research communications
E)-2-{4-[2-(4-chlorophenyl)-2-oxoethoxy]phenyl}ethenyl)-4,5-dihydropyridazin-3(2H)-one
and Hirshfeld surface analysis of 6-((aLaboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohammed I University, 60000 Oujda, Morocco, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55200, Turkey, cDepartment of Pharmacology, Faculty of Clinical Pharmacy, University of Medical and Applied Sciences, Yemen, and dLaboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
*Correspondence e-mail: emineberrin.cinar@omu.edu.tr, abdulmalikabudunia@gmail.com
The pyridazine ring in the title compound, C20H17ClN2O3, adopts a screw-boat conformation. The whole molecule is flattened, the dihedral angles subtended by the least-squares plane of the central aromatic ring with those of the terminal benzene and pyridazine rings being 15.18 (19) and 11.23 (19)°, respectively. In the crystal, the molecules are linked by pairs of N—H⋯O bonds into centrosymmetric dimers and by C—H⋯π contacts into columns. The results of the Hirshfeld surface analysis show that the most prominent interactions are H⋯H, accounting for 36.5% of overall crystal packing, and H⋯O/O⋯H (18.6% contribution) contacts.
Keywords: crystal structure; dihydropyridazin; Hirshfeld surface; hydrogen bonding.
CCDC reference: 2123627
1. Chemical context
Pyridazinone derivatives are a class of nitrogenous et al., 2018), antitumor (Bouchmaa et al., 2018, 2019), antifungal (Rozada et al., 2020), antidepressant (Boukharsa et al., 2016), antitubercular, anticonvulsant (Asif et al., 2020) and antiviral (El-Shanbaky et al., 2021) agents. In addition, pyridazinones demonstrate some interesting physicochemical properties (Daoui et al., 2020a; El Kalai et al., 2021a,b) and some studies have shown that these compounds are good corrosion inhibitors (Chelfi et al., 2020). Encouraged by the bioactivity of these compounds and in a continuation of our studies in the field of the synthesis, molecular structures and Hirshfeld surfaces analyses of new pyridazin-3(2H)-one derivatives (Daoui et al., 2020b, 2021), we report herein the and the results of the Hirshfeld surface analysis of 6-((E)-2-{4-[2-(4-chlorophenyl)-2-oxoethoxy]phenyl}ethenyl)-4,5-dihydropyridazin-3(2H)-one.
that have attracted considerable attention because of their prospective pharmacological and medicinal properties as anti-inflammatory (Boukharsa2. Structural commentary
The molecular structure of the title compound is presented in Fig. 1. The bond lengths in the N1—C15 chain (Table 1) are consistent with an alternation of double and single bonds while those in the amide fragment indicate strong π-conjugation. The N1—N2 distance of 1.406 (4) Å agrees well with the values for related pyridazinones (Daoui, Çınar et al., 2019; Daoui, Baydere et al., 2019). The conformation of the dihydropyridazine ring is close to a screw-boat [Θ = 111.9 (6)°, φ = 34.6 (6)°]. The whole molecule is flattened with the largest deviations from the least-squares plane of 0.356 (4) and 0.339 (5) Å being observed for atoms C18 and C19, respectively. The central benzene ring forms dihedral angles of 11.23 (19) and 15.18 (19)° with the planes of the terminal dihydropyridazine and benzene rings, respectively.
|
3. Supramolecular features
In the crystal, the molecules are linked into centrosymmetric dimers by pairs of N—H⋯O hydrogen bonds, giving rise to an R22(8) graph-set motif (Fig. 2a, Table 2). No π–π interactions are present in this structure, but the molecules are connected by weak C—H⋯π contacts into stacks running along the a-axis direction (Fig. 2b,c, Table 2). Other contacts of the C—H⋯O and C—H⋯Cl types further stabilize the (Table 2).
4. Hirshfeld surface analysis
In order to visualize and study the intermolecular contacts, a Hirshfeld surface analysis of the title compound was undertaken using Crystal Explorer 17.5 (Turner et al., 2017). Fig. 3a shows the 3D surface mapped over dnorm over the range −0.484 (red) to 1.403 (blue) a.u. The pale-red spots on the surface represent short N—H⋯O and C—H⋯O interactions (Table 2). The surfaces mapped over de and di are presented in Fig. 3b and 3c.
The overall two-dimensional fingerprint plot and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯Cl/Cl⋯H and C⋯C contacts are presented in Fig. 4. H⋯H interactions are the most prominent, accounting for 36.5% of the overall crystal packing. H⋯O/O⋯H contacts, including intermolecular C—H⋯O and N—H⋯O hydrogen bonding, make a 18.6% contribution to the Hirshfeld surface. H⋯C/C⋯H contacts add a 15.4% contribution. The contributions from H⋯Cl/Cl⋯H and C⋯C contacts are 11.2% and 7.6%, respectively.
5. Database survey
A search of the Cambridge Structural Database (CSD, version 5.40, update March 2020; Groom et al., 2016) revealed two structures containing the same pyridazinone fragments as in the title structure but with different substituents, viz. 6-[(E)-2-(thiophen-2-yl)ethenyl]-4,5-dihydropyridazin-3(2H)-one (MUCLEE; Daoui, Çınar et al., 2019) and (E)-6-(4-hydroxy-3-methoxyphenyl)ethenyl-4,5-dihydropyridazin-3(2H)-one (LOSSOE; Daoui, Baydere et al., 2019). Both these structures exhibit bond lengths in the pyridazine ring and N—H⋯O hydrogen-bonding parameters that are very similar to those observed in the title structure.
6. Synthesis and crystallization
A mixture of (E)-6-(4-hydroxystyryl)-4,5-dihydropyridazin-3(2H)-one (0.5 g, 2.3 mmol), K2CO3 (0.79 g, 5.7 mmol) and 2-chloro-1-(4-chlorophenyl)ethan-1-one (0.47 g, 2.5 mmol) in acetone (50 ml) was refluxed overnight. After cooling, the solution was filtered and the solvent removed under reduced pressure. The residue was purified by recrystallization from ethanol to afford single crystals (yield 72%).
7. Refinement
Crystal data, data collection and structure . Hydrogen atoms were positioned geometrically and treated as riding, with C—H = 0.96 Å for methylene [Uiso(H) = 1.5 Ueq(C)], C—H = 0.93 Å for aromatic [Uiso(H) = 1.2 Ueq(C)] and C—H = 0.98 Å for methine [Uiso (H) = 1.2 Ueq(C)] H atoms.
details are summarized in Table 3Supporting information
CCDC reference: 2123627
https://doi.org/10.1107/S205698902101238X/yk2160sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902101238X/yk2160Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902101238X/yk2160Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL2018/3 (Sheldrick, 2015b), PLATON (Spek, 2020) and publCIF (Westrip, 2010).C20H17ClN2O3 | Dx = 1.393 Mg m−3 |
Mr = 368.80 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 13252 reflections |
a = 7.3514 (4) Å | θ = 1.0–25.1° |
b = 11.5539 (7) Å | µ = 0.24 mm−1 |
c = 41.397 (3) Å | T = 296 K |
V = 3516.2 (4) Å3 | Needle, colorless |
Z = 8 | 0.45 × 0.20 × 0.05 mm |
F(000) = 1536 |
STOE IPDS 2 diffractometer | 2913 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1682 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.113 |
Detector resolution: 6.67 pixels mm-1 | θmax = 24.5°, θmin = 2.0° |
rotation method scans | h = −8→8 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −13→13 |
Tmin = 0.925, Tmax = 0.994 | l = −48→48 |
19519 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0518P)2] where P = (Fo2 + 2Fc2)/3 |
2913 reflections | (Δ/σ)max < 0.001 |
235 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.40565 (17) | 0.91913 (10) | 0.94188 (2) | 0.0775 (4) | |
O2 | 0.3849 (3) | 0.58839 (19) | 0.76710 (5) | 0.0548 (6) | |
O1 | 0.3725 (4) | 0.5145 (2) | 0.82642 (5) | 0.0652 (7) | |
O3 | 0.4691 (5) | 0.8576 (2) | 0.48754 (6) | 0.0901 (11) | |
N1 | 0.4362 (5) | 0.9053 (3) | 0.57229 (6) | 0.0583 (9) | |
N2 | 0.4339 (5) | 0.9186 (3) | 0.53853 (6) | 0.0627 (9) | |
H2 | 0.420683 | 0.987853 | 0.531280 | 0.075* | |
C9 | 0.3861 (5) | 0.6229 (3) | 0.73520 (7) | 0.0446 (8) | |
C12 | 0.3776 (5) | 0.6716 (3) | 0.66888 (7) | 0.0450 (8) | |
C7 | 0.3875 (5) | 0.6191 (3) | 0.82384 (7) | 0.0459 (8) | |
C14 | 0.4262 (5) | 0.7332 (3) | 0.72432 (7) | 0.0460 (9) | |
H14 | 0.455198 | 0.791510 | 0.738937 | 0.055* | |
C15 | 0.3713 (5) | 0.6918 (3) | 0.63384 (7) | 0.0485 (9) | |
H15 | 0.336983 | 0.628939 | 0.621208 | 0.058* | |
C8 | 0.4077 (5) | 0.6746 (3) | 0.79090 (7) | 0.0463 (8) | |
H8A | 0.316866 | 0.734746 | 0.788149 | 0.056* | |
H8B | 0.527120 | 0.709594 | 0.788902 | 0.056* | |
C10 | 0.3420 (5) | 0.5366 (3) | 0.71335 (8) | 0.0493 (9) | |
H10 | 0.315275 | 0.462357 | 0.720621 | 0.059* | |
C6 | 0.3939 (5) | 0.6959 (3) | 0.85261 (7) | 0.0442 (8) | |
C13 | 0.4229 (4) | 0.7563 (3) | 0.69135 (8) | 0.0480 (9) | |
H13 | 0.451610 | 0.830326 | 0.684145 | 0.058* | |
C11 | 0.3378 (5) | 0.5613 (3) | 0.68064 (8) | 0.0495 (9) | |
H11 | 0.307759 | 0.502891 | 0.666138 | 0.059* | |
C17 | 0.4022 (5) | 0.8025 (3) | 0.58300 (7) | 0.0480 (9) | |
C16 | 0.4088 (5) | 0.7891 (3) | 0.61803 (8) | 0.0513 (9) | |
H16 | 0.441662 | 0.853378 | 0.630205 | 0.062* | |
C5 | 0.3951 (5) | 0.6460 (3) | 0.88335 (7) | 0.0505 (9) | |
H5 | 0.395053 | 0.565786 | 0.885305 | 0.061* | |
C1 | 0.3956 (5) | 0.8158 (3) | 0.85007 (8) | 0.0507 (9) | |
H1 | 0.393722 | 0.850303 | 0.829780 | 0.061* | |
C4 | 0.3965 (5) | 0.7130 (3) | 0.91071 (8) | 0.0546 (10) | |
H4 | 0.394802 | 0.678837 | 0.931046 | 0.066* | |
C3 | 0.4005 (5) | 0.8324 (3) | 0.90763 (8) | 0.0542 (9) | |
C2 | 0.4002 (5) | 0.8843 (3) | 0.87751 (8) | 0.0560 (10) | |
H2A | 0.403021 | 0.964539 | 0.875701 | 0.067* | |
C18 | 0.3570 (6) | 0.7050 (3) | 0.56077 (8) | 0.0638 (11) | |
H18A | 0.388487 | 0.632317 | 0.571073 | 0.077* | |
H18B | 0.227071 | 0.704664 | 0.556707 | 0.077* | |
C20 | 0.4501 (6) | 0.8347 (4) | 0.51664 (9) | 0.0667 (12) | |
C19 | 0.4555 (7) | 0.7143 (3) | 0.52951 (9) | 0.0770 (14) | |
H19A | 0.400668 | 0.662153 | 0.513941 | 0.092* | |
H19B | 0.581099 | 0.690928 | 0.532538 | 0.092* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.1050 (9) | 0.0789 (7) | 0.0487 (5) | −0.0053 (7) | −0.0003 (6) | −0.0147 (5) |
O2 | 0.0842 (18) | 0.0491 (13) | 0.0311 (12) | −0.0041 (14) | −0.0035 (13) | 0.0037 (11) |
O1 | 0.102 (2) | 0.0493 (16) | 0.0440 (14) | −0.0081 (15) | 0.0098 (15) | 0.0043 (12) |
O3 | 0.168 (3) | 0.0733 (19) | 0.0293 (15) | −0.019 (2) | 0.0040 (16) | 0.0027 (13) |
N1 | 0.089 (3) | 0.058 (2) | 0.0279 (14) | −0.0069 (18) | 0.0018 (15) | 0.0022 (14) |
N2 | 0.101 (3) | 0.0548 (18) | 0.0319 (15) | −0.0002 (18) | −0.0013 (16) | 0.0067 (15) |
C9 | 0.051 (2) | 0.052 (2) | 0.0315 (17) | −0.0038 (18) | 0.0023 (17) | 0.0030 (16) |
C12 | 0.050 (2) | 0.051 (2) | 0.0340 (17) | −0.0002 (18) | 0.0026 (16) | −0.0011 (16) |
C7 | 0.051 (2) | 0.050 (2) | 0.0368 (18) | −0.0005 (18) | 0.0030 (18) | 0.0056 (15) |
C14 | 0.054 (2) | 0.048 (2) | 0.0361 (18) | −0.0049 (18) | −0.0008 (16) | 0.0006 (16) |
C15 | 0.057 (2) | 0.056 (2) | 0.0321 (17) | −0.0005 (19) | 0.0012 (18) | −0.0004 (16) |
C8 | 0.056 (2) | 0.048 (2) | 0.0347 (17) | −0.0009 (19) | 0.0018 (17) | 0.0015 (16) |
C10 | 0.066 (3) | 0.0399 (19) | 0.0417 (19) | −0.0040 (17) | 0.0017 (17) | 0.0058 (16) |
C6 | 0.049 (2) | 0.049 (2) | 0.0346 (17) | 0.0001 (18) | 0.0049 (17) | 0.0051 (15) |
C13 | 0.054 (2) | 0.048 (2) | 0.0414 (19) | −0.0020 (19) | 0.0011 (17) | 0.0063 (16) |
C11 | 0.064 (2) | 0.049 (2) | 0.0351 (18) | −0.0017 (18) | 0.0034 (16) | −0.0031 (17) |
C17 | 0.057 (2) | 0.053 (2) | 0.0349 (17) | 0.0009 (19) | −0.0002 (18) | −0.0021 (16) |
C16 | 0.060 (2) | 0.059 (2) | 0.0347 (18) | −0.004 (2) | 0.0018 (19) | −0.0018 (16) |
C5 | 0.063 (2) | 0.047 (2) | 0.0409 (19) | −0.0010 (19) | −0.0006 (19) | 0.0083 (16) |
C1 | 0.070 (3) | 0.047 (2) | 0.0348 (18) | 0.005 (2) | 0.0027 (19) | 0.0076 (16) |
C4 | 0.069 (3) | 0.058 (2) | 0.0367 (19) | −0.003 (2) | −0.0005 (19) | 0.0076 (16) |
C3 | 0.060 (2) | 0.063 (2) | 0.0389 (19) | 0.002 (2) | 0.0005 (19) | −0.0031 (18) |
C2 | 0.071 (3) | 0.047 (2) | 0.050 (2) | 0.001 (2) | 0.002 (2) | 0.0007 (18) |
C18 | 0.097 (3) | 0.057 (2) | 0.037 (2) | −0.008 (2) | 0.004 (2) | −0.0009 (18) |
C20 | 0.102 (4) | 0.065 (3) | 0.034 (2) | −0.011 (2) | 0.002 (2) | 0.001 (2) |
C19 | 0.126 (4) | 0.062 (3) | 0.043 (2) | −0.006 (3) | 0.011 (2) | −0.001 (2) |
C20—O3 | 1.241 (4) | C10—C11 | 1.384 (5) |
N2—C20 | 1.333 (5) | C10—H10 | 0.9300 |
N1—N2 | 1.406 (4) | C6—C1 | 1.389 (5) |
N1—C17 | 1.292 (4) | C6—C5 | 1.397 (4) |
C16—C17 | 1.459 (4) | C13—H13 | 0.9300 |
C15—C16 | 1.329 (5) | C11—H11 | 0.9300 |
C12—C15 | 1.470 (4) | C17—C18 | 1.492 (5) |
C7—O1 | 1.219 (4) | C16—H16 | 0.9300 |
Cl1—C3 | 1.737 (3) | C5—C4 | 1.373 (5) |
O2—C9 | 1.379 (4) | C5—H5 | 0.9300 |
O2—C8 | 1.411 (4) | C1—C2 | 1.385 (5) |
N2—H2 | 0.8600 | C1—H1 | 0.9300 |
C9—C14 | 1.384 (4) | C4—C3 | 1.386 (5) |
C9—C10 | 1.385 (4) | C4—H4 | 0.9300 |
C12—C13 | 1.391 (4) | C3—C2 | 1.383 (5) |
C12—C11 | 1.395 (5) | C2—H2A | 0.9300 |
C7—C6 | 1.486 (4) | C18—C19 | 1.487 (5) |
C7—C8 | 1.514 (4) | C18—H18A | 0.9700 |
C14—C13 | 1.391 (4) | C18—H18B | 0.9700 |
C14—H14 | 0.9300 | C20—C19 | 1.490 (5) |
C15—H15 | 0.9300 | C19—H19A | 0.9700 |
C8—H8A | 0.9700 | C19—H19B | 0.9700 |
C8—H8B | 0.9700 | ||
C9—O2—C8 | 117.6 (2) | C12—C11—H11 | 119.2 |
C17—N1—N2 | 116.0 (3) | N1—C17—C16 | 115.6 (3) |
C20—N2—N1 | 126.5 (3) | N1—C17—C18 | 121.7 (3) |
C20—N2—H2 | 116.7 | C16—C17—C18 | 122.7 (3) |
N1—N2—H2 | 116.7 | C15—C16—C17 | 124.9 (3) |
O2—C9—C14 | 125.4 (3) | C15—C16—H16 | 117.5 |
O2—C9—C10 | 114.6 (3) | C17—C16—H16 | 117.5 |
C14—C9—C10 | 120.0 (3) | C4—C5—C6 | 121.2 (3) |
C13—C12—C11 | 117.4 (3) | C4—C5—H5 | 119.4 |
C13—C12—C15 | 123.8 (3) | C6—C5—H5 | 119.4 |
C11—C12—C15 | 118.9 (3) | C2—C1—C6 | 120.5 (3) |
O1—C7—C6 | 121.7 (3) | C2—C1—H1 | 119.7 |
O1—C7—C8 | 120.5 (3) | C6—C1—H1 | 119.7 |
C6—C7—C8 | 117.8 (3) | C5—C4—C3 | 119.1 (3) |
C9—C14—C13 | 119.5 (3) | C5—C4—H4 | 120.5 |
C9—C14—H14 | 120.3 | C3—C4—H4 | 120.5 |
C13—C14—H14 | 120.3 | C2—C3—C4 | 121.0 (3) |
C16—C15—C12 | 127.9 (3) | C2—C3—Cl1 | 119.1 (3) |
C16—C15—H15 | 116.1 | C4—C3—Cl1 | 120.0 (3) |
C12—C15—H15 | 116.1 | C3—C2—C1 | 119.4 (3) |
O2—C8—C7 | 108.5 (3) | C3—C2—H2A | 120.3 |
O2—C8—H8A | 110.0 | C1—C2—H2A | 120.3 |
C7—C8—H8A | 110.0 | C19—C18—C17 | 112.0 (3) |
O2—C8—H8B | 110.0 | C19—C18—H18A | 109.2 |
C7—C8—H8B | 110.0 | C17—C18—H18A | 109.2 |
H8A—C8—H8B | 108.4 | C19—C18—H18B | 109.2 |
C11—C10—C9 | 119.7 (3) | C17—C18—H18B | 109.2 |
C11—C10—H10 | 120.1 | H18A—C18—H18B | 107.9 |
C9—C10—H10 | 120.1 | O3—C20—N2 | 121.0 (4) |
C1—C6—C5 | 118.7 (3) | O3—C20—C19 | 122.9 (4) |
C1—C6—C7 | 122.4 (3) | N2—C20—C19 | 116.0 (3) |
C5—C6—C7 | 118.9 (3) | C18—C19—C20 | 111.4 (3) |
C12—C13—C14 | 121.7 (3) | C18—C19—H19A | 109.3 |
C12—C13—H13 | 119.1 | C20—C19—H19A | 109.3 |
C14—C13—H13 | 119.1 | C18—C19—H19B | 109.3 |
C10—C11—C12 | 121.7 (3) | C20—C19—H19B | 109.3 |
C10—C11—H11 | 119.2 | H19A—C19—H19B | 108.0 |
C17—N1—N2—C20 | −19.7 (6) | N2—N1—C17—C16 | 178.7 (3) |
C8—O2—C9—C14 | 7.0 (5) | N2—N1—C17—C18 | −2.0 (5) |
C8—O2—C9—C10 | −172.8 (3) | C12—C15—C16—C17 | 179.1 (4) |
O2—C9—C14—C13 | 179.9 (3) | N1—C17—C16—C15 | 177.3 (4) |
C10—C9—C14—C13 | −0.4 (5) | C18—C17—C16—C15 | −1.9 (6) |
C13—C12—C15—C16 | 1.2 (6) | C1—C6—C5—C4 | 0.5 (6) |
C11—C12—C15—C16 | −178.2 (4) | C7—C6—C5—C4 | −178.4 (3) |
C9—O2—C8—C7 | 175.7 (3) | C5—C6—C1—C2 | 0.6 (6) |
O1—C7—C8—O2 | 6.4 (5) | C7—C6—C1—C2 | 179.5 (3) |
C6—C7—C8—O2 | −175.9 (3) | C6—C5—C4—C3 | −1.3 (6) |
O2—C9—C10—C11 | 179.6 (3) | C5—C4—C3—C2 | 1.0 (6) |
C14—C9—C10—C11 | −0.1 (5) | C5—C4—C3—Cl1 | −179.1 (3) |
O1—C7—C6—C1 | −174.5 (4) | C4—C3—C2—C1 | 0.1 (6) |
C8—C7—C6—C1 | 7.8 (5) | Cl1—C3—C2—C1 | −179.8 (3) |
O1—C7—C6—C5 | 4.4 (6) | C6—C1—C2—C3 | −0.9 (6) |
C8—C7—C6—C5 | −173.3 (3) | N1—C17—C18—C19 | 33.8 (6) |
C11—C12—C13—C14 | −0.9 (5) | C16—C17—C18—C19 | −147.0 (4) |
C15—C12—C13—C14 | 179.7 (3) | N1—N2—C20—O3 | −170.9 (4) |
C9—C14—C13—C12 | 0.9 (5) | N1—N2—C20—C19 | 5.5 (6) |
C9—C10—C11—C12 | 0.2 (6) | C17—C18—C19—C20 | −44.6 (5) |
C13—C12—C11—C10 | 0.3 (5) | O3—C20—C19—C18 | −156.4 (4) |
C15—C12—C11—C10 | 179.8 (3) | N2—C20—C19—C18 | 27.3 (6) |
Cg3 is the centroid of the C9–C14 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O3i | 0.86 | 2.11 | 2.891 (4) | 151 |
C4—H4···O3ii | 0.93 | 2.44 | 3.327 (4) | 160 |
C13—H13···O1iii | 0.93 | 2.53 | 3.421 (4) | 161 |
C18—H18A···Cl1iv | 0.97 | 2.94 | 3.737 (3) | 140 |
C8—H8B···Cg3v | 0.97 | 2.73 | 3.514 (3) | 138 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, −y+3/2, z+1/2; (iii) −x+1, y+1/2, −z+3/2; (iv) −x+1, y−1/2, −z+3/2; (v) x−1/2, y, −z+3/2. |
Acknowledgements
Author contributions are as follows. Conceptualization, SD, IM, EBÇ, AA, ND, NB and KK; synthesis, SD, KK, NB, AA, writing, IM and EBÇ, formal analysis ND and KK, validation IM, EBÇ and ND.
Funding information
Funding for this research was provided by Ondokuz Mayıs University under project No. PYO·FEN.1906.19.001.
References
Asif, M. & Imran, M. (2020). Anal. Chem. Lett. 10, 414–427. CrossRef CAS Google Scholar
Bouchmaa, N., Mrid, R. B., Boukharsa, Y., Bouargalne, Y., Nhiri, M., Idir, A., Taoufik, J., Ansar, M. & Zyad, A. (2019). Drug Res. (Stuttg.), 69, 528–536. Web of Science CAS PubMed Google Scholar
Bouchmaa, N., Tilaoui, M., Boukharsa, Y., Jaâfari, A., Mouse, H. A., Ali Oukerrou, M., Taoufik, J., Ansar, M. & Zyad, A. (2018). Pharm. Chem. J. 51, 893–901. Web of Science CrossRef CAS Google Scholar
Boukharsa, Y., Lakhlili, W., El harti, J., Meddah, B., Tiendrebeogo, R. Y., Taoufik, J., El Abbes Faouzi, M., Ibrahimi, A. & Ansar, M. (2018). J. Mol. Struct. 1153, 119–127. Web of Science CrossRef CAS Google Scholar
Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500. Web of Science CrossRef CAS Google Scholar
Chelfi, T., Benchat, N., Bouklah, M., Daoui, S., Karrouchi, K., Allali, M., Taleb, M., Ech chihbi, E., Almalki, F. A. & Benhada, T. (2020). J. Bio- Tribo-Corros. 6, 1–14. Google Scholar
Daoui, S., Baydere, C., Akman, F., El Kalai, F., Mahi, L., Dege, N., Topcu, Y., Karrouchi, K. & Benchat, N. (2020a). J. Mol. Struct. 1225, 129180. Web of Science CSD CrossRef Google Scholar
Daoui, S., Baydere, C., Chelfi, T., El Kalai, F., Dege, N., Karrouchi, K. & Benchat, N. (2020b). Acta Cryst. E76, 432–437. Web of Science CSD CrossRef IUCr Journals Google Scholar
Daoui, S., Baydere, C., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 1734–1737. Web of Science CSD CrossRef IUCr Journals Google Scholar
Daoui, S., Cinar, E. B., Dege, N., Chelfi, T., El Kalai, F., Abudunia, A., Karrouchi, K. & Benchat, N. (2021). Acta Cryst. E77, 23–27. Web of Science CSD CrossRef IUCr Journals Google Scholar
Daoui, S., Çınar, E. B., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 1880–1883. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
El Kalai, F., Çınar, E. B., Lai, C. H., Daoui, S., Chelfi, T., Allali, M., Dege, N., Karrouchi, K. & Benchat, N. (2021a). J. Mol. Struct. 1228, 129435. Web of Science PubMed Google Scholar
El Kalai, F., Karrouchi, K., Baydere, C., Daoui, S., Allali, M., Dege, N., Benchat, N. & Brandán, S. A. (2021b). J. Mol. Struct. 1223, 129213. Google Scholar
El-Shanbaky, H. M., El-Hameed, A. & Mohamed, M. S. (2021). J. Adv. Pharm. Res. 5, 202–210. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rozada, A. M., Rodrigues-Vendramini, F. A., Gonçalves, D. S., Rosa, F. A., Basso, E. A., Seixas, F. A., Kioshima, É. S. & Gauze, G. F. (2020). Bioorg. Med. Chem. Lett. 30, 127244. Web of Science CrossRef PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.