research communications
Redetermination of the crystal structures of rare-earth trirhodium diboride RERh3B2 (RE = Pr, Nd and Sm) from single-crystal X-ray data
aInstitute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
*Correspondence e-mail: makoto.tokuda.b7@tohoku.ac.jp
The crystal structures of the rare-earth (RE) trirhodium diborides praseodymium trirhodium diboride, PrRh3B2, neodymium trirhodium diboride, NdRh3B2, and samarium trirhodium diboride, SmRh3B2, were refined on the basis of single-crystal X-ray diffraction data. The crystal chemistry of RERh3B2 (RE: Pr, Nd, and Sm) compounds has previously been analyzed mainly on the basis of powder samples [Ku et al. (1980). Solid State Commun. 35, 91–96], and no structural investigation by single-crystal X-ray diffraction has been reported so far. The crystal structures of the three hexagonal RERh3B2 compounds are isotypic with that of CeRh3B2; RE, Rh and B sites are situated on special positions with 6/mmm (Wyckoff position 1a), mmm (3g) and m2 (2c), respectively. In comparison with the previous powder X-ray study of hexagonal RERh3B2, the present redetermination against single-crystal X-ray data has allowed for the modeling of all atoms with anisotropic displacement parameters (ADPs). The ADPs of the Rh atom in each of the structures result in an elongated displacement ellipsoid in the direction of the stacking of the Rh kagomé-type layer. The features of obtained ADPs of atoms are discussed in relation to RERh3B2-type and analogous structures.
Keywords: single-crystal diffraction; crystal structure; boride; isotypism.
1. Chemical context
CeCo3B2-type RERh3B2 (RE = rare-earth element) compounds exhibit anomalous ferromagnetic properties (Malik et al., 1983; Yamada et al., 2004), and the unit-cell parameters of these compounds have been reported using powder X-ray diffraction (XRD) data (Ku et al., 1980; Ku & Meisner, 1981). Higashi et al. (1987) analyzed the of CeRh3B2 by using single-crystal XRD data and discussed the characteristics of the anisotropic atomic displacement parameters (ADP) of atoms in CeRh3B2 in relation to the structure. We report here the results of structural refinements using single crystals of RERh3B2 (RE = Pr, Nd, and Sm) grown by the arc-melting method.
2. Structural commentary
The crystal structures of hexagonal RERh3B2 (RE; La–Gd) compounds are isotypic with CeCo3B2 and crystallize in space-group type P6/mmm (Kuz'ma et al., 1969). The CeCo3B2 type of structure is ordered and can be derived from the CaCu5 type of structure, whereby two distinct atoms (Rh and B) occupy the corresponding Cu sites. Each B atom is surrounded by six Rh atoms, forming a trigonal prism. Such [BRh6] trigonal prisms constitute a honeycomb structure and RE atoms are accommodated at the centers of the twelve [RERh12] hexagonal prisms, as shown in Fig. 1. The RERh3B2 type of structure can also be described as being built up of kagomé layers of Rh atoms stacked along the c axis with an αα stacking sequence and with B and RE atoms at the centers of the Rh triangular and hexagonal prisms, respectively.
The unit-cell parameters a and c and the unit-cell volume V of RERh3B2 (RE = La–Sm) compounds are shown in Fig. 2. The decrease in unit-cell volume results from the lanthanide contraction. The lattice parameters a and c decrease and increase, respectively. These anisotropic changes in the unit-cell parameters are consistent with those of a previous report using powder XRD analysis (Malik et al., 1983).
The anisotropic change in the unit-cell parameters can be explained by the change in interatomic distances due to the lanthanide contraction. The ranges of B—Rh and RE—Rh distances are 2.2129 (1)–2.2151 (1) Å and 3.1370 (1)–3.1447 (1) Å (Table 1), respectively, which are close to the values of the sums of the atomic radii (rRh = 1.35 Å, rB = 0.85 Å, rPr = 1.84 Å, rNd = 1.83 Å, and rSm = 1.81 Å; Daane et al., 1954; Spedding et al., 1956; Zachariasen, 1973). The RE—Rh interatomic distances decrease due to the effect of the lanthanoid contraction. Rh—Rh interatomic distances in the ab plane also decrease with a decrease in RE—Rh distances. By contrast, the Rh—Rh interatomic distances along the c axis increase. This causes the [RERh12] hexagonal and [BRh6] trigonal prisms to shrink horizontally and stretch vertically, resulting in decreases of the volumes of the hexagonal and trigonal prisms. Therefore, the unit-cells of RERh3B2 compounds change anisotropically, suggesting that the unit-cell changes elastically in response to the substitution of elements of different sizes at the RE site.
|
The obtained ADPs for each atom are summarized in Table 2. The displacement ellipsoid of the Rh atom shows a larger anisotropy than those of the B and RE atoms, as shown in Fig. 3. The U33 of Rh atoms is approximately 2.1–2.6 times larger than U11, which means that the displacement ellipsoids of Rh atoms are elongated along the c axis. The displacement ellipsoids of Rh atoms with large anisotropy correspond to the anisotropic of RERh3B2 compounds (Yamada et al., 2004; Obiraki et al., 2006). The ADPs of RE atoms are described as displacement ellipsoids suppressed in the c axis (U11 < U33). The feature of displacement ellipsoids of Rh and RE atoms is attributed to the unusually short RE—RE interatomic distances of 3.1084 (1)–3.1190 (1) Å, which are much shorter (15%) than the distance in the metal Pr, Nd, and Sm with hexagonal close-packed structures, (i.e., 3.67, 3.66, and 3.62 Å, respectively). The short RE—RE interatomic distance is a common feature of the CeCo3B2 type of structure. Anisotropy of electric or is also expected to be observed in CeRh3B2 compounds.
|
The obtained anisotropic ADPs of each atom in the structures of RERh3B2 compounds can be discussed in terms of the nucleation of interstitial atoms or layers in PrRh4.8B2 (Higashi et al., 1988). Higashi et al. (1988) discovered a new layered structure, namely, PrRh4.8B2, which is regarded as a stacking variant of a modified PrRh3B2 structure. The interstitial single Rh layer is positioned between the Rh kagomé layers of the modified PrRh3B2 blocks. The displacement ellipsoid in the stacking direction of the Rh atom in the PrRh3B2 structure implies that the Rh kagomé layer in PrRh3B2 could be a base for the nucleation of interstitial atoms or layers. The appearance of disordered La1–xRh3B2 type and/or Nd1–xRhxRh3B2 type of structures (Ohtani et al., 1983; Vlasse et al., 1983; Ku et al., 1985) might be associated with the anisotropic ADPs of Rh and RE atoms.
