research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3-methyl-4-oxo-N-phenyl-3,4-di­hydro­quinazoline-2-carbo­thio­amide

crossmark logo

aQarshi State University, Kochabog str. 17, Qarshi 180119, Uzbekistan, bS. Yunusov Institute of Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek str. 77, Tashkent 100170, Uzbekistan, cUniversity of Geological Sciences, Olimlar str. 64, Mirzo Ulugbek district, Tashkent, Uzbekistan, dNational University of Uzbekistan named after Mirzo Ulugbek 100174, University Str. 4, Olmazor District, Tashkent, Uzbekistan, and eTurin Polytechnic University in Tashkent, Kichik Khalka yuli str. 17, 100095 Tashkent, Uzbekistan
*Correspondence e-mail: a_tojiboev@yahoo.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 15 November 2021; accepted 9 December 2021; online 1 January 2022)

The asymmetric unit of the title compound, C16H13N3OS, comprises two mol­ecules (A and B) with similar conformations that differ mainly in the orientation of the phenyl group relative to the rest of the mol­ecule, as expressed by the Cthio­amide—Nthio­amide—Cphen­yl—Cphen­yl torsion angle of 49.3 (3)° for mol­ecule A and of 5.4 (3)° for mol­ecule B. In the crystal, two inter­molecular N—H⋯N hydrogen bonds lead to the formation of a dimer with R22(10) graph-set notation. A Hirshfeld surface analysis revealed that H⋯H inter­actions are the most important inter­molecular inter­actions, contributing 40.9% to the Hirshfeld surface.

1. Chemical context

Thio­amides and their derivatives are important representatives of organic compounds containing a sulfur atom. The presence of bifunctional properties in thio­amides, resulting from the presence of nitro­gen and sulfur atoms, and their participation in reactions as electrophilic or nucleophilic reagents can lead to the formation of different heterocyclic compounds. Several review articles have been published on the syntheses, physico-chemical properties and applications of thio­amides (Jagodziński, 2003[Jagodziński, T. S. (2003). Chem. Rev. 103, 197-228.]; Belskaya et al., 2010[Belskaya, N. P., Dehaen, W. & Bakulev, V. A. (2010). Arkivoc, pp. 275-332.]; Koketsu & Ishihara, 2007[Koketsu, M. & Ishihara, H. (2007). Synthesis, 4, 15-25.]; Krayushkin et al., 2004[Krayushkin, M. M., Yarovenko, V. N. & Zavarzin, I. V. (2004). Russ. Chem. Bull. 53, 517-527.]; Britsun et al., 2008[Britsun, V. N., Esipenko, A. N. & Lozinskii, M. O. (2008). Chem. Heterocycl. Compd, 44, 1429-1459.]).

One of the methods of choice for the synthesis of widely used thio­amides is the Wilgerodt–Kindler reaction. As shown by previous studies, the Wilgerodt–Kindler reactions with 2-methyl­quinazoline-4-one went to the active methyl group in the position 2 and, accordingly, thio­amides were synthesized in a series of quinazoline derivatives (Shakhidoyatov et al., 1997[Shakhidoyatov, Kh. M., Egamov, D. I. & Askarov, I. R. (1997). Uzbek Chem. J, 6, 26-27.]). Continuing our work in this direction, we have synthesized 2,3-di­methyl­quinazoline-4-one and studied the corresponding Wilgerodt–Kindler reactions.

During the reaction involving 2,3-di­methyl­quinazoline-4-one, sulfur, aniline, the solvent dimethyl sulfoxide and the catalyst sodium sulfide, the reaction went to the active methyl group in position 2 and new thio­amides of a number of deriv­atives of quinazoline-4-one were obtained. The synthesis and crystal structure of 3-methyl-4-oxo-N-phenyl-3,4-di­hydro­quinazoline-2-carbo­thio­amide, C16H13N3OS, is reported here. Relevant inter­molecular contacts were qu­anti­fied by using Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The title compound crystallizes with two mol­ecules, A and B, in the asymmetric unit (Fig. 1[link]). In mol­ecules A and B the orientations of the quinazoline ring system and the phenyl ring relative to the thio­amide group differ, as shown by the values of the N3—C2—C10—S1 and C10—N11—C12—C13 torsion angles of 76.14 (19) and 49.3 (3)°, respectively, in mol­ecule A and 83.78 (19) and 5.4 (3)° in mol­ecule B. As a result, there are differences in the intra­molecular distances between the sulfur and hydrogen atoms in mol­ecules A and B. In mol­ecule A, the contacts S1A⋯H9AB and S1A⋯H13A are 2.873 and 2.897 Å whereas the corresponding distances in mol­ecule B are 3.054 and 2.578 Å. The phenyl and pyrimidine rings in both mol­ecules are essentially coplanar, with r.m.s. deviations of 0.0225 and 0.0119 Å for mol­ecule A and B, respectively. Fig. 2[link] shows that the pyrimidine moieties of the mol­ecules are almost superimposable.

[Figure 1]
Figure 1
Asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2]
Figure 2
Overlay plot of the two independent mol­ecules in the title compound.

3. Supra­molecular features

In the crystal, mol­ecules A and B form a dimer with an R22(10) ring motif through inter­mol­ecular N—H⋯N hydrogen bonds (Fig. 3[link], Table 1[link]). In addition, mol­ecule A inter­acts with mol­ecule B by a C—H⋯ π inter­action (the C13A—HCg1 distance is 3.148 Å, Cg1 is the centroid of atoms C12B–C17B). Other weak C7A—H7A⋯O1B, C7A—H7A ⋯O1B, C7B—H7B⋯O1A, C9A—H9AB⋯S1A and C13B—H13B⋯S1B hydrogen bonds link adjacent dimers, forming supra­molecular layers expanding parallel to (010) (Fig. 4[link]). The overall packing of mol­ecules leads to the formation of narrow channels along the b-axis direction, passing through nodes and the centre of the cell (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H11A⋯N1B 0.88 (2) 2.05 (2) 2.913 (2) 166.7 (18)
N1B—H11B⋯N1A 0.87 (2) 2.04 (2) 2.907 (2) 171.6 (19)
C9A—H9AB⋯S1A 0.96 2.87 3.424 (2) 118
C13B—H13B⋯S1B 0.93 2.58 3.243 (3) 129
C7A—H7A⋯O1Bi 0.93 2.49 3.386 (3) 162
C7B—H7B⋯O1Aii 0.93 2.47 3.385 (3) 166
Symmetry codes: (i) [-x+1, -y+2, -z+1]; (ii) [-x+1, -y+1, -z+1].
[Figure 3]
Figure 3
A diagram showing the intra­mol­ecular C—H⋯S (green dashed lines) and the inter­molecular N—H⋯N (light blue dashed lines) and C—H⋯O (blue dashed lines) hydrogen bonds, as well as C—S⋯π (red dashed lines) inter­actions present in the title compound. H atoms not involved in the inter­actions have been omitted for clarity.
[Figure 4]
Figure 4
A view of the crystal packing of the title compound along the a axis. Inter­molecular hydrogen bonds and C—S⋯π inter­actions are displayed by blue and green dotted lines, respectively.
[Figure 5]
Figure 5
View of the narrow channels formed along the b axis.

4. Hirshfeld surface analysis

A Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]) to qu­antify and visualize inter­molecular inter­actions in the crystal structure of the title compound. The HS mapped with dnorm is represented in Fig. 6[link]. The white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter or longer, respectively, than the van der Waals radii. The two-dimensional fingerprint plot for all contacts is depicted in Fig. 7[link]a, and delineated in H⋯H, C⋯H/H⋯C, S⋯H/H⋯S, N⋯H/H⋯N, and O⋯H/H⋯O contacts (Fig. 7[link]b–f) whereby H⋯H contacts are responsible for the largest contribution (40.9%) to the Hirshfeld surface. C⋯H/H⋯C contribute 23.7%, S⋯H/H⋯S contacts 10.7%, N⋯H/H⋯N contacts 8.1% and O⋯H/H⋯O contacts 7.0% to the total Hirshfeld surface. The contributions of further contacts are only minor and amount to C⋯C (4.0%), S⋯C/C⋯S (1.9%), N⋯C/C⋯N (1.2%), S⋯S (1.0%), S⋯C/C⋯S (0.6%), O⋯N/N⋯O (0.2%) and O⋯C/C⋯O (0.1%).

[Figure 6]
Figure 6
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm.
[Figure 7]
Figure 7
Two-dimensional fingerprint plots for the title compound, (a) for all contacts and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) S⋯H/H⋯S, (e) N⋯H/H⋯N and (f) O⋯H/H⋯O contacts. di and de denote the closest inter­nal and external distances (in Å) from a point on the surface.

5. Database survey

A search in the Cambridge Structural Database (CSD, version 5.41, update of January 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed six matches for mol­ecules containing the 2,3-di­methyl­quinazolin-4(3H)-one moiety with a similar planar conformation as that in the title structure: AFOCIJ (Utayeva et al., 2013[Utayeva, F. R., Okmanov, R. Y., Mukarramov, N. I., Shakhidoyatov, K. M. & Tashkhodjaev, B. (2013). Acta Cryst. E69, o1094.]), HOCYED (Voitenko et al., 1999[Voitenko, Z. V., Samoilenko, V. P., Kovtunenko, V. A., Gurkevich, V. Yu., Tyltin, A. K., Shcherbakov, M. V. & Shishkin, O. V. (1999). Chem. Heterocycl. Compd. 35, 600-607.]), MAHLOZ (Kotipalli et al., 2016[Kotipalli, T., Kavala, V., Janreddy, D., Bandi, V., Kuo, Ch.-W. & Yao, Ch.-F. (2016). Eur. J. Org. Chem. pp. 1182-1193.]), MUDHIE (Baglai et al., 2014[Baglai, I., Maraval, V., Voitenko, Z. V., Duhayon, C., Volovenko, Y. M. & Chauvin, R. (2014). Turk. J. Chem. 38, 121-126.]), UTIDIM (Kundu et al., 2016[Kundu, P., Mondal, A. & Chowdhury, C. (2016). J. Org. Chem. 81, 6596-6608.]) and XODZIB (Saitkulov et al., 2014[Saitkulov, F. E., Tashniyazov, A. A., Mamadrahimov, A. A. & Shakhidoyatov, K. M. (2014). Acta Cryst. E70, o788.]). A search for the 2-methyl-N-phenyl­prop-2-ene­thio­amide moiety gave six hits: ADEKUQ (Xiao & Jian, 2006[Xiao, H.-L. & Jian, F.-F. (2006). Acta Cryst. E62, o2854-o2855.]), AGECIB (Skelton & Massi, 2018[Skelton, B. W. & Massi, M. (2018). Private communication (refcode: AGECIB). CCDC, Cambridge, England.]), GOFFOY (Li et al., 2014[Li, H. Zh., Xue, W. J. & Wu, A. X. (2014). Tetrahedron, 70, 4645-4651.]), GOXFUW (Li et al., 2016[Li, M., Sun, K. N. & Wen, L. R. (2016). RSC Adv. 6, 21535-21539.]), JURWEA (Guo et al., 2015[Guo, W. S., Xin, X., Zhao, K. L., Wen, L. R. & Li, M. (2015). RSC Adv. 5, 70429-70432.]) and QAJVAY (Mereiter et al., 2000[Mereiter, K., Gaith, A. H. & Fröhlich, J. (2000). Private communication (refcode: QAJVAY). CCDC, Cambridge, England.]).

6. Synthesis and crystallization

0.435 g (0.0025 mol) of 2,3-di­methyl­quinazoline-4-one, 0.465 g (0.005 mol) of aniline, 0.24 g (0.0075 mol) of sulfur, 0.05 g of sodium sulfide (Na2S·9H2O) and 4 ml of dimethyl sulfoxide were injected into a round-bottomed flask with a volume of 100 ml. Then the reaction flask was heated to 403 K for 6 h. After the end of the reaction, the flask was cooled and 40 ml of an aqueous sodium hydroxide solution were added. The resulting mixture was filtered, then added to a dilute solution of sulfuric acid (pH 6). The formed precipitate was filtered off and recrystallized in methanol. In total, 0.5 g (64.0%) of the product were obtained, m.p. 481–483 K.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically, with C—H = 0.96 Å (for methyl­ene H atoms) and C—H = 0.93 Å (for aromatic H atoms), and were refined with Uiso(H) = 1.5Ueq(Cmeth­yl) and 1.2Ueq(C), respectively. H atoms bonded to nitro­gen were located in a difference-Fourier map, and their positional and isotropic displacement parameters were freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C16H13N3OS
Mr 295.35
Crystal system, space group Monoclinic, P21/n
Temperature (K) 566
a, b, c (Å) 11.7685 (3), 16.3641 (3), 16.3798 (3)
β (°) 110.646 (2)
V3) 2951.85 (11)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.96
Crystal size (mm) 0.25 × 0.23 × 0.20
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.639, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16801, 5685, 4788
Rint 0.022
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.121, 1.06
No. of reflections 5685
No. of parameters 390
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.43
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020), Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

3-Methyl-4-oxo-N-phenyl-3,4-dihydroquinazoline-2-carbothioamide top
Crystal data top
C16H13N3OSF(000) = 1232
Mr = 295.35Dx = 1.329 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 11.7685 (3) ÅCell parameters from 9141 reflections
b = 16.3641 (3) Åθ = 2.7–71.1°
c = 16.3798 (3) ŵ = 1.96 mm1
β = 110.646 (2)°T = 566 K
V = 2951.85 (11) Å3Prismatic, yellow
Z = 80.25 × 0.23 × 0.20 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
5685 independent reflections
Radiation source: micro-focus sealed X-ray tube4788 reflections with I > 2σ(I)
Detector resolution: 10.00000 pixels mm-1Rint = 0.022
ω scansθmax = 71.4°, θmin = 4.0°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1414
Tmin = 0.639, Tmax = 1.000k = 1917
16801 measured reflectionsl = 1920
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.6163P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.32 e Å3
5685 reflectionsΔρmin = 0.42 e Å3
390 parametersExtinction correction: SHELXL (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00124 (12)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.46771 (5)0.62649 (4)0.89046 (3)0.07206 (19)
O1A0.69766 (15)0.59324 (9)0.65155 (11)0.0755 (4)
N1A0.48752 (12)0.75527 (8)0.72159 (9)0.0456 (3)
N1B0.22774 (13)0.73699 (9)0.57212 (9)0.0474 (3)
S1B0.04219 (5)0.86597 (6)0.63642 (4)0.1030 (3)
O1B0.30121 (15)0.90703 (8)0.41700 (10)0.0690 (4)
C2A0.49005 (14)0.67801 (10)0.73853 (10)0.0430 (4)
C2B0.22279 (15)0.81489 (10)0.58376 (10)0.0444 (4)
N3A0.55988 (13)0.62176 (8)0.71623 (10)0.0487 (3)
N3B0.24924 (13)0.87402 (8)0.53417 (9)0.0461 (3)
C4A0.63788 (17)0.64470 (11)0.67217 (12)0.0523 (4)
C4B0.28038 (16)0.85368 (11)0.46179 (11)0.0476 (4)
C4A'0.63881 (16)0.73161 (11)0.65427 (12)0.0488 (4)
C4B'0.28702 (15)0.76640 (10)0.44719 (10)0.0441 (4)
C5A0.7150 (2)0.76334 (13)0.61289 (15)0.0663 (5)
H5A0.7671860.7288220.5977520.080*
C5B0.31931 (18)0.73805 (12)0.37776 (12)0.0572 (5)
H5B0.3362430.7750280.3404700.069*
C6A0.7128 (2)0.84521 (14)0.59469 (16)0.0719 (6)
H6A0.7634100.8661240.5671580.086*
C6B0.3260 (2)0.65590 (14)0.36481 (14)0.0699 (6)
H6B0.3477550.6370570.3188130.084*
C7A0.6353 (2)0.89685 (13)0.61719 (15)0.0669 (5)
H7A0.6333010.9521780.6037500.080*
C7B0.3002 (2)0.60060 (13)0.42011 (16)0.0738 (6)
H7B0.3045810.5448360.4106620.089*
C8A0.56154 (18)0.86710 (11)0.65916 (14)0.0570 (5)
H8A0.5106980.9024330.6747320.068*
C8B0.2684 (2)0.62723 (12)0.48872 (14)0.0644 (5)
H8B0.2519670.5896640.5256840.077*
C8A'0.56261 (15)0.78398 (10)0.67853 (11)0.0443 (4)
C8B'0.26094 (16)0.71106 (10)0.50270 (11)0.0455 (4)
C9A0.5550 (2)0.53429 (12)0.73431 (16)0.0712 (6)
H9AA0.5434850.5036220.6820280.107*
H9AB0.4886310.5240140.7540660.107*
H9AC0.6297280.5179880.7786550.107*
C9B0.2411 (2)0.96167 (12)0.55107 (14)0.0673 (5)
H9BA0.3087400.9897790.5441970.101*
H9BB0.2423920.9691680.6095230.101*
H9BC0.1667570.9832880.5105180.101*
C10A0.40897 (15)0.64886 (10)0.78644 (11)0.0464 (4)
C10B0.18531 (16)0.84207 (12)0.65864 (11)0.0520 (4)
N11A0.29256 (13)0.64598 (9)0.73505 (9)0.0459 (3)
N11B0.27899 (14)0.84235 (9)0.73404 (9)0.0458 (3)
H11A0.2709 (18)0.6657 (12)0.6816 (13)0.056 (5)*
H11B0.3453 (19)0.8211 (12)0.7308 (13)0.060 (6)*
C12A0.19183 (15)0.62418 (10)0.76017 (11)0.0458 (4)
C12B0.28641 (16)0.86210 (10)0.82016 (10)0.0460 (4)
C13A0.17430 (18)0.65831 (12)0.83199 (13)0.0579 (5)
H13A0.2311620.6942730.8681050.070*
C13B0.1889 (2)0.88031 (13)0.84467 (13)0.0615 (5)
