (5)* | |
H17B | 0.678 (2) | 0.459 (2) | 0.5845 (19) | 0.041 (5)* | |
H15 | 0.886 (2) | 0.9381 (19) | 0.3294 (16) | 0.028 (4)* | |
H17C | 0.863 (2) | 0.524 (2) | 0.5574 (19) | 0.045 (5)* | |
H2 | 0.9161 (19) | 0.4673 (19) | 0.1014 (16) | 0.028 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.01095 (11) | 0.01317 (12) | 0.01416 (12) | 0.00328 (9) | 0.00118 (8) | 0.00181 (9) |
O1 | 0.0202 (3) | 0.0199 (3) | 0.0313 (4) | 0.0113 (3) | 0.0083 (3) | 0.0103 (3) |
C1 | 0.0112 (3) | 0.0134 (4) | 0.0177 (4) | 0.0040 (3) | 0.0002 (3) | 0.0020 (3) |
C2 | 0.0156 (4) | 0.0227 (5) | 0.0198 (4) | 0.0084 (3) | 0.0040 (3) | 0.0054 (4) |
C3 | 0.0176 (4) | 0.0309 (6) | 0.0272 (5) | 0.0104 (4) | 0.0078 (4) | 0.0051 (4) |
C4 | 0.0194 (4) | 0.0225 (5) | 0.0318 (6) | 0.0116 (4) | 0.0051 (4) | 0.0019 (4) |
C5 | 0.0114 (3) | 0.0150 (4) | 0.0170 (4) | 0.0042 (3) | 0.0020 (3) | 0.0036 (3) |
C6 | 0.0144 (4) | 0.0176 (4) | 0.0169 (4) | 0.0044 (3) | 0.0023 (3) | 0.0015 (3) |
C7 | 0.0150 (4) | 0.0186 (4) | 0.0217 (4) | 0.0044 (3) | 0.0004 (3) | −0.0014 (3) |
C8 | 0.0158 (4) | 0.0165 (4) | 0.0307 (5) | 0.0030 (3) | 0.0023 (4) | 0.0036 (4) |
C9 | 0.0198 (4) | 0.0210 (5) | 0.0270 (5) | 0.0019 (4) | 0.0052 (4) | 0.0088 (4) |
C10 | 0.0171 (4) | 0.0197 (4) | 0.0192 (4) | 0.0026 (3) | 0.0025 (3) | 0.0056 (4) |
C11 | 0.0138 (4) | 0.0149 (4) | 0.0178 (4) | 0.0055 (3) | 0.0038 (3) | 0.0024 (3) |
C12 | 0.0176 (4) | 0.0185 (4) | 0.0214 (4) | 0.0071 (3) | 0.0017 (3) | 0.0046 (3) |
C13 | 0.0252 (5) | 0.0249 (5) | 0.0249 (5) | 0.0127 (4) | 0.0020 (4) | 0.0084 (4) |
C14 | 0.0303 (5) | 0.0206 (5) | 0.0265 (5) | 0.0133 (4) | 0.0083 (4) | 0.0100 (4) |
C15 | 0.0243 (5) | 0.0159 (4) | 0.0292 (5) | 0.0058 (4) | 0.0070 (4) | 0.0055 (4) |
C16 | 0.0169 (4) | 0.0169 (4) | 0.0265 (5) | 0.0043 (3) | 0.0019 (4) | 0.0042 (4) |
C17 | 0.0205 (4) | 0.0237 (5) | 0.0161 (4) | 0.0040 (4) | 0.0001 (3) | 0.0025 (4) |
Si1—C1 | 1.8743 (10) | C8—H8 | 0.998 (16) |
Si1—C5 | 1.8720 (9) | C8—C9 | 1.3854 (17) |
Si1—C11 | 1.8715 (10) | C9—H9 | 1.023 (16) |
Si1—C17 | 1.8591 (11) | C9—C10 | 1.3944 (15) |
O1—C1 | 1.3897 (12) | C10—H10 | 0.960 (15) |
O1—C4 | 1.4603 (13) | C11—C12 | 1.3988 (14) |
C1—C2 | 1.3356 (14) | C11—C16 | 1.4050 (14) |
C2—C3 | 1.5082 (15) | C12—H12 | 0.944 (15) |
C2—H2 | 0.961 (16) | C12—C13 | 1.3962 (15) |
C3—H3A | 0.981 (17) | C13—H13 | 0.928 (16) |
C3—H3B | 0.933 (18) | C13—C14 | 1.3861 (17) |
C3—C4 | 1.5398 (18) | C14—H14 | 0.953 (16) |
C4—H4A | 0.982 (17) | C14—C15 | 1.3909 (17) |
C4—H4B | 0.987 (17) | C15—C16 | 1.3911 (15) |
C5—C6 | 1.4023 (14) | C15—H15 | 0.969 (16) |
C5—C10 | 1.4014 (13) | C16—H16 | 0.990 (16) |
C6—H6 | 0.934 (15) | C17—H17A | 0.950 (18) |
C6—C7 | 1.3926 (14) | C17—H17B | 0.975 (19) |
C7—H7 | 0.956 (16) | C17—H17C | 0.992 (19) |
C7—C8 | 1.3919 (16) | ||
C5—Si1—C1 | 108.44 (4) | C7—C8—H8 | 120.4 (9) |
C11—Si1—C1 | 105.50 (4) | C9—C8—C7 | 119.76 (10) |
C11—Si1—C5 | 113.08 (4) | C9—C8—H8 | 119.8 (9) |
C17—Si1—C1 | 109.26 (5) | C8—C9—H9 | 120.5 (9) |
C17—Si1—C5 | 110.48 (5) | C8—C9—C10 | 120.10 (10) |
C17—Si1—C11 | 109.89 (5) | C10—C9—H9 | 119.4 (9) |
C1—O1—C4 | 107.48 (8) | C5—C10—H10 | 121.0 (9) |
O1—C1—Si1 | 117.13 (7) | C9—C10—C5 | 121.24 (10) |
C2—C1—Si1 | 129.71 (8) | C9—C10—H10 | 117.7 (9) |
C2—C1—O1 | 113.10 (9) | C12—C11—Si1 | 123.40 (7) |
C1—C2—C3 | 110.25 (9) | C12—C11—C16 | 117.71 (9) |
C1—C2—H2 | 123.6 (9) | C16—C11—Si1 | 118.89 (8) |
C3—C2—H2 | 126.0 (9) | C11—C12—H12 | 121.5 (9) |
C2—C3—H3A | 111.2 (10) | C13—C12—C11 | 121.09 (10) |
C2—C3—H3B | 112.3 (11) | C13—C12—H12 | 117.4 (9) |
C2—C3—C4 | 101.51 (9) | C12—C13—H13 | 118.8 (10) |
H3A—C3—H3B | 105.5 (14) | C14—C13—C12 | 120.16 (10) |
C4—C3—H3A | 112.9 (10) | C14—C13—H13 | 121.0 (10) |
C4—C3—H3B | 113.7 (11) | C13—C14—H14 | 120.8 (10) |
O1—C4—C3 | 106.70 (8) | C13—C14—C15 | 119.80 (10) |
O1—C4—H4A | 108.8 (10) | C15—C14—H14 | 119.4 (10) |
O1—C4—H4B | 107.0 (10) | C14—C15—C16 | 119.92 (10) |
C3—C4—H4A | 111.5 (10) | C14—C15—H15 | 121.1 (9) |
C3—C4—H4B | 114.2 (10) | C16—C15—H15 | 119.0 (9) |
H4A—C4—H4B | 108.4 (14) | C11—C16—H16 | 119.7 (9) |
C6—C5—Si1 | 121.29 (7) | C15—C16—C11 | 121.32 (10) |
C10—C5—Si1 | 120.94 (7) | C15—C16—H16 | 118.9 (9) |
C10—C5—C6 | 117.64 (9) | Si1—C17—H17A | 109.9 (11) |
C5—C6—H6 | 120.3 (9) | Si1—C17—H17B | 108.7 (11) |
C7—C6—C5 | 121.26 (9) | Si1—C17—H17C | 110.5 (11) |
C7—C6—H6 | 118.4 (9) | H17A—C17—H17B | 112.2 (15) |
C6—C7—H7 | 118.2 (10) | H17A—C17—H17C | 109.4 (15) |
C8—C7—C6 | 119.98 (10) | H17B—C17—H17C | 106.1 (15) |
C8—C7—H7 | 121.8 (10) | ||
Si1—C1—C2—C3 | 175.12 (8) | C6—C7—C8—C9 | 1.46 (16) |
Si1—C5—C6—C7 | 174.69 (8) | C7—C8—C9—C10 | −1.42 (17) |
Si1—C5—C10—C9 | −174.66 (9) | C8—C9—C10—C5 | 0.07 (17) |
Si1—C11—C12—C13 | 178.63 (8) | C10—C5—C6—C7 | −1.15 (15) |
Si1—C11—C16—C15 | −179.42 (8) | C11—Si1—C1—O1 | 167.77 (7) |
O1—C1—C2—C3 | −2.00 (12) | C11—Si1—C1—C2 | −9.26 (11) |
C1—Si1—C5—C6 | −51.23 (9) | C11—Si1—C5—C6 | 65.41 (9) |
C1—Si1—C5—C10 | 124.48 (8) | C11—Si1—C5—C10 | −118.88 (9) |
C1—Si1—C11—C12 | 109.11 (9) | C11—C12—C13—C14 | 0.82 (17) |
C1—Si1—C11—C16 | −71.17 (9) | C12—C11—C16—C15 | 0.31 (15) |
C1—O1—C4—C3 | 8.95 (11) | C12—C13—C14—C15 | 0.27 (17) |
C1—C2—C3—C4 | 7.17 (12) | C13—C14—C15—C16 | −1.03 (17) |
C2—C3—C4—O1 | −9.52 (11) | C14—C15—C16—C11 | 0.74 (17) |
C4—O1—C1—Si1 | 177.92 (7) | C16—C11—C12—C13 | −1.09 (15) |
C4—O1—C1—C2 | −4.57 (12) | C17—Si1—C1—O1 | 49.68 (8) |
C5—Si1—C1—O1 | −70.80 (8) | C17—Si1—C1—C2 | −127.35 (10) |
C5—Si1—C1—C2 | 112.17 (10) | C17—Si1—C5—C6 | −170.95 (8) |
C5—Si1—C11—C12 | −9.26 (10) | C17—Si1—C5—C10 | 4.76 (10) |
C5—Si1—C11—C16 | 170.46 (8) | C17—Si1—C11—C12 | −133.23 (9) |
C5—C6—C7—C8 | −0.15 (16) | C17—Si1—C11—C16 | 46.49 (9) |
C6—C5—C10—C9 | 1.20 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15···O1i | 0.969 (16) | 2.640 (16) | 3.3422 (13) | 129.6 (12) |
C17—H17C···O1ii | 0.992 (19) | 2.584 (19) | 3.5168 (14) | 156.5 (15) |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z+1. |
Si1—C1 | 1.8742 (3) | C1—Si1—C5 | 108.189 (12) |
Si1—C5 | 1.8693 (3) | C1—Si1—C9 | 106.801 (14) |
Si1—C9 | 1.8631 (3) | C1—Si1—C10 | 109.191 (13) |
Si1—C10 | 1.8579 (3) | C5—Si1—C9 | 110.770 (15) |
C5—Si1—C10 | 108.128 (13) | ||
C1—C2 | 1.3370 (4) | C9—Si1—C10 | 113.628 (16) |
C3—C4 | 1.5331 (5) | ||
C5—C6 | 1.3409 (4) | ||
C7—C8 | 1.5298 (5) |
Si1—C1 | 1.8742 (10) | C1—Si1—C5 | 108.44 (4) |
Si1—C5 | 1.8721 (9) | C1—Si1—C11 | 105.51 (4) |
Si1—C11 | 1.8713 (10) | C1—Si1—C17 | 109.26 (5) |
Si1—C17 | 1.8591 (11) | C5—Si1—C11 | 113.08 (4) |
C5—Si1—C17 | 110.49 (5) | ||
C1—C2 | 1.3356 (14) | C11—Si1—C17 | 109.88 (59 |
C3—C4 | 1.5416 (17) |
Si1—C1 | 1.8742 (3) | C1—Si1—C5 | 108.189 (12) | |
Si1—C5 | 1.8693 (3) | C1—Si1—C9 | 106.801 (14) | |
Si1—C9 | 1.8631 (3) | C1—Si1—C10 | 109.191 (13) | |
Si1—C10 | 1.8579 (3) | C5—Si1—C9 | 110.770 (15) | |
C5—Si1—C10 | 108.128 (13) | |||
C1—C2 | 1.3370 (4) | C9—Si1—C10 | 113.628 (16) | |
C3—C4 | 1.5331 (5) | |||
C5—C6 | 1.3409 (4) | |||
C7—C8 | 1.5298 (5) |
Funding information
Funding for this research was provided by: Fonds der Chemischen Industrie (scholarship to ERB).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, 12, 1–19. Google Scholar
Bruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2018). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Colquhoun, V. P., Abele, B. C. & Strohmann, C. (2011). Organometallics, 30, 5408–5414. Web of Science CSD CrossRef CAS Google Scholar
Colquhoun, V. P. & Strohmann, C. (2012). Dalton Trans. 41, 1897–1902. Web of Science CSD CrossRef CAS PubMed Google Scholar
Desiraju, G. & Steiner, T. (2001). The Weak Hydrogen Bond. Oxford University Press. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Evans, D. A., Sweeney, Z. K., Rovis, T. & Tedrow, J. S. (2001). J. Am. Chem. Soc. 123, 12095–12096. Web of Science CSD CrossRef PubMed CAS Google Scholar
Gevorgyan, V., Borisova, L. & Lukevics, E. (1989). J. Organomet. Chem. 368, 19–21. CrossRef CAS Web of Science Google Scholar
Gevorgyan, V., Borisova, L. & Lukevics, E. (1990). J. Organomet. Chem. 393, 57–67. CrossRef CAS Web of Science Google Scholar
Gevorgyan, V., Borisova, L. & Lukevics, E. (1992). J. Organomet. Chem. 441, 381–387. CrossRef CAS Web of Science Google Scholar
Gevorgyan, V., Borisova, L. & Lukevics, E. (1997). J. Organomet. Chem. 527, 295–296. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Krupp, A., Barth, E. R., Seymen, R. & Strohmann, C. (2020). Acta Cryst. E76, 1514–1519. Web of Science CSD CrossRef IUCr Journals Google Scholar
Labrecque, D., Nwe, K. T. & Chan, T. H. (1994). Organometallics, 13, 332–335. CrossRef CAS Web of Science Google Scholar
Li, T. & Zhang, L. (2018). J. Am. Chem. Soc. 140, 17439–17443. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lukevics, E., Gevorgyan, V. & Borisova, L. (1997). Chem. Heterocycl. Compd. 33, 161–163. CrossRef CAS Google Scholar
Lukevics, E., Gevorgyan, V. N., Goldberg, Y. S. & Shymanska, M. V. (1985). J. Organomet. Chem. 294, 163–171. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tsai, Y.-M., Nieh, H.-C. & Cherng, C.-D. (1992). J. Org. Chem. 57, 7010–7012. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.