3. Synthesis and crystallization
RERh3B2 (RE = Pr, Nd, and Sm) single crystals were grown using the arc-melting method. The starting materials used were RE elements (99.9%), along with Rh (99.95%), and B (99.5%). They were weighed at an atomic ratio of (RE+3Rh+2B), and the mixtures of the starting materials were placed in an argon-arc melting furnace (ACM-01, Diavac). Each product was remelted three times to improve The grown crystals were composed of homogeneous RERh3B2, and the atomic ratio Rh/RE was confirmed to be 3.00 by energy dispersive X-ray spectroscopy.
4. details
Crystal data, data collection and structure . A plot using all reflection data was in good agreement with the hexagonal lattice (a ≃ 5 Å and c ≃ 3 Å), and there was no evidence of reflections. The was conducted under the assumption that the type was P6/mmm, as reported by Ku et al. (1980). Based on structural reports of La1–xRh3B2 and Nd1–xRhxRh3B2, we determined whether Rh substitution and vacancies at the RE site were possible; however, the results were negative. Therefore, we concluded that the RE sites were completely occupied by RE elements. A correction for isotropic extinction was applied during the least-squares refinements. The final refinements were performed by applying anisotropic ADPs to each atom. The remaining electron densities located 0.7–0.6 Å around rhodium and RE heavy elements are censoring effects caused by the finite Fourier series.
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989021013311/wm5627sup1.cif
contains datablocks global, I, II, III. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021013311/wm5627Isup5.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989021013311/wm5627IIsup6.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989021013311/wm5627IIIsup7.hkl
For all structures, data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).PrRh3B2 | Dx = 9.724 Mg m−3 |
Mr = 471.26 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P6/mmm | Cell parameters from 623 reflections |
a = 5.4676 (3) Å | θ = 4.3–39.9° |
c = 3.10837 (16) Å | µ = 29.43 mm−1 |
V = 80.47 (1) Å3 | T = 293 K |
Z = 1 | Block, metallic |
F(000) = 204 | 0.05 × 0.03 × 0.03 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 131 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source | 126 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.017 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 40.3°, θmin = 4.3° |
ω scans | h = −9→7 |
Absorption correction: numerical (CrysAlisPro; Rigaku OD, 2021) | k = −9→9 |
Tmin = 0.423, Tmax = 0.601 | l = −3→5 |
733 measured reflections |
Refinement on F2 | 8 parameters |
Least-squares matrix: full | 0 restraints |
R[F2 > 2σ(F2)] = 0.018 | w = 1/[σ2(Fo2) + (0.0347P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.053 | (Δ/σ)max < 0.001 |
S = 1.21 | Δρmax = 1.80 e Å−3 |
131 reflections | Δρmin = −1.18 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pr1 | 0.000000 | 0.000000 | 0.000000 | 0.00835 (14) | |
Rh1 | 0.500000 | 0.000000 | 0.500000 | 0.00653 (13) | |
B1 | 0.333333 | 0.666667 | 0.000000 | 0.0093 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pr1 | 0.00861 (18) | 0.00861 (18) | 0.0078 (2) | 0.00430 (9) | 0.000 | 0.000 |
Rh1 | 0.00495 (16) | 0.00386 (18) | 0.0104 (2) | 0.00193 (9) | 0.000 | 0.000 |
B1 | 0.0095 (16) | 0.0095 (16) | 0.009 (2) | 0.0048 (8) | 0.000 | 0.000 |
Pr1—Pr1i | 3.1084 (2) | Pr1—Rh1x | 3.1447 (1) |
Pr1—Pr1ii | 3.1084 (2) | Rh1—B1xi | 2.2151 (1) |
Pr1—Rh1iii | 3.1447 (1) | Rh1—B1xii | 2.2151 (1) |
Pr1—Rh1iv | 3.1447 (1) | Rh1—B1xiii | 2.2151 (1) |
Pr1—Rh1 | 3.1447 (1) | Rh1—B1xiv | 2.2151 (1) |
Pr1—Rh1v | 3.1447 (1) | Rh1—Rh1xv | 2.7338 (2) |
Pr1—Rh1vi | 3.1447 (1) | Rh1—Rh1xvi | 2.7338 (2) |
Pr1—Rh1vii | 3.1447 (1) | Rh1—Rh1iii | 2.7338 (2) |
Pr1—Rh1viii | 3.1447 (1) | Rh1—Rh1xvii | 2.7338 (2) |
Pr1—Rh1ix | 3.1447 (1) | Rh1—Rh1i | 3.1084 (2) |
Pr1—Rh1ii | 3.1447 (1) | Rh1—Rh1ii | 3.1084 (2) |
Pr1i—Pr1—Pr1ii | 180.0 | B1xiii—Rh1—Rh1xv | 51.897 (2) |
Pr1i—Pr1—Rh1iii | 60.381 (1) | B1xiv—Rh1—Rh1xv | 128.103 (2) |
Pr1ii—Pr1—Rh1iii | 119.619 (1) | B1xi—Rh1—Rh1xvi | 128.103 (1) |
Pr1i—Pr1—Rh1iv | 119.619 (1) | B1xii—Rh1—Rh1xvi | 51.897 (1) |
Pr1ii—Pr1—Rh1iv | 60.381 (1) | B1xiii—Rh1—Rh1xvi | 128.103 (2) |
Rh1iii—Pr1—Rh1iv | 180.0 | B1xiv—Rh1—Rh1xvi | 51.897 (2) |
Pr1i—Pr1—Rh1 | 60.381 (2) | Rh1xv—Rh1—Rh1xvi | 180.0 |
Pr1ii—Pr1—Rh1 | 119.619 (2) | B1xi—Rh1—Rh1iii | 51.896 (2) |
Rh1iii—Pr1—Rh1 | 51.528 (1) | B1xii—Rh1—Rh1iii | 128.104 (2) |
Rh1iv—Pr1—Rh1 | 128.472 (1) | B1xiii—Rh1—Rh1iii | 51.896 (2) |
Pr1i—Pr1—Rh1v | 119.619 (2) | B1xiv—Rh1—Rh1iii | 128.104 (1) |
Pr1ii—Pr1—Rh1v | 60.381 (2) | Rh1xv—Rh1—Rh1iii | 60.0 |
Rh1iii—Pr1—Rh1v | 128.472 (1) | Rh1xvi—Rh1—Rh1iii | 120.0 |
Rh1iv—Pr1—Rh1v | 51.528 (1) | B1xi—Rh1—Rh1xvii | 128.104 (2) |
Rh1—Pr1—Rh1v | 180.0 | B1xii—Rh1—Rh1xvii | 51.896 (2) |
Pr1i—Pr1—Rh1vi | 60.381 (2) | B1xiii—Rh1—Rh1xvii | 128.104 (2) |
Pr1ii—Pr1—Rh1vi | 119.619 (2) | B1xiv—Rh1—Rh1xvii | 51.896 (2) |
Rh1iii—Pr1—Rh1vi | 51.528 (1) | Rh1xv—Rh1—Rh1xvii | 120.0 |
Rh1iv—Pr1—Rh1vi | 128.472 (1) | Rh1xvi—Rh1—Rh1xvii | 60.0 |
Rh1—Pr1—Rh1vi | 97.678 (2) | Rh1iii—Rh1—Rh1xvii | 180.0 |
Rh1v—Pr1—Rh1vi | 82.322 (2) | B1xi—Rh1—Rh1i | 45.442 (2) |
Pr1i—Pr1—Rh1vii | 119.619 (2) | B1xii—Rh1—Rh1i | 134.558 (2) |
Pr1ii—Pr1—Rh1vii | 60.381 (2) | B1xiii—Rh1—Rh1i | 134.558 (2) |
Rh1iii—Pr1—Rh1vii | 128.472 (1) | B1xiv—Rh1—Rh1i | 45.442 (2) |
Rh1iv—Pr1—Rh1vii | 51.528 (1) | Rh1xv—Rh1—Rh1i | 90.0 |
Rh1—Pr1—Rh1vii | 82.322 (2) | Rh1xvi—Rh1—Rh1i | 90.0 |
Rh1v—Pr1—Rh1vii | 97.678 (2) | Rh1iii—Rh1—Rh1i | 90.0 |
Rh1vi—Pr1—Rh1vii | 180.0 | Rh1xvii—Rh1—Rh1i | 90.0 |
Pr1i—Pr1—Rh1viii | 60.381 (2) | B1xi—Rh1—Rh1ii | 134.558 (2) |
Pr1ii—Pr1—Rh1viii | 119.619 (2) | B1xii—Rh1—Rh1ii | 45.442 (2) |
Rh1iii—Pr1—Rh1viii | 120.763 (4) | B1xiii—Rh1—Rh1ii | 45.442 (2) |
Rh1iv—Pr1—Rh1viii | 59.238 (4) | B1xiv—Rh1—Rh1ii | 134.558 (2) |
Rh1—Pr1—Rh1viii | 97.678 (3) | Rh1xv—Rh1—Rh1ii | 90.0 |
Rh1v—Pr1—Rh1viii | 82.322 (3) | Rh1xvi—Rh1—Rh1ii | 90.0 |
Rh1vi—Pr1—Rh1viii | 97.678 (3) | Rh1iii—Rh1—Rh1ii | 90.0 |
Rh1vii—Pr1—Rh1viii | 82.322 (3) | Rh1xvii—Rh1—Rh1ii | 90.0 |
Pr1i—Pr1—Rh1ix | 119.619 (2) | Rh1i—Rh1—Rh1ii | 180.0 |
Pr1ii—Pr1—Rh1ix | 60.381 (2) | B1xi—Rh1—Pr1 | 110.289 (2) |
Rh1iii—Pr1—Rh1ix | 59.238 (4) | B1xii—Rh1—Pr1 | 69.711 (3) |
Rh1iv—Pr1—Rh1ix | 120.763 (4) | B1xiii—Rh1—Pr1 | 69.710 (2) |
Rh1—Pr1—Rh1ix | 82.322 (3) | B1xiv—Rh1—Pr1 | 110.290 (2) |
Rh1v—Pr1—Rh1ix | 97.678 (3) | Rh1xv—Rh1—Pr1 | 115.764 (1) |
Rh1vi—Pr1—Rh1ix | 82.322 (3) | Rh1xvi—Rh1—Pr1 | 64.236 (1) |
Rh1vii—Pr1—Rh1ix | 97.678 (3) | Rh1iii—Rh1—Pr1 | 64.236 (1) |
Rh1viii—Pr1—Rh1ix | 180.0 | Rh1xvii—Rh1—Pr1 | 115.764 (1) |
Pr1i—Pr1—Rh1ii | 119.619 (2) | Rh1i—Rh1—Pr1 | 119.619 (1) |
Pr1ii—Pr1—Rh1ii | 60.381 (2) | Rh1ii—Rh1—Pr1 | 60.381 (2) |
Rh1iii—Pr1—Rh1ii | 82.322 (3) | B1xi—Rh1—Pr1xviii | 69.711 (2) |
Rh1iv—Pr1—Rh1ii | 97.678 (3) | B1xii—Rh1—Pr1xviii | 110.289 (3) |
Rh1—Pr1—Rh1ii | 59.238 (4) | B1xiii—Rh1—Pr1xviii | 110.290 (2) |
Rh1v—Pr1—Rh1ii | 120.762 (4) | B1xiv—Rh1—Pr1xviii | 69.710 (2) |
Rh1vi—Pr1—Rh1ii | 128.472 (1) | Rh1xv—Rh1—Pr1xviii | 64.236 (1) |
Rh1vii—Pr1—Rh1ii | 51.528 (1) | Rh1xvi—Rh1—Pr1xviii | 115.764 (1) |
Rh1viii—Pr1—Rh1ii | 128.472 (1) | Rh1iii—Rh1—Pr1xviii | 115.764 (1) |
Rh1ix—Pr1—Rh1ii | 51.528 (1) | Rh1xvii—Rh1—Pr1xviii | 64.236 (1) |
Pr1i—Pr1—Rh1x | 60.381 (2) | Rh1i—Rh1—Pr1xviii | 60.381 (2) |
Pr1ii—Pr1—Rh1x | 119.619 (2) | Rh1ii—Rh1—Pr1xviii | 119.619 (2) |
Rh1iii—Pr1—Rh1x | 97.678 (3) | Pr1—Rh1—Pr1xviii | 180.0 |
Rh1iv—Pr1—Rh1x | 82.322 (3) | Rh1xix—B1—Rh1xx | 138.257 (2) |
Rh1—Pr1—Rh1x | 120.762 (4) | Rh1xix—B1—Rh1vi | 89.116 (4) |
Rh1v—Pr1—Rh1x | 59.238 (4) | Rh1xx—B1—Rh1vi | 76.206 (4) |
Rh1vi—Pr1—Rh1x | 51.528 (1) | Rh1xix—B1—Rh1xxi | 76.206 (4) |
Rh1vii—Pr1—Rh1x | 128.472 (1) | Rh1xx—B1—Rh1xxi | 89.116 (4) |
Rh1viii—Pr1—Rh1x | 51.528 (1) | Rh1vi—B1—Rh1xxi | 138.257 (2) |
Rh1ix—Pr1—Rh1x | 128.472 (1) | Rh1xix—B1—Rh1iii | 138.257 (2) |
Rh1ii—Pr1—Rh1x | 180.0 | Rh1xx—B1—Rh1iii | 76.206 (4) |
B1xi—Rh1—B1xii | 180.0 | Rh1vi—B1—Rh1iii | 76.206 (4) |
B1xi—Rh1—B1xiii | 89.116 (4) | Rh1xxi—B1—Rh1iii | 138.257 (2) |
B1xii—Rh1—B1xiii | 90.884 (4) | Rh1xix—B1—Rh1ix | 76.206 (4) |
B1xi—Rh1—B1xiv | 90.884 (4) | Rh1xx—B1—Rh1ix | 138.257 (2) |
B1xii—Rh1—B1xiv | 89.116 (4) | Rh1vi—B1—Rh1ix | 138.257 (2) |
B1xiii—Rh1—B1xiv | 180.0 | Rh1xxi—B1—Rh1ix | 76.206 (4) |
B1xi—Rh1—Rh1xv | 51.897 (1) | Rh1iii—B1—Rh1ix | 89.116 (4) |
B1xii—Rh1—Rh1xv | 128.103 (1) |
Symmetry codes: (i) x, y, z+1; (ii) x, y, z−1; (iii) −x+y+1, −x+1, z; (iv) −x+y, −x, z−1; (v) x−1, y, z−1; (vi) −y, x−y, z; (vii) −y, x−y−1, z−1; (viii) −x+y, −x, z; (ix) −x+y+1, −x+1, z−1; (x) x−1, y, z; (xi) −x+1, −y+1, −z+1; (xii) x, y−1, z; (xiii) −x+1, −y+1, −z; (xiv) x, y−1, z+1; (xv) −y+1, x−y, z; (xvi) −y, x−y−1, z; (xvii) −x+y+1, −x, z; (xviii) x+1, y, z+1; (xix) −y, x−y, z−1; (xx) x, y+1, z; (xxi) x, y+1, z−1. |
NdRh3B2 | Dx = 9.839 Mg m−3 |
Mr = 474.59 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P6/mmm | Cell parameters from 729 reflections |
a = 5.4527 (2) Å | θ = 4.3–40.7° |
c = 3.11066 (13) Å | µ = 30.57 mm−1 |
V = 80.10 (1) Å3 | T = 293 K |
Z = 1 | Block, metallic |
F(000) = 205 | 0.05 × 0.05 × 0.02 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 131 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source | 130 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.010 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 40.2°, θmin = 4.3° |
ω scans | h = −9→8 |
Absorption correction: numerical (CrysAlisPro; Rigaku OD, 2021) | k = −7→9 |
Tmin = 0.424, Tmax = 0.611 | l = −3→5 |
827 measured reflections |
Refinement on F2 | 8 parameters |
Least-squares matrix: full | 0 restraints |
R[F2 > 2σ(F2)] = 0.012 | w = 1/[σ2(Fo2) + (0.022P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.032 | (Δ/σ)max < 0.001 |
S = 1.15 | Δρmax = 0.97 e Å−3 |
131 reflections | Δρmin = −2.46 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Nd1 | 0.000000 | 0.000000 | 0.000000 | 0.00818 (9) | |
Rh1 | 0.500000 | 0.000000 | 0.500000 | 0.00674 (8) | |
B1 | 0.333333 | 0.666667 | 0.000000 | 0.0093 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Nd1 | 0.00896 (10) | 0.00896 (10) | 0.00662 (12) | 0.00448 (5) | 0.000 | 0.000 |
Rh1 | 0.00492 (9) | 0.00390 (11) | 0.01104 (12) | 0.00195 (5) | 0.000 | 0.000 |
B1 | 0.0100 (9) | 0.0100 (9) | 0.0079 (12) | 0.0050 (4) | 0.000 | 0.000 |
Nd1—Nd1i | 3.1107 (1) | Nd1—Rh1ii | 3.1388 (1) |
Nd1—Nd1ii | 3.1107 (1) | Rh1—B1xi | 2.2129 (1) |
Nd1—Rh1iii | 3.1388 (1) | Rh1—B1xii | 2.2129 (1) |
Nd1—Rh1iv | 3.1388 (1) | Rh1—B1xiii | 2.2129 (1) |
Nd1—Rh1v | 3.1388 (1) | Rh1—B1xiv | 2.2129 (1) |
Nd1—Rh1vi | 3.1388 (1) | Rh1—Rh1xv | 2.7264 (1) |
Nd1—Rh1 | 3.1388 (1) | Rh1—Rh1xvi | 2.7264 (1) |
Nd1—Rh1vii | 3.1388 (1) | Rh1—Rh1iii | 2.7264 (1) |
Nd1—Rh1viii | 3.1388 (1) | Rh1—Rh1xvii | 2.7264 (1) |
Nd1—Rh1ix | 3.1388 (1) | Rh1—Rh1i | 3.1107 (1) |
Nd1—Rh1x | 3.1388 (1) | Rh1—Rh1ii | 3.1107 (1) |
Nd1i—Nd1—Nd1ii | 180.0 | B1xiii—Rh1—Rh1xv | 51.974 (1) |
Nd1i—Nd1—Rh1iii | 60.296 (1) | B1xiv—Rh1—Rh1xv | 128.026 (1) |
Nd1ii—Nd1—Rh1iii | 119.704 (1) | B1xi—Rh1—Rh1xvi | 128.026 (1) |
Nd1i—Nd1—Rh1iv | 119.704 (1) | B1xii—Rh1—Rh1xvi | 51.974 (1) |
Nd1ii—Nd1—Rh1iv | 60.296 (1) | B1xiii—Rh1—Rh1xvi | 128.026 (2) |
Rh1iii—Nd1—Rh1iv | 180.0 | B1xiv—Rh1—Rh1xvi | 51.974 (1) |
Nd1i—Nd1—Rh1v | 60.296 (1) | Rh1xv—Rh1—Rh1xvi | 180.0 |
Nd1ii—Nd1—Rh1v | 119.704 (1) | B1xi—Rh1—Rh1iii | 51.973 (1) |
Rh1iii—Nd1—Rh1v | 51.481 (1) | B1xii—Rh1—Rh1iii | 128.027 (1) |
Rh1iv—Nd1—Rh1v | 128.519 (1) | B1xiii—Rh1—Rh1iii | 51.973 (1) |
Nd1i—Nd1—Rh1vi | 119.704 (1) | B1xiv—Rh1—Rh1iii | 128.027 (1) |
Nd1ii—Nd1—Rh1vi | 60.296 (1) | Rh1xv—Rh1—Rh1iii | 60.0 |
Rh1iii—Nd1—Rh1vi | 128.519 (1) | Rh1xvi—Rh1—Rh1iii | 120.0 |
Rh1iv—Nd1—Rh1vi | 51.481 (1) | B1xi—Rh1—Rh1xvii | 128.027 (2) |
Rh1v—Nd1—Rh1vi | 180.0 | B1xii—Rh1—Rh1xvii | 51.973 (1) |
Nd1i—Nd1—Rh1 | 60.296 (1) | B1xiii—Rh1—Rh1xvii | 128.027 (1) |
Nd1ii—Nd1—Rh1 | 119.704 (1) | B1xiv—Rh1—Rh1xvii | 51.973 (1) |
Rh1iii—Nd1—Rh1 | 51.481 (1) | Rh1xv—Rh1—Rh1xvii | 120.0 |
Rh1iv—Nd1—Rh1 | 128.519 (1) | Rh1xvi—Rh1—Rh1xvii | 60.0 |
Rh1v—Nd1—Rh1 | 97.568 (2) | Rh1iii—Rh1—Rh1xvii | 180.0 |
Rh1vi—Nd1—Rh1 | 82.432 (2) | B1xi—Rh1—Rh1i | 45.343 (2) |
Nd1i—Nd1—Rh1vii | 119.704 (1) | B1xii—Rh1—Rh1i | 134.657 (1) |
Nd1ii—Nd1—Rh1vii | 60.296 (1) | B1xiii—Rh1—Rh1i | 134.657 (2) |
Rh1iii—Nd1—Rh1vii | 128.519 (1) | B1xiv—Rh1—Rh1i | 45.343 (2) |
Rh1iv—Nd1—Rh1vii | 51.481 (1) | Rh1xv—Rh1—Rh1i | 90.0 |
Rh1v—Nd1—Rh1vii | 82.432 (2) | Rh1xvi—Rh1—Rh1i | 90.0 |
Rh1vi—Nd1—Rh1vii | 97.568 (2) | Rh1iii—Rh1—Rh1i | 90.0 |
Rh1—Nd1—Rh1vii | 180.0 | Rh1xvii—Rh1—Rh1i | 90.0 |
Nd1i—Nd1—Rh1viii | 60.296 (2) | B1xi—Rh1—Rh1ii | 134.657 (2) |
Nd1ii—Nd1—Rh1viii | 119.704 (2) | B1xii—Rh1—Rh1ii | 45.343 (2) |
Rh1iii—Nd1—Rh1viii | 120.592 (3) | B1xiii—Rh1—Rh1ii | 45.343 (2) |
Rh1iv—Nd1—Rh1viii | 59.408 (3) | B1xiv—Rh1—Rh1ii | 134.657 (2) |
Rh1v—Nd1—Rh1viii | 97.568 (2) | Rh1xv—Rh1—Rh1ii | 90.0 |
Rh1vi—Nd1—Rh1viii | 82.432 (2) | Rh1xvi—Rh1—Rh1ii | 90.0 |
Rh1—Nd1—Rh1viii | 97.568 (2) | Rh1iii—Rh1—Rh1ii | 90.0 |
Rh1vii—Nd1—Rh1viii | 82.432 (2) | Rh1xvii—Rh1—Rh1ii | 90.0 |
Nd1i—Nd1—Rh1ix | 119.704 (2) | Rh1i—Rh1—Rh1ii | 180.0 |
Nd1ii—Nd1—Rh1ix | 60.296 (2) | B1xi—Rh1—Nd1 | 110.381 (2) |
Rh1iii—Nd1—Rh1ix | 59.408 (3) | B1xii—Rh1—Nd1 | 69.619 (2) |
Rh1iv—Nd1—Rh1ix | 120.592 (3) | B1xiii—Rh1—Nd1 | 69.617 (2) |
Rh1v—Nd1—Rh1ix | 82.432 (2) | B1xiv—Rh1—Nd1 | 110.383 (2) |
Rh1vi—Nd1—Rh1ix | 97.568 (2) | Rh1xv—Rh1—Nd1 | 115.7 |
Rh1—Nd1—Rh1ix | 82.432 (2) | Rh1xvi—Rh1—Nd1 | 64.3 |
Rh1vii—Nd1—Rh1ix | 97.568 (2) | Rh1iii—Rh1—Nd1 | 64.259 (1) |
Rh1viii—Nd1—Rh1ix | 180.0 | Rh1xvii—Rh1—Nd1 | 115.741 (1) |
Nd1i—Nd1—Rh1x | 60.296 (1) | Rh1i—Rh1—Nd1 | 119.704 (1) |
Nd1ii—Nd1—Rh1x | 119.704 (1) | Rh1ii—Rh1—Nd1 | 60.296 (1) |
Rh1iii—Nd1—Rh1x | 97.568 (3) | B1xi—Rh1—Nd1xviii | 69.619 (2) |
Rh1iv—Nd1—Rh1x | 82.432 (3) | B1xii—Rh1—Nd1xviii | 110.381 (2) |
Rh1v—Nd1—Rh1x | 51.481 (1) | B1xiii—Rh1—Nd1xviii | 110.383 (2) |
Rh1vi—Nd1—Rh1x | 128.519 (1) | B1xiv—Rh1—Nd1xviii | 69.617 (2) |
Rh1—Nd1—Rh1x | 120.592 (3) | Rh1xv—Rh1—Nd1xviii | 64.3 |
Rh1vii—Nd1—Rh1x | 59.408 (3) | Rh1xvi—Rh1—Nd1xviii | 115.7 |
Rh1viii—Nd1—Rh1x | 51.481 (1) | Rh1iii—Rh1—Nd1xviii | 115.741 (1) |
Rh1ix—Nd1—Rh1x | 128.519 (1) | Rh1xvii—Rh1—Nd1xviii | 64.259 (1) |
Nd1i—Nd1—Rh1ii | 119.704 (1) | Rh1i—Rh1—Nd1xviii | 60.296 (1) |
Nd1ii—Nd1—Rh1ii | 60.296 (1) | Rh1ii—Rh1—Nd1xviii | 119.704 (1) |
Rh1iii—Nd1—Rh1ii | 82.432 (3) | Nd1—Rh1—Nd1xviii | 180.0 |
Rh1iv—Nd1—Rh1ii | 97.568 (3) | Rh1xix—B1—Rh1xx | 138.332 (1) |
Rh1v—Nd1—Rh1ii | 128.519 (1) | Rh1xix—B1—Rh1v | 89.314 (4) |
Rh1vi—Nd1—Rh1ii | 51.481 (1) | Rh1xx—B1—Rh1v | 76.053 (3) |
Rh1—Nd1—Rh1ii | 59.408 (3) | Rh1xix—B1—Rh1xxi | 76.053 (3) |
Rh1vii—Nd1—Rh1ii | 120.592 (3) | Rh1xx—B1—Rh1xxi | 89.314 (4) |
Rh1viii—Nd1—Rh1ii | 128.519 (1) | Rh1v—B1—Rh1xxi | 138.332 (1) |
Rh1ix—Nd1—Rh1ii | 51.481 (1) | Rh1xix—B1—Rh1iii | 138.332 (1) |
Rh1x—Nd1—Rh1ii | 180.0 | Rh1xx—B1—Rh1iii | 76.053 (2) |
B1xi—Rh1—B1xii | 180.0 | Rh1v—B1—Rh1iii | 76.053 (3) |
B1xi—Rh1—B1xiii | 89.314 (4) | Rh1xxi—B1—Rh1iii | 138.332 (1) |
B1xii—Rh1—B1xiii | 90.686 (4) | Rh1xix—B1—Rh1ix | 76.053 (3) |
B1xi—Rh1—B1xiv | 90.686 (4) | Rh1xx—B1—Rh1ix | 138.332 (1) |
B1xii—Rh1—B1xiv | 89.314 (4) | Rh1v—B1—Rh1ix | 138.332 (2) |
B1xiii—Rh1—B1xiv | 180.0 | Rh1xxi—B1—Rh1ix | 76.053 (3) |
B1xi—Rh1—Rh1xv | 51.974 (1) | Rh1iii—B1—Rh1ix | 89.314 (4) |
B1xii—Rh1—Rh1xv | 128.026 (1) |
Symmetry codes: (i) x, y, z+1; (ii) x, y, z−1; (iii) −x+y+1, −x+1, z; (iv) −x+y, −x, z−1; (v) −y, x−y, z; (vi) −y, x−y−1, z−1; (vii) x−1, y, z−1; (viii) −x+y, −x, z; (ix) −x+y+1, −x+1, z−1; (x) x−1, y, z; (xi) −x+1, −y+1, −z+1; (xii) x, y−1, z; (xiii) −x+1, −y+1, −z; (xiv) x, y−1, z+1; (xv) −y+1, x−y, z; (xvi) −y, x−y−1, z; (xvii) −x+y+1, −x, z; (xviii) x+1, y, z+1; (xix) −y, x−y, z−1; (xx) x, y+1, z; (xxi) x, y+1, z−1. |
SmRh3B2 | Dx = 9.972 Mg m−3 |
Mr = 480.70 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P6/mmm | Cell parameters from 649 reflections |
a = 5.4438 (2) Å | θ = 4.3–40.1° |
c = 3.11901 (12) Å | µ = 32.61 mm−1 |
V = 80.05 (1) Å3 | T = 293 K |
Z = 1 | Block, metallic |
F(000) = 207 | 0.06 × 0.05 × 0.02 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 129 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source | 128 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.011 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 40.1°, θmin = 4.3° |
ω scans | h = −8→9 |
Absorption correction: numerical (CrysAlisPro; Rigaku OD, 2021) | k = −7→7 |
Tmin = 0.324, Tmax = 0.542 | l = −3→5 |
696 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0213P)2 + 0.0484P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.012 | (Δ/σ)max < 0.001 |
wR(F2) = 0.032 | Δρmax = 1.76 e Å−3 |
S = 1.13 | Δρmin = −0.97 e Å−3 |
129 reflections | Extinction correction: SHELXL-2016/6 (Sheldrick 2016), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
9 parameters | Extinction coefficient: 0.034 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sm1 | 0.000000 | 0.000000 | 0.000000 | 0.00780 (10) | |
Rh1 | 0.500000 | 0.000000 | 0.500000 | 0.00739 (10) | |
B1 | 0.333333 | 0.666667 | 0.000000 | 0.0091 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sm1 | 0.00841 (12) | 0.00841 (12) | 0.00658 (14) | 0.00420 (6) | 0.000 | 0.000 |
Rh1 | 0.00502 (11) | 0.00389 (13) | 0.01287 (14) | 0.00194 (6) | 0.000 | 0.000 |
B1 | 0.0085 (10) | 0.0085 (10) | 0.0102 (15) | 0.0043 (5) | 0.000 | 0.000 |
Sm1—Sm1i | 3.1190 (1) | Sm1—Rh1x | 3.1370 (1) |
Sm1—Sm1ii | 3.1190 (1) | Rh1—B1xi | 2.2140 (1) |
Sm1—Rh1iii | 3.1370 (1) | Rh1—B1xii | 2.2140 (1) |
Sm1—Rh1iv | 3.1370 (1) | Rh1—B1xiii | 2.2140 (1) |
Sm1—Rh1 | 3.1370 (1) | Rh1—B1xiv | 2.2140 (1) |
Sm1—Rh1v | 3.1370 (1) | Rh1—Rh1xv | 2.7219 (1) |
Sm1—Rh1vi | 3.1370 (1) | Rh1—Rh1xvi | 2.7219 (1) |
Sm1—Rh1vii | 3.1370 (1) | Rh1—Rh1iii | 2.7219 (1) |
Sm1—Rh1viii | 3.1370 (1) | Rh1—Rh1xvii | 2.7219 (1) |
Sm1—Rh1ix | 3.1370 (1) | Rh1—Rh1i | 3.1190 (1) |
Sm1—Rh1ii | 3.1370 (1) | Rh1—Rh1ii | 3.1190 (1) |
Sm1i—Sm1—Sm1ii | 180.0 | B1xiii—Rh1—Rh1xv | 52.069 (1) |
Sm1i—Sm1—Rh1iii | 60.189 (1) | B1xiv—Rh1—Rh1xv | 127.931 (1) |
Sm1ii—Sm1—Rh1iii | 119.811 (1) | B1xi—Rh1—Rh1xvi | 127.931 (1) |
Sm1i—Sm1—Rh1iv | 119.811 (1) | B1xii—Rh1—Rh1xvi | 52.069 (1) |
Sm1ii—Sm1—Rh1iv | 60.189 (1) | B1xiii—Rh1—Rh1xvi | 127.931 (1) |
Rh1iii—Sm1—Rh1iv | 180.0 | B1xiv—Rh1—Rh1xvi | 52.069 (1) |
Sm1i—Sm1—Rh1 | 60.189 (2) | Rh1xv—Rh1—Rh1xvi | 180.0 |
Sm1ii—Sm1—Rh1 | 119.811 (1) | B1xi—Rh1—Rh1iii | 52.069 (1) |
Rh1iii—Sm1—Rh1 | 51.423 (1) | B1xii—Rh1—Rh1iii | 127.931 (1) |
Rh1iv—Sm1—Rh1 | 128.6 | B1xiii—Rh1—Rh1iii | 52.069 (1) |
Sm1i—Sm1—Rh1v | 119.811 (1) | B1xiv—Rh1—Rh1iii | 127.931 (1) |
Sm1ii—Sm1—Rh1v | 60.189 (2) | Rh1xv—Rh1—Rh1iii | 60.0 |
Rh1iii—Sm1—Rh1v | 128.6 | Rh1xvi—Rh1—Rh1iii | 120.0 |
Rh1iv—Sm1—Rh1v | 51.423 (1) | B1xi—Rh1—Rh1xvii | 127.931 (1) |
Rh1—Sm1—Rh1v | 180.0 | B1xii—Rh1—Rh1xvii | 52.069 (1) |
Sm1i—Sm1—Rh1vi | 60.189 (2) | B1xiii—Rh1—Rh1xvii | 127.931 (1) |
Sm1ii—Sm1—Rh1vi | 119.811 (1) | B1xiv—Rh1—Rh1xvii | 52.069 (1) |
Rh1iii—Sm1—Rh1vi | 51.423 (1) | Rh1xv—Rh1—Rh1xvii | 120.0 |
Rh1iv—Sm1—Rh1vi | 128.577 (1) | Rh1xvi—Rh1—Rh1xvii | 60.0 |
Rh1—Sm1—Rh1vi | 97.428 (2) | Rh1iii—Rh1—Rh1xvii | 180.0 |
Rh1v—Sm1—Rh1vi | 82.572 (2) | B1xi—Rh1—Rh1i | 45.219 (1) |
Sm1i—Sm1—Rh1vii | 119.811 (1) | B1xii—Rh1—Rh1i | 134.781 (2) |
Sm1ii—Sm1—Rh1vii | 60.189 (2) | B1xiii—Rh1—Rh1i | 134.781 (1) |
Rh1iii—Sm1—Rh1vii | 128.577 (1) | B1xiv—Rh1—Rh1i | 45.219 (1) |
Rh1iv—Sm1—Rh1vii | 51.423 (1) | Rh1xv—Rh1—Rh1i | 90.0 |
Rh1—Sm1—Rh1vii | 82.572 (2) | Rh1xvi—Rh1—Rh1i | 90.0 |
Rh1v—Sm1—Rh1vii | 97.428 (2) | Rh1iii—Rh1—Rh1i | 90.0 |
Rh1vi—Sm1—Rh1vii | 180.0 | Rh1xvii—Rh1—Rh1i | 90.0 |
Sm1i—Sm1—Rh1viii | 60.189 (1) | B1xi—Rh1—Rh1ii | 134.781 (2) |
Sm1ii—Sm1—Rh1viii | 119.811 (1) | B1xii—Rh1—Rh1ii | 45.219 (2) |
Rh1iii—Sm1—Rh1viii | 120.379 (3) | B1xiii—Rh1—Rh1ii | 45.219 (1) |
Rh1iv—Sm1—Rh1viii | 59.621 (3) | B1xiv—Rh1—Rh1ii | 134.781 (1) |
Rh1—Sm1—Rh1viii | 97.428 (2) | Rh1xv—Rh1—Rh1ii | 90.0 |
Rh1v—Sm1—Rh1viii | 82.572 (2) | Rh1xvi—Rh1—Rh1ii | 90.0 |
Rh1vi—Sm1—Rh1viii | 97.428 (1) | Rh1iii—Rh1—Rh1ii | 90.0 |
Rh1vii—Sm1—Rh1viii | 82.572 (1) | Rh1xvii—Rh1—Rh1ii | 90.0 |
Sm1i—Sm1—Rh1ix | 119.811 (1) | Rh1i—Rh1—Rh1ii | 180.0 |
Sm1ii—Sm1—Rh1ix | 60.189 (1) | B1xi—Rh1—Sm1 | 110.498 (2) |
Rh1iii—Sm1—Rh1ix | 59.621 (3) | B1xii—Rh1—Sm1 | 69.502 (1) |
Rh1iv—Sm1—Rh1ix | 120.379 (3) | B1xiii—Rh1—Sm1 | 69.501 (1) |
Rh1—Sm1—Rh1ix | 82.572 (2) | B1xiv—Rh1—Sm1 | 110.499 (1) |
Rh1v—Sm1—Rh1ix | 97.428 (2) | Rh1xv—Rh1—Sm1 | 115.711 (1) |
Rh1vi—Sm1—Rh1ix | 82.572 (1) | Rh1xvi—Rh1—Sm1 | 64.3 |
Rh1vii—Sm1—Rh1ix | 97.428 (1) | Rh1iii—Rh1—Sm1 | 64.289 (1) |
Rh1viii—Sm1—Rh1ix | 180.0 | Rh1xvii—Rh1—Sm1 | 115.7 |
Sm1i—Sm1—Rh1ii | 119.811 (1) | Rh1i—Rh1—Sm1 | 119.811 (2) |
Sm1ii—Sm1—Rh1ii | 60.189 (1) | Rh1ii—Rh1—Sm1 | 60.189 (2) |
Rh1iii—Sm1—Rh1ii | 82.572 (2) | B1xi—Rh1—Sm1xviii | 69.502 (2) |
Rh1iv—Sm1—Rh1ii | 97.428 (2) | B1xii—Rh1—Sm1xviii | 110.498 (1) |
Rh1—Sm1—Rh1ii | 59.621 (3) | B1xiii—Rh1—Sm1xviii | 110.499 (1) |
Rh1v—Sm1—Rh1ii | 120.379 (4) | B1xiv—Rh1—Sm1xviii | 69.501 (1) |
Rh1vi—Sm1—Rh1ii | 128.577 (1) | Rh1xv—Rh1—Sm1xviii | 64.3 |
Rh1vii—Sm1—Rh1ii | 51.423 (1) | Rh1xvi—Rh1—Sm1xviii | 115.7 |
Rh1viii—Sm1—Rh1ii | 128.577 (1) | Rh1iii—Rh1—Sm1xviii | 115.7 |
Rh1ix—Sm1—Rh1ii | 51.423 (1) | Rh1xvii—Rh1—Sm1xviii | 64.3 |
Sm1i—Sm1—Rh1x | 60.189 (1) | Rh1i—Rh1—Sm1xviii | 60.189 (1) |
Sm1ii—Sm1—Rh1x | 119.811 (1) | Rh1ii—Rh1—Sm1xviii | 119.811 (1) |
Rh1iii—Sm1—Rh1x | 97.428 (2) | Sm1—Rh1—Sm1xviii | 180.0 |
Rh1iv—Sm1—Rh1x | 82.572 (2) | Rh1xix—B1—Rh1xx | 138.425 (1) |
Rh1—Sm1—Rh1x | 120.379 (4) | Rh1xix—B1—Rh1xxi | 75.862 (3) |
Rh1v—Sm1—Rh1x | 59.621 (3) | Rh1xx—B1—Rh1xxi | 89.562 (4) |
Rh1vi—Sm1—Rh1x | 51.423 (1) | Rh1xix—B1—Rh1vi | 89.562 (4) |
Rh1vii—Sm1—Rh1x | 128.577 (1) | Rh1xx—B1—Rh1vi | 75.862 (3) |
Rh1viii—Sm1—Rh1x | 51.423 (1) | Rh1xxi—B1—Rh1vi | 138.425 (1) |
Rh1ix—Sm1—Rh1x | 128.577 (1) | Rh1xix—B1—Rh1iii | 138.425 (1) |
Rh1ii—Sm1—Rh1x | 180.0 | Rh1xx—B1—Rh1iii | 75.862 (3) |
B1xi—Rh1—B1xii | 180.0 | Rh1xxi—B1—Rh1iii | 138.425 (1) |
B1xi—Rh1—B1xiii | 89.561 (4) | Rh1vi—B1—Rh1iii | 75.862 (3) |
B1xii—Rh1—B1xiii | 90.439 (4) | Rh1xix—B1—Rh1ix | 75.862 (2) |
B1xi—Rh1—B1xiv | 90.439 (4) | Rh1xx—B1—Rh1ix | 138.425 (1) |
B1xii—Rh1—B1xiv | 89.561 (4) | Rh1xxi—B1—Rh1ix | 75.862 (3) |
B1xiii—Rh1—B1xiv | 180.0 | Rh1vi—B1—Rh1ix | 138.425 (1) |
B1xi—Rh1—Rh1xv | 52.069 (1) | Rh1iii—B1—Rh1ix | 89.562 (4) |
B1xii—Rh1—Rh1xv | 127.931 (1) |
Symmetry codes: (i) x, y, z+1; (ii) x, y, z−1; (iii) −x+y+1, −x+1, z; (iv) −x+y, −x, z−1; (v) x−1, y, z−1; (vi) −y, x−y, z; (vii) −y, x−y−1, z−1; (viii) −x+y, −x, z; (ix) −x+y+1, −x+1, z−1; (x) x−1, y, z; (xi) −x+1, −y+1, −z+1; (xii) x, y−1, z; (xiii) −x+1, −y+1, −z; (xiv) x, y−1, z+1; (xv) −y+1, x−y, z; (xvi) −y, x−y−1, z; (xvii) −x+y+1, −x, z; (xviii) x+1, y, z+1; (xix) −y, x−y, z−1; (xx) x, y+1, z; (xxi) x, y+1, z−1. |
PrRh3B2 | NdRh3B2 | SmRh3B2 | |
RE—RE ×2 | 3.1084 (1) | 3.1107 (1) | 3.1190 (1) |
RE—RE ×6 | 5.4676 (4) | 5.4527 (3) | 5.4438 (3) |
RE—Rh ×12 | 3.1447 (1) | 3.1388 (1) | 3.1370 (1) |
RE—B ×6 | 3.1557 (2) | 3.1481 (1) | 3.1430 (1) |
B—Rh ×6 | 2.2151 (1) | 2.2129 (1) | 2.2140 (1) |
B—B ×3 | 3.1084 (1) | 3.1107 (1) | 3.1190 (1) |
B—B ×3 | 3.1567 (2) | 3.1481 (1) | 3.1430 (1) |
Rh—Rh ×4 | 2.7338 (2) | 2.7264 (1) | 2.7219 (1) |
Rh—Rh ×2 | 3.1084 (1) | 3.1107 (1) | 3.1190 (1) |
Atom | U11 (Å2) | U22 (Å2) | U33 (Å2) | U12 (Å2) | Ueq (10 3Å2) |
PrRh3B2 | |||||
Pr | 0.00861 (18) | 0.00861 | 0.00780 (20) | 0.00430 (9) | 8.35 (1) |
Rh | 0.00495 (16) | 0.00386 (18) | 0.01040 (20) | 0.00193 (9) | 6.53 (1) |
B | 0.0095 (16) | 0.0095 | 0.009 (2) | 0.0048 (8) | 9.3 (10) |
NdRh3B2 | |||||
Nd | 0.00896 (10) | 0.00896 | 0.00662 (12) | 0.00448 (5) | 8.18 (9) |
Rh | 0.00492 (9) | 0.00390 (11) | 0.01104 (12) | 0.00195 (5) | 6.74 (8) |
B | 0.0100 (9) | 0.0100 | 0.0079 (12) | 0.0050 (4) | 9.3 (6) |
SmRh3B2 | |||||
Sm | 0.00841 (12) | 0.00841 | 0.00658 (14) | 0.00420 (6) | 7.80 (10) |
Rh | 0.00502 (11) | 0.00389 (13) | 0.01287 (14) | 0.00194 (6) | 7.39 (10) |
B | 0.0085 (10) | 0.0085 | 0.0102 (15) | 0.0043 (5) | 9.1 (7) |
Funding information
We gratefully acknowledge the support from JSPS KAKENHI grant Nos. JP19K05643 (KY) and JP20H05258 (KY).
References
Daane, A. H., Rundle, R. E., Smith, H. G. & Spedding, F. H. (1954). Acta Cryst. 7, 532–535. CrossRef ICSD IUCr Journals Google Scholar
Higashi, I., Kasaya, M., Okabe, A. & Kasuya, T. (1987). J. Solid State Chem. 69, 376–379. CrossRef CAS Google Scholar
Higashi, I., Shishido, T., Takei, H. & Kobayashi, T. (1988). J. Less-Common Met. 139, 211–220. CrossRef ICSD CAS Google Scholar
Ku, H. C., Ma, L. J., Tai, M. F., Wang, Y. & Horng, H. E. (1985). J. Less-Common Met. 109, 219–228. CrossRef ICSD CAS Google Scholar
Ku, H. C. & Meisner, G. P. (1981). J. Less-Common Met. 78, 99–107. CrossRef ICSD CAS Google Scholar
Ku, H. C., Meisner, G. P., Acker, F. & Johnston, D. C. (1980). Solid State Commun. 35, 91–96. CrossRef ICSD CAS Google Scholar
Kuz'ma, Y. B., Krypyakevych, P. I. & Bilonizhko, N. S. (1969). Dopov. Akad. Nauk Ukr. RSR Ser. A, pp. 939–941. Google Scholar
Malik, S. K., Vijayaraghavan, R., Wallace, W. E. & Dhar, S. K. (1983). J. Magn. Magn. Mater. 37, 303–308. CrossRef ICSD CAS Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Obiraki, Y., Nakashima, H., Galatanu, A., Matsuda, T. D., Haga, Y., Takeuchi, T., Sugiyama, K., Kindo, K., Hagiwara, M., Settai, R., Harima, H. & Ōnuki, Y. (2006). J. Phys. Soc. Jpn, 75, 064702. CrossRef Google Scholar
Ohtani, T., Chevalier, B., Lejay, P., Etourneau, J., Vlasse, M. & Hagenmuller, P. (1983). J. Appl. Phys. 54, 5928–5934. CrossRef ICSD CAS Google Scholar
Rigaku OD (2021). CrysAlis PRO, Rigaku Corporation, Oxford, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spedding, F. H., Daane, A. H. & Herrmann, K. W. (1956). Acta Cryst. 9, 559–563. CrossRef ICSD IUCr Journals Google Scholar
Vlasse, M., Ohtani, T., Chevalier, B. & Etourneau, J. (1983). J. Solid State Chem. 46, 188–192. CrossRef ICSD CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamada, M., Obiraki, Y., Okubo, T., Shiromoto, T., Kida, Y., Shiimoto, M., Kohara, H., Yamamoto, T., Honda, D., Galatanu, A., Haga, Y., Takeuchi, T., Sugiyama, K., Settai, R., Kindo, K., Dhar, S. K., Harima, H. & Ōnuki, Y. (2004). J. Phys. Soc. Jpn, 73, 2266–2275. CrossRef CAS Google Scholar
Zachariasen, W. H. (1973). J. Inorg. Nucl. Chem. 35, 3487–3497. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.