H13B0.1106170.8808900.8035470.074*
C14A0.0710 (2)0.63823 (14)0.84934 (16)0.0687 (6)
H14A0.0587680.6607910.8976900.082*
C14B0.2088 (2)0.89785 (15)0.93166 (14)0.0733 (6)
H14B0.1430620.9105000.9483690.088*
C15A0.01364 (19)0.58550 (15)0.79631 (16)0.0728 (6)
H15A0.0833590.5731100.8081910.087*
C15B0.3230 (2)0.89684 (15)0.99301 (13)0.0743 (6)
H15B0.3351130.9094401.0508470.089*
C16A0.00499 (18)0.55107 (15)0.72556 (15)0.0713 (6)
H16A0.0519280.5148960.6898460.086*
C16B0.4194 (2)0.87709 (17)0.96852 (14)0.0799 (7)
H16B0.4970780.8751011.0103460.096*
C17A0.10845 (17)0.57004 (13)0.70712 (12)0.0580 (5)
H17A0.1213680.5464550.6594690.070*
C17B0.40270 (19)0.86009 (14)0.88256 (12)0.0637 (5)
H17B0.4688960.8473650.8664510.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0501 (3)0.1132 (5)0.0526 (3)0.0013 (3)0.0178 (2)0.0220 (3)
O1A0.0852 (10)0.0582 (8)0.1095 (12)0.0080 (7)0.0668 (10)0.0077 (8)
N1A0.0427 (7)0.0479 (8)0.0540 (8)0.0015 (6)0.0267 (6)0.0025 (6)
N1B0.0546 (8)0.0508 (8)0.0435 (7)0.0033 (6)0.0257 (6)0.0007 (6)
S1B0.0536 (3)0.1936 (8)0.0591 (3)0.0382 (4)0.0165 (3)0.0226 (4)
O1B0.0907 (10)0.0565 (8)0.0774 (9)0.0040 (7)0.0513 (8)0.0100 (7)
C2A0.0387 (8)0.0476 (9)0.0469 (8)0.0015 (6)0.0201 (7)0.0002 (7)
C2B0.0423 (9)0.0539 (10)0.0380 (8)0.0038 (7)0.0152 (7)0.0023 (7)
N3A0.0499 (8)0.0422 (7)0.0625 (9)0.0013 (6)0.0304 (7)0.0013 (6)
N3B0.0495 (8)0.0443 (7)0.0464 (7)0.0005 (6)0.0195 (6)0.0044 (6)
C4A0.0521 (10)0.0519 (10)0.0633 (11)0.0020 (8)0.0333 (9)0.0068 (8)
C4B0.0489 (9)0.0503 (9)0.0484 (9)0.0023 (7)0.0229 (8)0.0002 (7)
C4A'0.0469 (9)0.0512 (9)0.0569 (10)0.0034 (7)0.0290 (8)0.0030 (7)
C4B'0.0445 (9)0.0489 (9)0.0425 (8)0.0018 (7)0.0198 (7)0.0030 (7)
C5A0.0646 (12)0.0689 (13)0.0855 (14)0.0023 (10)0.0513 (11)0.0005 (10)
C5B0.0658 (12)0.0649 (11)0.0512 (10)0.0001 (9)0.0335 (9)0.0045 (8)
C6A0.0704 (14)0.0738 (14)0.0899 (15)0.0128 (11)0.0511 (12)0.0088 (11)
C6B0.0848 (15)0.0734 (13)0.0648 (12)0.0046 (11)0.0429 (11)0.0170 (10)
C7A0.0699 (13)0.0544 (11)0.0843 (14)0.0078 (10)0.0371 (11)0.0123 (10)
C7B0.0952 (17)0.0519 (11)0.0867 (15)0.0033 (11)0.0476 (13)0.0166 (10)
C8A0.0580 (11)0.0485 (10)0.0733 (12)0.0009 (8)0.0339 (10)0.0057 (8)
C8B0.0857 (15)0.0480 (10)0.0714 (13)0.0014 (9)0.0425 (11)0.0013 (8)
C8A'0.0409 (8)0.0473 (9)0.0498 (9)0.0028 (7)0.0222 (7)0.0001 (7)
C8B'0.0504 (9)0.0468 (9)0.0442 (8)0.0017 (7)0.0227 (7)0.0018 (7)
C9A0.0849 (15)0.0444 (10)0.0987 (16)0.0026 (10)0.0505 (13)0.0025 (10)
C9B0.0868 (15)0.0460 (10)0.0687 (12)0.0036 (10)0.0270 (11)0.0114 (9)
C10A0.0412 (9)0.0513 (9)0.0518 (9)0.0005 (7)0.0228 (7)0.0051 (7)
C10B0.0501 (10)0.0655 (11)0.0435 (9)0.0082 (8)0.0203 (8)0.0063 (8)
N11A0.0415 (7)0.0561 (8)0.0453 (8)0.0012 (6)0.0217 (6)0.0100 (6)
N11B0.0475 (8)0.0537 (8)0.0415 (7)0.0071 (6)0.0222 (6)0.0045 (6)
C12A0.0385 (8)0.0533 (9)0.0500 (9)0.0032 (7)0.0213 (7)0.0141 (7)
C12B0.0560 (10)0.0462 (9)0.0415 (8)0.0035 (7)0.0241 (8)0.0018 (6)
C13A0.0570 (11)0.0587 (11)0.0684 (11)0.0054 (9)0.0348 (9)0.0052 (9)
C13B0.0619 (12)0.0770 (13)0.0520 (10)0.0144 (10)0.0280 (9)0.0044 (9)
C14A0.0647 (13)0.0808 (14)0.0776 (14)0.0150 (11)0.0461 (12)0.0154 (11)
C14B0.0842 (16)0.0910 (15)0.0588 (12)0.0145 (12)0.0426 (12)0.0071 (11)
C15A0.0501 (11)0.0950 (16)0.0849 (15)0.0072 (11)0.0380 (11)0.0303 (13)
C15B0.0956 (17)0.0875 (15)0.0461 (10)0.0038 (13)0.0329 (11)0.0109 (10)
C16A0.0486 (11)0.0888 (15)0.0742 (13)0.0137 (10)0.0187 (10)0.0193 (11)
C16B0.0736 (15)0.116 (2)0.0473 (11)0.0050 (13)0.0174 (10)0.0126 (11)
C17A0.0507 (10)0.0729 (12)0.0521 (10)0.0069 (9)0.0203 (8)0.0098 (9)
C17B0.0556 (11)0.0883 (15)0.0490 (10)0.0010 (10)0.0207 (9)0.0083 (9)
Geometric parameters (Å, º) top
S1A—C10A1.6385 (17)C8B—C8B'1.399 (2)
O1A—C4A1.219 (2)C8B—H8B0.9300
N1A—C2A1.292 (2)C9A—H9AA0.9600
N1A—C8A'1.392 (2)C9A—H9AB0.9600
N1B—C2B1.293 (2)C9A—H9AC0.9600
N1B—C8B'1.392 (2)C9B—H9BA0.9600
S1B—C10B1.6401 (18)C9B—H9BB0.9600
O1B—C4B1.220 (2)C9B—H9BC0.9600
C2A—N3A1.367 (2)C10A—N11A1.332 (2)
C2A—C10A1.511 (2)C10B—N11B1.334 (2)
C2B—N3B1.368 (2)N11A—C12A1.430 (2)
C2B—C10B1.510 (2)N11A—H11A0.88 (2)
N3A—C4A1.404 (2)N11B—C12B1.420 (2)
N3A—C9A1.467 (2)N11B—H11B0.87 (2)
N3B—C4B1.399 (2)C12A—C17A1.379 (3)
N3B—C9B1.470 (2)C12A—C13A1.382 (3)
C4A—C4A'1.453 (3)C12B—C13B1.375 (2)
C4B—C4B'1.455 (2)C12B—C17B1.390 (3)
C4A'—C8A'1.396 (2)C13A—C14A1.382 (3)
C4A'—C5A1.401 (2)C13A—H13A0.9300
C4B'—C8B'1.392 (2)C13B—C14B1.390 (3)
C4B'—C5B1.399 (2)C13B—H13B0.9300
C5A—C6A1.371 (3)C14A—C15A1.372 (3)
C5A—H5A0.9300C14A—H14A0.9300
C5B—C6B1.367 (3)C14B—C15B1.365 (3)
C5B—H5B0.9300C14B—H14B0.9300
C6A—C7A1.385 (3)C15A—C16A1.374 (3)
C6A—H6A0.9300C15A—H15A0.9300
C6B—C7B1.387 (3)C15B—C16B1.369 (3)
C6B—H6B0.9300C15B—H15B0.9300
C7A—C8A1.373 (3)C16A—C17A1.389 (3)
C7A—H7A0.9300C16A—H16A0.9300
C7B—C8B1.375 (3)C16B—C17B1.380 (3)
C7B—H7B0.9300C16B—H16B0.9300
C8A—C8A'1.396 (2)C17A—H17A0.9300
C8A—H8A0.9300C17B—H17B0.9300
C2A—N1A—C8A'117.91 (14)H9AA—C9A—H9AB109.5
C2B—N1B—C8B'117.44 (14)N3A—C9A—H9AC109.5
N1A—C2A—N3A124.89 (14)H9AA—C9A—H9AC109.5
N1A—C2A—C10A116.71 (14)H9AB—C9A—H9AC109.5
N3A—C2A—C10A118.39 (14)N3B—C9B—H9BA109.5
N1B—C2B—N3B125.33 (14)N3B—C9B—H9BB109.5
N1B—C2B—C10B116.84 (15)H9BA—C9B—H9BB109.5
N3B—C2B—C10B117.83 (15)N3B—C9B—H9BC109.5
C2A—N3A—C4A121.39 (14)H9BA—C9B—H9BC109.5
C2A—N3A—C9A122.23 (15)H9BB—C9B—H9BC109.5
C4A—N3A—C9A116.35 (15)N11A—C10A—C2A112.34 (14)
C2B—N3B—C4B121.15 (14)N11A—C10A—S1A127.74 (13)
C2B—N3B—C9B122.32 (15)C2A—C10A—S1A119.91 (12)
C4B—N3B—C9B116.47 (15)N11B—C10B—C2B111.73 (14)
O1A—C4A—N3A120.23 (17)N11B—C10B—S1B130.79 (13)
O1A—C4A—C4A'125.05 (17)C2B—C10B—S1B117.47 (13)
N3A—C4A—C4A'114.72 (14)C10A—N11A—C12A126.80 (14)
O1B—C4B—N3B120.52 (16)C10A—N11A—H11A119.1 (13)
O1B—C4B—C4B'124.74 (16)C12A—N11A—H11A113.5 (13)
N3B—C4B—C4B'114.73 (14)C10B—N11B—C12B131.43 (15)
C8A'—C4A'—C5A119.71 (17)C10B—N11B—H11B114.1 (13)
C8A'—C4A'—C4A119.49 (15)C12B—N11B—H11B114.0 (13)
C5A—C4A'—C4A120.80 (16)C17A—C12A—C13A120.63 (17)
C8B'—C4B'—C5B120.06 (16)C17A—C12A—N11A117.17 (16)
C8B'—C4B'—C4B119.62 (14)C13A—C12A—N11A122.12 (17)
C5B—C4B'—C4B120.33 (16)C13B—C12B—C17B119.80 (16)
C6A—C5A—C4A'120.07 (19)C13B—C12B—N11B125.03 (17)
C6A—C5A—H5A120.0C17B—C12B—N11B115.15 (16)
C4A'—C5A—H5A120.0C14A—C13A—C12A119.0 (2)
C6B—C5B—C4B'119.92 (18)C14A—C13A—H13A120.5
C6B—C5B—H5B120.0C12A—C13A—H13A120.5
C4B'—C5B—H5B120.0C12B—C13B—C14B119.2 (2)
C5A—C6A—C7A120.17 (18)C12B—C13B—H13B120.4
C5A—C6A—H6A119.9C14B—C13B—H13B120.4
C7A—C6A—H6A119.9C15A—C14A—C13A121.0 (2)
C5B—C6B—C7B120.16 (18)C15A—C14A—H14A119.5
C5B—C6B—H6B119.9C13A—C14A—H14A119.5
C7B—C6B—H6B119.9C15B—C14B—C13B121.2 (2)
C8A—C7A—C6A120.58 (19)C15B—C14B—H14B119.4
C8A—C7A—H7A119.7C13B—C14B—H14B119.4
C6A—C7A—H7A119.7C14A—C15A—C16A119.72 (19)
C8B—C7B—C6B120.80 (19)C14A—C15A—H15A120.1
C8B—C7B—H7B119.6C16A—C15A—H15A120.1
C6B—C7B—H7B119.6C14B—C15B—C16B119.32 (19)
C7A—C8A—C8A'120.18 (18)C14B—C15B—H15B120.3
C7A—C8A—H8A119.9C16B—C15B—H15B120.3
C8A'—C8A—H8A119.9C15A—C16A—C17A120.3 (2)
C7B—C8B—C8B'119.73 (19)C15A—C16A—H16A119.9
C7B—C8B—H8B120.1C17A—C16A—H16A119.9
C8B'—C8B—H8B120.1C15B—C16B—C17B120.8 (2)
N1A—C8A'—C4A'121.56 (15)C15B—C16B—H16B119.6
N1A—C8A'—C8A119.17 (15)C17B—C16B—H16B119.6
C4A'—C8A'—C8A119.26 (16)C12A—C17A—C16A119.35 (19)
C4B'—C8B'—N1B121.68 (15)C12A—C17A—H17A120.3
C4B'—C8B'—C8B119.33 (16)C16A—C17A—H17A120.3
N1B—C8B'—C8B118.99 (16)C16B—C17B—C12B119.6 (2)
N3A—C9A—H9AA109.5C16B—C17B—H17B120.2
N3A—C9A—H9AB109.5C12B—C17B—H17B120.2
C8A'—N1A—C2A—N3A1.0 (3)C4A—C4A'—C8A'—C8A178.35 (17)
C8A'—N1A—C2A—C10A179.14 (14)C7A—C8A—C8A'—N1A179.63 (18)
C8B'—N1B—C2B—N3B1.0 (3)C7A—C8A—C8A'—C4A'0.4 (3)
C8B'—N1B—C2B—C10B179.33 (14)C5B—C4B'—C8B'—N1B179.59 (16)
N1A—C2A—N3A—C4A0.6 (3)C4B—C4B'—C8B'—N1B0.4 (3)
C10A—C2A—N3A—C4A179.57 (16)C5B—C4B'—C8B'—C8B0.6 (3)
N1A—C2A—N3A—C9A177.51 (18)C4B—C4B'—C8B'—C8B179.50 (18)
C10A—C2A—N3A—C9A2.4 (3)C2B—N1B—C8B'—C4B'0.5 (2)
N1B—C2B—N3B—C4B2.7 (3)C2B—N1B—C8B'—C8B179.35 (18)
C10B—C2B—N3B—C4B177.67 (15)C7B—C8B—C8B'—C4B'0.6 (3)
N1B—C2B—N3B—C9B179.73 (17)C7B—C8B—C8B'—N1B179.5 (2)
C10B—C2B—N3B—C9B0.6 (2)N1A—C2A—C10A—N11A75.1 (2)
C2A—N3A—C4A—O1A178.66 (18)N3A—C2A—C10A—N11A104.80 (18)
C9A—N3A—C4A—O1A0.5 (3)N1A—C2A—C10A—S1A103.97 (17)
C2A—N3A—C4A—C4A'0.9 (3)N3A—C2A—C10A—S1A76.14 (19)
C9A—N3A—C4A—C4A'179.10 (17)N1B—C2B—C10B—N11B83.6 (2)
C2B—N3B—C4B—O1B178.41 (17)N3B—C2B—C10B—N11B96.12 (19)
C9B—N3B—C4B—O1B1.2 (3)N1B—C2B—C10B—S1B96.53 (18)
C2B—N3B—C4B—C4B'2.6 (2)N3B—C2B—C10B—S1B83.78 (19)
C9B—N3B—C4B—C4B'179.78 (16)C2A—C10A—N11A—C12A177.47 (15)
O1A—C4A—C4A'—C8A'177.6 (2)S1A—C10A—N11A—C12A1.5 (3)
N3A—C4A—C4A'—C8A'1.9 (3)C2B—C10B—N11B—C12B179.09 (17)
O1A—C4A—C4A'—C5A2.2 (3)S1B—C10B—N11B—C12B1.0 (3)
N3A—C4A—C4A'—C5A178.19 (18)C10A—N11A—C12A—C17A133.70 (19)
O1B—C4B—C4B'—C8B'179.87 (18)C10A—N11A—C12A—C13A49.3 (3)
N3B—C4B—C4B'—C8B'1.1 (2)C10B—N11B—C12B—C13B5.4 (3)
O1B—C4B—C4B'—C5B0.1 (3)C10B—N11B—C12B—C17B176.2 (2)
N3B—C4B—C4B'—C5B178.91 (16)C17A—C12A—C13A—C14A0.8 (3)
C8A'—C4A'—C5A—C6A1.4 (3)N11A—C12A—C13A—C14A176.03 (17)
C4A—C4A'—C5A—C6A178.5 (2)C17B—C12B—C13B—C14B1.1 (3)
C8B'—C4B'—C5B—C6B0.4 (3)N11B—C12B—C13B—C14B179.36 (19)
C4B—C4B'—C5B—C6B179.66 (18)C12A—C13A—C14A—C15A0.3 (3)
C4A'—C5A—C6A—C7A0.1 (4)C12B—C13B—C14B—C15B0.4 (4)
C4B'—C5B—C6B—C7B0.3 (3)C13A—C14A—C15A—C16A1.0 (3)
C5A—C6A—C7A—C8A1.1 (4)C13B—C14B—C15B—C16B0.9 (4)
C5B—C6B—C7B—C8B0.3 (4)C14A—C15A—C16A—C17A0.6 (3)
C6A—C7A—C8A—C8A'0.9 (3)C14B—C15B—C16B—C17B1.5 (4)
C6B—C7B—C8B—C8B'0.5 (4)C13A—C12A—C17A—C16A1.2 (3)
C2A—N1A—C8A'—C4A'0.1 (2)N11A—C12A—C17A—C16A175.84 (17)
C2A—N1A—C8A'—C8A179.82 (16)C15A—C16A—C17A—C12A0.4 (3)
C5A—C4A'—C8A'—N1A178.49 (18)C15B—C16B—C17B—C12B0.8 (4)
C4A—C4A'—C8A'—N1A1.6 (3)C13B—C12B—C17B—C16B0.5 (3)
C5A—C4A'—C8A'—C8A1.5 (3)N11B—C12B—C17B—C16B179.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11A—H11A···N1B0.88 (2)2.05 (2)2.913 (2)166.7 (18)
N11B—H11B···N1A0.87 (2)2.04 (2)2.907 (2)171.6 (19)
C9A—H9AB···S1A0.962.873.424 (2)118
C13B—H13B···S1B0.932.583.243 (3)129
C7A—H7A···O1Bi0.932.493.386 (3)162
C7B—H7B···O1Aii0.932.473.385 (3)166
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful to the Institute of Bioorganic Chemistry, Academy Sciences of Uzbekistan, for providing laboratory facilities.

Funding information

The chemical part of the work was financially supported by a Georg Forster Research Fellowship for Experienced Researchers of the Alexander von Humboldt Foundation (AvH) to BE (UZB 1186936 GF-E).

References

First citationBaglai, I., Maraval, V., Voitenko, Z. V., Duhayon, C., Volovenko, Y. M. & Chauvin, R. (2014). Turk. J. Chem. 38, 121–126.  CrossRef CAS Google Scholar
First citationBelskaya, N. P., Dehaen, W. & Bakulev, V. A. (2010). Arkivoc, pp. 275–332.  CrossRef Google Scholar
First citationBritsun, V. N., Esipenko, A. N. & Lozinskii, M. O. (2008). Chem. Heterocycl. Compd, 44, 1429–1459.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, W. S., Xin, X., Zhao, K. L., Wen, L. R. & Li, M. (2015). RSC Adv. 5, 70429–70432.  CrossRef CAS Google Scholar
First citationJagodziński, T. S. (2003). Chem. Rev. 103, 197–228.  PubMed Google Scholar
First citationKoketsu, M. & Ishihara, H. (2007). Synthesis, 4, 15–25.  CAS Google Scholar
First citationKotipalli, T., Kavala, V., Janreddy, D., Bandi, V., Kuo, Ch.-W. & Yao, Ch.-F. (2016). Eur. J. Org. Chem. pp. 1182–1193.  CrossRef Google Scholar
First citationKrayushkin, M. M., Yarovenko, V. N. & Zavarzin, I. V. (2004). Russ. Chem. Bull. 53, 517–527.  CrossRef CAS Google Scholar
First citationKundu, P., Mondal, A. & Chowdhury, C. (2016). J. Org. Chem. 81, 6596–6608.  CrossRef CAS PubMed Google Scholar
First citationLi, H. Zh., Xue, W. J. & Wu, A. X. (2014). Tetrahedron, 70, 4645–4651.  CrossRef CAS Google Scholar
First citationLi, M., Sun, K. N. & Wen, L. R. (2016). RSC Adv. 6, 21535–21539.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMereiter, K., Gaith, A. H. & Fröhlich, J. (2000). Private communication (refcode: QAJVAY). CCDC, Cambridge, England.  Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSaitkulov, F. E., Tashniyazov, A. A., Mamadrahimov, A. A. & Shakhidoyatov, K. M. (2014). Acta Cryst. E70, o788.  CrossRef IUCr Journals Google Scholar
First citationShakhidoyatov, Kh. M., Egamov, D. I. & Askarov, I. R. (1997). Uzbek Chem. J, 6, 26–27.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkelton, B. W. & Massi, M. (2018). Private communication (refcode: AGECIB). CCDC, Cambridge, England.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationUtayeva, F. R., Okmanov, R. Y., Mukarramov, N. I., Shakhidoyatov, K. M. & Tashkhodjaev, B. (2013). Acta Cryst. E69, o1094.  CrossRef IUCr Journals Google Scholar
First citationVoitenko, Z. V., Samoilenko, V. P., Kovtunenko, V. A., Gurkevich, V. Yu., Tyltin, A. K., Shcherbakov, M. V. & Shishkin, O. V. (1999). Chem. Heterocycl. Compd. 35, 600–607.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, H.-L. & Jian, F.-F. (2006). Acta Cryst. E62, o2854–o2855.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds