research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 6-((E)-2-{4-[2-(4-chloro­phen­yl)-2-oxoeth­­oxy]phen­yl}ethen­yl)-4,5-di­hydro­pyridazin-3(2H)-one

crossmark logo

aLaboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohammed I University, 60000 Oujda, Morocco, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55200, Turkey, cDepartment of Pharmacology, Faculty of Clinical Pharmacy, University of Medical and Applied Sciences, Yemen, and dLaboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
*Correspondence e-mail: emineberrin.cinar@omu.edu.tr, abdulmalikabudunia@gmail.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 2 November 2021; accepted 22 November 2021; online 1 January 2022)

The pyridazine ring in the title compound, C20H17ClN2O3, adopts a screw-boat conformation. The whole mol­ecule is flattened, the dihedral angles subtended by the least-squares plane of the central aromatic ring with those of the terminal benzene and pyridazine rings being 15.18 (19) and 11.23 (19)°, respectively. In the crystal, the mol­ecules are linked by pairs of N—H⋯O bonds into centrosymmetric dimers and by C—H⋯π contacts into columns. The results of the Hirshfeld surface analysis show that the most prominent inter­actions are H⋯H, accounting for 36.5% of overall crystal packing, and H⋯O/O⋯H (18.6% contribution) contacts.

1. Chemical context

Pyridazinone derivatives are a class of nitro­genous heterocyclic compounds that have attracted considerable attention because of their prospective pharmacological and medicinal properties as anti-inflammatory (Boukharsa et al., 2018[Boukharsa, Y., Lakhlili, W., El harti, J., Meddah, B., Tiendrebeogo, R. Y., Taoufik, J., El Abbes Faouzi, M., Ibrahimi, A. & Ansar, M. (2018). J. Mol. Struct. 1153, 119-127.]), anti­tumor (Bouchmaa et al., 2018[Bouchmaa, N., Tilaoui, M., Boukharsa, Y., Jaâfari, A., Mouse, H. A., Ali Oukerrou, M., Taoufik, J., Ansar, M. & Zyad, A. (2018). Pharm. Chem. J. 51, 893-901.], 2019[Bouchmaa, N., Mrid, R. B., Boukharsa, Y., Bouargalne, Y., Nhiri, M., Idir, A., Taoufik, J., Ansar, M. & Zyad, A. (2019). Drug Res. (Stuttg.), 69, 528-536.]), anti­fungal (Rozada et al., 2020[Rozada, A. M., Rodrigues-Vendramini, F. A., Gonçalves, D. S., Rosa, F. A., Basso, E. A., Seixas, F. A., Kioshima, É. S. & Gauze, G. F. (2020). Bioorg. Med. Chem. Lett. 30, 127244.]), anti­depressant (Boukharsa et al., 2016[Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494-500.]), anti­tubercular, anti­convulsant (Asif et al., 2020[Asif, M. & Imran, M. (2020). Anal. Chem. Lett. 10, 414-427.]) and anti­viral (El-Shanbaky et al., 2021[El-Shanbaky, H. M., El-Hameed, A. & Mohamed, M. S. (2021). J. Adv. Pharm. Res. 5, 202-210.]) agents. In addition, pyridazinones demonstrate some inter­esting physicochemical properties (Daoui et al., 2020a[Daoui, S., Baydere, C., Akman, F., El Kalai, F., Mahi, L., Dege, N., Topcu, Y., Karrouchi, K. & Benchat, N. (2020a). J. Mol. Struct. 1225, 129180.]; El Kalai et al., 2021a[El Kalai, F., Çınar, E. B., Lai, C. H., Daoui, S., Chelfi, T., Allali, M., Dege, N., Karrouchi, K. & Benchat, N. (2021a). J. Mol. Struct. 1228, 129435.],b[El Kalai, F., Karrouchi, K., Baydere, C., Daoui, S., Allali, M., Dege, N., Benchat, N. & Brandán, S. A. (2021b). J. Mol. Struct. 1223, 129213.]) and some studies have shown that these compounds are good corrosion inhibitors (Chelfi et al., 2020[Chelfi, T., Benchat, N., Bouklah, M., Daoui, S., Karrouchi, K., Allali, M., Taleb, M., Ech chihbi, E., Almalki, F. A. & Benhada, T. (2020). J. Bio- Tribo-Corros. 6, 1-14.]). Encouraged by the bioactivity of these compounds and in a continuation of our studies in the field of the synthesis, mol­ecular structures and Hirshfeld surfaces analyses of new pyridazin-3(2H)-one derivatives (Daoui et al., 2020b[Daoui, S., Baydere, C., Chelfi, T., El Kalai, F., Dege, N., Karrouchi, K. & Benchat, N. (2020b). Acta Cryst. E76, 432-437.], 2021[Daoui, S., Cinar, E. B., Dege, N., Chelfi, T., El Kalai, F., Abudunia, A., Karrouchi, K. & Benchat, N. (2021). Acta Cryst. E77, 23-27.]), we report herein the crystal structure and the results of the Hirshfeld surface analysis of 6-((E)-2-{4-[2-(4-chloro­phen­yl)-2-oxoeth­oxy]phen­yl}ethen­yl)-4,5-di­hydro­pyridazin-3(2H)-one.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is presented in Fig. 1[link]. The bond lengths in the N1—C15 chain (Table 1[link]) are consistent with an alternation of double and single bonds while those in the amide fragment indicate strong π-conjugation. The N1—N2 distance of 1.406 (4) Å agrees well with the values for related pyridazinones (Daoui, Çınar et al., 2019[Daoui, S., Çınar, E. B., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 1880-1883.]; Daoui, Baydere et al., 2019[Daoui, S., Çınar, E. B., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 1880-1883.]). The conformation of the di­hydro­pyridazine ring is close to a screw-boat [Θ = 111.9 (6)°, φ = 34.6 (6)°]. The whole mol­ecule is flattened with the largest deviations from the least-squares plane of 0.356 (4) and 0.339 (5) Å being observed for atoms C18 and C19, respect­ively. The central benzene ring forms dihedral angles of 11.23 (19) and 15.18 (19)° with the planes of the terminal di­hydro­pyridazine and benzene rings, respectively.

Table 1
Selected bond lengths (Å)

C20—O3 1.241 (4) C16—C17 1.459 (4)
N2—C20 1.333 (5) C15—C16 1.329 (5)
N1—N2 1.406 (4) C12—C15 1.470 (4)
N1—C17 1.292 (4) C7—O1 1.219 (4)
[Figure 1]
Figure 1
Mol­ecular structure of the title compound showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are linked into centrosymmetric dimers by pairs of N—H⋯O hydrogen bonds, giving rise to an R22(8) graph-set motif (Fig. 2[link]a, Table 2[link]). No ππ inter­actions are present in this structure, but the mol­ecules are connected by weak C—H⋯π contacts into stacks running along the a-axis direction (Fig. 2[link]b,c, Table 2[link]). Other contacts of the C—H⋯O and C—H⋯Cl types further stabilize the crystal structure (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.86 2.11 2.891 (4) 151
C4—H4⋯O3ii 0.93 2.44 3.327 (4) 160
C13—H13⋯O1iii 0.93 2.53 3.421 (4) 161
C18—H18A⋯Cl1iv 0.97 2.94 3.737 (3) 140
C8—H8BCg3v 0.97 2.73 3.514 (3) 138
Symmetry codes: (i) [-x+1, -y+2, -z+1]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
(a) A view of the crystal packing of the title compound along the c axis. Dashed lines indicate hydrogen bonds. (b) C—H⋯π inter­actions. (c) A view of the mol­ecular stacks running along the a axis.

4. Hirshfeld surface analysis

In order to visualize and study the inter­molecular contacts, a Hirshfeld surface analysis of the title compound was undertaken using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia.]). Fig. 3[link]a shows the 3D surface mapped over dnorm over the range −0.484 (red) to 1.403 (blue) a.u. The pale-red spots on the surface represent short N—H⋯O and C—H⋯O inter­actions (Table 2[link]). The surfaces mapped over de and di are presented in Fig. 3[link]b and 3c.

[Figure 3]
Figure 3
(a) Hirshfeld surfaces of the title mol­ecule mapped over (a) dnorm, (b) de and (c) di.

The overall two-dimensional fingerprint plot and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯Cl/Cl⋯H and C⋯C contacts are presented in Fig. 4[link]. H⋯H inter­actions are the most prominent, accounting for 36.5% of the overall crystal packing. H⋯O/O⋯H contacts, including inter­molecular C—H⋯O and N—H⋯O hydrogen bonding, make a 18.6% contribution to the Hirshfeld surface. H⋯C/C⋯H contacts add a 15.4% contribution. The contributions from H⋯Cl/Cl⋯H and C⋯C contacts are 11.2% and 7.6%, respectively.

[Figure 4]
Figure 4
(a) The overall two-dimensional fingerprint plot, and those delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯Cl/Cl⋯H and (f) C⋯C inter­actions.

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed two structures containing the same pyridazinone fragments as in the title structure but with different substituents, viz. 6-[(E)-2-(thio­phen-2-yl)ethen­yl]-4,5-di­hydro­pyridazin-3(2H)-one (MUCLEE; Daoui, Çınar et al., 2019[Daoui, S., Çınar, E. B., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 1880-1883.]) and (E)-6-(4-hy­droxy-3-meth­oxy­phen­yl)ethenyl-4,5-di­hydro­pyridazin-3(2H)-one (LOSSOE; Daoui, Baydere et al., 2019[Daoui, S., Baydere, C., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 1734-1737.]). Both these structures exhibit bond lengths in the pyridazine ring and N—H⋯O hydrogen-bonding parameters that are very similar to those observed in the title structure.

6. Synthesis and crystallization

A mixture of (E)-6-(4-hy­droxy­styr­yl)-4,5-di­hydro­pyridazin-3(2H)-one (0.5 g, 2.3 mmol), K2CO3 (0.79 g, 5.7 mmol) and 2-chloro-1-(4-chloro­phen­yl)ethan-1-one (0.47 g, 2.5 mmol) in acetone (50 ml) was refluxed overnight. After cooling, the solution was filtered and the solvent removed under reduced pressure. The residue was purified by recrystallization from ethanol to afford single crystals (yield 72%).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were positioned geometrically and treated as riding, with C—H = 0.96 Å for methyl­ene [Uiso(H) = 1.5 Ueq(C)], C—H = 0.93 Å for aromatic [Uiso(H) = 1.2 Ueq(C)] and C—H = 0.98 Å for methine [Uiso (H) = 1.2 Ueq(C)] H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C20H17ClN2O3
Mr 368.80
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 7.3514 (4), 11.5539 (7), 41.397 (3)
V3) 3516.2 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.45 × 0.20 × 0.05
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.925, 0.994
No. of measured, independent and observed [I > 2σ(I)] reflections 19519, 2913, 1682
Rint 0.113
(sin θ/λ)max−1) 0.584
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.128, 0.99
No. of reflections 2913
No. of parameters 235
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.22
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL2018/3 (Sheldrick, 2015b), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

6-((E)-2-{4-[2-(4-Chlorophenyl)-2-oxoethoxy]phenyl}ethenyl)-4,5-dihydropyridazin-3(2H)-one top
Crystal data top
C20H17ClN2O3Dx = 1.393 Mg m3
Mr = 368.80Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 13252 reflections
a = 7.3514 (4) Åθ = 1.0–25.1°
b = 11.5539 (7) ŵ = 0.24 mm1
c = 41.397 (3) ÅT = 296 K
V = 3516.2 (4) Å3Needle, colorless
Z = 80.45 × 0.20 × 0.05 mm
F(000) = 1536
Data collection top
STOE IPDS 2
diffractometer
2913 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1682 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.113
Detector resolution: 6.67 pixels mm-1θmax = 24.5°, θmin = 2.0°
rotation method scansh = 88
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1313
Tmin = 0.925, Tmax = 0.994l = 4848
19519 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0518P)2]
where P = (Fo2 + 2Fc2)/3
2913 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.40565 (17)0.91913 (10)0.94188 (2)0.0775 (4)
O20.3849 (3)0.58839 (19)0.76710 (5)0.0548 (6)
O10.3725 (4)0.5145 (2)0.82642 (5)0.0652 (7)
O30.4691 (5)0.8576 (2)0.48754 (6)0.0901 (11)
N10.4362 (5)0.9053 (3)0.57229 (6)0.0583 (9)
N20.4339 (5)0.9186 (3)0.53853 (6)0.0627 (9)
H20.4206830.9878530.5312800.075*
C90.3861 (5)0.6229 (3)0.73520 (7)0.0446 (8)
C120.3776 (5)0.6716 (3)0.66888 (7)0.0450 (8)
C70.3875 (5)0.6191 (3)0.82384 (7)0.0459 (8)
C140.4262 (5)0.7332 (3)0.72432 (7)0.0460 (9)
H140.4551980.7915100.7389370.055*
C150.3713 (5)0.6918 (3)0.63384 (7)0.0485 (9)
H150.3369830.6289390.6212080.058*
C80.4077 (5)0.6746 (3)0.79090 (7)0.0463 (8)
H8A0.3168660.7347460.7881490.056*
H8B0.5271200.7095940.7889020.056*
C100.3420 (5)0.5366 (3)0.71335 (8)0.0493 (9)
H100.3152750.4623570.7206210.059*
C60.3939 (5)0.6959 (3)0.85261 (7)0.0442 (8)
C130.4229 (4)0.7563 (3)0.69135 (8)0.0480 (9)
H130.4516100.8303260.6841450.058*
C110.3378 (5)0.5613 (3)0.68064 (8)0.0495 (9)
H110.3077590.5028910.6661380.059*
C170.4022 (5)0.8025 (3)0.58300 (7)0.0480 (9)
C160.4088 (5)0.7891 (3)0.61803 (8)0.0513 (9)
H160.4416620.8533780.6302050.062*
C50.3951 (5)0.6460 (3)0.88335 (7)0.0505 (9)
H50.3950530.5657860.8853050.061*
C10.3956 (5)0.8158 (3)0.85007 (8)0.0507 (9)
H10.3937220.8503030.8297800.061*
C40.3965 (5)0.7130 (3)0.91071 (8)0.0546 (10)
H40.3948020.6788370.9310460.066*
C30.4005 (5)0.8324 (3)0.90763 (8)0.0542 (9)
C20.4002 (5)0.8843 (3)0.87751 (8)0.0560 (10)
H2A0.4030210.9645390.8757010.067*
C180.3570 (6)0.7050 (3)0.56077 (8)0.0638 (11)
H18A0.3884870.6323170.5710730.077*
H18B0.2270710.7046640.5567070.077*
C200.4501 (6)0.8347 (4)0.51664 (9)0.0667 (12)
C190.4555 (7)0.7143 (3)0.52951 (9)0.0770 (14)
H19A0.4006680.6621530.5139410.092*
H19B0.5810990.6909280.5325380.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1050 (9)0.0789 (7)0.0487 (5)0.0053 (7)0.0003 (6)0.0147 (5)
O20.0842 (18)0.0491 (13)0.0311 (12)0.0041 (14)0.0035 (13)0.0037 (11)
O10.102 (2)0.0493 (16)0.0440 (14)0.0081 (15)0.0098 (15)0.0043 (12)
O30.168 (3)0.0733 (19)0.0293 (15)0.019 (2)0.0040 (16)0.0027 (13)
N10.089 (3)0.058 (2)0.0279 (14)0.0069 (18)0.0018 (15)0.0022 (14)
N20.101 (3)0.0548 (18)0.0319 (15)0.0002 (18)0.0013 (16)0.0067 (15)
C90.051 (2)0.052 (2)0.0315 (17)0.0038 (18)0.0023 (17)0.0030 (16)
C120.050 (2)0.051 (2)0.0340 (17)0.0002 (18)0.0026 (16)0.0011 (16)
C70.051 (2)0.050 (2)0.0368 (18)0.0005 (18)0.0030 (18)0.0056 (15)
C140.054 (2)0.048 (2)0.0361 (18)0.0049 (18)0.0008 (16)0.0006 (16)
C150.057 (2)0.056 (2)0.0321 (17)0.0005 (19)0.0012 (18)0.0004 (16)
C80.056 (2)0.048 (2)0.0347 (17)0.0009 (19)0.0018 (17)0.0015 (16)
C100.066 (3)0.0399 (19)0.0417 (19)0.0040 (17)0.0017 (17)0.0058 (16)
C60.049 (2)0.049 (2)0.0346 (17)0.0001 (18)0.0049 (17)0.0051 (15)
C130.054 (2)0.048 (2)0.0414 (19)0.0020 (19)0.0011 (17)0.0063 (16)
C110.064 (2)0.049 (2)0.0351 (18)0.0017 (18)0.0034 (16)0.0031 (17)
C170.057 (2)0.053 (2)0.0349 (17)0.0009 (19)0.0002 (18)0.0021 (16)
C160.060 (2)0.059 (2)0.0347 (18)0.004 (2)0.0018 (19)0.0018 (16)
C50.063 (2)0.047 (2)0.0409 (19)0.0010 (19)0.0006 (19)0.0083 (16)
C10.070 (3)0.047 (2)0.0348 (18)0.005 (2)0.0027 (19)0.0076 (16)
C40.069 (3)0.058 (2)0.0367 (19)0.003 (2)0.0005 (19)0.0076 (16)
C30.060 (2)0.063 (2)0.0389 (19)0.002 (2)0.0005 (19)0.0031 (18)
C20.071 (3)0.047 (2)0.050 (2)0.001 (2)0.002 (2)0.0007 (18)
C180.097 (3)0.057 (2)0.037 (2)0.008 (2)0.004 (2)0.0009 (18)
C200.102 (4)0.065 (3)0.034 (2)0.011 (2)0.002 (2)0.001 (2)
C190.126 (4)0.062 (3)0.043 (2)0.006 (3)0.011 (2)0.001 (2)
Geometric parameters (Å, º) top
C20—O31.241 (4)C10—C111.384 (5)
N2—C201.333 (5)C10—H100.9300
N1—N21.406 (4)C6—C11.389 (5)
N1—C171.292 (4)C6—C51.397 (4)
C16—C171.459 (4)C13—H130.9300
C15—C161.329 (5)C11—H110.9300
C12—C151.470 (4)C17—C181.492 (5)
C7—O11.219 (4)C16—H160.9300
Cl1—C31.737 (3)C5—C41.373 (5)
O2—C91.379 (4)C5—H50.9300
O2—C81.411 (4)C1—C21.385 (5)
N2—H20.8600C1—H10.9300
C9—C141.384 (4)C4—C31.386 (5)
C9—C101.385 (4)C4—H40.9300
C12—C131.391 (4)C3—C21.383 (5)
C12—C111.395 (5)C2—H2A0.9300
C7—C61.486 (4)C18—C191.487 (5)
C7—C81.514 (4)C18—H18A0.9700
C14—C131.391 (4)C18—H18B0.9700
C14—H140.9300C20—C191.490 (5)
C15—H150.9300C19—H19A0.9700
C8—H8A0.9700C19—H19B0.9700
C8—H8B0.9700
C9—O2—C8117.6 (2)C12—C11—H11119.2
C17—N1—N2116.0 (3)N1—C17—C16115.6 (3)
C20—N2—N1126.5 (3)N1—C17—C18121.7 (3)
C20—N2—H2116.7C16—C17—C18122.7 (3)
N1—N2—H2116.7C15—C16—C17124.9 (3)
O2—C9—C14125.4 (3)C15—C16—H16117.5
O2—C9—C10114.6 (3)C17—C16—H16117.5
C14—C9—C10120.0 (3)C4—C5—C6121.2 (3)
C13—C12—C11117.4 (3)C4—C5—H5119.4
C13—C12—C15123.8 (3)C6—C5—H5119.4
C11—C12—C15118.9 (3)C2—C1—C6120.5 (3)
O1—C7—C6121.7 (3)C2—C1—H1119.7
O1—C7—C8120.5 (3)C6—C1—H1119.7
C6—C7—C8117.8 (3)C5—C4—C3119.1 (3)
C9—C14—C13119.5 (3)C5—C4—H4120.5
C9—C14—H14120.3C3—C4—H4120.5
C13—C14—H14120.3C2—C3—C4121.0 (3)
C16—C15—C12127.9 (3)C2—C3—Cl1119.1 (3)
C16—C15—H15116.1C4—C3—Cl1120.0 (3)
C12—C15—H15116.1C3—C2—C1119.4 (3)
O2—C8—C7108.5 (3)C3—C2—H2A120.3
O2—C8—H8A110.0C1—C2—H2A120.3
C7—C8—H8A110.0C19—C18—C17112.0 (3)
O2—C8—H8B110.0C19—C18—H18A109.2
C7—C8—H8B110.0C17—C18—H18A109.2
H8A—C8—H8B108.4C19—C18—H18B109.2
C11—C10—C9119.7 (3)C17—C18—H18B109.2
C11—C10—H10120.1H18A—C18—H18B107.9
C9—C10—H10120.1O3—C20—N2121.0 (4)
C1—C6—C5118.7 (3)O3—C20—C19122.9 (4)
C1—C6—C7122.4 (3)N2—C20—C19116.0 (3)
C5—C6—C7118.9 (3)C18—C19—C20111.4 (3)
C12—C13—C14121.7 (3)C18—C19—H19A109.3
C12—C13—H13119.1C20—C19—H19A109.3
C14—C13—H13119.1C18—C19—H19B109.3
C10—C11—C12121.7 (3)C20—C19—H19B109.3
C10—C11—H11119.2H19A—C19—H19B108.0
C17—N1—N2—C2019.7 (6)N2—N1—C17—C16178.7 (3)
C8—O2—C9—C147.0 (5)N2—N1—C17—C182.0 (5)
C8—O2—C9—C10172.8 (3)C12—C15—C16—C17179.1 (4)
O2—C9—C14—C13179.9 (3)N1—C17—C16—C15177.3 (4)
C10—C9—C14—C130.4 (5)C18—C17—C16—C151.9 (6)
C13—C12—C15—C161.2 (6)C1—C6—C5—C40.5 (6)
C11—C12—C15—C16178.2 (4)C7—C6—C5—C4178.4 (3)
C9—O2—C8—C7175.7 (3)C5—C6—C1—C20.6 (6)
O1—C7—C8—O26.4 (5)C7—C6—C1—C2179.5 (3)
C6—C7—C8—O2175.9 (3)C6—C5—C4—C31.3 (6)
O2—C9—C10—C11179.6 (3)C5—C4—C3—C21.0 (6)
C14—C9—C10—C110.1 (5)C5—C4—C3—Cl1179.1 (3)
O1—C7—C6—C1174.5 (4)C4—C3—C2—C10.1 (6)
C8—C7—C6—C17.8 (5)Cl1—C3—C2—C1179.8 (3)
O1—C7—C6—C54.4 (6)C6—C1—C2—C30.9 (6)
C8—C7—C6—C5173.3 (3)N1—C17—C18—C1933.8 (6)
C11—C12—C13—C140.9 (5)C16—C17—C18—C19147.0 (4)
C15—C12—C13—C14179.7 (3)N1—N2—C20—O3170.9 (4)
C9—C14—C13—C120.9 (5)N1—N2—C20—C195.5 (6)
C9—C10—C11—C120.2 (6)C17—C18—C19—C2044.6 (5)
C13—C12—C11—C100.3 (5)O3—C20—C19—C18156.4 (4)
C15—C12—C11—C10179.8 (3)N2—C20—C19—C1827.3 (6)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.862.112.891 (4)151
C4—H4···O3ii0.932.443.327 (4)160
C13—H13···O1iii0.932.533.421 (4)161
C18—H18A···Cl1iv0.972.943.737 (3)140
C8—H8B···Cg3v0.972.733.514 (3)138
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x1/2, y, z+3/2.
 

Acknowledgements

Author contributions are as follows. Conceptualization, SD, IM, EBÇ, AA, ND, NB and KK; synthesis, SD, KK, NB, AA, writing, IM and EBÇ, formal analysis ND and KK, validation IM, EBÇ and ND.

Funding information

Funding for this research was provided by Ondokuz Mayıs University under project No. PYO·FEN.1906.19.001.

References

First citationAsif, M. & Imran, M. (2020). Anal. Chem. Lett. 10, 414–427.  CrossRef CAS Google Scholar
First citationBouchmaa, N., Mrid, R. B., Boukharsa, Y., Bouargalne, Y., Nhiri, M., Idir, A., Taoufik, J., Ansar, M. & Zyad, A. (2019). Drug Res. (Stuttg.), 69, 528–536.  Web of Science CAS PubMed Google Scholar
First citationBouchmaa, N., Tilaoui, M., Boukharsa, Y., Jaâfari, A., Mouse, H. A., Ali Oukerrou, M., Taoufik, J., Ansar, M. & Zyad, A. (2018). Pharm. Chem. J. 51, 893–901.  Web of Science CrossRef CAS Google Scholar
First citationBoukharsa, Y., Lakhlili, W., El harti, J., Meddah, B., Tiendrebeogo, R. Y., Taoufik, J., El Abbes Faouzi, M., Ibrahimi, A. & Ansar, M. (2018). J. Mol. Struct. 1153, 119–127.  Web of Science CrossRef CAS Google Scholar
First citationBoukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500.  Web of Science CrossRef CAS Google Scholar
First citationChelfi, T., Benchat, N., Bouklah, M., Daoui, S., Karrouchi, K., Allali, M., Taleb, M., Ech chihbi, E., Almalki, F. A. & Benhada, T. (2020). J. Bio- Tribo-Corros. 6, 1–14.  Google Scholar
First citationDaoui, S., Baydere, C., Akman, F., El Kalai, F., Mahi, L., Dege, N., Topcu, Y., Karrouchi, K. & Benchat, N. (2020a). J. Mol. Struct. 1225, 129180.  Web of Science CSD CrossRef Google Scholar
First citationDaoui, S., Baydere, C., Chelfi, T., El Kalai, F., Dege, N., Karrouchi, K. & Benchat, N. (2020b). Acta Cryst. E76, 432–437.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDaoui, S., Baydere, C., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 1734–1737.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDaoui, S., Cinar, E. B., Dege, N., Chelfi, T., El Kalai, F., Abudunia, A., Karrouchi, K. & Benchat, N. (2021). Acta Cryst. E77, 23–27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDaoui, S., Çınar, E. B., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 1880–1883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl Kalai, F., Çınar, E. B., Lai, C. H., Daoui, S., Chelfi, T., Allali, M., Dege, N., Karrouchi, K. & Benchat, N. (2021a). J. Mol. Struct. 1228, 129435.  Web of Science PubMed Google Scholar
First citationEl Kalai, F., Karrouchi, K., Baydere, C., Daoui, S., Allali, M., Dege, N., Benchat, N. & Brandán, S. A. (2021b). J. Mol. Struct. 1223, 129213.  Google Scholar
First citationEl-Shanbaky, H. M., El-Hameed, A. & Mohamed, M. S. (2021). J. Adv. Pharm. Res. 5, 202–210.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRozada, A. M., Rodrigues-Vendramini, F. A., Gonçalves, D. S., Rosa, F. A., Basso, E. A., Seixas, F. A., Kioshima, É. S. & Gauze, G. F. (2020). Bioorg. Med. Chem. Lett. 30, 127244.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds