research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of three Schiff bases derived from 3-formyl­acetyl­acetone and o-, m- and p-amino­benzoic acid

crossmark logo

aMartin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät II, Institut für Chemie, D-06099 Halle, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 5 November 2021; accepted 8 December 2021; online 1 January 2022)

Treatment of 3-formyl­acetyl­acetone with the isomeric o-, m- and p-amino­benzoic acids led to the formation of the corresponding Schiff bases, namely, 3-[(2-carb­oxy­phenyl­amino)­methyl­idene]pentane-2,4-dione, 1, 3-[(3-carb­oxy­phenyl­amino)­methyl­idene]pentane-2,4-dione, 2, and 3-[(4-carb­oxy­phenyl­amino)­methyl­idene]pentane-2,4-dione, 3, all C13H13NO4, that contain a planar amino-methyl­ene-pentane-2,4-dione core with a strong intra­molecular N—H⋯O hydrogen bridge. The carb­oxy­phenyl groups attached to the nitro­gen atom are almost coplanar to the central mol­ecular fragment. Depending on the position of the carboxyl unit, different supra­molecular structures with hydrogen-bonding networks are formed in the three title structures.

1. Chemical context

The reaction of 3-formyl­acetyl­acetone with primary amines RNH2 provides easy access to enamines with an amino-methyl­ene-pentane-2,4-dione core. This approach was used for the first time as early as 1966 by Jäger's group in order to synthesize salen-type ligands from 3-formyl­acetyl­acetone and ethyl­enedi­amine (Wolf & Jäger, 1966[Wolf, L. & Jäger, E.-G. (1966). Z. Anorg. Allg. Chem. 346, 76-91.]). Recently, this type of ligand was applied successfully for the preparation of FeII complexes that exhibit spin-crossover effects (Dankhoff & Weber, 2019[Dankhoff, K. & Weber, B. (2019). Dalton Trans. 48, 15376-15380.]). In a previous study, we were inter­ested in the preparation of chiral N,O,O-ketiminate ligands from 3-formyl­acetyl­acetone and naturally occuring amino­acids (Hentsch et al., 2014[Hentsch, A., Wagner, C. & Merzweiler, K. (2014). Z. Anorg. Allg. Chem. 640, 339-346.]) and recently, we reported on N,O,P-ketiminates with additional PPh2 functionalities (Halz et al., 2021[Halz, J. H., Hentsch, A., Wagner, C. & Merzweiler, K. (2021). Z. Anorg. Allg. Chem. 647, 922-930.]). In this context, we studied the synthesis of Schiff bases derived from 3-formyl­acetyl­acetone and the isomeric o-, m- and p-amino­benzoic acids. The corresponding crystal structures of 1, 2 and 3 are reported here.

[Scheme 1]

2. Structural commentary

The ortho derivative compound 1 crystallizes in the monoclinic system, space group C2/c with Z = 8. Compound 2 (meta derivative) forms ortho­rhom­bic crystals, space group Pnma, Z = 4, and compound 3 (para derivative) crystallizes in the monoclinic space group P21/c, Z = 4. Each of the three isomers 13 exists as the enamine tautomer with a central amino-methyl­ene-pentane-2,4-dione structure (Figs. 1[link]–3[link][link]). The mol­ecular structures of compounds 1 and 3 exhibit nearly planar amino-methyl­ene-pentane-2,4-dione units, and in the case of compound 2 exact planarity is observed as the mol­ecule resides on a crystallographic mirror plane perpendicular to the crystallographic b axis. In the case of compounds 1 and 3, there is a small torsion of the phenyl groups [1: 12.16 (6)°, 3: 30.76 (8)°] with respect to the amino-methyl­ene-pentane-2,4-dione unit.

[Figure 1]
Figure 1
Mol­ecular structure of enamine 1 showing the labelling scheme. Hydrogen bonds are shown as dashed lines; displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Mol­ecular structure of enamine 2 showing the labelling scheme. The hydrogen bond is shown as a dashed line; displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
Mol­ecular structure of enamine 3 showing the labelling scheme. The hydrogen bond is shown as a dashed line; displacement ellipsoids are drawn at the 50% probability level.

Regarding the central amino-methyl­ene-pentane-2,4-dione part, the geometric parameters for isomers 13 are very similar (Tables 1[link]–3[link][link]). The lengths of the enamine double bonds C3=C6 range from 1.379 (2) Å in the ortho derivative to 1.394 (3) Å in the case of the meta derivative. The remaining C—C bonds at the central C3 atom are 1.443 (3)–1.482 (3) Å. In the parent compound amino-methyl­ene-pentane-2,4-dione, which may serve as a reference, the corresponding C—C distances at the central C atom are 1.397 (2) Å and 1.456 (2)–1.464 (2) Å, respectively (Gróf et al., 2006[Gróf, M., Milata, V. & Kožíšek, J. (2006). Acta Cryst. E62, o4464-o4465.]). The enamine C—N bond lengths in compounds 13 are 1.333 (3)–1.337 (3) Å and thus practically identical. Generally, in this type of enamine, the C—N bond lengths for the parent amino [1.305 (2) Å] and related N-alkyl derivatives (e.g. N–CH3: 1.308 Å) are marginally shorter than those of N-aryl derivatives [e.g. N(o-NH2-Ph): 1.324 (2) Å] (Svensson et al., 1982[Svensson, C., Ymén, I. & Yom-Tov, B. (1982). Acta Chem. Scand. 36b, 71-76.]).

Table 1
Selected geometric parameters (Å, °) for 1[link]

O1—C2 1.2380 (18) C2—C3 1.473 (2)
O2—C4 1.239 (2) C3—C4 1.4621 (18)
N—C6 1.3344 (18) C3—C6 1.383 (2)
C1—C2 1.501 (2) C4—C5 1.513 (2)
       
C6—N—C7—C8 −167.19 (14) C6—C3—C4—O2 176.05 (14)

Table 2
Selected geometric parameters (Å, °) for 2[link]

O1—C2 1.243 (3) C2—C3 1.443 (3)
O2—C4 1.226 (3) C3—C4 1.482 (3)
N—C6 1.337 (3) C3—C6 1.394 (3)
C1—C2 1.496 (3) C4—C5 1.503 (3)
       
C6—N—C7—C8 180.000 (1) C6—C3—C4—O2 180.000 (1)

Table 3
Selected geometric parameters (Å, °) for 3[link]

O1—C2 1.2401 (19) C2—C3 1.475 (2)
O2—C4 1.223 (2) C3—C4 1.470 (2)
N—C6 1.333 (2) C3—C6 1.379 (2)
C1—C2 1.487 (3) C4—C5 1.503 (2)
       
C6—N—C7—C8 −27.4 (2) C6—C3—C4—O2 176.88 (17)

The structural differences between compounds 13 are mainly due to individual hydrogen-bonding patterns (Tables 4[link]–6[link][link]). The presence of intra­molecular N—H⋯O-type hydrogen bonds with the amine group as hydrogen donor and the acetyl oxygen atom as acceptor is typical for amino-methyl­ene-pentane-2,4-dione derivatives. However, as a result of the participation of the carboxyl groups, additional hydrogen-bonding patterns are formed.

Table 4
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H13⋯O2i 0.82 1.83 2.6132 (15) 160
N—H8⋯O1 0.86 2.00 2.6308 (18) 129
N—H8⋯O4 0.86 2.06 2.7266 (16) 133
C5—H6⋯O4ii 0.96 2.62 3.330 (2) 131
C11—H11⋯O1iii 0.93 2.56 3.2891 (19) 136
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Table 5
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H11⋯O1i 0.83 (4) 1.84 (4) 2.656 (2) 166 (3)
N—H6⋯O1 0.86 1.96 2.598 (2) 130
C8—H7⋯O4ii 0.93 2.44 3.327 (2) 160
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Table 6
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H13⋯O4i 1.12 (3) 1.49 (3) 2.6098 (18) 173 (3)
N—H8⋯O1 0.86 1.91 2.5729 (18) 133
C8—H9⋯O3ii 0.93 2.65 3.4832 (18) 150
C9—H10⋯O4iii 0.93 2.65 3.3252 (18) 130
C11—H11⋯O1iv 0.93 2.68 3.3612 (19) 131
Symmetry codes: (i) [-x, -y+1, -z]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

In the case of the ortho derivative 1, the intra­molecular S11(6) type hydrogen bond between the amino group and acetyl oxygen atom O1 is extended to a bifurcated hydrogen bridge with the carbonyl oxygen atom O4 as additional acceptor. The presence of the second hydrogen bridge leads to a significant elongation of the N⋯O(acet­yl) distance [2.631 (2) Å] in comparison with the m- and p-derivatives 2 and 3 [2.598 (2) and 2.573 (2) Å, respectively].

3. Supra­molecular features

For all three derivatives 13 the supra­molecular structures in the solid state are clearly governed by the presence of inter­molecular hydrogen bonds.

For compound 1, the carboxyl hydrogen atom H13 forms a moderately strong hydrogen bond (Bu et al., 2019[Bu, R., Xiong, Y., Wei, X., Li, H. & Zhang, C. (2019). Cryst. Growth Des. 19, 5981-5997.]; Desiraju, 2002[Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.]) to the acetyl oxygen atom O2i of a neighbouring mol­ecule with an O3⋯O2i distance of 2.613 (2) Å (Fig. 4[link]). The presence of this hydrogen bond is also clearly evident from the Hirshfeld surface plot (Fig. 5[link]). Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using CrystalExplorer (Turner et al. 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. Version 17. University of Western Australia.]; version 17).

[Figure 4]
Figure 4
Section of the crystal structure of 1 showing the hydrogen-bonding pattern (dashed lines). Symmetry codes refer to Table 4[link].
[Figure 5]
Figure 5
View of the Hirshfeld surface of 1 mapped over dnorm in the range −0.712 to 0.973 au showing inter­molecular hydrogen bonds as green dashed lines.

As a result of these C11(10)-type hydrogen-bonding motifs, the Schiff base mol­ecules are linked into infinite chains propagating along [101]. One translational unit of the chain has the dimension of 20.1 Å and consists of two planar mol­ecular units, which are mutually tilted by around 51° (Fig. 6[link]). Furthermore, the Hirshfeld surface plot hints at a weak C—H⋯O hydrogen bond between the phenyl­ene hydrogen atom H11 and the keto group oxygen atom O1iii of a neighbouring chain.

[Figure 6]
Figure 6
Mol­ecular packing of 1 in the crystal, in a view along [110].

As in the case of compound 1, the meta derivative 2 displays a supra­molecular chain structure. The link between the Schiff base units is provided by the hydrogen atom H11 of the carboxyl group and the acetyl oxygen atom O1i of the adjacent mol­ecule with an O3⋯O1i distance of 2.656 (2) Å. This connection leads to C11(10)-type chains in the a-axis direction (Fig. 7[link]). The translational unit of the chain comprises two mol­ecular units and the repeat distance is identical to the length of the crystallographic a axis [11.4880 (4) Å]. In contrast to the ortho derivative, compound 2 exhibits exactly planar chains because of crystallographically imposed mirror symmetry (Fig. 8[link]). Obviously, the planar arrangement is further stabilized by a weak C—H⋯O hydrogen bond between the phenyl­ene hydrogen atom H7 and the carboxyl oxygen atom O4ii of an adjacent Schiff base unit, which is emphasized in the Hirshfeld surface plot (Fig. 9[link]).

[Figure 7]
Figure 7
Section of the crystal structure of 2 showing the hydrogen-bonding pattern (dashed lines). Symmetry codes refer to Table 5[link].
[Figure 8]
Figure 8
Mol­ecular packing of 2 in the crystal, (a) in a view along the b axis and (b) in a view along the a axis.
[Figure 9]
Figure 9
View of the Hirshfeld surface of 2 mapped over dnorm in the range −0.712 to 0.973 au showing inter­molecular hydrogen bonds as green dashed lines.

The para derivative 3 displays typical carb­oxy­lic acid dimers with an R22(8) motif (Fig. 10[link]). The dimers exhibit crystallographic [\overline{1}] symmetry with an O3⋯O4i distance of 2.6098 (18) Å that indicates a strong hydrogen bridge. Furthermore, the Hirshfeld surface plot reveals the participation of phenyl­ene hydrogen atoms in C—H⋯O hydrogen bonds (Fig. 11[link]). Two weak C—H⋯O hydrogen bonds [C8—H8⋯O3ii, symmetry code: (ii) x, −y + [{3\over 2}], z + [{1\over 2}]; C9—H9⋯O4iii, symmetry code: (iii) −x, y + [{1\over 2}], −z + [{1\over 2}]] are formed between phenyl­ene H atoms and neighbouring carboxyl oxygen atoms, and a third inter­molecular hydrogen bond is observed between H11 and the keto group oxygen atom O1iv. Overall, this cross-linking leads to a layer structure that extends parallel to (100). The crystal packing is shown in Fig. 12[link].

[Figure 10]
Figure 10
Section of the crystal structure of 3 showing the hydrogen-bonding pattern (dashed lines). Symmetry codes refer to Table 6[link].
[Figure 11]
Figure 11
View of the Hirshfeld surface of 3 mapped over dnorm in the range −0.761 to 1.366 au showing inter­molecular hydrogen bonds as green dashed lines.
[Figure 12]
Figure 12
Mol­ecular packing of 3 in the crystal in a view along the b axis.

4. Database survey

The Cambridge Structural Database (CSD, Version 2020.3, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) lists 22 Schiff base derivatives of 3-formyl­acetyl­acetone, all of which crystallize in the enamine form. Moreover, there are 19 Schiff base compounds derived from o-amino­benzoic acid (6 as enamine tautomers, 13 as imines), 13 from m-amino­benzoic acid (4 enamines, 9 imines) and 24 from p-amino­benzoic acid (3 enamines, 21 imines). Among the total of 53 compounds, 24 exhibit supra­molecular structures based on carb­oxy­lic acid dimers with R22(8)-type hydrogen bridges, predominately in the case of the m- and p-amimo­benzoic acid derivatives. In the case of the o-amino­benzoic acid derivatives, 17 out of 19 compounds display intra­molecular N—H⋯O or O—H⋯N hydrogen bridges with an S11(6) topology. Additionally, there are reports on keto­imines derived from 2,4-penta­nedione and amino­benzoic acids. The corresponding o- and the p-amino­benzoic acid derivatives exist as enamines with intra­molecular N—H⋯O hydrogen bridges (Murugavel et al., 2012[Murugavel, R., Singh, M. P. & Nethaji, M. (2012). J. Chem. Crystallogr. 42, 12-17.]; Joshi et al., 2005[Joshi, K. A., Deshpande, M. S., Kumbhar, A. S., Butcher, R. J. & Gejji, S. P. (2005). J. Mol. Struct. Theochem, 722, 57-63.]). The crystal structure of the m-derivative has not yet been determined. Deprotonation of the amino­benzoic acid derivates was used to generate carboxyl­ates that have been applied as ligands in transition-metal complexes (Shi & Hu, 2007[Shi, S.-M. & Hu, Z.-Q. (2007). Acta Cryst. E63, m426-m428.]) and organotin compounds (Chen et al., 2020[Chen, L., Wang, Z., Qiu, T., Sun, R., Zhao, Z., Tian, L. & Liu, X. (2020). Appl. Organomet. Chem. 34, 5790-5801.]; Baul et al., 2008[Baul, T. S. B., Masharing, C., Basu, S., Pettinari, C., Rivarola, E., Chantrapromma, S. & Fun, H.-K. (2008). Appl. Organomet. Chem. 22, 114-121.], 2009[Baul, T. S. B., Masharing, C., Ruisi, G., Pettinari, C. & Linden, A. (2009). J. Inorg. Organomet. Polym. 19, 395-400.]),

5. Synthesis and crystallization

3-Formyl­acetyl­acetone (3.0 g, 23.4 mmol) and the corresponding amino­benzoic acid (3.3 g, 24.0 mmol) were dissolved in methanol (50 ml) and stirred at room temperature for 3 h. The solid products 13 were isolated by filtration, washed with methanol and dried in vacuo.

Yield: 2.7 g (47%) for 1, 3.1 g (54%) for 2 and 3.1 g (74%) for 3 based on 3-formyl­acetyl­acetone.

Crystals suitable for single crystal X-ray diffraction of 3 were obtained from the mother liquor. In the case of compounds 1 and 2, single crystals were obtained from a slow reaction (around three days of reaction time) of a suspension of copper(II) o- or p-amino­benzoate (1.5 g in 3 ml of water) and a solution of 3-formyl­acetyl­acetone (1.0 g in 5 ml of diethyl ether).

1: white powder, air stable, soluble in DMF and DMSO, hardly soluble in methanol, water, diethyl ether, THF.

C13H13NO4: 63.07% C (calc. 63.16%), 5.30% H (calc. 5.26%), 5.41% N (calc. 5.67%), IR: 2864 (br), 2586 (w), 1696 (w), 1647 (m), 1552 (s), 1492 (m), 1405 (m), 1325 (s), 1144 (m), 1077 (w), 978 (m), 935 (m), 789 (m), 759 (s), 695 (m), 652 (m), 634 (s), 584 (s), 544 (m), 470 (m), 405 (m), 326 (m) cm−1, 1H NMR(DMSO-d6): 2.35 (s, 3 H, CO—CH3), 2.39 (s, 3 H, CO—CH3), 7.25–7.97 (m, 4 H, CHaromatic), 8.39 [d (3J = 12.8 Hz), 1 H, C=CH—-NH], 13.49 [d (3J =12.8 Hz), 1 H, C=CH—NH], 13C NMR(DMSO-d6): 27.4 ppm (–CH3), 31.4 (–CH3), 114.3 (C(O)—C—C(O), 117.0 (CHaromatic), 118.4 (CHaromatic), 124.0 (CHaromatic), 131.4 (CHaromatic), 134.1 (CHaromatic), 140.6 (CHaromatic), 150.6 (CH—NH), 167.4 (COOH), 195.7 (CO) 198.2 (CO) ppm.

2: off-white powder, air stable, soluble in DMF and DMSO, hardly soluble in methanol, water, diethyl ether, THF.

C13H13NO4: 62.74% C (calc. 63.16%), 5.26% H (calc. 5.26%), 5.68% N (calc. 5.67%), IR: 2929 (br), 1704 (s), 1656 (w), 1632 (s), 1557 (s), 1497 (w), 1405 (s), 1347 (m), 1308 (s), 1032 (w), 979 (m), 877 (s), 802 (m), 749 (s), 679 (s), 641 (s), 593 (w), 537 (m), 475 (w), 280 (m), 232 (m) cm−1, 1H NMR(DMSO-d6): 2.37 (s, 3 H, CO—CH3), 2.38 (s, 3 H, CO–CH3), 7.52–7.94 (m, 4 H, CHaromatic), 8.34 [d (3J = 12.8 Hz), 1 H, C=CH—NH], 12.53 [d (3J =12.8 Hz), 1 H, C=CH—NH], 13C NMR(DMSO-d6): 27.5 ppm (–CH3), 31.4 (–CH3), 112.8 (C(O)—C–-C(O), 118.5 (CHaromatic), 122.5 (CHaromatic), 125.7 (CHaromatic), 129.8 (CHaromatic), 132.2 (CHaromatic), 139.4 (CHaromatic), 152.6 (CH—NH), 166.6 (COOH), 195.2 (CO) 199.4 (CO) ppm.

3: yellow powder, air stable, soluble in DMF and DMSO, hardly soluble in methanol, water, diethyl ether, THF.

C13H13NO4: 62.79% C (calc. 63.16%), 5.27% H (calc. 5.26%), 5.53% N (calc. 5.67%), IR: 2820 (br), 1674 (s), 1628 (s), 1586 (s), 1564 (s), 1433 (w), 1390 (s), 1314 (w), 1285 (s), 1249 (s), 1206 (m), 1175 (m), 929 (s), 864 (m), 845 (m), 793 (m), 771 (s), 694 (m), 646 (m), 613 (s), 550 (m), 510 (s), 471 (w), 424 (w), 275 (m), 214 (s) cm−1, 1H NMR(DMSO-d6): 2.37 (s, 3 H, CO—CH3), 2.38 (s, 3 H, CO—CH3), 7.57 [m, 2 H, NHFacac-C–(CHaromatic)2)], 8.44 [d (3J = 12.6 Hz), 1 H, C=CH—NH], 12.64 [d (3J =12.8 Hz), 1 H, C=CH—NH], 12.86 (s, 1H, COOH), 13C NMR(DMSO-d6): 27.5 ppm (–CH3), 31.5 (–CH3), 113.4 [C(O)—C—C(O)], 117.7 (CHaromatic), 126.9 (CHaromatic), 130.8 (CHaromatic), 142.7 (CHaromatic), 151.7 (CH—NH), 166.5 (COOH), 195.4 (CO) 199.7 (CO) ppm.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. The methyl group hydrogen atoms of compound 2 and the carboxyl hydrogen atoms of compounds 2 and 3 were located from difference-Fourier maps and were refined freely. The remaining hydrogen atoms were positioned geometrically and refined using a riding model.

Table 7
Experimental details

  1 2 3
Crystal data
Chemical formula C13H13NO4 C13H13NO4 C13H13NO4
Mr 247.24 247.24 247.24
Crystal system, space group Monoclinic, C2/c Orthorhombic, Pnma Monoclinic, P21/c
Temperature (K) 170 170 170
a, b, c (Å) 10.6287 (5), 12.3740 (4), 17.5419 (7) 11.4880 (4), 6.4726 (3), 15.2012 (5) 10.8649 (6), 10.6185 (5), 11.3616 (6)
α, β, γ (°) 90, 92.836 (3), 90 90, 90, 90 90, 118.422 (4), 90
V3) 2304.28 (16) 1130.32 (8) 1152.78 (11)
Z 8 4 4
Dx (Mg m−3) 1.425 1.453 1.425
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.11 0.11 0.11
Crystal size (mm) 0.32 × 0.23 × 0.14 0.16 × 0.07 × 0.07 0.54 × 0.25 × 0.08
 
Data collection
Diffractometer Stoe IPDS 2T Stoe IPDS 2T Stoe IPDS 2T
No. of measured, independent and observed [I > 2σ(I)] reflections 5925, 2242, 2041 4667, 1346, 1118 5856, 2225, 1796
Rint 0.051 0.039 0.036
(sin θ/λ)max−1) 0.617 0.639 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 1.06 0.044, 0.128, 1.08 0.045, 0.129, 1.06
No. of reflections 2242 1346 2225
No. of parameters 166 126 169
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.25 0.35, −0.25 0.27, −0.19
Computer programs: X-AREA (Stoe, 2016[Stoe (2016). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg et al., 2019[Brandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For all structures, data collection: X-AREA (Stoe, 2016); cell refinement: X-AREA (Stoe, 2016); data reduction: X-AREA (Stoe, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg et al., 2019); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-[(2-Acetyl-3-oxobut-1-en-1-yl)amino]benzoic acid (1) top
Crystal data top
C13H13NO4F(000) = 1040
Mr = 247.24Dx = 1.425 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 10.6287 (5) ÅCell parameters from 22415 reflections
b = 12.3740 (4) Åθ = 2.5–29.6°
c = 17.5419 (7) ŵ = 0.11 mm1
β = 92.836 (3)°T = 170 K
V = 2304.28 (16) Å3Block, clear colourless
Z = 80.32 × 0.23 × 0.14 mm
Data collection top
Stoe IPDS 2T
diffractometer
2041 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus, Incoatec IµsRint = 0.051
Plane graphite monochromatorθmax = 26.0°, θmin = 2.5°
Detector resolution: 6.67 pixels mm-1h = 1013
rotation method, ω scansk = 1315
5925 measured reflectionsl = 2121
2242 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0676P)2 + 1.813P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2242 reflectionsΔρmax = 0.20 e Å3
166 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45960 (11)0.15997 (10)0.47933 (6)0.0356 (3)
O20.27859 (11)0.16211 (10)0.26411 (6)0.0358 (3)
O30.61428 (11)0.44676 (10)0.67913 (7)0.0359 (3)
H130.65900.40030.69990.054*
O40.53453 (11)0.30520 (10)0.61407 (6)0.0339 (3)
N0.36984 (11)0.35634 (11)0.49544 (7)0.0239 (3)
H80.41640.30730.51710.029*
C10.45492 (18)0.06191 (16)0.36409 (10)0.0401 (4)
H10.50010.00990.39550.060*
H20.50790.08720.32500.060*
H30.38090.02880.34090.060*
C20.41727 (14)0.15556 (13)0.41238 (9)0.0285 (4)
C30.33393 (13)0.24280 (13)0.38304 (8)0.0245 (3)
C40.26485 (13)0.23812 (13)0.30893 (8)0.0259 (3)
C50.17366 (15)0.32733 (15)0.28533 (9)0.0320 (4)
H40.13180.30930.23730.048*
H50.21890.39390.28040.048*
H60.11240.33540.32330.048*
C60.31739 (13)0.33454 (13)0.42647 (8)0.0245 (3)
H70.26360.38690.40520.029*
C70.35433 (13)0.45398 (13)0.53529 (8)0.0232 (3)
C80.43310 (13)0.47785 (13)0.60039 (7)0.0233 (3)
C90.41800 (14)0.57606 (13)0.63783 (8)0.0277 (4)
H90.46990.59190.68060.033*
C100.32814 (15)0.65050 (14)0.61313 (9)0.0303 (4)
H100.32050.71610.63830.036*
C110.24927 (15)0.62563 (14)0.54998 (9)0.0316 (4)
H110.18720.67440.53340.038*
C120.26238 (14)0.52931 (14)0.51180 (8)0.0297 (4)
H120.20900.51410.46960.036*
C130.53074 (14)0.40013 (13)0.63058 (8)0.0250 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0409 (7)0.0372 (7)0.0267 (6)0.0043 (5)0.0176 (5)0.0039 (5)
O20.0406 (7)0.0404 (7)0.0248 (6)0.0031 (5)0.0151 (5)0.0082 (5)
O30.0385 (6)0.0341 (7)0.0329 (6)0.0001 (5)0.0221 (5)0.0002 (5)
O40.0402 (6)0.0316 (7)0.0284 (6)0.0033 (5)0.0147 (5)0.0024 (5)
N0.0246 (6)0.0291 (7)0.0173 (6)0.0004 (5)0.0070 (5)0.0010 (5)
C10.0417 (9)0.0459 (11)0.0315 (9)0.0119 (8)0.0111 (7)0.0077 (8)
C20.0265 (7)0.0350 (9)0.0230 (7)0.0033 (6)0.0074 (6)0.0009 (6)
C30.0225 (7)0.0325 (8)0.0180 (7)0.0041 (6)0.0060 (5)0.0005 (6)
C40.0242 (7)0.0337 (9)0.0190 (7)0.0058 (6)0.0058 (5)0.0006 (6)
C50.0305 (8)0.0419 (10)0.0223 (7)0.0004 (7)0.0110 (6)0.0010 (7)
C60.0224 (7)0.0329 (8)0.0176 (7)0.0029 (6)0.0056 (5)0.0027 (6)
C70.0225 (7)0.0296 (8)0.0171 (6)0.0026 (6)0.0026 (5)0.0003 (6)
C80.0242 (7)0.0298 (8)0.0156 (6)0.0035 (6)0.0032 (5)0.0016 (6)
C90.0298 (8)0.0345 (9)0.0184 (7)0.0037 (6)0.0029 (6)0.0009 (6)
C100.0329 (8)0.0310 (8)0.0269 (8)0.0002 (6)0.0009 (6)0.0033 (6)
C110.0296 (8)0.0342 (9)0.0306 (8)0.0052 (7)0.0030 (6)0.0023 (7)
C120.0275 (7)0.0372 (9)0.0234 (7)0.0014 (6)0.0084 (6)0.0004 (6)
C130.0283 (7)0.0314 (9)0.0145 (6)0.0034 (6)0.0054 (5)0.0016 (6)
Geometric parameters (Å, º) top
O1—C21.2380 (18)C5—H40.9600
O2—C41.239 (2)C5—H50.9600
O3—H130.8200C5—H60.9600
O3—C131.3312 (17)C6—H70.9300
O4—C131.211 (2)C7—C81.4135 (19)
N—H80.8600C7—C121.398 (2)
N—C61.3344 (18)C8—C91.394 (2)
N—C71.410 (2)C8—C131.493 (2)
C1—H10.9600C9—H90.9300
C1—H20.9600C9—C101.381 (2)
C1—H30.9600C10—H100.9300
C1—C21.501 (2)C10—C111.390 (2)
C2—C31.473 (2)C11—H110.9300
C3—C41.4621 (18)C11—C121.378 (2)
C3—C61.383 (2)C12—H120.9300
C4—C51.513 (2)
C13—O3—H13109.5N—C6—C3127.34 (14)
C6—N—H8117.7N—C6—H7116.3
C6—N—C7124.68 (13)C3—C6—H7116.3
C7—N—H8117.7N—C7—C8120.04 (13)
H1—C1—H2109.5C12—C7—N121.51 (13)
H1—C1—H3109.5C12—C7—C8118.45 (14)
H2—C1—H3109.5C7—C8—C13121.72 (14)
C2—C1—H1109.5C9—C8—C7119.03 (14)
C2—C1—H2109.5C9—C8—C13119.25 (12)
C2—C1—H3109.5C8—C9—H9119.1
O1—C2—C1118.34 (14)C10—C9—C8121.83 (14)
O1—C2—C3118.90 (14)C10—C9—H9119.1
C3—C2—C1122.75 (13)C9—C10—H10120.6
C4—C3—C2123.26 (14)C9—C10—C11118.86 (15)
C6—C3—C2119.98 (12)C11—C10—H10120.6
C6—C3—C4116.76 (13)C10—C11—H11119.8
O2—C4—C3121.63 (14)C12—C11—C10120.49 (15)
O2—C4—C5118.30 (13)C12—C11—H11119.8
C3—C4—C5120.07 (14)C7—C12—H12119.3
C4—C5—H4109.5C11—C12—C7121.31 (14)
C4—C5—H5109.5C11—C12—H12119.3
C4—C5—H6109.5O3—C13—C8112.20 (13)
H4—C5—H5109.5O4—C13—O3122.99 (14)
H4—C5—H6109.5O4—C13—C8124.81 (13)
H5—C5—H6109.5
O1—C2—C3—C4171.05 (14)C6—C3—C4—C54.1 (2)
O1—C2—C3—C68.5 (2)C7—N—C6—C3176.56 (14)
N—C7—C8—C9178.50 (13)C7—C8—C9—C100.1 (2)
N—C7—C8—C132.3 (2)C7—C8—C13—O3164.41 (13)
N—C7—C12—C11178.64 (14)C7—C8—C13—O416.2 (2)
C1—C2—C3—C49.9 (2)C8—C7—C12—C111.1 (2)
C1—C2—C3—C6170.53 (15)C8—C9—C10—C111.2 (2)
C2—C3—C4—O24.4 (2)C9—C8—C13—O316.39 (19)
C2—C3—C4—C5175.49 (14)C9—C8—C13—O4163.00 (15)
C2—C3—C6—N0.1 (2)C9—C10—C11—C121.3 (2)
C4—C3—C6—N179.70 (14)C10—C11—C12—C70.2 (2)
C6—N—C7—C8167.19 (14)C12—C7—C8—C91.2 (2)
C6—N—C7—C1212.5 (2)C12—C7—C8—C13178.00 (13)
C6—C3—C4—O2176.05 (14)C13—C8—C9—C10179.13 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H13···O2i0.821.832.6132 (15)160
N—H8···O10.862.002.6308 (18)129
N—H8···O40.862.062.7266 (16)133
C5—H6···O4ii0.962.623.330 (2)131
C11—H11···O1iii0.932.563.2891 (19)136
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1; (iii) x1/2, y+1/2, z.
3-[(2-Acetyl-3-oxobut-1-en-1-yl)amino]benzoic acid (2) top
Crystal data top
C13H13NO4Dx = 1.453 Mg m3
Mr = 247.24Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 10416 reflections
a = 11.4880 (4) Åθ = 2.7–29.7°
b = 6.4726 (3) ŵ = 0.11 mm1
c = 15.2012 (5) ÅT = 170 K
V = 1130.32 (8) Å3Needle, clear yellow
Z = 40.16 × 0.07 × 0.07 mm
F(000) = 520
Data collection top
Stoe IPDS 2T
diffractometer
1118 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus, Incoatec IµsRint = 0.039
Plane graphite monochromatorθmax = 27.0°, θmin = 2.7°
Detector resolution: 6.67 pixels mm-1h = 1413
rotation method, ω scansk = 87
4667 measured reflectionsl = 1819
1346 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.4804P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1346 reflectionsΔρmax = 0.35 e Å3
126 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.95570 (13)0.25000.53720 (10)0.0312 (4)
O21.00391 (13)0.25000.26645 (10)0.0337 (4)
O30.55070 (12)0.25000.80351 (10)0.0272 (4)
H110.532 (3)0.25000.856 (2)0.060 (11)*
O40.35794 (13)0.25000.78224 (10)0.0362 (5)
N0.73322 (14)0.25000.50635 (11)0.0204 (4)
H60.78580.25000.54660.025*
C11.10424 (19)0.25000.43063 (16)0.0359 (6)
H11.146 (3)0.25000.487 (2)0.046 (8)*
H21.1236 (17)0.134 (3)0.3925 (15)0.049 (6)*
C20.97887 (18)0.25000.45735 (13)0.0236 (5)
C30.88505 (17)0.25000.39425 (13)0.0210 (4)
C40.90572 (18)0.25000.29799 (13)0.0251 (5)
C50.8029 (2)0.25000.23691 (15)0.0422 (7)
H30.829 (3)0.25000.175 (3)0.069 (11)*
H40.7490 (18)0.124 (4)0.2474 (14)0.058 (6)*
C60.76977 (17)0.25000.42287 (13)0.0209 (4)
H50.71260.25000.37960.025*
C70.61523 (17)0.25000.53461 (13)0.0190 (4)
C80.59563 (16)0.25000.62497 (13)0.0195 (4)
H70.65810.25000.66380.023*
C90.48160 (17)0.25000.65704 (13)0.0206 (4)
C100.38808 (17)0.25000.59853 (14)0.0225 (5)
H80.31210.25000.61960.027*
C110.40940 (17)0.25000.50868 (14)0.0238 (5)
H90.34700.25000.46970.029*
C120.52216 (18)0.25000.47599 (13)0.0213 (4)
H100.53540.25000.41560.026*
C130.45603 (17)0.25000.75316 (14)0.0232 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0188 (7)0.0604 (12)0.0144 (7)0.0000.0007 (6)0.000
O20.0226 (8)0.0580 (12)0.0205 (8)0.0000.0054 (6)0.000
O30.0191 (8)0.0479 (10)0.0147 (7)0.0000.0015 (5)0.000
O40.0184 (7)0.0686 (13)0.0217 (7)0.0000.0057 (6)0.000
N0.0136 (7)0.0315 (10)0.0162 (8)0.0000.0014 (6)0.000
C10.0161 (10)0.0687 (19)0.0227 (11)0.0000.0002 (8)0.000
C20.0200 (9)0.0341 (12)0.0167 (9)0.0000.0001 (8)0.000
C30.0157 (8)0.0307 (11)0.0165 (9)0.0000.0020 (7)0.000
C40.0221 (10)0.0373 (12)0.0159 (9)0.0000.0014 (8)0.000
C50.0256 (11)0.085 (2)0.0156 (10)0.0000.0019 (9)0.000
C60.0178 (9)0.0288 (11)0.0160 (9)0.0000.0002 (7)0.000
C70.0153 (9)0.0226 (10)0.0192 (9)0.0000.0032 (7)0.000
C80.0156 (9)0.0266 (10)0.0164 (9)0.0000.0009 (7)0.000
C90.0180 (9)0.0277 (11)0.0161 (9)0.0000.0024 (7)0.000
C100.0132 (8)0.0307 (11)0.0235 (10)0.0000.0020 (7)0.000
C110.0170 (10)0.0320 (12)0.0225 (10)0.0000.0043 (8)0.000
C120.0198 (10)0.0290 (11)0.0151 (9)0.0000.0005 (7)0.000
C130.0170 (9)0.0347 (11)0.0178 (9)0.0000.0019 (7)0.000
Geometric parameters (Å, º) top
O1—C21.243 (3)C5—H30.98 (4)
O2—C41.226 (3)C5—H41.03 (2)
O3—H110.83 (4)C6—H50.9300
O3—C131.330 (2)C7—C81.392 (3)
O4—C131.210 (2)C7—C121.392 (3)
N—H60.8600C8—H70.9300
N—C61.337 (3)C8—C91.398 (3)
N—C71.422 (2)C9—C101.395 (3)
C1—H10.98 (3)C9—C131.490 (3)
C1—H20.97 (2)C10—H80.9300
C1—C21.496 (3)C10—C111.388 (3)
C2—C31.443 (3)C11—H90.9300
C3—C41.482 (3)C11—C121.387 (3)
C3—C61.394 (3)C12—H100.9300
C4—C51.503 (3)
C13—O3—H11110 (2)C8—C7—N116.89 (17)
C6—N—H6117.1C12—C7—N122.60 (18)
C6—N—C7125.89 (17)C12—C7—C8120.50 (18)
C7—N—H6117.1C7—C8—H7120.1
H1—C1—H2114.2 (15)C7—C8—C9119.73 (18)
C2—C1—H1103.3 (18)C9—C8—H7120.1
C2—C1—H2112.4 (12)C8—C9—C13121.79 (18)
O1—C2—C1118.12 (19)C10—C9—C8119.96 (18)
O1—C2—C3119.29 (19)C10—C9—C13118.25 (17)
C3—C2—C1122.58 (18)C9—C10—H8120.3
C2—C3—C4122.45 (17)C11—C10—C9119.45 (18)
C6—C3—C2120.15 (18)C11—C10—H8120.3
C6—C3—C4117.40 (18)C10—C11—H9119.4
O2—C4—C3122.24 (18)C12—C11—C10121.16 (19)
O2—C4—C5118.81 (19)C12—C11—H9119.4
C3—C4—C5118.94 (18)C7—C12—H10120.4
C4—C5—H3111 (2)C11—C12—C7119.20 (18)
C4—C5—H4112.0 (12)C11—C12—H10120.4
H3—C5—H4109.1 (17)O3—C13—C9113.76 (16)
N—C6—C3126.50 (19)O4—C13—O3123.45 (19)
N—C6—H5116.8O4—C13—C9122.79 (19)
C3—C6—H5116.8
O1—C2—C3—C4180.000 (1)C7—N—C6—C3180.000 (1)
O1—C2—C3—C60.000 (1)C7—C8—C9—C100.000 (1)
N—C7—C8—C9180.000 (1)C7—C8—C9—C13180.000 (1)
N—C7—C12—C11180.000 (1)C8—C7—C12—C110.000 (1)
C1—C2—C3—C40.000 (1)C8—C9—C10—C110.000 (1)
C1—C2—C3—C6180.000 (1)C8—C9—C13—O30.000 (1)
C2—C3—C4—O20.000 (1)C8—C9—C13—O4180.000 (1)
C2—C3—C4—C5180.000 (1)C9—C10—C11—C120.000 (1)
C2—C3—C6—N0.000 (1)C10—C9—C13—O3180.000 (1)
C4—C3—C6—N180.000 (1)C10—C9—C13—O40.000 (1)
C6—N—C7—C8180.000 (1)C10—C11—C12—C70.000 (1)
C6—N—C7—C120.000 (1)C12—C7—C8—C90.000 (1)
C6—C3—C4—O2180.000 (1)C13—C9—C10—C11180.000 (1)
C6—C3—C4—C50.000 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H11···O1i0.83 (4)1.84 (4)2.656 (2)166 (3)
N—H6···O10.861.962.598 (2)130
C8—H7···O4ii0.932.443.327 (2)160
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x+1/2, y, z+3/2.
4-[(2-Acetyl-3-oxobut-1-en-1-yl)amino]benzoic acid (3) top
Crystal data top
C13H13NO4F(000) = 520
Mr = 247.24Dx = 1.425 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.8649 (6) ÅCell parameters from 6441 reflections
b = 10.6185 (5) Åθ = 1.9–29.6°
c = 11.3616 (6) ŵ = 0.11 mm1
β = 118.422 (4)°T = 170 K
V = 1152.78 (11) Å3Plate, clear yellowish colourless
Z = 40.54 × 0.25 × 0.08 mm
Data collection top
Stoe IPDS 2T
diffractometer
Rint = 0.036
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.1°
rotation method, ω scansh = 1213
5856 measured reflectionsk = 1213
2225 independent reflectionsl = 1413
1796 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0728P)2 + 0.2229P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2225 reflectionsΔρmax = 0.27 e Å3
169 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26870 (14)0.40034 (11)0.95427 (13)0.0496 (4)
O20.47787 (18)0.71853 (13)1.16675 (13)0.0659 (5)
O30.05035 (12)0.60892 (10)0.12974 (12)0.0429 (3)
H130.010 (3)0.600 (3)0.019 (3)0.132 (14)*
O40.02909 (13)0.39969 (10)0.12604 (12)0.0457 (3)
N0.25034 (14)0.51162 (11)0.74534 (14)0.0372 (3)
H80.23560.44430.77890.045*
C10.3680 (2)0.48695 (16)1.16943 (19)0.0471 (4)
H30.46760.49511.22270.071*
H10.33850.40781.18840.071*
H20.32280.55441.19030.071*
C20.32935 (16)0.49262 (14)1.02514 (18)0.0392 (4)
C30.36077 (16)0.60332 (14)0.96565 (16)0.0366 (4)
C40.44066 (17)0.71139 (15)1.04708 (16)0.0418 (4)
C50.47780 (19)0.81748 (16)0.98209 (17)0.0455 (4)
H60.52000.78390.93140.068*
H40.54250.87321.04980.068*
H50.39460.86310.92360.068*
C60.31691 (16)0.60528 (14)0.83010 (16)0.0370 (4)
H70.33520.67770.79500.044*
C70.20199 (15)0.51226 (14)0.60687 (16)0.0350 (4)
C80.16521 (16)0.62357 (14)0.53318 (16)0.0379 (4)
H90.17190.70010.57560.046*
C90.11906 (16)0.62019 (14)0.39778 (16)0.0372 (4)
H100.09620.69490.34920.045*
C100.10618 (15)0.50592 (13)0.33249 (17)0.0335 (3)
C110.14053 (17)0.39422 (14)0.40664 (16)0.0378 (4)
H110.13070.31740.36370.045*
C120.18846 (17)0.39721 (14)0.54199 (17)0.0392 (4)
H120.21200.32260.59080.047*
C130.05802 (15)0.50298 (13)0.18776 (17)0.0360 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0581 (7)0.0358 (6)0.0532 (7)0.0088 (5)0.0249 (6)0.0014 (5)
O20.0992 (11)0.0492 (8)0.0403 (7)0.0221 (7)0.0259 (7)0.0058 (6)
O30.0523 (7)0.0300 (6)0.0431 (7)0.0037 (5)0.0199 (5)0.0013 (4)
O40.0624 (7)0.0301 (6)0.0440 (7)0.0095 (5)0.0250 (6)0.0070 (4)
N0.0399 (7)0.0308 (7)0.0398 (8)0.0021 (5)0.0181 (6)0.0014 (5)
C10.0529 (10)0.0405 (9)0.0499 (10)0.0014 (7)0.0262 (8)0.0035 (7)
C20.0365 (8)0.0314 (8)0.0497 (10)0.0023 (6)0.0204 (7)0.0011 (6)
C30.0361 (8)0.0301 (7)0.0421 (9)0.0022 (6)0.0174 (7)0.0005 (6)
C40.0459 (9)0.0336 (8)0.0426 (9)0.0002 (6)0.0184 (7)0.0001 (6)
C50.0519 (10)0.0359 (9)0.0462 (9)0.0080 (7)0.0212 (8)0.0034 (7)
C60.0358 (8)0.0296 (7)0.0460 (9)0.0014 (6)0.0197 (7)0.0006 (6)
C70.0307 (7)0.0330 (8)0.0414 (9)0.0009 (6)0.0171 (6)0.0015 (6)
C80.0397 (8)0.0275 (7)0.0443 (9)0.0019 (6)0.0182 (7)0.0057 (6)
C90.0387 (8)0.0266 (7)0.0446 (9)0.0022 (6)0.0184 (7)0.0009 (6)
C100.0312 (7)0.0279 (7)0.0419 (9)0.0017 (5)0.0177 (6)0.0024 (6)
C110.0423 (8)0.0263 (7)0.0441 (9)0.0025 (6)0.0198 (7)0.0038 (6)
C120.0436 (8)0.0266 (7)0.0453 (9)0.0015 (6)0.0194 (7)0.0003 (6)
C130.0343 (7)0.0283 (7)0.0444 (9)0.0015 (6)0.0180 (7)0.0010 (6)
Geometric parameters (Å, º) top
O1—C21.2401 (19)C5—H60.9600
O2—C41.223 (2)C5—H40.9600
O3—H131.12 (3)C5—H50.9600
O3—C131.2863 (18)C6—H70.9300
O4—C131.2584 (18)C7—C81.392 (2)
N—H80.8600C7—C121.398 (2)
N—C61.333 (2)C8—H90.9300
N—C71.402 (2)C8—C91.373 (2)
C1—H30.9600C9—H100.9300
C1—H10.9600C9—C101.394 (2)
C1—H20.9600C10—C111.399 (2)
C1—C21.487 (3)C10—C131.470 (2)
C2—C31.475 (2)C11—H110.9300
C3—C41.470 (2)C11—C121.369 (2)
C3—C61.379 (2)C12—H120.9300
C4—C51.503 (2)
C13—O3—H13113.3 (17)N—C6—C3125.17 (15)
C6—N—H8116.9N—C6—H7117.4
C6—N—C7126.30 (13)C3—C6—H7117.4
C7—N—H8116.9C8—C7—N121.74 (13)
H3—C1—H1109.5C8—C7—C12119.78 (15)
H3—C1—H2109.5C12—C7—N118.48 (13)
H1—C1—H2109.5C7—C8—H9120.0
C2—C1—H3109.5C9—C8—C7119.92 (14)
C2—C1—H1109.5C9—C8—H9120.0
C2—C1—H2109.5C8—C9—H10119.7
O1—C2—C1117.89 (14)C8—C9—C10120.63 (14)
O1—C2—C3119.97 (16)C10—C9—H10119.7
C3—C2—C1122.14 (14)C9—C10—C11119.16 (16)
C4—C3—C2121.99 (15)C9—C10—C13120.39 (13)
C6—C3—C2119.45 (14)C11—C10—C13120.45 (13)
C6—C3—C4118.54 (14)C10—C11—H11119.8
O2—C4—C3122.13 (15)C12—C11—C10120.44 (14)
O2—C4—C5118.41 (15)C12—C11—H11119.8
C3—C4—C5119.46 (15)C7—C12—H12120.0
C4—C5—H6109.5C11—C12—C7120.05 (14)
C4—C5—H4109.5C11—C12—H12120.0
C4—C5—H5109.5O3—C13—C10117.16 (13)
H6—C5—H4109.5O4—C13—O3122.59 (15)
H6—C5—H5109.5O4—C13—C10120.23 (13)
H4—C5—H5109.5
O1—C2—C3—C4175.84 (16)C7—N—C6—C3178.50 (15)
O1—C2—C3—C62.8 (2)C7—C8—C9—C101.1 (2)
N—C7—C8—C9179.62 (14)C8—C7—C12—C110.7 (2)
N—C7—C12—C11179.51 (14)C8—C9—C10—C110.2 (2)
C1—C2—C3—C44.2 (2)C8—C9—C10—C13179.41 (14)
C1—C2—C3—C6177.18 (15)C9—C10—C11—C121.1 (2)
C2—C3—C4—O24.5 (3)C9—C10—C13—O310.8 (2)
C2—C3—C4—C5175.83 (15)C9—C10—C13—O4170.75 (15)
C2—C3—C6—N2.4 (2)C10—C11—C12—C70.7 (3)
C4—C3—C6—N176.29 (15)C11—C10—C13—O3168.83 (14)
C6—N—C7—C827.4 (2)C11—C10—C13—O49.7 (2)
C6—N—C7—C12153.77 (15)C12—C7—C8—C91.6 (2)
C6—C3—C4—O2176.88 (17)C13—C10—C11—C12178.49 (15)
C6—C3—C4—C52.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H13···O4i1.12 (3)1.49 (3)2.6098 (18)173 (3)
N—H8···O10.861.912.5729 (18)133
C8—H9···O3ii0.932.653.4832 (18)150
C9—H10···O4iii0.932.653.3252 (18)130
C11—H11···O1iv0.932.683.3612 (19)131
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2.
 

Funding information

We acknowledge the financial support within the funding programme Open Access Publishing by the German Research Foundation (DFG).

References

First citationBaul, T. S. B., Masharing, C., Basu, S., Pettinari, C., Rivarola, E., Chantrapromma, S. & Fun, H.-K. (2008). Appl. Organomet. Chem. 22, 114–121.  CAS Google Scholar
First citationBaul, T. S. B., Masharing, C., Ruisi, G., Pettinari, C. & Linden, A. (2009). J. Inorg. Organomet. Polym. 19, 395–400.  Google Scholar
First citationBrandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBu, R., Xiong, Y., Wei, X., Li, H. & Zhang, C. (2019). Cryst. Growth Des. 19, 5981–5997.  CrossRef CAS Google Scholar
First citationChen, L., Wang, Z., Qiu, T., Sun, R., Zhao, Z., Tian, L. & Liu, X. (2020). Appl. Organomet. Chem. 34, 5790–5801.  Google Scholar
First citationDankhoff, K. & Weber, B. (2019). Dalton Trans. 48, 15376–15380.  CSD CrossRef CAS PubMed Google Scholar
First citationDesiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGróf, M., Milata, V. & Kožíšek, J. (2006). Acta Cryst. E62, o4464–o4465.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHalz, J. H., Hentsch, A., Wagner, C. & Merzweiler, K. (2021). Z. Anorg. Allg. Chem. 647, 922–930.  CSD CrossRef CAS Google Scholar
First citationHentsch, A., Wagner, C. & Merzweiler, K. (2014). Z. Anorg. Allg. Chem. 640, 339–346.  CSD CrossRef CAS Google Scholar
First citationJoshi, K. A., Deshpande, M. S., Kumbhar, A. S., Butcher, R. J. & Gejji, S. P. (2005). J. Mol. Struct. Theochem, 722, 57–63.  CSD CrossRef CAS Google Scholar
First citationMurugavel, R., Singh, M. P. & Nethaji, M. (2012). J. Chem. Crystallogr. 42, 12–17.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, S.-M. & Hu, Z.-Q. (2007). Acta Cryst. E63, m426–m428.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationStoe (2016). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSvensson, C., Ymén, I. & Yom-Tov, B. (1982). Acta Chem. Scand. 36b, 71–76.  CSD CrossRef Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. Version 17. University of Western Australia.  Google Scholar
First citationWolf, L. & Jäger, E.-G. (1966). Z. Anorg. Allg. Chem. 346, 76–91.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds