research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3-(hy­dr­oxy­meth­yl)-3-methyl-2,6-di­phenyl­piperidin-4-one

crossmark logo

aScience-Technology Research and Application Center, Artvin Coruh University, Artvin, Turkey, bDepartment of Chemistry and Chemical Technologies, Faculty of Natural and Agricultural Sciences, Atyrau State University named after Kh. Dosmukhamedov, 060011, Atyrau, Kazakhstan, cSamsun University, Faculty of Engineering, Department of Fundamental Sciences, 55420, Samsun, Turkey, dOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, eDepartment of Computer and Electronic Engineering Technology, Sanaa Community College, Sanaa, Yemen, and fDepartment of Electrical and Electronic Engineering, Faculty of Engineering, Ondokuz Mayıs University, 55139, Samsun, Turkey
*Correspondence e-mail: sevgi.kansiz@samsun.edu.tr, eiad.saif@scc.edu.ye

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 25 October 2021; accepted 28 November 2021; online 1 January 2022)

A new synthesis of the title compound, C19H21NO2, was developed with good yield and purity using the reaction of 4-hy­droxy-3-methyl-2-butanone, benzaldehyde and ammonium acetate in glacial acetic acid as a solvent. The central piperidine ring adopts a chair conformation, and its least-squares basal plane forms dihedral angles of 85.71 (11) and 77.27 (11)° with the terminal aromatic rings. In the crystal, the mol­ecules are linked by O—H⋯O and C—H⋯O hydrogen bonds into double ribbons. The Hirshfeld surface analysis shows that the most important contributions are from H⋯H (68%), C⋯H/H⋯C (19%) and O⋯H/H⋯O (12%) inter­actions.

1. Chemical context

Many piperidine derivatives are found to possess pharmacological activity and are constituents of important drugs. Numerous biological effects including anti­viral, anti­tumor, bactericidal, fungicidal and anti-inflammatory activities have been reported for these compounds (Kappe, 2000[Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.]; Rameshkumar et al., 2003[Rameshkumar, N., Veena, A., Ilavarasan, R., Adiraj, M., Shanmugapandiyan, P. & Sridhar, S. K. (2003). Biol. Pharm. Bull. 26, 188-193.]; Sasitha & John, 2021[Sasitha, T. & John, W. J. (2021). Heliyon, 7, e06127.]). In this work, a new protocol for the synthesis of di­phenyl­piperidin-4-one from 4-hy­droxy-3-methyl-2-butanone, benzaldehyde and ammonium acetate under mild reaction conditions was developed. In addition, 3-(hy­droxy­meth­yl)-3-methyl-2,6-di­phenyl­piper­idin-4-one was characterized by single crystal X-ray diffraction and studied by Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The title compound, C19H21NO2, crystallizes in the space group Pna21 with one mol­ecule in the asymmetric unit of the cell. As shown in Fig. 1[link], it involves two terminal aromatic rings (C1–C6 and C14–C19) and a central piperidinone fragment (N1/C7–C10/Cl3/O1). The piperidine ring adopts a chair conformation, with the carbonyl O1 and the N-bound H1 atoms being in the equatorial positions. The least-squares basal plane of the piperidine ring (C7, C8, C10, C13) makes dihedral angles of 85.71 (11) and 77.27 (11)°, respectively, with the planes of the C1–C6 and C14–C19 aromatic rings.

[Figure 1]
Figure 1
The mol­ecular structure of 3-(hy­droxy­meth­yl)-3-methyl-2,6-di­phenyl­piperidin-4-one with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

3. Supra­molecular features

In the crystal, mol­ecules of the title compound are linked by strong O—H⋯O and weak C—H⋯O hydrogen bonds (Table 1[link]) into double ribbons stretched along the c-axis direction (Fig. 2[link]). Neighbouring mol­ecules in the ribbon are related by the 21 screw axis. Besides this, the mol­ecules are connected by N1—H1⋯C3 contacts into chains along the b-axis direction, thus layers perpendicular to the a axis are formed. No ππ or C—H⋯π inter­actions are present in this structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 2.05 2.8194 (18) 156
C8—H8A⋯O2ii 0.97 2.47 3.379 (3) 155
N1—H1⋯C3iii 0.90 (3) 2.75 (3) 3.605 (2) 161 (3)
Symmetry codes: (i) [-x-1, -y-1, z+{\script{1\over 2}}]; (ii) [x, y, z-1]; (iii) [-x-1, -y, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
View of the hydrogen-bonded double ribbon in the title structure showing C8—H8A⋯O2 hydrogen bonds as green dashed lines and O2—H2⋯O1 hydrogen bonds as blue dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.42, update of May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed several related structures, viz. dimethyl-3-(2-hy­droxy­eth­yl)-9-oxo-7-phenyl­ethyl-6,8-diphenyl-3,7-di­aza­bicyclo­(3.3.1)nonane-1,5-di­carboxyl­ate (BACLUM; Caujolle et al., 1981[Caujolle, R., Lattes, A., Jaud, J. & Galy, J. (1981). Acta Cryst. B37, 1699-1703.]), dimethyl-3-methyl-2,4-bis­(4-nitro­phen­yl)-9-oxo-7-(1-phenyl­eth­yl)-3,7-di­aza­bicyclo­[3.3.1]nonane-1,5-di­carboxyl­ate (DEZTEK; Ros­setti et al., 2018[Rossetti, A., Landoni, S., Meneghetti, F., Castellano, C., Mori, M., Colombo Dugoni, G. & Sacchetti, A. (2018). New J. Chem. 42, 12072-12081.]) and dimethyl-2,4-bis­(2-meth­oxy­phen­yl)-3,7-dimethyl-3,7-di­aza­bicyclo­(3.3.1)nonan-9-one-1,5-di­carboxyl­ate (REXNUD; Comba et al., 1997[Comba, P., Nuber, B. & Ramlow, A. (1997). J. Chem. Soc. Dalton Trans. pp. 347-352.]). In these three structures, the piperidine rings adopt a chair conformation, as in the title compound.

5. Hirshfeld surface analysis

The Hirshfeld surface analysis of the title compound was performed using Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia. https://hirshfeldsurface.net.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). Fig. 3[link] shows the 3D surface mapped over dnorm over the range −0.5456 (red) to 1.6913 (blue) a.u. The large and small red spots indicate the O—H⋯O and C—H⋯O inter­actions. The two-dimensional fingerprint plots, shown in Fig. 4[link], present all inter­actions and those delineated into H⋯H (68%), C⋯H/H⋯C (19%) and O⋯H/H⋯O (12%) components.

[Figure 3]
Figure 3
The red spots on the dnorm surface of the title structure represent the O—H⋯O and C—H⋯O inter­molecular inter­actions.
[Figure 4]
Figure 4
The view of the two-dimensional fingerprint plots for the title structure.

6. Synthesis and crystallization

The title compound was prepared (Fig. 5[link]) according to the procedure reported in the literature for preparation of di­phenyl­piperidin-4-one (Kim & Tulemisova, 1997[Kim, D. G. & Tulemisova, G. B. (1997). Russ. J. Org. Chem. 33, 1337-1340.]). To a mixture of 3.03 g (0.03 mol) of 4-hy­droxy-3-methyl-2-butanone and 6.04 g (0.06 mol) of benzaldehyde in glacial acetic acid as a solvent, kept at 293–298 K until the initial keto alcohol disappears as indicated by TLC (1.5 h), 2.3 g (0.03 mol) of ammonium acetate was added. Then the mixture was stirred at the same temperature for 6–7 h. The formed white precipitate was separated and after acidification of the solution with 5% hydro­chloric acid to pH 4, the hydro­chlorides were converted to bases by neutralization with K2CO3 in a strongly basic reaction. After the extraction with diethyl ether of the by-product base (control of the completeness of extraction by TLC), the title compound was extracted with chloro­form. After drying the chloro­form extracts and distilling off the solvent, a white crystalline compound was obtained (5.95 g, 70%), readily soluble in chloro­form, acetone, and hot ethanol (Fig. 5[link]).

[Figure 5]
Figure 5
The synthesis of 3-(hy­droxy­meth­yl)-3-methyl-2,6-di­phenyl­piperidin-4-one.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N-bound H atom was refined freely. The O-bound H atom was located in a difference-Fourier map and refined with O—H = 0.82 Å, and with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were positioned geometrically (C—H = 0.93, 0.96, 0.97 and 0.98 Å for sp2-hybridized, methyl, methyl­ene and methine C atoms, respectively) and refined using a riding model, with Uiso(H) = 1.5Ueq(C) and 1.2Ueq(C) for methyl and other H atoms, respectively.

Table 2
Experimental details

Crystal data
Chemical formula C19H21NO2
Mr 295.37
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 296
a, b, c (Å) 17.3298 (8), 14.1856 (7), 6.5857 (3)
V3) 1618.99 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.72 × 0.57 × 0.33
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.958, 0.973
No. of measured, independent and observed [I > 2σ(I)] reflections 17314, 4763, 3441
Rint 0.042
(sin θ/λ)max−1) 0.729
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.096, 1.01
No. of reflections 4763
No. of parameters 204
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.19
Absolute structure Flack x determined using 1072 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.8 (5)
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2017/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

3-(Hydroxymethyl)-3-methyl-2,6-diphenylpiperidin-4-one top
Crystal data top
C19H21NO2Dx = 1.212 Mg m3
Mr = 295.37Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 17006 reflections
a = 17.3298 (8) Åθ = 1.9–31.5°
b = 14.1856 (7) ŵ = 0.08 mm1
c = 6.5857 (3) ÅT = 296 K
V = 1618.99 (13) Å3Prism, colorless
Z = 40.72 × 0.57 × 0.33 mm
F(000) = 632
Data collection top
Stoe IPDS 2
diffractometer
4763 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3441 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.042
rotation method scansθmax = 31.2°, θmin = 1.9°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 2425
Tmin = 0.958, Tmax = 0.973k = 2020
17314 measured reflectionsl = 79
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0515P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4763 reflectionsΔρmax = 0.16 e Å3
204 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack x determined using 1072 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.8 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.52068 (8)0.46901 (9)0.4103 (2)0.0600 (4)
O20.60074 (9)0.40945 (10)0.0228 (2)0.0610 (4)
H20.5652290.4476090.0266380.091*
N10.58527 (9)0.20075 (10)0.4826 (2)0.0446 (3)
C140.69489 (10)0.21260 (11)0.2492 (3)0.0421 (4)
C90.54765 (10)0.39351 (11)0.4587 (3)0.0417 (4)
C130.61836 (10)0.25456 (10)0.3131 (3)0.0396 (3)
H130.5828020.2502200.1978030.048*
C60.47125 (11)0.16339 (12)0.6872 (3)0.0483 (4)
C100.62508 (9)0.36075 (11)0.3756 (3)0.0388 (3)
C110.64790 (12)0.42148 (12)0.1929 (3)0.0482 (4)
H11A0.7006460.4066160.1554680.058*
H11B0.6464510.4872580.2330090.058*
C70.50597 (10)0.22790 (12)0.5292 (3)0.0453 (4)
H70.4749390.2247840.4049830.054*
C190.74209 (11)0.16475 (13)0.3861 (3)0.0515 (4)
H190.7258540.1564670.5194850.062*
C80.50769 (11)0.32968 (13)0.6060 (3)0.0484 (4)
H8A0.5342210.3319320.7355850.058*
H8B0.4552720.3516040.6268450.058*
C120.68510 (11)0.37561 (13)0.5433 (3)0.0508 (4)
H12A0.6748740.3330970.6535060.076*
H12B0.7357410.3636520.4901720.076*
H12C0.6822870.4394010.5914460.076*
C150.72036 (12)0.22177 (14)0.0520 (3)0.0555 (5)
H150.6889850.2514580.0430110.067*
C180.81260 (13)0.12956 (14)0.3257 (4)0.0638 (6)
H180.8432050.0972620.4185000.077*
C10.51207 (14)0.13749 (15)0.8595 (4)0.0630 (5)
H1A0.5629270.1571310.8750890.076*
C170.83831 (13)0.14174 (16)0.1288 (4)0.0692 (6)
H170.8864030.1191570.0893240.083*
C30.40316 (15)0.05295 (15)0.9865 (4)0.0730 (7)
H30.3799640.0170171.0876450.088*
C160.79174 (14)0.18768 (16)0.0075 (4)0.0687 (6)
H160.8082100.1959950.1406650.082*
C20.47809 (16)0.08286 (16)1.0084 (4)0.0717 (6)
H2A0.5059920.0663021.1236140.086*
C50.39677 (12)0.13063 (17)0.6673 (5)0.0715 (7)
H50.3686930.1455110.5513060.086*
C40.36317 (14)0.07616 (19)0.8164 (5)0.0847 (9)
H40.3127070.0551490.8004050.102*
H10.5902 (17)0.140 (2)0.450 (5)0.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0654 (9)0.0459 (7)0.0686 (9)0.0199 (6)0.0128 (8)0.0080 (6)
O20.0811 (10)0.0618 (7)0.0400 (7)0.0271 (7)0.0050 (7)0.0015 (6)
N10.0489 (8)0.0368 (6)0.0480 (9)0.0024 (6)0.0031 (7)0.0004 (6)
C140.0454 (9)0.0369 (7)0.0439 (9)0.0037 (7)0.0020 (8)0.0021 (6)
C90.0468 (9)0.0383 (7)0.0399 (8)0.0044 (7)0.0039 (7)0.0052 (6)
C130.0428 (9)0.0376 (7)0.0383 (8)0.0038 (6)0.0031 (7)0.0005 (7)
C60.0484 (10)0.0428 (8)0.0537 (11)0.0033 (7)0.0038 (9)0.0028 (8)
C100.0424 (8)0.0370 (7)0.0372 (8)0.0030 (6)0.0040 (7)0.0002 (6)
C110.0524 (10)0.0425 (8)0.0495 (10)0.0046 (7)0.0047 (9)0.0050 (7)
C70.0448 (9)0.0468 (8)0.0441 (9)0.0011 (7)0.0013 (8)0.0006 (8)
C190.0549 (11)0.0475 (9)0.0521 (10)0.0092 (8)0.0043 (9)0.0034 (8)
C80.0478 (10)0.0465 (9)0.0509 (10)0.0044 (8)0.0061 (8)0.0008 (8)
C120.0536 (11)0.0482 (9)0.0507 (10)0.0017 (8)0.0117 (9)0.0064 (8)
C150.0594 (11)0.0600 (10)0.0471 (11)0.0121 (9)0.0023 (9)0.0022 (9)
C180.0584 (12)0.0527 (10)0.0803 (16)0.0175 (9)0.0110 (11)0.0034 (11)
C10.0735 (14)0.0611 (11)0.0544 (12)0.0208 (10)0.0075 (11)0.0033 (10)
C170.0518 (12)0.0604 (11)0.0954 (19)0.0141 (10)0.0101 (13)0.0121 (12)
C30.0806 (16)0.0533 (10)0.0851 (18)0.0009 (10)0.0272 (14)0.0154 (12)
C160.0682 (13)0.0748 (13)0.0632 (14)0.0105 (11)0.0176 (12)0.0050 (11)
C20.0980 (17)0.0631 (12)0.0540 (13)0.0150 (12)0.0030 (12)0.0060 (11)
C50.0459 (12)0.0746 (14)0.0940 (19)0.0035 (10)0.0049 (12)0.0283 (14)
C40.0533 (13)0.0824 (16)0.119 (3)0.0099 (11)0.0055 (15)0.0365 (17)
Geometric parameters (Å, º) top
O1—C91.211 (2)C19—H190.9300
O2—C111.397 (2)C8—H8A0.9700
O2—H20.8200C8—H8B0.9700
N1—C71.460 (2)C12—H12A0.9600
N1—C131.469 (2)C12—H12B0.9600
N1—H10.90 (3)C12—H12C0.9600
C14—C151.378 (3)C15—C161.385 (3)
C14—C191.394 (3)C15—H150.9300
C14—C131.513 (2)C18—C171.382 (4)
C9—C81.497 (3)C18—H180.9300
C9—C101.522 (2)C1—C21.381 (3)
C13—C101.566 (2)C1—H1A0.9300
C13—H130.9800C17—C161.372 (4)
C6—C51.378 (3)C17—H170.9300
C6—C11.387 (3)C3—C41.358 (4)
C6—C71.511 (3)C3—C21.374 (4)
C10—C121.532 (3)C3—H30.9300
C10—C111.531 (2)C16—H160.9300
C11—H11A0.9700C2—H2A0.9300
C11—H11B0.9700C5—C41.379 (4)
C7—C81.530 (3)C5—H50.9300
C7—H70.9800C4—H40.9300
C19—C181.379 (3)
C11—O2—H2109.5C9—C8—C7111.45 (15)
C7—N1—C13112.98 (14)C9—C8—H8A109.3
C7—N1—H1113.2 (19)C7—C8—H8A109.3
C13—N1—H1107 (2)C9—C8—H8B109.3
C15—C14—C19117.87 (17)C7—C8—H8B109.3
C15—C14—C13120.38 (16)H8A—C8—H8B108.0
C19—C14—C13121.74 (17)C10—C12—H12A109.5
O1—C9—C8121.79 (16)C10—C12—H12B109.5
O1—C9—C10121.04 (16)H12A—C12—H12B109.5
C8—C9—C10117.15 (14)C10—C12—H12C109.5
N1—C13—C14110.43 (13)H12A—C12—H12C109.5
N1—C13—C10109.24 (13)H12B—C12—H12C109.5
C14—C13—C10112.72 (13)C14—C15—C16121.3 (2)
N1—C13—H13108.1C14—C15—H15119.3
C14—C13—H13108.1C16—C15—H15119.3
C10—C13—H13108.1C19—C18—C17120.7 (2)
C5—C6—C1117.8 (2)C19—C18—H18119.6
C5—C6—C7120.78 (19)C17—C18—H18119.6
C1—C6—C7121.40 (17)C2—C1—C6120.8 (2)
C9—C10—C12107.29 (14)C2—C1—H1A119.6
C9—C10—C11109.78 (14)C6—C1—H1A119.6
C12—C10—C11108.28 (15)C16—C17—C18118.9 (2)
C9—C10—C13108.82 (13)C16—C17—H17120.5
C12—C10—C13111.86 (13)C18—C17—H17120.5
C11—C10—C13110.75 (14)C4—C3—C2119.6 (2)
O2—C11—C10114.21 (15)C4—C3—H3120.2
O2—C11—H11A108.7C2—C3—H3120.2
C10—C11—H11A108.7C17—C16—C15120.4 (2)
O2—C11—H11B108.7C17—C16—H16119.8
C10—C11—H11B108.7C15—C16—H16119.8
H11A—C11—H11B107.6C3—C2—C1120.1 (3)
N1—C7—C6111.10 (15)C3—C2—H2A119.9
N1—C7—C8107.46 (14)C1—C2—H2A119.9
C6—C7—C8110.59 (16)C4—C5—C6121.1 (2)
N1—C7—H7109.2C4—C5—H5119.4
C6—C7—H7109.2C6—C5—H5119.4
C8—C7—H7109.2C3—C4—C5120.5 (2)
C18—C19—C14120.7 (2)C3—C4—H4119.7
C18—C19—H19119.7C5—C4—H4119.7
C14—C19—H19119.7
C7—N1—C13—C14170.51 (14)C1—C6—C7—N144.8 (2)
C7—N1—C13—C1064.98 (17)C5—C6—C7—C8103.5 (2)
C15—C14—C13—N1152.01 (17)C1—C6—C7—C874.5 (2)
C19—C14—C13—N128.7 (2)C15—C14—C19—C181.2 (3)
C15—C14—C13—C1085.5 (2)C13—C14—C19—C18178.07 (17)
C19—C14—C13—C1093.80 (19)O1—C9—C8—C7133.78 (19)
O1—C9—C10—C12102.5 (2)C10—C9—C8—C747.8 (2)
C8—C9—C10—C1275.99 (19)N1—C7—C8—C954.0 (2)
O1—C9—C10—C1115.0 (2)C6—C7—C8—C9175.41 (15)
C8—C9—C10—C11166.55 (15)C19—C14—C15—C162.3 (3)
O1—C9—C10—C13136.33 (17)C13—C14—C15—C16177.03 (19)
C8—C9—C10—C1345.2 (2)C14—C19—C18—C170.6 (3)
N1—C13—C10—C950.76 (17)C5—C6—C1—C21.8 (3)
C14—C13—C10—C9173.93 (15)C7—C6—C1—C2176.3 (2)
N1—C13—C10—C1267.59 (18)C19—C18—C17—C161.4 (4)
C14—C13—C10—C1255.57 (19)C18—C17—C16—C150.4 (4)
N1—C13—C10—C11171.52 (14)C14—C15—C16—C171.5 (3)
C14—C13—C10—C1165.32 (18)C4—C3—C2—C11.0 (4)
C9—C10—C11—O267.49 (18)C6—C1—C2—C30.4 (4)
C12—C10—C11—O2175.68 (14)C1—C6—C5—C41.8 (4)
C13—C10—C11—O252.70 (19)C7—C6—C5—C4176.2 (2)
C13—N1—C7—C6173.39 (15)C2—C3—C4—C51.0 (4)
C13—N1—C7—C865.51 (18)C6—C5—C4—C30.5 (4)
C5—C6—C7—N1137.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.052.8194 (18)156
C8—H8A···O2ii0.972.473.379 (3)155
N1—H1···C3iii0.90 (3)2.75 (3)3.605 (2)161 (3)
Symmetry codes: (i) x1, y1, z+1/2; (ii) x, y, z1; (iii) x1, y, z+1/2.
 

Acknowledgements

Author contributions are as follows. Conceptualization, MKG, SK, and ES; synthesis, MKG and GBT; writing (review and editing of the manuscript) MKG and SK; formal analysis, MKG, SK and ND; crystal-structure determination, MKG, SK and ND; validation, MKG, GBT and ES; project administration, MKG and SK. MKG thanks the Ministry of Education and Science of the Republic of Kaza­khstan for financial support as a visiting professor at Atyrau State University.

References

First citationCaujolle, R., Lattes, A., Jaud, J. & Galy, J. (1981). Acta Cryst. B37, 1699–1703.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationComba, P., Nuber, B. & Ramlow, A. (1997). J. Chem. Soc. Dalton Trans. pp. 347–352.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, D. G. & Tulemisova, G. B. (1997). Russ. J. Org. Chem. 33, 1337–1340.  CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRameshkumar, N., Veena, A., Ilavarasan, R., Adiraj, M., Shanmugapandiyan, P. & Sridhar, S. K. (2003). Biol. Pharm. Bull. 26, 188–193.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRossetti, A., Landoni, S., Meneghetti, F., Castellano, C., Mori, M., Colombo Dugoni, G. & Sacchetti, A. (2018). New J. Chem. 42, 12072–12081.  Web of Science CSD CrossRef CAS Google Scholar
First citationSasitha, T. & John, W. J. (2021). Heliyon, 7, e06127.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds