research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of the crystal structures of rare-earth trirhodium diboride RERh3B2 (RE = Pr, Nd and Sm) from single-crystal X-ray data

crossmark logo

aInstitute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
*Correspondence e-mail: makoto.tokuda.b7@tohoku.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 28 October 2021; accepted 15 December 2021; online 1 January 2022)

The crystal structures of the rare-earth (RE) trirhodium diborides praseo­dymium trirhodium diboride, PrRh3B2, neodymium trirhodium diboride, NdRh3B2, and samarium trirhodium diboride, SmRh3B2, were refined on the basis of single-crystal X-ray diffraction data. The crystal chemistry of RERh3B2 (RE: Pr, Nd, and Sm) compounds has previously been analyzed mainly on the basis of powder samples [Ku et al. (1980[Ku, H. C., Meisner, G. P., Acker, F. & Johnston, D. C. (1980). Solid State Commun. 35, 91-96.]). Solid State Commun. 35, 91–96], and no structural investigation by single-crystal X-ray diffraction has been reported so far. The crystal structures of the three hexa­gonal RERh3B2 compounds are isotypic with that of CeRh3B2; RE, Rh and B sites are situated on special positions with site symmetry 6/mmm (Wyckoff position 1a), mmm (3g) and [\overline{6}]m2 (2c), respectively. In comparison with the previous powder X-ray study of hexa­gonal RERh3B2, the present redetermination against single-crystal X-ray data has allowed for the modeling of all atoms with anisotropic displacement parameters (ADPs). The ADPs of the Rh atom in each of the structures result in an elongated displacement ellipsoid in the direction of the stacking of the Rh kagomé-type layer. The features of obtained ADPs of atoms are discussed in relation to RERh3B2-type and analogous structures.

1. Chemical context

CeCo3B2-type RERh3B2 (RE = rare-earth element) compounds exhibit anomalous ferromagnetic properties (Malik et al., 1983[Malik, S. K., Vijayaraghavan, R., Wallace, W. E. & Dhar, S. K. (1983). J. Magn. Magn. Mater. 37, 303-308.]; Yamada et al., 2004[Yamada, M., Obiraki, Y., Okubo, T., Shiromoto, T., Kida, Y., Shiimoto, M., Kohara, H., Yamamoto, T., Honda, D., Galatanu, A., Haga, Y., Takeuchi, T., Sugiyama, K., Settai, R., Kindo, K., Dhar, S. K., Harima, H. & Ōnuki, Y. (2004). J. Phys. Soc. Jpn, 73, 2266-2275.]), and the unit-cell parameters of these compounds have been reported using powder X-ray diffraction (XRD) data (Ku et al., 1980[Ku, H. C., Meisner, G. P., Acker, F. & Johnston, D. C. (1980). Solid State Commun. 35, 91-96.]; Ku & Meisner, 1981[Ku, H. C. & Meisner, G. P. (1981). J. Less-Common Met. 78, 99-107.]). Higashi et al. (1987[Higashi, I., Kasaya, M., Okabe, A. & Kasuya, T. (1987). J. Solid State Chem. 69, 376-379.]) analyzed the crystal structure of CeRh3B2 by using single-crystal XRD data and discussed the characteristics of the anisotropic atomic displacement parameters (ADP) of atoms in CeRh3B2 in relation to the structure. We report here the results of structural refinements using single crystals of RERh3B2 (RE = Pr, Nd, and Sm) grown by the arc-melting method.

2. Structural commentary

The crystal structures of hexa­gonal RERh3B2 (RE; La–Gd) compounds are isotypic with CeCo3B2 and crystallize in space-group type P6/mmm (Kuz'ma et al., 1969[Kuz'ma, Y. B., Krypyakevych, P. I. & Bilonizhko, N. S. (1969). Dopov. Akad. Nauk Ukr. RSR Ser. A, pp. 939-941.]). The CeCo3B2 type of structure is ordered and can be derived from the CaCu5 type of structure, whereby two distinct atoms (Rh and B) occupy the corresponding Cu sites. Each B atom is surrounded by six Rh atoms, forming a trigonal prism. Such [BRh6] trigonal prisms constitute a honeycomb structure and RE atoms are accommodated at the centers of the twelve [RERh12] hexa­gonal prisms, as shown in Fig. 1[link]. The RERh3B2 type of structure can also be described as being built up of kagomé layers of Rh atoms stacked along the c axis with an αα stacking sequence and with B and RE atoms at the centers of the Rh triangular and hexa­gonal prisms, respectively.

[Figure 1]
Figure 1
Structure of RERh3B2 compounds (space group: P6/mmm) as viewed along the c axis. B and RE atoms settle in the center of the trigonal and hexa­gonal prisms, respectively.

The unit-cell parameters a and c and the unit-cell volume V of RERh3B2 (RE = La–Sm) compounds are shown in Fig. 2[link]. The decrease in unit-cell volume results from the lanthanide contraction. The lattice parameters a and c decrease and increase, respectively. These anisotropic changes in the unit-cell parameters are consistent with those of a previous report using powder XRD analysis (Malik et al., 1983[Malik, S. K., Vijayaraghavan, R., Wallace, W. E. & Dhar, S. K. (1983). J. Magn. Magn. Mater. 37, 303-308.]).

[Figure 2]
Figure 2
Unit-cell parameters a (circles), c (squares) and unit-cell volume (triangles) of RERh3B2 compounds. Closed and open marks refer to this study and previous work (Malik et al., 1983[Malik, S. K., Vijayaraghavan, R., Wallace, W. E. & Dhar, S. K. (1983). J. Magn. Magn. Mater. 37, 303-308.]), respectively.

The anisotropic change in the unit-cell parameters can be explained by the change in inter­atomic distances due to the lanthanide contraction. The ranges of B—Rh and RE—Rh distances are 2.2129 (1)–2.2151 (1) Å and 3.1370 (1)–3.1447 (1) Å (Table 1[link]), respectively, which are close to the values of the sums of the atomic radii (rRh = 1.35 Å, rB = 0.85 Å, rPr = 1.84 Å, rNd = 1.83 Å, and rSm = 1.81 Å; Daane et al., 1954[Daane, A. H., Rundle, R. E., Smith, H. G. & Spedding, F. H. (1954). Acta Cryst. 7, 532-535.]; Spedding et al., 1956[Spedding, F. H., Daane, A. H. & Herrmann, K. W. (1956). Acta Cryst. 9, 559-563.]; Zachariasen, 1973[Zachariasen, W. H. (1973). J. Inorg. Nucl. Chem. 35, 3487-3497.]). The RE—Rh inter­atomic distances decrease due to the effect of the lanthanoid contraction. Rh—Rh inter­atomic distances in the ab plane also decrease with a decrease in RE—Rh distances. By contrast, the Rh—Rh inter­atomic distances along the c axis increase. This causes the [RERh12] hexa­gonal and [BRh6] trigonal prisms to shrink horizontally and stretch vertically, resulting in decreases of the volumes of the hexa­gonal and trigonal prisms. Therefore, the unit-cells of RERh3B2 compounds change anisotropically, suggesting that the unit-cell changes elastically in response to the substitution of elements of different sizes at the RE site.

Table 1
Selected bond lengths (Å) in RERh3B2 (RE = Pr, Nd and Sm)

  PrRh3B2 NdRh3B2 SmRh3B2
RERE ×2 3.1084 (1) 3.1107 (1) 3.1190 (1)
RERE ×6 5.4676 (4) 5.4527 (3) 5.4438 (3)
RE—Rh ×12 3.1447 (1) 3.1388 (1) 3.1370 (1)
RE—B ×6 3.1557 (2) 3.1481 (1) 3.1430 (1)
B—Rh ×6 2.2151 (1) 2.2129 (1) 2.2140 (1)
B—B ×3 3.1084 (1) 3.1107 (1) 3.1190 (1)
B—B ×3 3.1567 (2) 3.1481 (1) 3.1430 (1)
Rh—Rh ×4 2.7338 (2) 2.7264 (1) 2.7219 (1)
Rh—Rh ×2 3.1084 (1) 3.1107 (1) 3.1190 (1)

The obtained ADPs for each atom are summarized in Table 2[link]. The displacement ellipsoid of the Rh atom shows a larger anisotropy than those of the B and RE atoms, as shown in Fig. 3[link]. The U33 of Rh atoms is approximately 2.1–2.6 times larger than U11, which means that the displacement ellipsoids of Rh atoms are elongated along the c axis. The displacement ellipsoids of Rh atoms with large anisotropy correspond to the anisotropic electric resistivity of RERh3B2 compounds (Yamada et al., 2004[Yamada, M., Obiraki, Y., Okubo, T., Shiromoto, T., Kida, Y., Shiimoto, M., Kohara, H., Yamamoto, T., Honda, D., Galatanu, A., Haga, Y., Takeuchi, T., Sugiyama, K., Settai, R., Kindo, K., Dhar, S. K., Harima, H. & Ōnuki, Y. (2004). J. Phys. Soc. Jpn, 73, 2266-2275.]; Obiraki et al., 2006[Obiraki, Y., Nakashima, H., Galatanu, A., Matsuda, T. D., Haga, Y., Takeuchi, T., Sugiyama, K., Kindo, K., Hagiwara, M., Settai, R., Harima, H. & Ōnuki, Y. (2006). J. Phys. Soc. Jpn, 75, 064702.]). The ADPs of RE atoms are described as displacement ellipsoids suppressed in the c axis (U11 < U33). The feature of displacement ellipsoids of Rh and RE atoms is attributed to the unusually short RERE inter­atomic distances of 3.1084 (1)–3.1190 (1) Å, which are much shorter (15%) than the distance in the metal Pr, Nd, and Sm with hexa­gonal close-packed structures, (i.e., 3.67, 3.66, and 3.62 Å, respectively). The short RERE inter­atomic distance is a common feature of the CeCo3B2 type of structure. Anisotropy of electric or thermal conductivity is also expected to be observed in CeRh3B2 compounds.

Table 2
Atomic displacement parameters of RE, Rh, and B atoms in RERh3B2 (RE = Pr, Nd, and Sm)

Atom U112) U222) U332) U122) Ueq (10 3Å2)
PrRh3B2          
Pr 0.00861 (18) 0.00861 0.00780 (20) 0.00430 (9) 8.35 (1)
Rh 0.00495 (16) 0.00386 (18) 0.01040 (20) 0.00193 (9) 6.53 (1)
B 0.0095 (16) 0.0095 0.009 (2) 0.0048 (8) 9.3 (10)
NdRh3B2          
Nd 0.00896 (10) 0.00896 0.00662 (12) 0.00448 (5) 8.18 (9)
Rh 0.00492 (9) 0.00390 (11) 0.01104 (12) 0.00195 (5) 6.74 (8)
B 0.0100 (9) 0.0100 0.0079 (12) 0.0050 (4) 9.3 (6)
SmRh3B2          
Sm 0.00841 (12) 0.00841 0.00658 (14) 0.00420 (6) 7.80 (10)
Rh 0.00502 (11) 0.00389 (13) 0.01287 (14) 0.00194 (6) 7.39 (10)
B 0.0085 (10) 0.0085 0.0102 (15) 0.0043 (5) 9.1 (7)
[Figure 3]
Figure 3
Displacement ellipsoids of each atom in NdRh3B2, with displacement ellipsoids drawn at the 99% probability level.

The obtained anisotropic ADPs of each atom in the structures of RERh3B2 compounds can be discussed in terms of the nucleation of inter­stitial atoms or layers in PrRh4.8B2 (Higashi et al., 1988[Higashi, I., Shishido, T., Takei, H. & Kobayashi, T. (1988). J. Less-Common Met. 139, 211-220.]). Higashi et al. (1988[Higashi, I., Shishido, T., Takei, H. & Kobayashi, T. (1988). J. Less-Common Met. 139, 211-220.]) discovered a new layered structure, namely, PrRh4.8B2, which is regarded as a stacking variant of a modified PrRh3B2 structure. The inter­stitial single Rh layer is positioned between the Rh kagomé layers of the modified PrRh3B2 blocks. The displacement ellipsoid in the stacking direction of the Rh atom in the PrRh3B2 structure implies that the Rh kagomé layer in PrRh3B2 could be a base for the nucleation of inter­stitial atoms or layers. The appearance of disordered La1–xRh3B2 type and/or Nd1–xRhxRh3B2 type of structures (Ohtani et al., 1983[Ohtani, T., Chevalier, B., Lejay, P., Etourneau, J., Vlasse, M. & Hagenmuller, P. (1983). J. Appl. Phys. 54, 5928-5934.]; Vlasse et al., 1983[Vlasse, M., Ohtani, T., Chevalier, B. & Etourneau, J. (1983). J. Solid State Chem. 46, 188-192.]; Ku et al., 1985[Ku, H. C., Ma, L. J., Tai, M. F., Wang, Y. & Horng, H. E. (1985). J. Less-Common Met. 109, 219-228.]) might be associated with the anisotropic ADPs of Rh and RE atoms.

3. Synthesis and crystallization

RERh3B2 (RE = Pr, Nd, and Sm) single crystals were grown using the arc-melting method. The starting materials used were RE elements (99.9%), along with Rh (99.95%), and B (99.5%). They were weighed at an atomic ratio of (RE+3Rh+2B), and the mixtures of the starting materials were placed in an argon-arc melting furnace (ACM-01, Diavac). Each product was remelted three times to improve homogeneity. The grown crystals were composed of homogeneous RERh3B2, and the atomic ratio Rh/RE was confirmed to be 3.00 by energy dispersive X-ray spectroscopy.

4. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. A reciprocal space plot using all reflection data was in good agreement with the hexa­gonal lattice (a ≃ 5 Å and c ≃ 3 Å), and there was no evidence of superstructure reflections. The refinement was conducted under the assumption that the space group type was P6/mmm, as reported by Ku et al. (1980[Ku, H. C., Meisner, G. P., Acker, F. & Johnston, D. C. (1980). Solid State Commun. 35, 91-96.]). Based on structural reports of La1–xRh3B2 and Nd1–xRhxRh3B2, we determined whether Rh substitution and vacancies at the RE site were possible; however, the results were negative. Therefore, we concluded that the RE sites were completely occupied by RE elements. A correction for isotropic extinction was applied during the least-squares refinements. The final refinements were performed by applying anisotropic ADPs to each atom. The remaining electron densities located 0.7–0.6 Å around rhodium and RE heavy elements are censoring effects caused by the finite Fourier series.

Table 3
Experimental details

  PrRh3B2 NdRh3B2 SmRh3B2
Crystal data
Mr 471.26 474.59 480.70
Crystal system, space group Hexagonal, P6/mmm Hexagonal, P6/mmm Hexagonal, P6/mmm
Temperature (K) 293 293 293
a, c (Å) 5.4676 (3), 3.10837 (16) 5.4527 (2), 3.11066 (13) 5.4438 (2), 3.11901 (12)
V3) 80.47 (1) 80.10 (1) 80.05 (1)
Z 1 1 1
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 29.43 30.57 32.61
Crystal size (mm) 0.05 × 0.03 × 0.03 0.05 × 0.05 × 0.02 0.06 × 0.05 × 0.02
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix
Absorption correction Numerical (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO, Rigaku Corporation, Oxford, England.]) Numerical (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO, Rigaku Corporation, Oxford, England.]) Numerical (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO, Rigaku Corporation, Oxford, England.])
Tmin, Tmax 0.423, 0.601 0.424, 0.611 0.324, 0.542
No. of measured, independent and observed [I > 2σ(I)] reflections 733, 131, 126 827, 131, 130 696, 129, 128
Rint 0.017 0.010 0.011
(sin θ/λ)max−1) 0.909 0.908 0.907
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.053, 1.21 0.012, 0.032, 1.15 0.012, 0.032, 1.13
No. of reflections 131 131 129
No. of parameters 8 8 9
Δρmax, Δρmin (e Å−3) 1.80, −1.18 0.97, −2.46 1.76, −0.97
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO, Rigaku Corporation, Oxford, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Praseodymium trirhodium diboride (I) top
Crystal data top
PrRh3B2Dx = 9.724 Mg m3
Mr = 471.26Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P6/mmmCell parameters from 623 reflections
a = 5.4676 (3) Åθ = 4.3–39.9°
c = 3.10837 (16) ŵ = 29.43 mm1
V = 80.47 (1) Å3T = 293 K
Z = 1Block, metallic
F(000) = 2040.05 × 0.03 × 0.03 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
131 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source126 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.017
Detector resolution: 10.0000 pixels mm-1θmax = 40.3°, θmin = 4.3°
ω scansh = 97
Absorption correction: numerical
(CrysAlisPro; Rigaku OD, 2021)
k = 99
Tmin = 0.423, Tmax = 0.601l = 35
733 measured reflections
Refinement top
Refinement on F28 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0347P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.053(Δ/σ)max < 0.001
S = 1.21Δρmax = 1.80 e Å3
131 reflectionsΔρmin = 1.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.0000000.0000000.0000000.00835 (14)
Rh10.5000000.0000000.5000000.00653 (13)
B10.3333330.6666670.0000000.0093 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.00861 (18)0.00861 (18)0.0078 (2)0.00430 (9)0.0000.000
Rh10.00495 (16)0.00386 (18)0.0104 (2)0.00193 (9)0.0000.000
B10.0095 (16)0.0095 (16)0.009 (2)0.0048 (8)0.0000.000
Geometric parameters (Å, º) top
Pr1—Pr1i3.1084 (2)Pr1—Rh1x3.1447 (1)
Pr1—Pr1ii3.1084 (2)Rh1—B1xi2.2151 (1)
Pr1—Rh1iii3.1447 (1)Rh1—B1xii2.2151 (1)
Pr1—Rh1iv3.1447 (1)Rh1—B1xiii2.2151 (1)
Pr1—Rh13.1447 (1)Rh1—B1xiv2.2151 (1)
Pr1—Rh1v3.1447 (1)Rh1—Rh1xv2.7338 (2)
Pr1—Rh1vi3.1447 (1)Rh1—Rh1xvi2.7338 (2)
Pr1—Rh1vii3.1447 (1)Rh1—Rh1iii2.7338 (2)
Pr1—Rh1viii3.1447 (1)Rh1—Rh1xvii2.7338 (2)
Pr1—Rh1ix3.1447 (1)Rh1—Rh1i3.1084 (2)
Pr1—Rh1ii3.1447 (1)Rh1—Rh1ii3.1084 (2)
Pr1i—Pr1—Pr1ii180.0B1xiii—Rh1—Rh1xv51.897 (2)
Pr1i—Pr1—Rh1iii60.381 (1)B1xiv—Rh1—Rh1xv128.103 (2)
Pr1ii—Pr1—Rh1iii119.619 (1)B1xi—Rh1—Rh1xvi128.103 (1)
Pr1i—Pr1—Rh1iv119.619 (1)B1xii—Rh1—Rh1xvi51.897 (1)
Pr1ii—Pr1—Rh1iv60.381 (1)B1xiii—Rh1—Rh1xvi128.103 (2)
Rh1iii—Pr1—Rh1iv180.0B1xiv—Rh1—Rh1xvi51.897 (2)
Pr1i—Pr1—Rh160.381 (2)Rh1xv—Rh1—Rh1xvi180.0
Pr1ii—Pr1—Rh1119.619 (2)B1xi—Rh1—Rh1iii51.896 (2)
Rh1iii—Pr1—Rh151.528 (1)B1xii—Rh1—Rh1iii128.104 (2)
Rh1iv—Pr1—Rh1128.472 (1)B1xiii—Rh1—Rh1iii51.896 (2)
Pr1i—Pr1—Rh1v119.619 (2)B1xiv—Rh1—Rh1iii128.104 (1)
Pr1ii—Pr1—Rh1v60.381 (2)Rh1xv—Rh1—Rh1iii60.0
Rh1iii—Pr1—Rh1v128.472 (1)Rh1xvi—Rh1—Rh1iii120.0
Rh1iv—Pr1—Rh1v51.528 (1)B1xi—Rh1—Rh1xvii128.104 (2)
Rh1—Pr1—Rh1v180.0B1xii—Rh1—Rh1xvii51.896 (2)
Pr1i—Pr1—Rh1vi60.381 (2)B1xiii—Rh1—Rh1xvii128.104 (2)
Pr1ii—Pr1—Rh1vi119.619 (2)B1xiv—Rh1—Rh1xvii51.896 (2)
Rh1iii—Pr1—Rh1vi51.528 (1)Rh1xv—Rh1—Rh1xvii120.0
Rh1iv—Pr1—Rh1vi128.472 (1)Rh1xvi—Rh1—Rh1xvii60.0
Rh1—Pr1—Rh1vi97.678 (2)Rh1iii—Rh1—Rh1xvii180.0
Rh1v—Pr1—Rh1vi82.322 (2)B1xi—Rh1—Rh1i45.442 (2)
Pr1i—Pr1—Rh1vii119.619 (2)B1xii—Rh1—Rh1i134.558 (2)
Pr1ii—Pr1—Rh1vii60.381 (2)B1xiii—Rh1—Rh1i134.558 (2)
Rh1iii—Pr1—Rh1vii128.472 (1)B1xiv—Rh1—Rh1i45.442 (2)
Rh1iv—Pr1—Rh1vii51.528 (1)Rh1xv—Rh1—Rh1i90.0
Rh1—Pr1—Rh1vii82.322 (2)Rh1xvi—Rh1—Rh1i90.0
Rh1v—Pr1—Rh1vii97.678 (2)Rh1iii—Rh1—Rh1i90.0
Rh1vi—Pr1—Rh1vii180.0Rh1xvii—Rh1—Rh1i90.0
Pr1i—Pr1—Rh1viii60.381 (2)B1xi—Rh1—Rh1ii134.558 (2)
Pr1ii—Pr1—Rh1viii119.619 (2)B1xii—Rh1—Rh1ii45.442 (2)
Rh1iii—Pr1—Rh1viii120.763 (4)B1xiii—Rh1—Rh1ii45.442 (2)
Rh1iv—Pr1—Rh1viii59.238 (4)B1xiv—Rh1—Rh1ii134.558 (2)
Rh1—Pr1—Rh1viii97.678 (3)Rh1xv—Rh1—Rh1ii90.0
Rh1v—Pr1—Rh1viii82.322 (3)Rh1xvi—Rh1—Rh1ii90.0
Rh1vi—Pr1—Rh1viii97.678 (3)Rh1iii—Rh1—Rh1ii90.0
Rh1vii—Pr1—Rh1viii82.322 (3)Rh1xvii—Rh1—Rh1ii90.0
Pr1i—Pr1—Rh1ix119.619 (2)Rh1i—Rh1—Rh1ii180.0
Pr1ii—Pr1—Rh1ix60.381 (2)B1xi—Rh1—Pr1110.289 (2)
Rh1iii—Pr1—Rh1ix59.238 (4)B1xii—Rh1—Pr169.711 (3)
Rh1iv—Pr1—Rh1ix120.763 (4)B1xiii—Rh1—Pr169.710 (2)
Rh1—Pr1—Rh1ix82.322 (3)B1xiv—Rh1—Pr1110.290 (2)
Rh1v—Pr1—Rh1ix97.678 (3)Rh1xv—Rh1—Pr1115.764 (1)
Rh1vi—Pr1—Rh1ix82.322 (3)Rh1xvi—Rh1—Pr164.236 (1)
Rh1vii—Pr1—Rh1ix97.678 (3)Rh1iii—Rh1—Pr164.236 (1)
Rh1viii—Pr1—Rh1ix180.0Rh1xvii—Rh1—Pr1115.764 (1)
Pr1i—Pr1—Rh1ii119.619 (2)Rh1i—Rh1—Pr1119.619 (1)
Pr1ii—Pr1—Rh1ii60.381 (2)Rh1ii—Rh1—Pr160.381 (2)
Rh1iii—Pr1—Rh1ii82.322 (3)B1xi—Rh1—Pr1xviii69.711 (2)
Rh1iv—Pr1—Rh1ii97.678 (3)B1xii—Rh1—Pr1xviii110.289 (3)
Rh1—Pr1—Rh1ii59.238 (4)B1xiii—Rh1—Pr1xviii110.290 (2)
Rh1v—Pr1—Rh1ii120.762 (4)B1xiv—Rh1—Pr1xviii69.710 (2)
Rh1vi—Pr1—Rh1ii128.472 (1)Rh1xv—Rh1—Pr1xviii64.236 (1)
Rh1vii—Pr1—Rh1ii51.528 (1)Rh1xvi—Rh1—Pr1xviii115.764 (1)
Rh1viii—Pr1—Rh1ii128.472 (1)Rh1iii—Rh1—Pr1xviii115.764 (1)
Rh1ix—Pr1—Rh1ii51.528 (1)Rh1xvii—Rh1—Pr1xviii64.236 (1)
Pr1i—Pr1—Rh1x60.381 (2)Rh1i—Rh1—Pr1xviii60.381 (2)
Pr1ii—Pr1—Rh1x119.619 (2)Rh1ii—Rh1—Pr1xviii119.619 (2)
Rh1iii—Pr1—Rh1x97.678 (3)Pr1—Rh1—Pr1xviii180.0
Rh1iv—Pr1—Rh1x82.322 (3)Rh1xix—B1—Rh1xx138.257 (2)
Rh1—Pr1—Rh1x120.762 (4)Rh1xix—B1—Rh1vi89.116 (4)
Rh1v—Pr1—Rh1x59.238 (4)Rh1xx—B1—Rh1vi76.206 (4)
Rh1vi—Pr1—Rh1x51.528 (1)Rh1xix—B1—Rh1xxi76.206 (4)
Rh1vii—Pr1—Rh1x128.472 (1)Rh1xx—B1—Rh1xxi89.116 (4)
Rh1viii—Pr1—Rh1x51.528 (1)Rh1vi—B1—Rh1xxi138.257 (2)
Rh1ix—Pr1—Rh1x128.472 (1)Rh1xix—B1—Rh1iii138.257 (2)
Rh1ii—Pr1—Rh1x180.0Rh1xx—B1—Rh1iii76.206 (4)
B1xi—Rh1—B1xii180.0Rh1vi—B1—Rh1iii76.206 (4)
B1xi—Rh1—B1xiii89.116 (4)Rh1xxi—B1—Rh1iii138.257 (2)
B1xii—Rh1—B1xiii90.884 (4)Rh1xix—B1—Rh1ix76.206 (4)
B1xi—Rh1—B1xiv90.884 (4)Rh1xx—B1—Rh1ix138.257 (2)
B1xii—Rh1—B1xiv89.116 (4)Rh1vi—B1—Rh1ix138.257 (2)
B1xiii—Rh1—B1xiv180.0Rh1xxi—B1—Rh1ix76.206 (4)
B1xi—Rh1—Rh1xv51.897 (1)Rh1iii—B1—Rh1ix89.116 (4)
B1xii—Rh1—Rh1xv128.103 (1)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1; (iii) x+y+1, x+1, z; (iv) x+y, x, z1; (v) x1, y, z1; (vi) y, xy, z; (vii) y, xy1, z1; (viii) x+y, x, z; (ix) x+y+1, x+1, z1; (x) x1, y, z; (xi) x+1, y+1, z+1; (xii) x, y1, z; (xiii) x+1, y+1, z; (xiv) x, y1, z+1; (xv) y+1, xy, z; (xvi) y, xy1, z; (xvii) x+y+1, x, z; (xviii) x+1, y, z+1; (xix) y, xy, z1; (xx) x, y+1, z; (xxi) x, y+1, z1.
Neodymium trirhodium diboride (II) top
Crystal data top
NdRh3B2Dx = 9.839 Mg m3
Mr = 474.59Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P6/mmmCell parameters from 729 reflections
a = 5.4527 (2) Åθ = 4.3–40.7°
c = 3.11066 (13) ŵ = 30.57 mm1
V = 80.10 (1) Å3T = 293 K
Z = 1Block, metallic
F(000) = 2050.05 × 0.05 × 0.02 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
131 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source130 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.010
Detector resolution: 10.0000 pixels mm-1θmax = 40.2°, θmin = 4.3°
ω scansh = 98
Absorption correction: numerical
(CrysAlisPro; Rigaku OD, 2021)
k = 79
Tmin = 0.424, Tmax = 0.611l = 35
827 measured reflections
Refinement top
Refinement on F28 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.012 w = 1/[σ2(Fo2) + (0.022P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.032(Δ/σ)max < 0.001
S = 1.15Δρmax = 0.97 e Å3
131 reflectionsΔρmin = 2.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.0000000.0000000.0000000.00818 (9)
Rh10.5000000.0000000.5000000.00674 (8)
B10.3333330.6666670.0000000.0093 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.00896 (10)0.00896 (10)0.00662 (12)0.00448 (5)0.0000.000
Rh10.00492 (9)0.00390 (11)0.01104 (12)0.00195 (5)0.0000.000
B10.0100 (9)0.0100 (9)0.0079 (12)0.0050 (4)0.0000.000
Geometric parameters (Å, º) top
Nd1—Nd1i3.1107 (1)Nd1—Rh1ii3.1388 (1)
Nd1—Nd1ii3.1107 (1)Rh1—B1xi2.2129 (1)
Nd1—Rh1iii3.1388 (1)Rh1—B1xii2.2129 (1)
Nd1—Rh1iv3.1388 (1)Rh1—B1xiii2.2129 (1)
Nd1—Rh1v3.1388 (1)Rh1—B1xiv2.2129 (1)
Nd1—Rh1vi3.1388 (1)Rh1—Rh1xv2.7264 (1)
Nd1—Rh13.1388 (1)Rh1—Rh1xvi2.7264 (1)
Nd1—Rh1vii3.1388 (1)Rh1—Rh1iii2.7264 (1)
Nd1—Rh1viii3.1388 (1)Rh1—Rh1xvii2.7264 (1)
Nd1—Rh1ix3.1388 (1)Rh1—Rh1i3.1107 (1)
Nd1—Rh1x3.1388 (1)Rh1—Rh1ii3.1107 (1)
Nd1i—Nd1—Nd1ii180.0B1xiii—Rh1—Rh1xv51.974 (1)
Nd1i—Nd1—Rh1iii60.296 (1)B1xiv—Rh1—Rh1xv128.026 (1)
Nd1ii—Nd1—Rh1iii119.704 (1)B1xi—Rh1—Rh1xvi128.026 (1)
Nd1i—Nd1—Rh1iv119.704 (1)B1xii—Rh1—Rh1xvi51.974 (1)
Nd1ii—Nd1—Rh1iv60.296 (1)B1xiii—Rh1—Rh1xvi128.026 (2)
Rh1iii—Nd1—Rh1iv180.0B1xiv—Rh1—Rh1xvi51.974 (1)
Nd1i—Nd1—Rh1v60.296 (1)Rh1xv—Rh1—Rh1xvi180.0
Nd1ii—Nd1—Rh1v119.704 (1)B1xi—Rh1—Rh1iii51.973 (1)
Rh1iii—Nd1—Rh1v51.481 (1)B1xii—Rh1—Rh1iii128.027 (1)
Rh1iv—Nd1—Rh1v128.519 (1)B1xiii—Rh1—Rh1iii51.973 (1)
Nd1i—Nd1—Rh1vi119.704 (1)B1xiv—Rh1—Rh1iii128.027 (1)
Nd1ii—Nd1—Rh1vi60.296 (1)Rh1xv—Rh1—Rh1iii60.0
Rh1iii—Nd1—Rh1vi128.519 (1)Rh1xvi—Rh1—Rh1iii120.0
Rh1iv—Nd1—Rh1vi51.481 (1)B1xi—Rh1—Rh1xvii128.027 (2)
Rh1v—Nd1—Rh1vi180.0B1xii—Rh1—Rh1xvii51.973 (1)
Nd1i—Nd1—Rh160.296 (1)B1xiii—Rh1—Rh1xvii128.027 (1)
Nd1ii—Nd1—Rh1119.704 (1)B1xiv—Rh1—Rh1xvii51.973 (1)
Rh1iii—Nd1—Rh151.481 (1)Rh1xv—Rh1—Rh1xvii120.0
Rh1iv—Nd1—Rh1128.519 (1)Rh1xvi—Rh1—Rh1xvii60.0
Rh1v—Nd1—Rh197.568 (2)Rh1iii—Rh1—Rh1xvii180.0
Rh1vi—Nd1—Rh182.432 (2)B1xi—Rh1—Rh1i45.343 (2)
Nd1i—Nd1—Rh1vii119.704 (1)B1xii—Rh1—Rh1i134.657 (1)
Nd1ii—Nd1—Rh1vii60.296 (1)B1xiii—Rh1—Rh1i134.657 (2)
Rh1iii—Nd1—Rh1vii128.519 (1)B1xiv—Rh1—Rh1i45.343 (2)
Rh1iv—Nd1—Rh1vii51.481 (1)Rh1xv—Rh1—Rh1i90.0
Rh1v—Nd1—Rh1vii82.432 (2)Rh1xvi—Rh1—Rh1i90.0
Rh1vi—Nd1—Rh1vii97.568 (2)Rh1iii—Rh1—Rh1i90.0
Rh1—Nd1—Rh1vii180.0Rh1xvii—Rh1—Rh1i90.0
Nd1i—Nd1—Rh1viii60.296 (2)B1xi—Rh1—Rh1ii134.657 (2)
Nd1ii—Nd1—Rh1viii119.704 (2)B1xii—Rh1—Rh1ii45.343 (2)
Rh1iii—Nd1—Rh1viii120.592 (3)B1xiii—Rh1—Rh1ii45.343 (2)
Rh1iv—Nd1—Rh1viii59.408 (3)B1xiv—Rh1—Rh1ii134.657 (2)
Rh1v—Nd1—Rh1viii97.568 (2)Rh1xv—Rh1—Rh1ii90.0
Rh1vi—Nd1—Rh1viii82.432 (2)Rh1xvi—Rh1—Rh1ii90.0
Rh1—Nd1—Rh1viii97.568 (2)Rh1iii—Rh1—Rh1ii90.0
Rh1vii—Nd1—Rh1viii82.432 (2)Rh1xvii—Rh1—Rh1ii90.0
Nd1i—Nd1—Rh1ix119.704 (2)Rh1i—Rh1—Rh1ii180.0
Nd1ii—Nd1—Rh1ix60.296 (2)B1xi—Rh1—Nd1110.381 (2)
Rh1iii—Nd1—Rh1ix59.408 (3)B1xii—Rh1—Nd169.619 (2)
Rh1iv—Nd1—Rh1ix120.592 (3)B1xiii—Rh1—Nd169.617 (2)
Rh1v—Nd1—Rh1ix82.432 (2)B1xiv—Rh1—Nd1110.383 (2)
Rh1vi—Nd1—Rh1ix97.568 (2)Rh1xv—Rh1—Nd1115.7
Rh1—Nd1—Rh1ix82.432 (2)Rh1xvi—Rh1—Nd164.3
Rh1vii—Nd1—Rh1ix97.568 (2)Rh1iii—Rh1—Nd164.259 (1)
Rh1viii—Nd1—Rh1ix180.0Rh1xvii—Rh1—Nd1115.741 (1)
Nd1i—Nd1—Rh1x60.296 (1)Rh1i—Rh1—Nd1119.704 (1)
Nd1ii—Nd1—Rh1x119.704 (1)Rh1ii—Rh1—Nd160.296 (1)
Rh1iii—Nd1—Rh1x97.568 (3)B1xi—Rh1—Nd1xviii69.619 (2)
Rh1iv—Nd1—Rh1x82.432 (3)B1xii—Rh1—Nd1xviii110.381 (2)
Rh1v—Nd1—Rh1x51.481 (1)B1xiii—Rh1—Nd1xviii110.383 (2)
Rh1vi—Nd1—Rh1x128.519 (1)B1xiv—Rh1—Nd1xviii69.617 (2)
Rh1—Nd1—Rh1x120.592 (3)Rh1xv—Rh1—Nd1xviii64.3
Rh1vii—Nd1—Rh1x59.408 (3)Rh1xvi—Rh1—Nd1xviii115.7
Rh1viii—Nd1—Rh1x51.481 (1)Rh1iii—Rh1—Nd1xviii115.741 (1)
Rh1ix—Nd1—Rh1x128.519 (1)Rh1xvii—Rh1—Nd1xviii64.259 (1)
Nd1i—Nd1—Rh1ii119.704 (1)Rh1i—Rh1—Nd1xviii60.296 (1)
Nd1ii—Nd1—Rh1ii60.296 (1)Rh1ii—Rh1—Nd1xviii119.704 (1)
Rh1iii—Nd1—Rh1ii82.432 (3)Nd1—Rh1—Nd1xviii180.0
Rh1iv—Nd1—Rh1ii97.568 (3)Rh1xix—B1—Rh1xx138.332 (1)
Rh1v—Nd1—Rh1ii128.519 (1)Rh1xix—B1—Rh1v89.314 (4)
Rh1vi—Nd1—Rh1ii51.481 (1)Rh1xx—B1—Rh1v76.053 (3)
Rh1—Nd1—Rh1ii59.408 (3)Rh1xix—B1—Rh1xxi76.053 (3)
Rh1vii—Nd1—Rh1ii120.592 (3)Rh1xx—B1—Rh1xxi89.314 (4)
Rh1viii—Nd1—Rh1ii128.519 (1)Rh1v—B1—Rh1xxi138.332 (1)
Rh1ix—Nd1—Rh1ii51.481 (1)Rh1xix—B1—Rh1iii138.332 (1)
Rh1x—Nd1—Rh1ii180.0Rh1xx—B1—Rh1iii76.053 (2)
B1xi—Rh1—B1xii180.0Rh1v—B1—Rh1iii76.053 (3)
B1xi—Rh1—B1xiii89.314 (4)Rh1xxi—B1—Rh1iii138.332 (1)
B1xii—Rh1—B1xiii90.686 (4)Rh1xix—B1—Rh1ix76.053 (3)
B1xi—Rh1—B1xiv90.686 (4)Rh1xx—B1—Rh1ix138.332 (1)
B1xii—Rh1—B1xiv89.314 (4)Rh1v—B1—Rh1ix138.332 (2)
B1xiii—Rh1—B1xiv180.0Rh1xxi—B1—Rh1ix76.053 (3)
B1xi—Rh1—Rh1xv51.974 (1)Rh1iii—B1—Rh1ix89.314 (4)
B1xii—Rh1—Rh1xv128.026 (1)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1; (iii) x+y+1, x+1, z; (iv) x+y, x, z1; (v) y, xy, z; (vi) y, xy1, z1; (vii) x1, y, z1; (viii) x+y, x, z; (ix) x+y+1, x+1, z1; (x) x1, y, z; (xi) x+1, y+1, z+1; (xii) x, y1, z; (xiii) x+1, y+1, z; (xiv) x, y1, z+1; (xv) y+1, xy, z; (xvi) y, xy1, z; (xvii) x+y+1, x, z; (xviii) x+1, y, z+1; (xix) y, xy, z1; (xx) x, y+1, z; (xxi) x, y+1, z1.
Samarium trirhodium diboride (III) top
Crystal data top
SmRh3B2Dx = 9.972 Mg m3
Mr = 480.70Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P6/mmmCell parameters from 649 reflections
a = 5.4438 (2) Åθ = 4.3–40.1°
c = 3.11901 (12) ŵ = 32.61 mm1
V = 80.05 (1) Å3T = 293 K
Z = 1Block, metallic
F(000) = 2070.06 × 0.05 × 0.02 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
129 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source128 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.011
Detector resolution: 10.0000 pixels mm-1θmax = 40.1°, θmin = 4.3°
ω scansh = 89
Absorption correction: numerical
(CrysAlisPro; Rigaku OD, 2021)
k = 77
Tmin = 0.324, Tmax = 0.542l = 35
696 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0213P)2 + 0.0484P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.012(Δ/σ)max < 0.001
wR(F2) = 0.032Δρmax = 1.76 e Å3
S = 1.13Δρmin = 0.97 e Å3
129 reflectionsExtinction correction: SHELXL-2016/6 (Sheldrick 2016), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
9 parametersExtinction coefficient: 0.034 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.0000000.0000000.0000000.00780 (10)
Rh10.5000000.0000000.5000000.00739 (10)
B10.3333330.6666670.0000000.0091 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.00841 (12)0.00841 (12)0.00658 (14)0.00420 (6)0.0000.000
Rh10.00502 (11)0.00389 (13)0.01287 (14)0.00194 (6)0.0000.000
B10.0085 (10)0.0085 (10)0.0102 (15)0.0043 (5)0.0000.000
Geometric parameters (Å, º) top
Sm1—Sm1i3.1190 (1)Sm1—Rh1x3.1370 (1)
Sm1—Sm1ii3.1190 (1)Rh1—B1xi2.2140 (1)
Sm1—Rh1iii3.1370 (1)Rh1—B1xii2.2140 (1)
Sm1—Rh1iv3.1370 (1)Rh1—B1xiii2.2140 (1)
Sm1—Rh13.1370 (1)Rh1—B1xiv2.2140 (1)
Sm1—Rh1v3.1370 (1)Rh1—Rh1xv2.7219 (1)
Sm1—Rh1vi3.1370 (1)Rh1—Rh1xvi2.7219 (1)
Sm1—Rh1vii3.1370 (1)Rh1—Rh1iii2.7219 (1)
Sm1—Rh1viii3.1370 (1)Rh1—Rh1xvii2.7219 (1)
Sm1—Rh1ix3.1370 (1)Rh1—Rh1i3.1190 (1)
Sm1—Rh1ii3.1370 (1)Rh1—Rh1ii3.1190 (1)
Sm1i—Sm1—Sm1ii180.0B1xiii—Rh1—Rh1xv52.069 (1)
Sm1i—Sm1—Rh1iii60.189 (1)B1xiv—Rh1—Rh1xv127.931 (1)
Sm1ii—Sm1—Rh1iii119.811 (1)B1xi—Rh1—Rh1xvi127.931 (1)
Sm1i—Sm1—Rh1iv119.811 (1)B1xii—Rh1—Rh1xvi52.069 (1)
Sm1ii—Sm1—Rh1iv60.189 (1)B1xiii—Rh1—Rh1xvi127.931 (1)
Rh1iii—Sm1—Rh1iv180.0B1xiv—Rh1—Rh1xvi52.069 (1)
Sm1i—Sm1—Rh160.189 (2)Rh1xv—Rh1—Rh1xvi180.0
Sm1ii—Sm1—Rh1119.811 (1)B1xi—Rh1—Rh1iii52.069 (1)
Rh1iii—Sm1—Rh151.423 (1)B1xii—Rh1—Rh1iii127.931 (1)
Rh1iv—Sm1—Rh1128.6B1xiii—Rh1—Rh1iii52.069 (1)
Sm1i—Sm1—Rh1v119.811 (1)B1xiv—Rh1—Rh1iii127.931 (1)
Sm1ii—Sm1—Rh1v60.189 (2)Rh1xv—Rh1—Rh1iii60.0
Rh1iii—Sm1—Rh1v128.6Rh1xvi—Rh1—Rh1iii120.0
Rh1iv—Sm1—Rh1v51.423 (1)B1xi—Rh1—Rh1xvii127.931 (1)
Rh1—Sm1—Rh1v180.0B1xii—Rh1—Rh1xvii52.069 (1)
Sm1i—Sm1—Rh1vi60.189 (2)B1xiii—Rh1—Rh1xvii127.931 (1)
Sm1ii—Sm1—Rh1vi119.811 (1)B1xiv—Rh1—Rh1xvii52.069 (1)
Rh1iii—Sm1—Rh1vi51.423 (1)Rh1xv—Rh1—Rh1xvii120.0
Rh1iv—Sm1—Rh1vi128.577 (1)Rh1xvi—Rh1—Rh1xvii60.0
Rh1—Sm1—Rh1vi97.428 (2)Rh1iii—Rh1—Rh1xvii180.0
Rh1v—Sm1—Rh1vi82.572 (2)B1xi—Rh1—Rh1i45.219 (1)
Sm1i—Sm1—Rh1vii119.811 (1)B1xii—Rh1—Rh1i134.781 (2)
Sm1ii—Sm1—Rh1vii60.189 (2)B1xiii—Rh1—Rh1i134.781 (1)
Rh1iii—Sm1—Rh1vii128.577 (1)B1xiv—Rh1—Rh1i45.219 (1)
Rh1iv—Sm1—Rh1vii51.423 (1)Rh1xv—Rh1—Rh1i90.0
Rh1—Sm1—Rh1vii82.572 (2)Rh1xvi—Rh1—Rh1i90.0
Rh1v—Sm1—Rh1vii97.428 (2)Rh1iii—Rh1—Rh1i90.0
Rh1vi—Sm1—Rh1vii180.0Rh1xvii—Rh1—Rh1i90.0
Sm1i—Sm1—Rh1viii60.189 (1)B1xi—Rh1—Rh1ii134.781 (2)
Sm1ii—Sm1—Rh1viii119.811 (1)B1xii—Rh1—Rh1ii45.219 (2)
Rh1iii—Sm1—Rh1viii120.379 (3)B1xiii—Rh1—Rh1ii45.219 (1)
Rh1iv—Sm1—Rh1viii59.621 (3)B1xiv—Rh1—Rh1ii134.781 (1)
Rh1—Sm1—Rh1viii97.428 (2)Rh1xv—Rh1—Rh1ii90.0
Rh1v—Sm1—Rh1viii82.572 (2)Rh1xvi—Rh1—Rh1ii90.0
Rh1vi—Sm1—Rh1viii97.428 (1)Rh1iii—Rh1—Rh1ii90.0
Rh1vii—Sm1—Rh1viii82.572 (1)Rh1xvii—Rh1—Rh1ii90.0
Sm1i—Sm1—Rh1ix119.811 (1)Rh1i—Rh1—Rh1ii180.0
Sm1ii—Sm1—Rh1ix60.189 (1)B1xi—Rh1—Sm1110.498 (2)
Rh1iii—Sm1—Rh1ix59.621 (3)B1xii—Rh1—Sm169.502 (1)
Rh1iv—Sm1—Rh1ix120.379 (3)B1xiii—Rh1—Sm169.501 (1)
Rh1—Sm1—Rh1ix82.572 (2)B1xiv—Rh1—Sm1110.499 (1)
Rh1v—Sm1—Rh1ix97.428 (2)Rh1xv—Rh1—Sm1115.711 (1)
Rh1vi—Sm1—Rh1ix82.572 (1)Rh1xvi—Rh1—Sm164.3
Rh1vii—Sm1—Rh1ix97.428 (1)Rh1iii—Rh1—Sm164.289 (1)
Rh1viii—Sm1—Rh1ix180.0Rh1xvii—Rh1—Sm1115.7
Sm1i—Sm1—Rh1ii119.811 (1)Rh1i—Rh1—Sm1119.811 (2)
Sm1ii—Sm1—Rh1ii60.189 (1)Rh1ii—Rh1—Sm160.189 (2)
Rh1iii—Sm1—Rh1ii82.572 (2)B1xi—Rh1—Sm1xviii69.502 (2)
Rh1iv—Sm1—Rh1ii97.428 (2)B1xii—Rh1—Sm1xviii110.498 (1)
Rh1—Sm1—Rh1ii59.621 (3)B1xiii—Rh1—Sm1xviii110.499 (1)
Rh1v—Sm1—Rh1ii120.379 (4)B1xiv—Rh1—Sm1xviii69.501 (1)
Rh1vi—Sm1—Rh1ii128.577 (1)Rh1xv—Rh1—Sm1xviii64.3
Rh1vii—Sm1—Rh1ii51.423 (1)Rh1xvi—Rh1—Sm1xviii115.7
Rh1viii—Sm1—Rh1ii128.577 (1)Rh1iii—Rh1—Sm1xviii115.7
Rh1ix—Sm1—Rh1ii51.423 (1)Rh1xvii—Rh1—Sm1xviii64.3
Sm1i—Sm1—Rh1x60.189 (1)Rh1i—Rh1—Sm1xviii60.189 (1)
Sm1ii—Sm1—Rh1x119.811 (1)Rh1ii—Rh1—Sm1xviii119.811 (1)
Rh1iii—Sm1—Rh1x97.428 (2)Sm1—Rh1—Sm1xviii180.0
Rh1iv—Sm1—Rh1x82.572 (2)Rh1xix—B1—Rh1xx138.425 (1)
Rh1—Sm1—Rh1x120.379 (4)Rh1xix—B1—Rh1xxi75.862 (3)
Rh1v—Sm1—Rh1x59.621 (3)Rh1xx—B1—Rh1xxi89.562 (4)
Rh1vi—Sm1—Rh1x51.423 (1)Rh1xix—B1—Rh1vi89.562 (4)
Rh1vii—Sm1—Rh1x128.577 (1)Rh1xx—B1—Rh1vi75.862 (3)
Rh1viii—Sm1—Rh1x51.423 (1)Rh1xxi—B1—Rh1vi138.425 (1)
Rh1ix—Sm1—Rh1x128.577 (1)Rh1xix—B1—Rh1iii138.425 (1)
Rh1ii—Sm1—Rh1x180.0Rh1xx—B1—Rh1iii75.862 (3)
B1xi—Rh1—B1xii180.0Rh1xxi—B1—Rh1iii138.425 (1)
B1xi—Rh1—B1xiii89.561 (4)Rh1vi—B1—Rh1iii75.862 (3)
B1xii—Rh1—B1xiii90.439 (4)Rh1xix—B1—Rh1ix75.862 (2)
B1xi—Rh1—B1xiv90.439 (4)Rh1xx—B1—Rh1ix138.425 (1)
B1xii—Rh1—B1xiv89.561 (4)Rh1xxi—B1—Rh1ix75.862 (3)
B1xiii—Rh1—B1xiv180.0Rh1vi—B1—Rh1ix138.425 (1)
B1xi—Rh1—Rh1xv52.069 (1)Rh1iii—B1—Rh1ix89.562 (4)
B1xii—Rh1—Rh1xv127.931 (1)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1; (iii) x+y+1, x+1, z; (iv) x+y, x, z1; (v) x1, y, z1; (vi) y, xy, z; (vii) y, xy1, z1; (viii) x+y, x, z; (ix) x+y+1, x+1, z1; (x) x1, y, z; (xi) x+1, y+1, z+1; (xii) x, y1, z; (xiii) x+1, y+1, z; (xiv) x, y1, z+1; (xv) y+1, xy, z; (xvi) y, xy1, z; (xvii) x+y+1, x, z; (xviii) x+1, y, z+1; (xix) y, xy, z1; (xx) x, y+1, z; (xxi) x, y+1, z1.
Selected bond lengths (Å) in RERh3B2 (RE = Pr, Nd and Sm) top
PrRh3B2NdRh3B2SmRh3B2
RERE ×23.1084 (1)3.1107 (1)3.1190 (1)
RERE ×65.4676 (4)5.4527 (3)5.4438 (3)
RE—Rh ×123.1447 (1)3.1388 (1)3.1370 (1)
RE—B ×63.1557 (2)3.1481 (1)3.1430 (1)
B—Rh ×62.2151 (1)2.2129 (1)2.2140 (1)
B—B ×33.1084 (1)3.1107 (1)3.1190 (1)
B—B ×33.1567 (2)3.1481 (1)3.1430 (1)
Rh—Rh ×42.7338 (2)2.7264 (1)2.7219 (1)
Rh—Rh ×23.1084 (1)3.1107 (1)3.1190 (1)
Atomic displacement parameters of RE, Rh, and B atoms in RERh3B2 (RE = Pr, Nd, and Sm) top
AtomU112)U222)U332)U122)Ueq (10 3Å2)
PrRh3B2
Pr0.00861 (18)0.008610.00780 (20)0.00430 (9)8.35 (1)
Rh0.00495 (16)0.00386 (18)0.01040 (20)0.00193 (9)6.53 (1)
B0.0095 (16)0.00950.009 (2)0.0048 (8)9.3 (10)
NdRh3B2
Nd0.00896 (10)0.008960.00662 (12)0.00448 (5)8.18 (9)
Rh0.00492 (9)0.00390 (11)0.01104 (12)0.00195 (5)6.74 (8)
B0.0100 (9)0.01000.0079 (12)0.0050 (4)9.3 (6)
SmRh3B2
Sm0.00841 (12)0.008410.00658 (14)0.00420 (6)7.80 (10)
Rh0.00502 (11)0.00389 (13)0.01287 (14)0.00194 (6)7.39 (10)
B0.0085 (10)0.00850.0102 (15)0.0043 (5)9.1 (7)
 

Funding information

We gratefully acknowledge the support from JSPS KAKENHI grant Nos. JP19K05643 (KY) and JP20H05258 (KY).

References

First citationDaane, A. H., Rundle, R. E., Smith, H. G. & Spedding, F. H. (1954). Acta Cryst. 7, 532–535.  CrossRef ICSD IUCr Journals Google Scholar
First citationHigashi, I., Kasaya, M., Okabe, A. & Kasuya, T. (1987). J. Solid State Chem. 69, 376–379.  CrossRef CAS Google Scholar
First citationHigashi, I., Shishido, T., Takei, H. & Kobayashi, T. (1988). J. Less-Common Met. 139, 211–220.  CrossRef ICSD CAS Google Scholar
First citationKu, H. C., Ma, L. J., Tai, M. F., Wang, Y. & Horng, H. E. (1985). J. Less-Common Met. 109, 219–228.  CrossRef ICSD CAS Google Scholar
First citationKu, H. C. & Meisner, G. P. (1981). J. Less-Common Met. 78, 99–107.  CrossRef ICSD CAS Google Scholar
First citationKu, H. C., Meisner, G. P., Acker, F. & Johnston, D. C. (1980). Solid State Commun. 35, 91–96.  CrossRef ICSD CAS Google Scholar
First citationKuz'ma, Y. B., Krypyakevych, P. I. & Bilonizhko, N. S. (1969). Dopov. Akad. Nauk Ukr. RSR Ser. A, pp. 939–941.  Google Scholar
First citationMalik, S. K., Vijayaraghavan, R., Wallace, W. E. & Dhar, S. K. (1983). J. Magn. Magn. Mater. 37, 303–308.  CrossRef ICSD CAS Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationObiraki, Y., Nakashima, H., Galatanu, A., Matsuda, T. D., Haga, Y., Takeuchi, T., Sugiyama, K., Kindo, K., Hagiwara, M., Settai, R., Harima, H. & Ōnuki, Y. (2006). J. Phys. Soc. Jpn, 75, 064702.  CrossRef Google Scholar
First citationOhtani, T., Chevalier, B., Lejay, P., Etourneau, J., Vlasse, M. & Hagenmuller, P. (1983). J. Appl. Phys. 54, 5928–5934.  CrossRef ICSD CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO, Rigaku Corporation, Oxford, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpedding, F. H., Daane, A. H. & Herrmann, K. W. (1956). Acta Cryst. 9, 559–563.  CrossRef ICSD IUCr Journals Google Scholar
First citationVlasse, M., Ohtani, T., Chevalier, B. & Etourneau, J. (1983). J. Solid State Chem. 46, 188–192.  CrossRef ICSD CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, M., Obiraki, Y., Okubo, T., Shiromoto, T., Kida, Y., Shiimoto, M., Kohara, H., Yamamoto, T., Honda, D., Galatanu, A., Haga, Y., Takeuchi, T., Sugiyama, K., Settai, R., Kindo, K., Dhar, S. K., Harima, H. & Ōnuki, Y. (2004). J. Phys. Soc. Jpn, 73, 2266–2275.  CrossRef CAS Google Scholar
First citationZachariasen, W. H. (1973). J. Inorg. Nucl. Chem. 35, 3487–3497.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds