research communications
Synthesis and crystal structures of three o-, m- and p-aminobenzoic acid
derived from 3-formylacetylacetone andaMartin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät II, Institut für Chemie, D-06099 Halle, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de
Treatment of 3-formylacetylacetone with the isomeric o-, m- and p-aminobenzoic acids led to the formation of the corresponding namely, 3-[(2-carboxyphenylamino)methylidene]pentane-2,4-dione, 1, 3-[(3-carboxyphenylamino)methylidene]pentane-2,4-dione, 2, and 3-[(4-carboxyphenylamino)methylidene]pentane-2,4-dione, 3, all C13H13NO4, that contain a planar amino-methylene-pentane-2,4-dione core with a strong intramolecular N—H⋯O hydrogen bridge. The carboxyphenyl groups attached to the nitrogen atom are almost coplanar to the central molecular fragment. Depending on the position of the carboxyl unit, different supramolecular structures with hydrogen-bonding networks are formed in the three title structures.
1. Chemical context
The reaction of 3-formylacetylacetone with primary RNH2 provides easy access to with an amino-methylene-pentane-2,4-dione core. This approach was used for the first time as early as 1966 by Jäger's group in order to synthesize salen-type ligands from 3-formylacetylacetone and ethylenediamine (Wolf & Jäger, 1966). Recently, this type of ligand was applied successfully for the preparation of FeII complexes that exhibit spin-crossover effects (Dankhoff & Weber, 2019). In a previous study, we were interested in the preparation of chiral N,O,O-ketiminate ligands from 3-formylacetylacetone and naturally occuring aminoacids (Hentsch et al., 2014) and recently, we reported on N,O,P-ketiminates with additional PPh2 functionalities (Halz et al., 2021). In this context, we studied the synthesis of derived from 3-formylacetylacetone and the isomeric o-, m- and p-aminobenzoic acids. The corresponding crystal structures of 1, 2 and 3 are reported here.
2. Structural commentary
The ortho derivative compound 1 crystallizes in the monoclinic system, C2/c with Z = 8. Compound 2 (meta derivative) forms orthorhombic crystals, Pnma, Z = 4, and compound 3 (para derivative) crystallizes in the monoclinic P21/c, Z = 4. Each of the three isomers 1–3 exists as the enamine tautomer with a central amino-methylene-pentane-2,4-dione structure (Figs. 1–3). The molecular structures of compounds 1 and 3 exhibit nearly planar amino-methylene-pentane-2,4-dione units, and in the case of compound 2 exact planarity is observed as the molecule resides on a crystallographic mirror plane perpendicular to the crystallographic b axis. In the case of compounds 1 and 3, there is a small torsion of the phenyl groups [1: 12.16 (6)°, 3: 30.76 (8)°] with respect to the amino-methylene-pentane-2,4-dione unit.
Regarding the central amino-methylene-pentane-2,4-dione part, the geometric parameters for isomers 1–3 are very similar (Tables 1–3). The lengths of the enamine double bonds C3=C6 range from 1.379 (2) Å in the ortho derivative to 1.394 (3) Å in the case of the meta derivative. The remaining C—C bonds at the central C3 atom are 1.443 (3)–1.482 (3) Å. In the parent compound amino-methylene-pentane-2,4-dione, which may serve as a reference, the corresponding C—C distances at the central C atom are 1.397 (2) Å and 1.456 (2)–1.464 (2) Å, respectively (Gróf et al., 2006). The enamine C—N bond lengths in compounds 1–3 are 1.333 (3)–1.337 (3) Å and thus practically identical. Generally, in this type of enamine, the C—N bond lengths for the parent amino [1.305 (2) Å] and related N-alkyl derivatives (e.g. N–CH3: 1.308 Å) are marginally shorter than those of N-aryl derivatives [e.g. N(o-NH2-Ph): 1.324 (2) Å] (Svensson et al., 1982).
|
|
|
The structural differences between compounds 1–3 are mainly due to individual hydrogen-bonding patterns (Tables 4–6). The presence of intramolecular N—H⋯O-type hydrogen bonds with the amine group as hydrogen donor and the acetyl oxygen atom as acceptor is typical for amino-methylene-pentane-2,4-dione derivatives. However, as a result of the participation of the carboxyl groups, additional hydrogen-bonding patterns are formed.
|
|
In the case of the ortho derivative 1, the intramolecular S11(6) type hydrogen bond between the amino group and acetyl oxygen atom O1 is extended to a bifurcated hydrogen bridge with the carbonyl oxygen atom O4 as additional acceptor. The presence of the second hydrogen bridge leads to a significant elongation of the N⋯O(acetyl) distance [2.631 (2) Å] in comparison with the m- and p-derivatives 2 and 3 [2.598 (2) and 2.573 (2) Å, respectively].
3. Supramolecular features
For all three derivatives 1–3 the supramolecular structures in the solid state are clearly governed by the presence of intermolecular hydrogen bonds.
For compound 1, the carboxyl hydrogen atom H13 forms a moderately strong hydrogen bond (Bu et al., 2019; Desiraju, 2002) to the acetyl oxygen atom O2i of a neighbouring molecule with an O3⋯O2i distance of 2.613 (2) Å (Fig. 4). The presence of this hydrogen bond is also clearly evident from the Hirshfeld surface plot (Fig. 5). Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was carried out using CrystalExplorer (Turner et al. 2017; version 17).
As a result of these C11(10)-type hydrogen-bonding motifs, the Schiff base molecules are linked into infinite chains propagating along [101]. One translational unit of the chain has the dimension of 20.1 Å and consists of two planar molecular units, which are mutually tilted by around 51° (Fig. 6). Furthermore, the Hirshfeld surface plot hints at a weak C—H⋯O hydrogen bond between the phenylene hydrogen atom H11 and the keto group oxygen atom O1iii of a neighbouring chain.
As in the case of compound 1, the meta derivative 2 displays a supramolecular chain structure. The link between the Schiff base units is provided by the hydrogen atom H11 of the carboxyl group and the acetyl oxygen atom O1i of the adjacent molecule with an O3⋯O1i distance of 2.656 (2) Å. This connection leads to C11(10)-type chains in the a-axis direction (Fig. 7). The translational unit of the chain comprises two molecular units and the repeat distance is identical to the length of the crystallographic a axis [11.4880 (4) Å]. In contrast to the ortho derivative, compound 2 exhibits exactly planar chains because of crystallographically imposed mirror symmetry (Fig. 8). Obviously, the planar arrangement is further stabilized by a weak C—H⋯O hydrogen bond between the phenylene hydrogen atom H7 and the carboxyl oxygen atom O4ii of an adjacent Schiff base unit, which is emphasized in the Hirshfeld surface plot (Fig. 9).
The para derivative 3 displays typical carboxylic acid dimers with an R22(8) motif (Fig. 10). The dimers exhibit crystallographic symmetry with an O3⋯O4i distance of 2.6098 (18) Å that indicates a strong hydrogen bridge. Furthermore, the Hirshfeld surface plot reveals the participation of phenylene hydrogen atoms in C—H⋯O hydrogen bonds (Fig. 11). Two weak C—H⋯O hydrogen bonds [C8—H8⋯O3ii, symmetry code: (ii) x, −y + , z + ; C9—H9⋯O4iii, symmetry code: (iii) −x, y + , −z + ] are formed between phenylene H atoms and neighbouring carboxyl oxygen atoms, and a third intermolecular hydrogen bond is observed between H11 and the keto group oxygen atom O1iv. Overall, this cross-linking leads to a layer structure that extends parallel to (100). The crystal packing is shown in Fig. 12.
4. Database survey
The Cambridge Structural Database (CSD, Version 2020.3, Groom et al., 2016) lists 22 Schiff base derivatives of 3-formylacetylacetone, all of which crystallize in the enamine form. Moreover, there are 19 Schiff base compounds derived from o-aminobenzoic acid (6 as enamine tautomers, 13 as imines), 13 from m-aminobenzoic acid (4 9 imines) and 24 from p-aminobenzoic acid (3 21 imines). Among the total of 53 compounds, 24 exhibit supramolecular structures based on carboxylic acid dimers with R22(8)-type hydrogen bridges, predominately in the case of the m- and p-amimobenzoic acid derivatives. In the case of the o-aminobenzoic acid derivatives, 17 out of 19 compounds display intramolecular N—H⋯O or O—H⋯N hydrogen bridges with an S11(6) topology. Additionally, there are reports on ketoimines derived from 2,4-pentanedione and aminobenzoic acids. The corresponding o- and the p-aminobenzoic acid derivatives exist as with intramolecular N—H⋯O hydrogen bridges (Murugavel et al., 2012; Joshi et al., 2005). The of the m-derivative has not yet been determined. Deprotonation of the aminobenzoic acid derivates was used to generate carboxylates that have been applied as ligands in transition-metal complexes (Shi & Hu, 2007) and organotin compounds (Chen et al., 2020; Baul et al., 2008, 2009),
5. Synthesis and crystallization
3-Formylacetylacetone (3.0 g, 23.4 mmol) and the corresponding aminobenzoic acid (3.3 g, 24.0 mmol) were dissolved in methanol (50 ml) and stirred at room temperature for 3 h. The solid products 1–3 were isolated by filtration, washed with methanol and dried in vacuo.
Yield: 2.7 g (47%) for 1, 3.1 g (54%) for 2 and 3.1 g (74%) for 3 based on 3-formylacetylacetone.
Crystals suitable for single crystal X-ray diffraction of 3 were obtained from the mother liquor. In the case of compounds 1 and 2, single crystals were obtained from a slow reaction (around three days of reaction time) of a suspension of copper(II) o- or p-aminobenzoate (1.5 g in 3 ml of water) and a solution of 3-formylacetylacetone (1.0 g in 5 ml of diethyl ether).
1: white powder, air stable, soluble in DMF and DMSO, hardly soluble in methanol, water, diethyl ether, THF.
C13H13NO4: 63.07% C (calc. 63.16%), 5.30% H (calc. 5.26%), 5.41% N (calc. 5.67%), IR: 2864 (br), 2586 (w), 1696 (w), 1647 (m), 1552 (s), 1492 (m), 1405 (m), 1325 (s), 1144 (m), 1077 (w), 978 (m), 935 (m), 789 (m), 759 (s), 695 (m), 652 (m), 634 (s), 584 (s), 544 (m), 470 (m), 405 (m), 326 (m) cm−1, 1H NMR(DMSO-d6): 2.35 (s, 3 H, CO—CH3), 2.39 (s, 3 H, CO—CH3), 7.25–7.97 (m, 4 H, CHaromatic), 8.39 [d (3J = 12.8 Hz), 1 H, C=CH—-NH], 13.49 [d (3J =12.8 Hz), 1 H, C=CH—NH], 13C NMR(DMSO-d6): 27.4 ppm (–CH3), 31.4 (–CH3), 114.3 (C(O)—C—C(O), 117.0 (CHaromatic), 118.4 (CHaromatic), 124.0 (CHaromatic), 131.4 (CHaromatic), 134.1 (CHaromatic), 140.6 (CHaromatic), 150.6 (CH—NH), 167.4 (COOH), 195.7 (CO) 198.2 (CO) ppm.
2: off-white powder, air stable, soluble in DMF and DMSO, hardly soluble in methanol, water, diethyl ether, THF.
C13H13NO4: 62.74% C (calc. 63.16%), 5.26% H (calc. 5.26%), 5.68% N (calc. 5.67%), IR: 2929 (br), 1704 (s), 1656 (w), 1632 (s), 1557 (s), 1497 (w), 1405 (s), 1347 (m), 1308 (s), 1032 (w), 979 (m), 877 (s), 802 (m), 749 (s), 679 (s), 641 (s), 593 (w), 537 (m), 475 (w), 280 (m), 232 (m) cm−1, 1H NMR(DMSO-d6): 2.37 (s, 3 H, CO—CH3), 2.38 (s, 3 H, CO–CH3), 7.52–7.94 (m, 4 H, CHaromatic), 8.34 [d (3J = 12.8 Hz), 1 H, C=CH—NH], 12.53 [d (3J =12.8 Hz), 1 H, C=CH—NH], 13C NMR(DMSO-d6): 27.5 ppm (–CH3), 31.4 (–CH3), 112.8 (C(O)—C–-C(O), 118.5 (CHaromatic), 122.5 (CHaromatic), 125.7 (CHaromatic), 129.8 (CHaromatic), 132.2 (CHaromatic), 139.4 (CHaromatic), 152.6 (CH—NH), 166.6 (COOH), 195.2 (CO) 199.4 (CO) ppm.
3: yellow powder, air stable, soluble in DMF and DMSO, hardly soluble in methanol, water, diethyl ether, THF.
C13H13NO4: 62.79% C (calc. 63.16%), 5.27% H (calc. 5.26%), 5.53% N (calc. 5.67%), IR: 2820 (br), 1674 (s), 1628 (s), 1586 (s), 1564 (s), 1433 (w), 1390 (s), 1314 (w), 1285 (s), 1249 (s), 1206 (m), 1175 (m), 929 (s), 864 (m), 845 (m), 793 (m), 771 (s), 694 (m), 646 (m), 613 (s), 550 (m), 510 (s), 471 (w), 424 (w), 275 (m), 214 (s) cm−1, 1H NMR(DMSO-d6): 2.37 (s, 3 H, CO—CH3), 2.38 (s, 3 H, CO—CH3), 7.57 [m, 2 H, NHFacac-C–(CHaromatic)2)], 8.44 [d (3J = 12.6 Hz), 1 H, C=CH—NH], 12.64 [d (3J =12.8 Hz), 1 H, C=CH—NH], 12.86 (s, 1H, COOH), 13C NMR(DMSO-d6): 27.5 ppm (–CH3), 31.5 (–CH3), 113.4 [C(O)—C—C(O)], 117.7 (CHaromatic), 126.9 (CHaromatic), 130.8 (CHaromatic), 142.7 (CHaromatic), 151.7 (CH—NH), 166.5 (COOH), 195.4 (CO) 199.7 (CO) ppm.
6. Refinement
Crystal data, data collection and structure . The methyl group hydrogen atoms of compound 2 and the carboxyl hydrogen atoms of compounds 2 and 3 were located from difference-Fourier maps and were refined freely. The remaining hydrogen atoms were positioned geometrically and refined using a riding model.
details are summarized in Table 7
|
Supporting information
https://doi.org/10.1107/S2056989021013050/wm5628sup1.cif
contains datablocks 1, 2, 3. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989021013050/wm56281sup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021013050/wm56281sup5.cml
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989021013050/wm56282sup6.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021013050/wm56282sup6.cml
Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S2056989021013050/wm56283sup7.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021013050/wm56283sup7.cml
For all structures, data collection: X-AREA (Stoe, 2016); cell
X-AREA (Stoe, 2016); data reduction: X-AREA (Stoe, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg et al., 2019); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C13H13NO4 | F(000) = 1040 |
Mr = 247.24 | Dx = 1.425 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.6287 (5) Å | Cell parameters from 22415 reflections |
b = 12.3740 (4) Å | θ = 2.5–29.6° |
c = 17.5419 (7) Å | µ = 0.11 mm−1 |
β = 92.836 (3)° | T = 170 K |
V = 2304.28 (16) Å3 | Block, clear colourless |
Z = 8 | 0.32 × 0.23 × 0.14 mm |
Stoe IPDS 2T diffractometer | 2041 reflections with I > 2σ(I) |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus, Incoatec Iµs | Rint = 0.051 |
Plane graphite monochromator | θmax = 26.0°, θmin = 2.5° |
Detector resolution: 6.67 pixels mm-1 | h = −10→13 |
rotation method, ω scans | k = −13→15 |
5925 measured reflections | l = −21→21 |
2242 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.127 | w = 1/[σ2(Fo2) + (0.0676P)2 + 1.813P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2242 reflections | Δρmax = 0.20 e Å−3 |
166 parameters | Δρmin = −0.25 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.45960 (11) | 0.15997 (10) | 0.47933 (6) | 0.0356 (3) | |
O2 | 0.27859 (11) | 0.16211 (10) | 0.26411 (6) | 0.0358 (3) | |
O3 | 0.61428 (11) | 0.44676 (10) | 0.67913 (7) | 0.0359 (3) | |
H13 | 0.6590 | 0.4003 | 0.6999 | 0.054* | |
O4 | 0.53453 (11) | 0.30520 (10) | 0.61407 (6) | 0.0339 (3) | |
N | 0.36984 (11) | 0.35634 (11) | 0.49544 (7) | 0.0239 (3) | |
H8 | 0.4164 | 0.3073 | 0.5171 | 0.029* | |
C1 | 0.45492 (18) | 0.06191 (16) | 0.36409 (10) | 0.0401 (4) | |
H1 | 0.5001 | 0.0099 | 0.3955 | 0.060* | |
H2 | 0.5079 | 0.0872 | 0.3250 | 0.060* | |
H3 | 0.3809 | 0.0288 | 0.3409 | 0.060* | |
C2 | 0.41727 (14) | 0.15556 (13) | 0.41238 (9) | 0.0285 (4) | |
C3 | 0.33393 (13) | 0.24280 (13) | 0.38304 (8) | 0.0245 (3) | |
C4 | 0.26485 (13) | 0.23812 (13) | 0.30893 (8) | 0.0259 (3) | |
C5 | 0.17366 (15) | 0.32733 (15) | 0.28533 (9) | 0.0320 (4) | |
H4 | 0.1318 | 0.3093 | 0.2373 | 0.048* | |
H5 | 0.2189 | 0.3939 | 0.2804 | 0.048* | |
H6 | 0.1124 | 0.3354 | 0.3233 | 0.048* | |
C6 | 0.31739 (13) | 0.33454 (13) | 0.42647 (8) | 0.0245 (3) | |
H7 | 0.2636 | 0.3869 | 0.4052 | 0.029* | |
C7 | 0.35433 (13) | 0.45398 (13) | 0.53529 (8) | 0.0232 (3) | |
C8 | 0.43310 (13) | 0.47785 (13) | 0.60039 (7) | 0.0233 (3) | |
C9 | 0.41800 (14) | 0.57606 (13) | 0.63783 (8) | 0.0277 (4) | |
H9 | 0.4699 | 0.5919 | 0.6806 | 0.033* | |
C10 | 0.32814 (15) | 0.65050 (14) | 0.61313 (9) | 0.0303 (4) | |
H10 | 0.3205 | 0.7161 | 0.6383 | 0.036* | |
C11 | 0.24927 (15) | 0.62563 (14) | 0.54998 (9) | 0.0316 (4) | |
H11 | 0.1872 | 0.6744 | 0.5334 | 0.038* | |
C12 | 0.26238 (14) | 0.52931 (14) | 0.51180 (8) | 0.0297 (4) | |
H12 | 0.2090 | 0.5141 | 0.4696 | 0.036* | |
C13 | 0.53074 (14) | 0.40013 (13) | 0.63058 (8) | 0.0250 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0409 (7) | 0.0372 (7) | 0.0267 (6) | 0.0043 (5) | −0.0176 (5) | −0.0039 (5) |
O2 | 0.0406 (7) | 0.0404 (7) | 0.0248 (6) | 0.0031 (5) | −0.0151 (5) | −0.0082 (5) |
O3 | 0.0385 (6) | 0.0341 (7) | 0.0329 (6) | −0.0001 (5) | −0.0221 (5) | −0.0002 (5) |
O4 | 0.0402 (6) | 0.0316 (7) | 0.0284 (6) | 0.0033 (5) | −0.0147 (5) | −0.0024 (5) |
N | 0.0246 (6) | 0.0291 (7) | 0.0173 (6) | −0.0004 (5) | −0.0070 (5) | −0.0010 (5) |
C1 | 0.0417 (9) | 0.0459 (11) | 0.0315 (9) | 0.0119 (8) | −0.0111 (7) | −0.0077 (8) |
C2 | 0.0265 (7) | 0.0350 (9) | 0.0230 (7) | −0.0033 (6) | −0.0074 (6) | −0.0009 (6) |
C3 | 0.0225 (7) | 0.0325 (8) | 0.0180 (7) | −0.0041 (6) | −0.0060 (5) | −0.0005 (6) |
C4 | 0.0242 (7) | 0.0337 (9) | 0.0190 (7) | −0.0058 (6) | −0.0058 (5) | 0.0006 (6) |
C5 | 0.0305 (8) | 0.0419 (10) | 0.0223 (7) | 0.0004 (7) | −0.0110 (6) | −0.0010 (7) |
C6 | 0.0224 (7) | 0.0329 (8) | 0.0176 (7) | −0.0029 (6) | −0.0056 (5) | 0.0027 (6) |
C7 | 0.0225 (7) | 0.0296 (8) | 0.0171 (6) | −0.0026 (6) | −0.0026 (5) | 0.0003 (6) |
C8 | 0.0242 (7) | 0.0298 (8) | 0.0156 (6) | −0.0035 (6) | −0.0032 (5) | 0.0016 (6) |
C9 | 0.0298 (8) | 0.0345 (9) | 0.0184 (7) | −0.0037 (6) | −0.0029 (6) | −0.0009 (6) |
C10 | 0.0329 (8) | 0.0310 (8) | 0.0269 (8) | −0.0002 (6) | 0.0009 (6) | −0.0033 (6) |
C11 | 0.0296 (8) | 0.0342 (9) | 0.0306 (8) | 0.0052 (7) | −0.0030 (6) | 0.0023 (7) |
C12 | 0.0275 (7) | 0.0372 (9) | 0.0234 (7) | 0.0014 (6) | −0.0084 (6) | 0.0004 (6) |
C13 | 0.0283 (7) | 0.0314 (9) | 0.0145 (6) | −0.0034 (6) | −0.0054 (5) | 0.0016 (6) |
O1—C2 | 1.2380 (18) | C5—H4 | 0.9600 |
O2—C4 | 1.239 (2) | C5—H5 | 0.9600 |
O3—H13 | 0.8200 | C5—H6 | 0.9600 |
O3—C13 | 1.3312 (17) | C6—H7 | 0.9300 |
O4—C13 | 1.211 (2) | C7—C8 | 1.4135 (19) |
N—H8 | 0.8600 | C7—C12 | 1.398 (2) |
N—C6 | 1.3344 (18) | C8—C9 | 1.394 (2) |
N—C7 | 1.410 (2) | C8—C13 | 1.493 (2) |
C1—H1 | 0.9600 | C9—H9 | 0.9300 |
C1—H2 | 0.9600 | C9—C10 | 1.381 (2) |
C1—H3 | 0.9600 | C10—H10 | 0.9300 |
C1—C2 | 1.501 (2) | C10—C11 | 1.390 (2) |
C2—C3 | 1.473 (2) | C11—H11 | 0.9300 |
C3—C4 | 1.4621 (18) | C11—C12 | 1.378 (2) |
C3—C6 | 1.383 (2) | C12—H12 | 0.9300 |
C4—C5 | 1.513 (2) | ||
C13—O3—H13 | 109.5 | N—C6—C3 | 127.34 (14) |
C6—N—H8 | 117.7 | N—C6—H7 | 116.3 |
C6—N—C7 | 124.68 (13) | C3—C6—H7 | 116.3 |
C7—N—H8 | 117.7 | N—C7—C8 | 120.04 (13) |
H1—C1—H2 | 109.5 | C12—C7—N | 121.51 (13) |
H1—C1—H3 | 109.5 | C12—C7—C8 | 118.45 (14) |
H2—C1—H3 | 109.5 | C7—C8—C13 | 121.72 (14) |
C2—C1—H1 | 109.5 | C9—C8—C7 | 119.03 (14) |
C2—C1—H2 | 109.5 | C9—C8—C13 | 119.25 (12) |
C2—C1—H3 | 109.5 | C8—C9—H9 | 119.1 |
O1—C2—C1 | 118.34 (14) | C10—C9—C8 | 121.83 (14) |
O1—C2—C3 | 118.90 (14) | C10—C9—H9 | 119.1 |
C3—C2—C1 | 122.75 (13) | C9—C10—H10 | 120.6 |
C4—C3—C2 | 123.26 (14) | C9—C10—C11 | 118.86 (15) |
C6—C3—C2 | 119.98 (12) | C11—C10—H10 | 120.6 |
C6—C3—C4 | 116.76 (13) | C10—C11—H11 | 119.8 |
O2—C4—C3 | 121.63 (14) | C12—C11—C10 | 120.49 (15) |
O2—C4—C5 | 118.30 (13) | C12—C11—H11 | 119.8 |
C3—C4—C5 | 120.07 (14) | C7—C12—H12 | 119.3 |
C4—C5—H4 | 109.5 | C11—C12—C7 | 121.31 (14) |
C4—C5—H5 | 109.5 | C11—C12—H12 | 119.3 |
C4—C5—H6 | 109.5 | O3—C13—C8 | 112.20 (13) |
H4—C5—H5 | 109.5 | O4—C13—O3 | 122.99 (14) |
H4—C5—H6 | 109.5 | O4—C13—C8 | 124.81 (13) |
H5—C5—H6 | 109.5 | ||
O1—C2—C3—C4 | −171.05 (14) | C6—C3—C4—C5 | −4.1 (2) |
O1—C2—C3—C6 | 8.5 (2) | C7—N—C6—C3 | 176.56 (14) |
N—C7—C8—C9 | 178.50 (13) | C7—C8—C9—C10 | 0.1 (2) |
N—C7—C8—C13 | −2.3 (2) | C7—C8—C13—O3 | 164.41 (13) |
N—C7—C12—C11 | −178.64 (14) | C7—C8—C13—O4 | −16.2 (2) |
C1—C2—C3—C4 | 9.9 (2) | C8—C7—C12—C11 | 1.1 (2) |
C1—C2—C3—C6 | −170.53 (15) | C8—C9—C10—C11 | 1.2 (2) |
C2—C3—C4—O2 | −4.4 (2) | C9—C8—C13—O3 | −16.39 (19) |
C2—C3—C4—C5 | 175.49 (14) | C9—C8—C13—O4 | 163.00 (15) |
C2—C3—C6—N | 0.1 (2) | C9—C10—C11—C12 | −1.3 (2) |
C4—C3—C6—N | 179.70 (14) | C10—C11—C12—C7 | 0.2 (2) |
C6—N—C7—C8 | −167.19 (14) | C12—C7—C8—C9 | −1.2 (2) |
C6—N—C7—C12 | 12.5 (2) | C12—C7—C8—C13 | 178.00 (13) |
C6—C3—C4—O2 | 176.05 (14) | C13—C8—C9—C10 | −179.13 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H13···O2i | 0.82 | 1.83 | 2.6132 (15) | 160 |
N—H8···O1 | 0.86 | 2.00 | 2.6308 (18) | 129 |
N—H8···O4 | 0.86 | 2.06 | 2.7266 (16) | 133 |
C5—H6···O4ii | 0.96 | 2.62 | 3.330 (2) | 131 |
C11—H11···O1iii | 0.93 | 2.56 | 3.2891 (19) | 136 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+1/2, −y+1/2, −z+1; (iii) x−1/2, y+1/2, z. |
C13H13NO4 | Dx = 1.453 Mg m−3 |
Mr = 247.24 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 10416 reflections |
a = 11.4880 (4) Å | θ = 2.7–29.7° |
b = 6.4726 (3) Å | µ = 0.11 mm−1 |
c = 15.2012 (5) Å | T = 170 K |
V = 1130.32 (8) Å3 | Needle, clear yellow |
Z = 4 | 0.16 × 0.07 × 0.07 mm |
F(000) = 520 |
Stoe IPDS 2T diffractometer | 1118 reflections with I > 2σ(I) |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus, Incoatec Iµs | Rint = 0.039 |
Plane graphite monochromator | θmax = 27.0°, θmin = 2.7° |
Detector resolution: 6.67 pixels mm-1 | h = −14→13 |
rotation method, ω scans | k = −8→7 |
4667 measured reflections | l = −18→19 |
1346 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.044 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.128 | w = 1/[σ2(Fo2) + (0.0692P)2 + 0.4804P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
1346 reflections | Δρmax = 0.35 e Å−3 |
126 parameters | Δρmin = −0.25 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.95570 (13) | 0.2500 | 0.53720 (10) | 0.0312 (4) | |
O2 | 1.00391 (13) | 0.2500 | 0.26645 (10) | 0.0337 (4) | |
O3 | 0.55070 (12) | 0.2500 | 0.80351 (10) | 0.0272 (4) | |
H11 | 0.532 (3) | 0.2500 | 0.856 (2) | 0.060 (11)* | |
O4 | 0.35794 (13) | 0.2500 | 0.78224 (10) | 0.0362 (5) | |
N | 0.73322 (14) | 0.2500 | 0.50635 (11) | 0.0204 (4) | |
H6 | 0.7858 | 0.2500 | 0.5466 | 0.025* | |
C1 | 1.10424 (19) | 0.2500 | 0.43063 (16) | 0.0359 (6) | |
H1 | 1.146 (3) | 0.2500 | 0.487 (2) | 0.046 (8)* | |
H2 | 1.1236 (17) | 0.134 (3) | 0.3925 (15) | 0.049 (6)* | |
C2 | 0.97887 (18) | 0.2500 | 0.45735 (13) | 0.0236 (5) | |
C3 | 0.88505 (17) | 0.2500 | 0.39425 (13) | 0.0210 (4) | |
C4 | 0.90572 (18) | 0.2500 | 0.29799 (13) | 0.0251 (5) | |
C5 | 0.8029 (2) | 0.2500 | 0.23691 (15) | 0.0422 (7) | |
H3 | 0.829 (3) | 0.2500 | 0.175 (3) | 0.069 (11)* | |
H4 | 0.7490 (18) | 0.124 (4) | 0.2474 (14) | 0.058 (6)* | |
C6 | 0.76977 (17) | 0.2500 | 0.42287 (13) | 0.0209 (4) | |
H5 | 0.7126 | 0.2500 | 0.3796 | 0.025* | |
C7 | 0.61523 (17) | 0.2500 | 0.53461 (13) | 0.0190 (4) | |
C8 | 0.59563 (16) | 0.2500 | 0.62497 (13) | 0.0195 (4) | |
H7 | 0.6581 | 0.2500 | 0.6638 | 0.023* | |
C9 | 0.48160 (17) | 0.2500 | 0.65704 (13) | 0.0206 (4) | |
C10 | 0.38808 (17) | 0.2500 | 0.59853 (14) | 0.0225 (5) | |
H8 | 0.3121 | 0.2500 | 0.6196 | 0.027* | |
C11 | 0.40940 (17) | 0.2500 | 0.50868 (14) | 0.0238 (5) | |
H9 | 0.3470 | 0.2500 | 0.4697 | 0.029* | |
C12 | 0.52216 (18) | 0.2500 | 0.47599 (13) | 0.0213 (4) | |
H10 | 0.5354 | 0.2500 | 0.4156 | 0.026* | |
C13 | 0.45603 (17) | 0.2500 | 0.75316 (14) | 0.0232 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0188 (7) | 0.0604 (12) | 0.0144 (7) | 0.000 | −0.0007 (6) | 0.000 |
O2 | 0.0226 (8) | 0.0580 (12) | 0.0205 (8) | 0.000 | 0.0054 (6) | 0.000 |
O3 | 0.0191 (8) | 0.0479 (10) | 0.0147 (7) | 0.000 | 0.0015 (5) | 0.000 |
O4 | 0.0184 (7) | 0.0686 (13) | 0.0217 (7) | 0.000 | 0.0057 (6) | 0.000 |
N | 0.0136 (7) | 0.0315 (10) | 0.0162 (8) | 0.000 | 0.0014 (6) | 0.000 |
C1 | 0.0161 (10) | 0.0687 (19) | 0.0227 (11) | 0.000 | −0.0002 (8) | 0.000 |
C2 | 0.0200 (9) | 0.0341 (12) | 0.0167 (9) | 0.000 | −0.0001 (8) | 0.000 |
C3 | 0.0157 (8) | 0.0307 (11) | 0.0165 (9) | 0.000 | 0.0020 (7) | 0.000 |
C4 | 0.0221 (10) | 0.0373 (12) | 0.0159 (9) | 0.000 | 0.0014 (8) | 0.000 |
C5 | 0.0256 (11) | 0.085 (2) | 0.0156 (10) | 0.000 | −0.0019 (9) | 0.000 |
C6 | 0.0178 (9) | 0.0288 (11) | 0.0160 (9) | 0.000 | 0.0002 (7) | 0.000 |
C7 | 0.0153 (9) | 0.0226 (10) | 0.0192 (9) | 0.000 | 0.0032 (7) | 0.000 |
C8 | 0.0156 (9) | 0.0266 (10) | 0.0164 (9) | 0.000 | −0.0009 (7) | 0.000 |
C9 | 0.0180 (9) | 0.0277 (11) | 0.0161 (9) | 0.000 | 0.0024 (7) | 0.000 |
C10 | 0.0132 (8) | 0.0307 (11) | 0.0235 (10) | 0.000 | 0.0020 (7) | 0.000 |
C11 | 0.0170 (10) | 0.0320 (12) | 0.0225 (10) | 0.000 | −0.0043 (8) | 0.000 |
C12 | 0.0198 (10) | 0.0290 (11) | 0.0151 (9) | 0.000 | −0.0005 (7) | 0.000 |
C13 | 0.0170 (9) | 0.0347 (11) | 0.0178 (9) | 0.000 | 0.0019 (7) | 0.000 |
O1—C2 | 1.243 (3) | C5—H3 | 0.98 (4) |
O2—C4 | 1.226 (3) | C5—H4 | 1.03 (2) |
O3—H11 | 0.83 (4) | C6—H5 | 0.9300 |
O3—C13 | 1.330 (2) | C7—C8 | 1.392 (3) |
O4—C13 | 1.210 (2) | C7—C12 | 1.392 (3) |
N—H6 | 0.8600 | C8—H7 | 0.9300 |
N—C6 | 1.337 (3) | C8—C9 | 1.398 (3) |
N—C7 | 1.422 (2) | C9—C10 | 1.395 (3) |
C1—H1 | 0.98 (3) | C9—C13 | 1.490 (3) |
C1—H2 | 0.97 (2) | C10—H8 | 0.9300 |
C1—C2 | 1.496 (3) | C10—C11 | 1.388 (3) |
C2—C3 | 1.443 (3) | C11—H9 | 0.9300 |
C3—C4 | 1.482 (3) | C11—C12 | 1.387 (3) |
C3—C6 | 1.394 (3) | C12—H10 | 0.9300 |
C4—C5 | 1.503 (3) | ||
C13—O3—H11 | 110 (2) | C8—C7—N | 116.89 (17) |
C6—N—H6 | 117.1 | C12—C7—N | 122.60 (18) |
C6—N—C7 | 125.89 (17) | C12—C7—C8 | 120.50 (18) |
C7—N—H6 | 117.1 | C7—C8—H7 | 120.1 |
H1—C1—H2 | 114.2 (15) | C7—C8—C9 | 119.73 (18) |
C2—C1—H1 | 103.3 (18) | C9—C8—H7 | 120.1 |
C2—C1—H2 | 112.4 (12) | C8—C9—C13 | 121.79 (18) |
O1—C2—C1 | 118.12 (19) | C10—C9—C8 | 119.96 (18) |
O1—C2—C3 | 119.29 (19) | C10—C9—C13 | 118.25 (17) |
C3—C2—C1 | 122.58 (18) | C9—C10—H8 | 120.3 |
C2—C3—C4 | 122.45 (17) | C11—C10—C9 | 119.45 (18) |
C6—C3—C2 | 120.15 (18) | C11—C10—H8 | 120.3 |
C6—C3—C4 | 117.40 (18) | C10—C11—H9 | 119.4 |
O2—C4—C3 | 122.24 (18) | C12—C11—C10 | 121.16 (19) |
O2—C4—C5 | 118.81 (19) | C12—C11—H9 | 119.4 |
C3—C4—C5 | 118.94 (18) | C7—C12—H10 | 120.4 |
C4—C5—H3 | 111 (2) | C11—C12—C7 | 119.20 (18) |
C4—C5—H4 | 112.0 (12) | C11—C12—H10 | 120.4 |
H3—C5—H4 | 109.1 (17) | O3—C13—C9 | 113.76 (16) |
N—C6—C3 | 126.50 (19) | O4—C13—O3 | 123.45 (19) |
N—C6—H5 | 116.8 | O4—C13—C9 | 122.79 (19) |
C3—C6—H5 | 116.8 | ||
O1—C2—C3—C4 | 180.000 (1) | C7—N—C6—C3 | 180.000 (1) |
O1—C2—C3—C6 | 0.000 (1) | C7—C8—C9—C10 | 0.000 (1) |
N—C7—C8—C9 | 180.000 (1) | C7—C8—C9—C13 | 180.000 (1) |
N—C7—C12—C11 | 180.000 (1) | C8—C7—C12—C11 | 0.000 (1) |
C1—C2—C3—C4 | 0.000 (1) | C8—C9—C10—C11 | 0.000 (1) |
C1—C2—C3—C6 | 180.000 (1) | C8—C9—C13—O3 | 0.000 (1) |
C2—C3—C4—O2 | 0.000 (1) | C8—C9—C13—O4 | 180.000 (1) |
C2—C3—C4—C5 | 180.000 (1) | C9—C10—C11—C12 | 0.000 (1) |
C2—C3—C6—N | 0.000 (1) | C10—C9—C13—O3 | 180.000 (1) |
C4—C3—C6—N | 180.000 (1) | C10—C9—C13—O4 | 0.000 (1) |
C6—N—C7—C8 | 180.000 (1) | C10—C11—C12—C7 | 0.000 (1) |
C6—N—C7—C12 | 0.000 (1) | C12—C7—C8—C9 | 0.000 (1) |
C6—C3—C4—O2 | 180.000 (1) | C13—C9—C10—C11 | 180.000 (1) |
C6—C3—C4—C5 | 0.000 (1) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H11···O1i | 0.83 (4) | 1.84 (4) | 2.656 (2) | 166 (3) |
N—H6···O1 | 0.86 | 1.96 | 2.598 (2) | 130 |
C8—H7···O4ii | 0.93 | 2.44 | 3.327 (2) | 160 |
Symmetry codes: (i) x−1/2, y, −z+3/2; (ii) x+1/2, y, −z+3/2. |
C13H13NO4 | F(000) = 520 |
Mr = 247.24 | Dx = 1.425 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.8649 (6) Å | Cell parameters from 6441 reflections |
b = 10.6185 (5) Å | θ = 1.9–29.6° |
c = 11.3616 (6) Å | µ = 0.11 mm−1 |
β = 118.422 (4)° | T = 170 K |
V = 1152.78 (11) Å3 | Plate, clear yellowish colourless |
Z = 4 | 0.54 × 0.25 × 0.08 mm |
Stoe IPDS 2T diffractometer | Rint = 0.036 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.0°, θmin = 2.1° |
rotation method, ω scans | h = −12→13 |
5856 measured reflections | k = −12→13 |
2225 independent reflections | l = −14→13 |
1796 reflections with I > 2σ(I) |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.129 | w = 1/[σ2(Fo2) + (0.0728P)2 + 0.2229P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2225 reflections | Δρmax = 0.27 e Å−3 |
169 parameters | Δρmin = −0.18 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.26870 (14) | 0.40034 (11) | 0.95427 (13) | 0.0496 (4) | |
O2 | 0.47787 (18) | 0.71853 (13) | 1.16675 (13) | 0.0659 (5) | |
O3 | 0.05035 (12) | 0.60892 (10) | 0.12974 (12) | 0.0429 (3) | |
H13 | 0.010 (3) | 0.600 (3) | 0.019 (3) | 0.132 (14)* | |
O4 | 0.02909 (13) | 0.39969 (10) | 0.12604 (12) | 0.0457 (3) | |
N | 0.25034 (14) | 0.51162 (11) | 0.74534 (14) | 0.0372 (3) | |
H8 | 0.2356 | 0.4443 | 0.7789 | 0.045* | |
C1 | 0.3680 (2) | 0.48695 (16) | 1.16943 (19) | 0.0471 (4) | |
H3 | 0.4676 | 0.4951 | 1.2227 | 0.071* | |
H1 | 0.3385 | 0.4078 | 1.1884 | 0.071* | |
H2 | 0.3228 | 0.5544 | 1.1903 | 0.071* | |
C2 | 0.32935 (16) | 0.49262 (14) | 1.02514 (18) | 0.0392 (4) | |
C3 | 0.36077 (16) | 0.60332 (14) | 0.96565 (16) | 0.0366 (4) | |
C4 | 0.44066 (17) | 0.71139 (15) | 1.04708 (16) | 0.0418 (4) | |
C5 | 0.47780 (19) | 0.81748 (16) | 0.98209 (17) | 0.0455 (4) | |
H6 | 0.5200 | 0.7839 | 0.9314 | 0.068* | |
H4 | 0.5425 | 0.8732 | 1.0498 | 0.068* | |
H5 | 0.3946 | 0.8631 | 0.9236 | 0.068* | |
C6 | 0.31691 (16) | 0.60528 (14) | 0.83010 (16) | 0.0370 (4) | |
H7 | 0.3352 | 0.6777 | 0.7950 | 0.044* | |
C7 | 0.20199 (15) | 0.51226 (14) | 0.60687 (16) | 0.0350 (4) | |
C8 | 0.16521 (16) | 0.62357 (14) | 0.53318 (16) | 0.0379 (4) | |
H9 | 0.1719 | 0.7001 | 0.5756 | 0.046* | |
C9 | 0.11906 (16) | 0.62019 (14) | 0.39778 (16) | 0.0372 (4) | |
H10 | 0.0962 | 0.6949 | 0.3492 | 0.045* | |
C10 | 0.10618 (15) | 0.50592 (13) | 0.33249 (17) | 0.0335 (3) | |
C11 | 0.14053 (17) | 0.39422 (14) | 0.40664 (16) | 0.0378 (4) | |
H11 | 0.1307 | 0.3174 | 0.3637 | 0.045* | |
C12 | 0.18846 (17) | 0.39721 (14) | 0.54199 (17) | 0.0392 (4) | |
H12 | 0.2120 | 0.3226 | 0.5908 | 0.047* | |
C13 | 0.05802 (15) | 0.50298 (13) | 0.18776 (17) | 0.0360 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0581 (7) | 0.0358 (6) | 0.0532 (7) | −0.0088 (5) | 0.0249 (6) | −0.0014 (5) |
O2 | 0.0992 (11) | 0.0492 (8) | 0.0403 (7) | −0.0221 (7) | 0.0259 (7) | −0.0058 (6) |
O3 | 0.0523 (7) | 0.0300 (6) | 0.0431 (7) | −0.0037 (5) | 0.0199 (5) | 0.0013 (4) |
O4 | 0.0624 (7) | 0.0301 (6) | 0.0440 (7) | −0.0095 (5) | 0.0250 (6) | −0.0070 (4) |
N | 0.0399 (7) | 0.0308 (7) | 0.0398 (8) | −0.0021 (5) | 0.0181 (6) | −0.0014 (5) |
C1 | 0.0529 (10) | 0.0405 (9) | 0.0499 (10) | −0.0014 (7) | 0.0262 (8) | 0.0035 (7) |
C2 | 0.0365 (8) | 0.0314 (8) | 0.0497 (10) | 0.0023 (6) | 0.0204 (7) | 0.0011 (6) |
C3 | 0.0361 (8) | 0.0301 (7) | 0.0421 (9) | 0.0022 (6) | 0.0174 (7) | 0.0005 (6) |
C4 | 0.0459 (9) | 0.0336 (8) | 0.0426 (9) | −0.0002 (6) | 0.0184 (7) | 0.0001 (6) |
C5 | 0.0519 (10) | 0.0359 (9) | 0.0462 (9) | −0.0080 (7) | 0.0212 (8) | −0.0034 (7) |
C6 | 0.0358 (8) | 0.0296 (7) | 0.0460 (9) | 0.0014 (6) | 0.0197 (7) | 0.0006 (6) |
C7 | 0.0307 (7) | 0.0330 (8) | 0.0414 (9) | −0.0009 (6) | 0.0171 (6) | −0.0015 (6) |
C8 | 0.0397 (8) | 0.0275 (7) | 0.0443 (9) | 0.0019 (6) | 0.0182 (7) | −0.0057 (6) |
C9 | 0.0387 (8) | 0.0266 (7) | 0.0446 (9) | 0.0022 (6) | 0.0184 (7) | 0.0009 (6) |
C10 | 0.0312 (7) | 0.0279 (7) | 0.0419 (9) | −0.0017 (5) | 0.0177 (6) | −0.0024 (6) |
C11 | 0.0423 (8) | 0.0263 (7) | 0.0441 (9) | −0.0025 (6) | 0.0198 (7) | −0.0038 (6) |
C12 | 0.0436 (8) | 0.0266 (7) | 0.0453 (9) | −0.0015 (6) | 0.0194 (7) | 0.0003 (6) |
C13 | 0.0343 (7) | 0.0283 (7) | 0.0444 (9) | −0.0015 (6) | 0.0180 (7) | −0.0010 (6) |
O1—C2 | 1.2401 (19) | C5—H6 | 0.9600 |
O2—C4 | 1.223 (2) | C5—H4 | 0.9600 |
O3—H13 | 1.12 (3) | C5—H5 | 0.9600 |
O3—C13 | 1.2863 (18) | C6—H7 | 0.9300 |
O4—C13 | 1.2584 (18) | C7—C8 | 1.392 (2) |
N—H8 | 0.8600 | C7—C12 | 1.398 (2) |
N—C6 | 1.333 (2) | C8—H9 | 0.9300 |
N—C7 | 1.402 (2) | C8—C9 | 1.373 (2) |
C1—H3 | 0.9600 | C9—H10 | 0.9300 |
C1—H1 | 0.9600 | C9—C10 | 1.394 (2) |
C1—H2 | 0.9600 | C10—C11 | 1.399 (2) |
C1—C2 | 1.487 (3) | C10—C13 | 1.470 (2) |
C2—C3 | 1.475 (2) | C11—H11 | 0.9300 |
C3—C4 | 1.470 (2) | C11—C12 | 1.369 (2) |
C3—C6 | 1.379 (2) | C12—H12 | 0.9300 |
C4—C5 | 1.503 (2) | ||
C13—O3—H13 | 113.3 (17) | N—C6—C3 | 125.17 (15) |
C6—N—H8 | 116.9 | N—C6—H7 | 117.4 |
C6—N—C7 | 126.30 (13) | C3—C6—H7 | 117.4 |
C7—N—H8 | 116.9 | C8—C7—N | 121.74 (13) |
H3—C1—H1 | 109.5 | C8—C7—C12 | 119.78 (15) |
H3—C1—H2 | 109.5 | C12—C7—N | 118.48 (13) |
H1—C1—H2 | 109.5 | C7—C8—H9 | 120.0 |
C2—C1—H3 | 109.5 | C9—C8—C7 | 119.92 (14) |
C2—C1—H1 | 109.5 | C9—C8—H9 | 120.0 |
C2—C1—H2 | 109.5 | C8—C9—H10 | 119.7 |
O1—C2—C1 | 117.89 (14) | C8—C9—C10 | 120.63 (14) |
O1—C2—C3 | 119.97 (16) | C10—C9—H10 | 119.7 |
C3—C2—C1 | 122.14 (14) | C9—C10—C11 | 119.16 (16) |
C4—C3—C2 | 121.99 (15) | C9—C10—C13 | 120.39 (13) |
C6—C3—C2 | 119.45 (14) | C11—C10—C13 | 120.45 (13) |
C6—C3—C4 | 118.54 (14) | C10—C11—H11 | 119.8 |
O2—C4—C3 | 122.13 (15) | C12—C11—C10 | 120.44 (14) |
O2—C4—C5 | 118.41 (15) | C12—C11—H11 | 119.8 |
C3—C4—C5 | 119.46 (15) | C7—C12—H12 | 120.0 |
C4—C5—H6 | 109.5 | C11—C12—C7 | 120.05 (14) |
C4—C5—H4 | 109.5 | C11—C12—H12 | 120.0 |
C4—C5—H5 | 109.5 | O3—C13—C10 | 117.16 (13) |
H6—C5—H4 | 109.5 | O4—C13—O3 | 122.59 (15) |
H6—C5—H5 | 109.5 | O4—C13—C10 | 120.23 (13) |
H4—C5—H5 | 109.5 | ||
O1—C2—C3—C4 | −175.84 (16) | C7—N—C6—C3 | 178.50 (15) |
O1—C2—C3—C6 | 2.8 (2) | C7—C8—C9—C10 | 1.1 (2) |
N—C7—C8—C9 | 179.62 (14) | C8—C7—C12—C11 | 0.7 (2) |
N—C7—C12—C11 | 179.51 (14) | C8—C9—C10—C11 | 0.2 (2) |
C1—C2—C3—C4 | 4.2 (2) | C8—C9—C10—C13 | −179.41 (14) |
C1—C2—C3—C6 | −177.18 (15) | C9—C10—C11—C12 | −1.1 (2) |
C2—C3—C4—O2 | −4.5 (3) | C9—C10—C13—O3 | 10.8 (2) |
C2—C3—C4—C5 | 175.83 (15) | C9—C10—C13—O4 | −170.75 (15) |
C2—C3—C6—N | −2.4 (2) | C10—C11—C12—C7 | 0.7 (3) |
C4—C3—C6—N | 176.29 (15) | C11—C10—C13—O3 | −168.83 (14) |
C6—N—C7—C8 | −27.4 (2) | C11—C10—C13—O4 | 9.7 (2) |
C6—N—C7—C12 | 153.77 (15) | C12—C7—C8—C9 | −1.6 (2) |
C6—C3—C4—O2 | 176.88 (17) | C13—C10—C11—C12 | 178.49 (15) |
C6—C3—C4—C5 | −2.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H13···O4i | 1.12 (3) | 1.49 (3) | 2.6098 (18) | 173 (3) |
N—H8···O1 | 0.86 | 1.91 | 2.5729 (18) | 133 |
C8—H9···O3ii | 0.93 | 2.65 | 3.4832 (18) | 150 |
C9—H10···O4iii | 0.93 | 2.65 | 3.3252 (18) | 130 |
C11—H11···O1iv | 0.93 | 2.68 | 3.3612 (19) | 131 |
Symmetry codes: (i) −x, −y+1, −z; (ii) x, −y+3/2, z+1/2; (iii) −x, y+1/2, −z+1/2; (iv) x, −y+1/2, z−1/2. |
Funding information
We acknowledge the financial support within the funding programme Open Access Publishing by the German Research Foundation (DFG).
References
Baul, T. S. B., Masharing, C., Basu, S., Pettinari, C., Rivarola, E., Chantrapromma, S. & Fun, H.-K. (2008). Appl. Organomet. Chem. 22, 114–121. CAS Google Scholar
Baul, T. S. B., Masharing, C., Ruisi, G., Pettinari, C. & Linden, A. (2009). J. Inorg. Organomet. Polym. 19, 395–400. Google Scholar
Brandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bu, R., Xiong, Y., Wei, X., Li, H. & Zhang, C. (2019). Cryst. Growth Des. 19, 5981–5997. CrossRef CAS Google Scholar
Chen, L., Wang, Z., Qiu, T., Sun, R., Zhao, Z., Tian, L. & Liu, X. (2020). Appl. Organomet. Chem. 34, 5790–5801. Google Scholar
Dankhoff, K. & Weber, B. (2019). Dalton Trans. 48, 15376–15380. CSD CrossRef CAS PubMed Google Scholar
Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573. Web of Science CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gróf, M., Milata, V. & Kožíšek, J. (2006). Acta Cryst. E62, o4464–o4465. Web of Science CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Halz, J. H., Hentsch, A., Wagner, C. & Merzweiler, K. (2021). Z. Anorg. Allg. Chem. 647, 922–930. CSD CrossRef CAS Google Scholar
Hentsch, A., Wagner, C. & Merzweiler, K. (2014). Z. Anorg. Allg. Chem. 640, 339–346. CSD CrossRef CAS Google Scholar
Joshi, K. A., Deshpande, M. S., Kumbhar, A. S., Butcher, R. J. & Gejji, S. P. (2005). J. Mol. Struct. Theochem, 722, 57–63. CSD CrossRef CAS Google Scholar
Murugavel, R., Singh, M. P. & Nethaji, M. (2012). J. Chem. Crystallogr. 42, 12–17. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, S.-M. & Hu, Z.-Q. (2007). Acta Cryst. E63, m426–m428. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Stoe (2016). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Svensson, C., Ymén, I. & Yom-Tov, B. (1982). Acta Chem. Scand. 36b, 71–76. CSD CrossRef Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. Version 17. University of Western Australia. Google Scholar
Wolf, L. & Jäger, E.-G. (1966). Z. Anorg. Allg. Chem. 346, 76–91. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.