research communications
N-phenyl-3,4-dihydroquinazoline-2-carbothioamide
and Hirshfeld surface analysis of 3-methyl-4-oxo-aQarshi State University, Kochabog str. 17, Qarshi 180119, Uzbekistan, bS. Yunusov Institute of Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek str. 77, Tashkent 100170, Uzbekistan, cUniversity of Geological Sciences, Olimlar str. 64, Mirzo Ulugbek district, Tashkent, Uzbekistan, dNational University of Uzbekistan named after Mirzo Ulugbek 100174, University Str. 4, Olmazor District, Tashkent, Uzbekistan, and eTurin Polytechnic University in Tashkent, Kichik Khalka yuli str. 17, 100095 Tashkent, Uzbekistan
*Correspondence e-mail: a_tojiboev@yahoo.com
The 16H13N3OS, comprises two molecules (A and B) with similar conformations that differ mainly in the orientation of the phenyl group relative to the rest of the molecule, as expressed by the Cthioamide—Nthioamide—Cphenyl—Cphenyl torsion angle of 49.3 (3)° for molecule A and of 5.4 (3)° for molecule B. In the crystal, two intermolecular N—H⋯N hydrogen bonds lead to the formation of a dimer with R22(10) graph-set notation. A Hirshfeld surface analysis revealed that H⋯H interactions are the most important intermolecular interactions, contributing 40.9% to the Hirshfeld surface.
of the title compound, CKeywords: crystal structure; thioamide; intra- and intermolecular interactions; Hirshfeld surface.
CCDC reference: 2127513
1. Chemical context
Thioamides and their derivatives are important representatives of organic compounds containing a sulfur atom. The presence of bifunctional properties in thioamides, resulting from the presence of nitrogen and sulfur atoms, and their participation in reactions as electrophilic or nucleophilic reagents can lead to the formation of different ; Belskaya et al., 2010; Koketsu & Ishihara, 2007; Krayushkin et al., 2004; Britsun et al., 2008).
Several review articles have been published on the syntheses, physico-chemical properties and applications of thioamides (Jagodziński, 2003One of the methods of choice for the synthesis of widely used thioamides is the Wilgerodt–Kindler reaction. As shown by previous studies, the Wilgerodt–Kindler reactions with 2-methylquinazoline-4-one went to the active methyl group in the position 2 and, accordingly, thioamides were synthesized in a series of quinazoline derivatives (Shakhidoyatov et al., 1997). Continuing our work in this direction, we have synthesized 2,3-dimethylquinazoline-4-one and studied the corresponding Wilgerodt–Kindler reactions.
During the reaction involving 2,3-dimethylquinazoline-4-one, sulfur, aniline, the solvent dimethyl sulfoxide and the catalyst sodium sulfide, the reaction went to the active methyl group in position 2 and new thioamides of a number of derivatives of quinazoline-4-one were obtained. The synthesis and N-phenyl-3,4-dihydroquinazoline-2-carbothioamide, C16H13N3OS, is reported here. Relevant intermolecular contacts were quantified by using Hirshfeld surface analysis.
of 3-methyl-4-oxo-2. Structural commentary
The title compound crystallizes with two molecules, A and B, in the (Fig. 1). In molecules A and B the orientations of the quinazoline ring system and the phenyl ring relative to the thioamide group differ, as shown by the values of the N3—C2—C10—S1 and C10—N11—C12—C13 torsion angles of 76.14 (19) and 49.3 (3)°, respectively, in molecule A and 83.78 (19) and 5.4 (3)° in molecule B. As a result, there are differences in the intramolecular distances between the sulfur and hydrogen atoms in molecules A and B. In molecule A, the contacts S1A⋯H9AB and S1A⋯H13A are 2.873 and 2.897 Å whereas the corresponding distances in molecule B are 3.054 and 2.578 Å. The phenyl and pyrimidine rings in both molecules are essentially coplanar, with r.m.s. deviations of 0.0225 and 0.0119 Å for molecule A and B, respectively. Fig. 2 shows that the pyrimidine moieties of the molecules are almost superimposable.
3. Supramolecular features
In the crystal, molecules A and B form a dimer with an R22(10) ring motif through intermolecular N—H⋯N hydrogen bonds (Fig. 3, Table 1). In addition, molecule A interacts with molecule B by a C—H⋯ π interaction (the C13A—H⋯Cg1 distance is 3.148 Å, Cg1 is the centroid of atoms C12B–C17B). Other weak C7A—H7A⋯O1B, C7A—H7A ⋯O1B, C7B—H7B⋯O1A, C9A—H9AB⋯S1A and C13B—H13B⋯S1B hydrogen bonds link adjacent dimers, forming supramolecular layers expanding parallel to (010) (Fig. 4). The overall packing of molecules leads to the formation of narrow channels along the b-axis direction, passing through nodes and the centre of the cell (Fig. 5).
4. Hirshfeld surface analysis
A Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009) was carried out using CrystalExplorer17.5 (Turner et al., 2017) to quantify and visualize intermolecular interactions in the of the title compound. The HS mapped with dnorm is represented in Fig. 6. The white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter or longer, respectively, than the van der Waals radii. The two-dimensional fingerprint plot for all contacts is depicted in Fig. 7a, and delineated in H⋯H, C⋯H/H⋯C, S⋯H/H⋯S, N⋯H/H⋯N, and O⋯H/H⋯O contacts (Fig. 7b–f) whereby H⋯H contacts are responsible for the largest contribution (40.9%) to the Hirshfeld surface. C⋯H/H⋯C contribute 23.7%, S⋯H/H⋯S contacts 10.7%, N⋯H/H⋯N contacts 8.1% and O⋯H/H⋯O contacts 7.0% to the total Hirshfeld surface. The contributions of further contacts are only minor and amount to C⋯C (4.0%), S⋯C/C⋯S (1.9%), N⋯C/C⋯N (1.2%), S⋯S (1.0%), S⋯C/C⋯S (0.6%), O⋯N/N⋯O (0.2%) and O⋯C/C⋯O (0.1%).
5. Database survey
A search in the Cambridge Structural Database (CSD, version 5.41, update of January 2020; Groom et al., 2016) revealed six matches for molecules containing the 2,3-dimethylquinazolin-4(3H)-one moiety with a similar planar conformation as that in the title structure: AFOCIJ (Utayeva et al., 2013), HOCYED (Voitenko et al., 1999), MAHLOZ (Kotipalli et al., 2016), MUDHIE (Baglai et al., 2014), UTIDIM (Kundu et al., 2016) and XODZIB (Saitkulov et al., 2014). A search for the 2-methyl-N-phenylprop-2-enethioamide moiety gave six hits: ADEKUQ (Xiao & Jian, 2006), AGECIB (Skelton & Massi, 2018), GOFFOY (Li et al., 2014), GOXFUW (Li et al., 2016), JURWEA (Guo et al., 2015) and QAJVAY (Mereiter et al., 2000).
6. Synthesis and crystallization
0.435 g (0.0025 mol) of 2,3-dimethylquinazoline-4-one, 0.465 g (0.005 mol) of aniline, 0.24 g (0.0075 mol) of sulfur, 0.05 g of sodium sulfide (Na2S·9H2O) and 4 ml of dimethyl sulfoxide were injected into a round-bottomed flask with a volume of 100 ml. Then the reaction flask was heated to 403 K for 6 h. After the end of the reaction, the flask was cooled and 40 ml of an aqueous sodium hydroxide solution were added. The resulting mixture was filtered, then added to a of sulfuric acid (pH 6). The formed precipitate was filtered off and recrystallized in methanol. In total, 0.5 g (64.0%) of the product were obtained, m.p. 481–483 K.
7. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically, with C—H = 0.96 Å (for methylene H atoms) and C—H = 0.93 Å (for aromatic H atoms), and were refined with Uiso(H) = 1.5Ueq(Cmethyl) and 1.2Ueq(C), respectively. H atoms bonded to nitrogen were located in a difference-Fourier map, and their positional and isotropic displacement parameters were freely refined.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2127513
https://doi.org/10.1107/S2056989021013116/wm5629sup1.cif
contains datablock I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989021013116/wm5629Isup3.cml
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021013116/wm5629Isup3.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2020); cell
CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020), Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).C16H13N3OS | F(000) = 1232 |
Mr = 295.35 | Dx = 1.329 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 11.7685 (3) Å | Cell parameters from 9141 reflections |
b = 16.3641 (3) Å | θ = 2.7–71.1° |
c = 16.3798 (3) Å | µ = 1.96 mm−1 |
β = 110.646 (2)° | T = 566 K |
V = 2951.85 (11) Å3 | Prismatic, yellow |
Z = 8 | 0.25 × 0.23 × 0.20 mm |
XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer | 5685 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 4788 reflections with I > 2σ(I) |
Detector resolution: 10.00000 pixels mm-1 | Rint = 0.022 |
ω scans | θmax = 71.4°, θmin = 4.0° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) | h = −14→14 |
Tmin = 0.639, Tmax = 1.000 | k = −19→17 |
16801 measured reflections | l = −19→20 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.042 | w = 1/[σ2(Fo2) + (0.0602P)2 + 0.6163P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.121 | (Δ/σ)max = 0.001 |
S = 1.06 | Δρmax = 0.32 e Å−3 |
5685 reflections | Δρmin = −0.42 e Å−3 |
390 parameters | Extinction correction: SHELXL (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00124 (12) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1A | 0.46771 (5) | 0.62649 (4) | 0.89046 (3) | 0.07206 (19) | |
O1A | 0.69766 (15) | 0.59324 (9) | 0.65155 (11) | 0.0755 (4) | |
N1A | 0.48752 (12) | 0.75527 (8) | 0.72159 (9) | 0.0456 (3) | |
N1B | 0.22774 (13) | 0.73699 (9) | 0.57212 (9) | 0.0474 (3) | |
S1B | 0.04219 (5) | 0.86597 (6) | 0.63642 (4) | 0.1030 (3) | |
O1B | 0.30121 (15) | 0.90703 (8) | 0.41700 (10) | 0.0690 (4) | |
C2A | 0.49005 (14) | 0.67801 (10) | 0.73853 (10) | 0.0430 (4) | |
C2B | 0.22279 (15) | 0.81489 (10) | 0.58376 (10) | 0.0444 (4) | |
N3A | 0.55988 (13) | 0.62176 (8) | 0.71623 (10) | 0.0487 (3) | |
N3B | 0.24924 (13) | 0.87402 (8) | 0.53417 (9) | 0.0461 (3) | |
C4A | 0.63788 (17) | 0.64470 (11) | 0.67217 (12) | 0.0523 (4) | |
C4B | 0.28038 (16) | 0.85368 (11) | 0.46179 (11) | 0.0476 (4) | |
C4A' | 0.63881 (16) | 0.73161 (11) | 0.65427 (12) | 0.0488 (4) | |
C4B' | 0.28702 (15) | 0.76640 (10) | 0.44719 (10) | 0.0441 (4) | |
C5A | 0.7150 (2) | 0.76334 (13) | 0.61289 (15) | 0.0663 (5) | |
H5A | 0.767186 | 0.728822 | 0.597752 | 0.080* | |
C5B | 0.31931 (18) | 0.73805 (12) | 0.37776 (12) | 0.0572 (5) | |
H5B | 0.336243 | 0.775028 | 0.340470 | 0.069* | |
C6A | 0.7128 (2) | 0.84521 (14) | 0.59469 (16) | 0.0719 (6) | |
H6A | 0.763410 | 0.866124 | 0.567158 | 0.086* | |
C6B | 0.3260 (2) | 0.65590 (14) | 0.36481 (14) | 0.0699 (6) | |
H6B | 0.347755 | 0.637057 | 0.318813 | 0.084* | |
C7A | 0.6353 (2) | 0.89685 (13) | 0.61719 (15) | 0.0669 (5) | |
H7A | 0.633301 | 0.952178 | 0.603750 | 0.080* | |
C7B | 0.3002 (2) | 0.60060 (13) | 0.42011 (16) | 0.0738 (6) | |
H7B | 0.304581 | 0.544836 | 0.410662 | 0.089* | |
C8A | 0.56154 (18) | 0.86710 (11) | 0.65916 (14) | 0.0570 (5) | |
H8A | 0.510698 | 0.902433 | 0.674732 | 0.068* | |
C8B | 0.2684 (2) | 0.62723 (12) | 0.48872 (14) | 0.0644 (5) | |
H8B | 0.251967 | 0.589664 | 0.525684 | 0.077* | |
C8A' | 0.56261 (15) | 0.78398 (10) | 0.67853 (11) | 0.0443 (4) | |
C8B' | 0.26094 (16) | 0.71106 (10) | 0.50270 (11) | 0.0455 (4) | |
C9A | 0.5550 (2) | 0.53429 (12) | 0.73431 (16) | 0.0712 (6) | |
H9AA | 0.543485 | 0.503622 | 0.682028 | 0.107* | |
H9AB | 0.488631 | 0.524014 | 0.754066 | 0.107* | |
H9AC | 0.629728 | 0.517988 | 0.778655 | 0.107* | |
C9B | 0.2411 (2) | 0.96167 (12) | 0.55107 (14) | 0.0673 (5) | |
H9BA | 0.308740 | 0.989779 | 0.544197 | 0.101* | |
H9BB | 0.242392 | 0.969168 | 0.609523 | 0.101* | |
H9BC | 0.166757 | 0.983288 | 0.510518 | 0.101* | |
C10A | 0.40897 (15) | 0.64886 (10) | 0.78644 (11) | 0.0464 (4) | |
C10B | 0.18531 (16) | 0.84207 (12) | 0.65864 (11) | 0.0520 (4) | |
N11A | 0.29256 (13) | 0.64598 (9) | 0.73505 (9) | 0.0459 (3) | |
N11B | 0.27899 (14) | 0.84235 (9) | 0.73404 (9) | 0.0458 (3) | |
H11A | 0.2709 (18) | 0.6657 (12) | 0.6816 (13) | 0.056 (5)* | |
H11B | 0.3453 (19) | 0.8211 (12) | 0.7308 (13) | 0.060 (6)* | |
C12A | 0.19183 (15) | 0.62418 (10) | 0.76017 (11) | 0.0458 (4) | |
C12B | 0.28641 (16) | 0.86210 (10) | 0.82016 (10) | 0.0460 (4) | |
C13A | 0.17430 (18) | 0.65831 (12) | 0.83199 (13) | 0.0579 (5) | |
H13A | 0.231162 | 0.694273 | 0.868105 | 0.070* | |
C13B | 0.1889 (2) | 0.88031 (13) | 0.84467 (13) | 0.0615 (5) | |
H13B | 0.110617 | 0.880890 | 0.803547 | 0.074* | |
C14A | 0.0710 (2) | 0.63823 (14) | 0.84934 (16) | 0.0687 (6) | |
H14A | 0.058768 | 0.660791 | 0.897690 | 0.082* | |
C14B | 0.2088 (2) | 0.89785 (15) | 0.93166 (14) | 0.0733 (6) | |
H14B | 0.143062 | 0.910500 | 0.948369 | 0.088* | |
C15A | −0.01364 (19) | 0.58550 (15) | 0.79631 (16) | 0.0728 (6) | |
H15A | −0.083359 | 0.573110 | 0.808191 | 0.087* | |
C15B | 0.3230 (2) | 0.89684 (15) | 0.99301 (13) | 0.0743 (6) | |
H15B | 0.335113 | 0.909440 | 1.050847 | 0.089* | |
C16A | 0.00499 (18) | 0.55107 (15) | 0.72556 (15) | 0.0713 (6) | |
H16A | −0.051928 | 0.514896 | 0.689846 | 0.086* | |
C16B | 0.4194 (2) | 0.87709 (17) | 0.96852 (14) | 0.0799 (7) | |
H16B | 0.497078 | 0.875101 | 1.010346 | 0.096* | |
C17A | 0.10845 (17) | 0.57004 (13) | 0.70712 (12) | 0.0580 (5) | |
H17A | 0.121368 | 0.546455 | 0.659469 | 0.070* | |
C17B | 0.40270 (19) | 0.86009 (14) | 0.88256 (12) | 0.0637 (5) | |
H17B | 0.468896 | 0.847365 | 0.866451 | 0.076* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1A | 0.0501 (3) | 0.1132 (5) | 0.0526 (3) | −0.0013 (3) | 0.0178 (2) | 0.0220 (3) |
O1A | 0.0852 (10) | 0.0582 (8) | 0.1095 (12) | 0.0080 (7) | 0.0668 (10) | −0.0077 (8) |
N1A | 0.0427 (7) | 0.0479 (8) | 0.0540 (8) | 0.0015 (6) | 0.0267 (6) | 0.0025 (6) |
N1B | 0.0546 (8) | 0.0508 (8) | 0.0435 (7) | 0.0033 (6) | 0.0257 (6) | 0.0007 (6) |
S1B | 0.0536 (3) | 0.1936 (8) | 0.0591 (3) | 0.0382 (4) | 0.0165 (3) | −0.0226 (4) |
O1B | 0.0907 (10) | 0.0565 (8) | 0.0774 (9) | −0.0040 (7) | 0.0513 (8) | 0.0100 (7) |
C2A | 0.0387 (8) | 0.0476 (9) | 0.0469 (8) | −0.0015 (6) | 0.0201 (7) | 0.0002 (7) |
C2B | 0.0423 (9) | 0.0539 (10) | 0.0380 (8) | 0.0038 (7) | 0.0152 (7) | −0.0023 (7) |
N3A | 0.0499 (8) | 0.0422 (7) | 0.0625 (9) | −0.0013 (6) | 0.0304 (7) | −0.0013 (6) |
N3B | 0.0495 (8) | 0.0443 (7) | 0.0464 (7) | −0.0005 (6) | 0.0195 (6) | −0.0044 (6) |
C4A | 0.0521 (10) | 0.0519 (10) | 0.0633 (11) | −0.0020 (8) | 0.0333 (9) | −0.0068 (8) |
C4B | 0.0489 (9) | 0.0503 (9) | 0.0484 (9) | −0.0023 (7) | 0.0229 (8) | 0.0002 (7) |
C4A' | 0.0469 (9) | 0.0512 (9) | 0.0569 (10) | −0.0034 (7) | 0.0290 (8) | −0.0030 (7) |
C4B' | 0.0445 (9) | 0.0489 (9) | 0.0425 (8) | −0.0018 (7) | 0.0198 (7) | −0.0030 (7) |
C5A | 0.0646 (12) | 0.0689 (13) | 0.0855 (14) | −0.0023 (10) | 0.0513 (11) | 0.0005 (10) |
C5B | 0.0658 (12) | 0.0649 (11) | 0.0512 (10) | 0.0001 (9) | 0.0335 (9) | −0.0045 (8) |
C6A | 0.0704 (14) | 0.0738 (14) | 0.0899 (15) | −0.0128 (11) | 0.0511 (12) | 0.0088 (11) |
C6B | 0.0848 (15) | 0.0734 (13) | 0.0648 (12) | 0.0046 (11) | 0.0429 (11) | −0.0170 (10) |
C7A | 0.0699 (13) | 0.0544 (11) | 0.0843 (14) | −0.0078 (10) | 0.0371 (11) | 0.0123 (10) |
C7B | 0.0952 (17) | 0.0519 (11) | 0.0867 (15) | 0.0033 (11) | 0.0476 (13) | −0.0166 (10) |
C8A | 0.0580 (11) | 0.0485 (10) | 0.0733 (12) | 0.0009 (8) | 0.0339 (10) | 0.0057 (8) |
C8B | 0.0857 (15) | 0.0480 (10) | 0.0714 (13) | 0.0014 (9) | 0.0425 (11) | −0.0013 (8) |
C8A' | 0.0409 (8) | 0.0473 (9) | 0.0498 (9) | −0.0028 (7) | 0.0222 (7) | 0.0001 (7) |
C8B' | 0.0504 (9) | 0.0468 (9) | 0.0442 (8) | 0.0017 (7) | 0.0227 (7) | −0.0018 (7) |
C9A | 0.0849 (15) | 0.0444 (10) | 0.0987 (16) | −0.0026 (10) | 0.0505 (13) | 0.0025 (10) |
C9B | 0.0868 (15) | 0.0460 (10) | 0.0687 (12) | 0.0036 (10) | 0.0270 (11) | −0.0114 (9) |
C10A | 0.0412 (9) | 0.0513 (9) | 0.0518 (9) | −0.0005 (7) | 0.0228 (7) | 0.0051 (7) |
C10B | 0.0501 (10) | 0.0655 (11) | 0.0435 (9) | 0.0082 (8) | 0.0203 (8) | −0.0063 (8) |
N11A | 0.0415 (7) | 0.0561 (8) | 0.0453 (8) | −0.0012 (6) | 0.0217 (6) | 0.0100 (6) |
N11B | 0.0475 (8) | 0.0537 (8) | 0.0415 (7) | 0.0071 (6) | 0.0222 (6) | −0.0045 (6) |
C12A | 0.0385 (8) | 0.0533 (9) | 0.0500 (9) | 0.0032 (7) | 0.0213 (7) | 0.0141 (7) |
C12B | 0.0560 (10) | 0.0462 (9) | 0.0415 (8) | 0.0035 (7) | 0.0241 (8) | −0.0018 (6) |
C13A | 0.0570 (11) | 0.0587 (11) | 0.0684 (11) | 0.0054 (9) | 0.0348 (9) | 0.0052 (9) |
C13B | 0.0619 (12) | 0.0770 (13) | 0.0520 (10) | 0.0144 (10) | 0.0280 (9) | −0.0044 (9) |
C14A | 0.0647 (13) | 0.0808 (14) | 0.0776 (14) | 0.0150 (11) | 0.0461 (12) | 0.0154 (11) |
C14B | 0.0842 (16) | 0.0910 (15) | 0.0588 (12) | 0.0145 (12) | 0.0426 (12) | −0.0071 (11) |
C15A | 0.0501 (11) | 0.0950 (16) | 0.0849 (15) | 0.0072 (11) | 0.0380 (11) | 0.0303 (13) |
C15B | 0.0956 (17) | 0.0875 (15) | 0.0461 (10) | −0.0038 (13) | 0.0329 (11) | −0.0109 (10) |
C16A | 0.0486 (11) | 0.0888 (15) | 0.0742 (13) | −0.0137 (10) | 0.0187 (10) | 0.0193 (11) |
C16B | 0.0736 (15) | 0.116 (2) | 0.0473 (11) | −0.0050 (13) | 0.0174 (10) | −0.0126 (11) |
C17A | 0.0507 (10) | 0.0729 (12) | 0.0521 (10) | −0.0069 (9) | 0.0203 (8) | 0.0098 (9) |
C17B | 0.0556 (11) | 0.0883 (15) | 0.0490 (10) | 0.0010 (10) | 0.0207 (9) | −0.0083 (9) |
S1A—C10A | 1.6385 (17) | C8B—C8B' | 1.399 (2) |
O1A—C4A | 1.219 (2) | C8B—H8B | 0.9300 |
N1A—C2A | 1.292 (2) | C9A—H9AA | 0.9600 |
N1A—C8A' | 1.392 (2) | C9A—H9AB | 0.9600 |
N1B—C2B | 1.293 (2) | C9A—H9AC | 0.9600 |
N1B—C8B' | 1.392 (2) | C9B—H9BA | 0.9600 |
S1B—C10B | 1.6401 (18) | C9B—H9BB | 0.9600 |
O1B—C4B | 1.220 (2) | C9B—H9BC | 0.9600 |
C2A—N3A | 1.367 (2) | C10A—N11A | 1.332 (2) |
C2A—C10A | 1.511 (2) | C10B—N11B | 1.334 (2) |
C2B—N3B | 1.368 (2) | N11A—C12A | 1.430 (2) |
C2B—C10B | 1.510 (2) | N11A—H11A | 0.88 (2) |
N3A—C4A | 1.404 (2) | N11B—C12B | 1.420 (2) |
N3A—C9A | 1.467 (2) | N11B—H11B | 0.87 (2) |
N3B—C4B | 1.399 (2) | C12A—C17A | 1.379 (3) |
N3B—C9B | 1.470 (2) | C12A—C13A | 1.382 (3) |
C4A—C4A' | 1.453 (3) | C12B—C13B | 1.375 (2) |
C4B—C4B' | 1.455 (2) | C12B—C17B | 1.390 (3) |
C4A'—C8A' | 1.396 (2) | C13A—C14A | 1.382 (3) |
C4A'—C5A | 1.401 (2) | C13A—H13A | 0.9300 |
C4B'—C8B' | 1.392 (2) | C13B—C14B | 1.390 (3) |
C4B'—C5B | 1.399 (2) | C13B—H13B | 0.9300 |
C5A—C6A | 1.371 (3) | C14A—C15A | 1.372 (3) |
C5A—H5A | 0.9300 | C14A—H14A | 0.9300 |
C5B—C6B | 1.367 (3) | C14B—C15B | 1.365 (3) |
C5B—H5B | 0.9300 | C14B—H14B | 0.9300 |
C6A—C7A | 1.385 (3) | C15A—C16A | 1.374 (3) |
C6A—H6A | 0.9300 | C15A—H15A | 0.9300 |
C6B—C7B | 1.387 (3) | C15B—C16B | 1.369 (3) |
C6B—H6B | 0.9300 | C15B—H15B | 0.9300 |
C7A—C8A | 1.373 (3) | C16A—C17A | 1.389 (3) |
C7A—H7A | 0.9300 | C16A—H16A | 0.9300 |
C7B—C8B | 1.375 (3) | C16B—C17B | 1.380 (3) |
C7B—H7B | 0.9300 | C16B—H16B | 0.9300 |
C8A—C8A' | 1.396 (2) | C17A—H17A | 0.9300 |
C8A—H8A | 0.9300 | C17B—H17B | 0.9300 |
C2A—N1A—C8A' | 117.91 (14) | H9AA—C9A—H9AB | 109.5 |
C2B—N1B—C8B' | 117.44 (14) | N3A—C9A—H9AC | 109.5 |
N1A—C2A—N3A | 124.89 (14) | H9AA—C9A—H9AC | 109.5 |
N1A—C2A—C10A | 116.71 (14) | H9AB—C9A—H9AC | 109.5 |
N3A—C2A—C10A | 118.39 (14) | N3B—C9B—H9BA | 109.5 |
N1B—C2B—N3B | 125.33 (14) | N3B—C9B—H9BB | 109.5 |
N1B—C2B—C10B | 116.84 (15) | H9BA—C9B—H9BB | 109.5 |
N3B—C2B—C10B | 117.83 (15) | N3B—C9B—H9BC | 109.5 |
C2A—N3A—C4A | 121.39 (14) | H9BA—C9B—H9BC | 109.5 |
C2A—N3A—C9A | 122.23 (15) | H9BB—C9B—H9BC | 109.5 |
C4A—N3A—C9A | 116.35 (15) | N11A—C10A—C2A | 112.34 (14) |
C2B—N3B—C4B | 121.15 (14) | N11A—C10A—S1A | 127.74 (13) |
C2B—N3B—C9B | 122.32 (15) | C2A—C10A—S1A | 119.91 (12) |
C4B—N3B—C9B | 116.47 (15) | N11B—C10B—C2B | 111.73 (14) |
O1A—C4A—N3A | 120.23 (17) | N11B—C10B—S1B | 130.79 (13) |
O1A—C4A—C4A' | 125.05 (17) | C2B—C10B—S1B | 117.47 (13) |
N3A—C4A—C4A' | 114.72 (14) | C10A—N11A—C12A | 126.80 (14) |
O1B—C4B—N3B | 120.52 (16) | C10A—N11A—H11A | 119.1 (13) |
O1B—C4B—C4B' | 124.74 (16) | C12A—N11A—H11A | 113.5 (13) |
N3B—C4B—C4B' | 114.73 (14) | C10B—N11B—C12B | 131.43 (15) |
C8A'—C4A'—C5A | 119.71 (17) | C10B—N11B—H11B | 114.1 (13) |
C8A'—C4A'—C4A | 119.49 (15) | C12B—N11B—H11B | 114.0 (13) |
C5A—C4A'—C4A | 120.80 (16) | C17A—C12A—C13A | 120.63 (17) |
C8B'—C4B'—C5B | 120.06 (16) | C17A—C12A—N11A | 117.17 (16) |
C8B'—C4B'—C4B | 119.62 (14) | C13A—C12A—N11A | 122.12 (17) |
C5B—C4B'—C4B | 120.33 (16) | C13B—C12B—C17B | 119.80 (16) |
C6A—C5A—C4A' | 120.07 (19) | C13B—C12B—N11B | 125.03 (17) |
C6A—C5A—H5A | 120.0 | C17B—C12B—N11B | 115.15 (16) |
C4A'—C5A—H5A | 120.0 | C14A—C13A—C12A | 119.0 (2) |
C6B—C5B—C4B' | 119.92 (18) | C14A—C13A—H13A | 120.5 |
C6B—C5B—H5B | 120.0 | C12A—C13A—H13A | 120.5 |
C4B'—C5B—H5B | 120.0 | C12B—C13B—C14B | 119.2 (2) |
C5A—C6A—C7A | 120.17 (18) | C12B—C13B—H13B | 120.4 |
C5A—C6A—H6A | 119.9 | C14B—C13B—H13B | 120.4 |
C7A—C6A—H6A | 119.9 | C15A—C14A—C13A | 121.0 (2) |
C5B—C6B—C7B | 120.16 (18) | C15A—C14A—H14A | 119.5 |
C5B—C6B—H6B | 119.9 | C13A—C14A—H14A | 119.5 |
C7B—C6B—H6B | 119.9 | C15B—C14B—C13B | 121.2 (2) |
C8A—C7A—C6A | 120.58 (19) | C15B—C14B—H14B | 119.4 |
C8A—C7A—H7A | 119.7 | C13B—C14B—H14B | 119.4 |
C6A—C7A—H7A | 119.7 | C14A—C15A—C16A | 119.72 (19) |
C8B—C7B—C6B | 120.80 (19) | C14A—C15A—H15A | 120.1 |
C8B—C7B—H7B | 119.6 | C16A—C15A—H15A | 120.1 |
C6B—C7B—H7B | 119.6 | C14B—C15B—C16B | 119.32 (19) |
C7A—C8A—C8A' | 120.18 (18) | C14B—C15B—H15B | 120.3 |
C7A—C8A—H8A | 119.9 | C16B—C15B—H15B | 120.3 |
C8A'—C8A—H8A | 119.9 | C15A—C16A—C17A | 120.3 (2) |
C7B—C8B—C8B' | 119.73 (19) | C15A—C16A—H16A | 119.9 |
C7B—C8B—H8B | 120.1 | C17A—C16A—H16A | 119.9 |
C8B'—C8B—H8B | 120.1 | C15B—C16B—C17B | 120.8 (2) |
N1A—C8A'—C4A' | 121.56 (15) | C15B—C16B—H16B | 119.6 |
N1A—C8A'—C8A | 119.17 (15) | C17B—C16B—H16B | 119.6 |
C4A'—C8A'—C8A | 119.26 (16) | C12A—C17A—C16A | 119.35 (19) |
C4B'—C8B'—N1B | 121.68 (15) | C12A—C17A—H17A | 120.3 |
C4B'—C8B'—C8B | 119.33 (16) | C16A—C17A—H17A | 120.3 |
N1B—C8B'—C8B | 118.99 (16) | C16B—C17B—C12B | 119.6 (2) |
N3A—C9A—H9AA | 109.5 | C16B—C17B—H17B | 120.2 |
N3A—C9A—H9AB | 109.5 | C12B—C17B—H17B | 120.2 |
C8A'—N1A—C2A—N3A | −1.0 (3) | C4A—C4A'—C8A'—C8A | −178.35 (17) |
C8A'—N1A—C2A—C10A | 179.14 (14) | C7A—C8A—C8A'—N1A | 179.63 (18) |
C8B'—N1B—C2B—N3B | −1.0 (3) | C7A—C8A—C8A'—C4A' | −0.4 (3) |
C8B'—N1B—C2B—C10B | 179.33 (14) | C5B—C4B'—C8B'—N1B | −179.59 (16) |
N1A—C2A—N3A—C4A | 0.6 (3) | C4B—C4B'—C8B'—N1B | 0.4 (3) |
C10A—C2A—N3A—C4A | −179.57 (16) | C5B—C4B'—C8B'—C8B | 0.6 (3) |
N1A—C2A—N3A—C9A | −177.51 (18) | C4B—C4B'—C8B'—C8B | −179.50 (18) |
C10A—C2A—N3A—C9A | 2.4 (3) | C2B—N1B—C8B'—C4B' | −0.5 (2) |
N1B—C2B—N3B—C4B | 2.7 (3) | C2B—N1B—C8B'—C8B | 179.35 (18) |
C10B—C2B—N3B—C4B | −177.67 (15) | C7B—C8B—C8B'—C4B' | −0.6 (3) |
N1B—C2B—N3B—C9B | 179.73 (17) | C7B—C8B—C8B'—N1B | 179.5 (2) |
C10B—C2B—N3B—C9B | −0.6 (2) | N1A—C2A—C10A—N11A | 75.1 (2) |
C2A—N3A—C4A—O1A | −178.66 (18) | N3A—C2A—C10A—N11A | −104.80 (18) |
C9A—N3A—C4A—O1A | −0.5 (3) | N1A—C2A—C10A—S1A | −103.97 (17) |
C2A—N3A—C4A—C4A' | 0.9 (3) | N3A—C2A—C10A—S1A | 76.14 (19) |
C9A—N3A—C4A—C4A' | 179.10 (17) | N1B—C2B—C10B—N11B | 83.6 (2) |
C2B—N3B—C4B—O1B | 178.41 (17) | N3B—C2B—C10B—N11B | −96.12 (19) |
C9B—N3B—C4B—O1B | 1.2 (3) | N1B—C2B—C10B—S1B | −96.53 (18) |
C2B—N3B—C4B—C4B' | −2.6 (2) | N3B—C2B—C10B—S1B | 83.78 (19) |
C9B—N3B—C4B—C4B' | −179.78 (16) | C2A—C10A—N11A—C12A | −177.47 (15) |
O1A—C4A—C4A'—C8A' | 177.6 (2) | S1A—C10A—N11A—C12A | 1.5 (3) |
N3A—C4A—C4A'—C8A' | −1.9 (3) | C2B—C10B—N11B—C12B | −179.09 (17) |
O1A—C4A—C4A'—C5A | −2.2 (3) | S1B—C10B—N11B—C12B | 1.0 (3) |
N3A—C4A—C4A'—C5A | 178.19 (18) | C10A—N11A—C12A—C17A | −133.70 (19) |
O1B—C4B—C4B'—C8B' | −179.87 (18) | C10A—N11A—C12A—C13A | 49.3 (3) |
N3B—C4B—C4B'—C8B' | 1.1 (2) | C10B—N11B—C12B—C13B | 5.4 (3) |
O1B—C4B—C4B'—C5B | 0.1 (3) | C10B—N11B—C12B—C17B | −176.2 (2) |
N3B—C4B—C4B'—C5B | −178.91 (16) | C17A—C12A—C13A—C14A | −0.8 (3) |
C8A'—C4A'—C5A—C6A | −1.4 (3) | N11A—C12A—C13A—C14A | 176.03 (17) |
C4A—C4A'—C5A—C6A | 178.5 (2) | C17B—C12B—C13B—C14B | 1.1 (3) |
C8B'—C4B'—C5B—C6B | −0.4 (3) | N11B—C12B—C13B—C14B | 179.36 (19) |
C4B—C4B'—C5B—C6B | 179.66 (18) | C12A—C13A—C14A—C15A | −0.3 (3) |
C4A'—C5A—C6A—C7A | 0.1 (4) | C12B—C13B—C14B—C15B | −0.4 (4) |
C4B'—C5B—C6B—C7B | 0.3 (3) | C13A—C14A—C15A—C16A | 1.0 (3) |
C5A—C6A—C7A—C8A | 1.1 (4) | C13B—C14B—C15B—C16B | −0.9 (4) |
C5B—C6B—C7B—C8B | −0.3 (4) | C14A—C15A—C16A—C17A | −0.6 (3) |
C6A—C7A—C8A—C8A' | −0.9 (3) | C14B—C15B—C16B—C17B | 1.5 (4) |
C6B—C7B—C8B—C8B' | 0.5 (4) | C13A—C12A—C17A—C16A | 1.2 (3) |
C2A—N1A—C8A'—C4A' | −0.1 (2) | N11A—C12A—C17A—C16A | −175.84 (17) |
C2A—N1A—C8A'—C8A | 179.82 (16) | C15A—C16A—C17A—C12A | −0.4 (3) |
C5A—C4A'—C8A'—N1A | −178.49 (18) | C15B—C16B—C17B—C12B | −0.8 (4) |
C4A—C4A'—C8A'—N1A | 1.6 (3) | C13B—C12B—C17B—C16B | −0.5 (3) |
C5A—C4A'—C8A'—C8A | 1.5 (3) | N11B—C12B—C17B—C16B | −179.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N11A—H11A···N1B | 0.88 (2) | 2.05 (2) | 2.913 (2) | 166.7 (18) |
N11B—H11B···N1A | 0.87 (2) | 2.04 (2) | 2.907 (2) | 171.6 (19) |
C9A—H9AB···S1A | 0.96 | 2.87 | 3.424 (2) | 118 |
C13B—H13B···S1B | 0.93 | 2.58 | 3.243 (3) | 129 |
C7A—H7A···O1Bi | 0.93 | 2.49 | 3.386 (3) | 162 |
C7B—H7B···O1Aii | 0.93 | 2.47 | 3.385 (3) | 166 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
The authors are grateful to the Institute of Bioorganic Chemistry, Academy Sciences of Uzbekistan, for providing laboratory facilities.
Funding information
The chemical part of the work was financially supported by a Georg Forster Research Fellowship for Experienced Researchers of the Alexander von Humboldt Foundation (AvH) to BE (UZB 1186936 GF-E).
References
Baglai, I., Maraval, V., Voitenko, Z. V., Duhayon, C., Volovenko, Y. M. & Chauvin, R. (2014). Turk. J. Chem. 38, 121–126. CrossRef CAS Google Scholar
Belskaya, N. P., Dehaen, W. & Bakulev, V. A. (2010). Arkivoc, pp. 275–332. CrossRef Google Scholar
Britsun, V. N., Esipenko, A. N. & Lozinskii, M. O. (2008). Chem. Heterocycl. Compd, 44, 1429–1459. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guo, W. S., Xin, X., Zhao, K. L., Wen, L. R. & Li, M. (2015). RSC Adv. 5, 70429–70432. CrossRef CAS Google Scholar
Jagodziński, T. S. (2003). Chem. Rev. 103, 197–228. PubMed Google Scholar
Koketsu, M. & Ishihara, H. (2007). Synthesis, 4, 15–25. CAS Google Scholar
Kotipalli, T., Kavala, V., Janreddy, D., Bandi, V., Kuo, Ch.-W. & Yao, Ch.-F. (2016). Eur. J. Org. Chem. pp. 1182–1193. CrossRef Google Scholar
Krayushkin, M. M., Yarovenko, V. N. & Zavarzin, I. V. (2004). Russ. Chem. Bull. 53, 517–527. CrossRef CAS Google Scholar
Kundu, P., Mondal, A. & Chowdhury, C. (2016). J. Org. Chem. 81, 6596–6608. CrossRef CAS PubMed Google Scholar
Li, H. Zh., Xue, W. J. & Wu, A. X. (2014). Tetrahedron, 70, 4645–4651. CrossRef CAS Google Scholar
Li, M., Sun, K. N. & Wen, L. R. (2016). RSC Adv. 6, 21535–21539. CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mereiter, K., Gaith, A. H. & Fröhlich, J. (2000). Private communication (refcode: QAJVAY). CCDC, Cambridge, England. Google Scholar
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Saitkulov, F. E., Tashniyazov, A. A., Mamadrahimov, A. A. & Shakhidoyatov, K. M. (2014). Acta Cryst. E70, o788. CrossRef IUCr Journals Google Scholar
Shakhidoyatov, Kh. M., Egamov, D. I. & Askarov, I. R. (1997). Uzbek Chem. J, 6, 26–27. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Skelton, B. W. & Massi, M. (2018). Private communication (refcode: AGECIB). CCDC, Cambridge, England. Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Utayeva, F. R., Okmanov, R. Y., Mukarramov, N. I., Shakhidoyatov, K. M. & Tashkhodjaev, B. (2013). Acta Cryst. E69, o1094. CrossRef IUCr Journals Google Scholar
Voitenko, Z. V., Samoilenko, V. P., Kovtunenko, V. A., Gurkevich, V. Yu., Tyltin, A. K., Shcherbakov, M. V. & Shishkin, O. V. (1999). Chem. Heterocycl. Compd. 35, 600–607. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xiao, H.-L. & Jian, F.-F. (2006). Acta Cryst. E62, o2854–o2855. CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.