research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2,2,2-tri­fluoro-1-(7-methyl­imidazo[1,2-a]pyridin-3-yl)ethan-1-one

crossmark logo

aKosygin State University of Russia, 117997 Moscow, Russian Federation, bN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation, cDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: bkajaya@yahoo.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 11 November 2021; accepted 29 November 2021; online 1 January 2022)

The bicyclic imidazo[1,2-a]pyridine core in the mol­ecule of the title compound, C10H7F3N2O, is planar within 0.004 (1) Å. In the crystal, the mol­ecules are linked by pairs of C—H⋯N and C—H⋯O hydrogen bonds, forming strips. These strips are connected by the F⋯F contacts into layers, which are further joined by ππ stacking inter­actions. The Hirshfeld surface analysis and fingerprint plots reveal that mol­ecular packing is governed by F⋯H/H⋯F (31.6%), H⋯H (16.8%), C⋯H/H⋯C (13.8%) and O⋯H/H⋯O (8.5%) contacts.

1. Chemical context

The imidazo[1,2-a]pyridine synthon is one of the important fused bicyclic 5–6 heterocycles and it is recognized as a `drug prejudice' scaffold because of its wide range of applications in medicinal chemistry (Bagdi et al., 2015[Bagdi, A. K., Santra, S., Monir, K. & Hajra, A. (2015). Chem. Commun. 51, 1555-1575.]). This synthon is also useful in coordination chemistry and catalysis because of its coordination ability and non-covalent donor–acceptor bonding (Guseinov et al., 2022[Guseinov, F. I., Malinnikov, V. M., Lialin, K. N., Kobrakov, K. I., Shuvalova, E. V., Nelyubina, Y. V., Ugrak, B. I., Kustov, L. M. & Mahmudov, K. T. (2022). Dyes Pigments, 197, 109898.]; Ma et al., 2020[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.], 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mahmudov et al., 2020[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.], 2021[Mahmudov, K. T., Huseynov, F. E., Aliyeva, V. A., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Chem. Eur. J. 27, 14370-14389.]). Synthesis of this synthon from easily available chemicals is desirable due to its importance in the various branches of chemistry (Bagdi et al., 2015[Bagdi, A. K., Santra, S., Monir, K. & Hajra, A. (2015). Chem. Commun. 51, 1555-1575.]). Along with this, inter­molecular inter­actions organize mol­ecular architectures, which play a crucial role in synthesis, catalysis, micellization, etc. (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.]; Kopylovich et al., 2011[Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248-7250.]; Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17-23.]). The non-covalent bond–acceptor ability of both nitro­gen atoms in the imidazo[1,2-a]pyridine synthon can be used in crystal engineering and in the design of dyes and other materials (Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Mizar et al., 2012[Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. 2012, 2305-2313.]; Shixaliyev et al., 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]; Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.], 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]). Herein, we report a one-pot synthesis of 2,2,2-tri­fluoro-1-(7-methyl­imidazo[1,2-a]pyridin-3-yl)ethan-1-one (I)[link] from (E/Z)-3-bromo-1,1,1-tri­fluoro-4-isopropoxybut-3-en-2-one and 4-methyl­pyridin-2-amine, which provides multiple inter­molecular non-covalent inter­actions.

[Scheme 1]

2. Structural commentary

In the mol­ecule of the title compound (Fig. 1[link]), the fused bicyclic imidazo[1,2-a]pyridine core is planar within 0.004 (1) Å, with a dihedral angle of 0.34 (6)° between the mean planes of the five- and six-membered rings. The C2—C1—C8—C9 and N2—C1—C8—O1 torsion angles of 1.04 (18) and 1.14 (19)°, respectively, show that the ethanone group lies near the plane of the bicycle. The bond lengths N1—C2, C2—C1 and C1—C8 of 1.3367 (16), 1.3987 (16) and 1.4247 (16) Å, respectively, indicate strong π-conjugation in the N1–O1 chain.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the mol­ecules are linked by pairs of C—H⋯N and C—H⋯O hydrogen bonds into strips elongated along the [210] direction (Figs. 2[link] and 3[link], Table 1[link]). These strips are joined into layers parallel to (1[\overline{2}]2) by F⋯F contacts (Figs. 3[link]–5[link][link], Table 2[link]). The layers are connected by F⋯H contacts (Fig. 5[link], Table 2[link]) and ππ inter­actions with a shortest inter­centroid separation of 3.6395 (7) Å [Cg1⋯Cg1(1 − x, 1 − y, 1 − z); Cg1 is the centroid of the imidazole ring].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N1i 0.95 2.48 3.4139 (16) 167
C7—H7⋯O1ii 0.95 2.30 3.1464 (14) 147
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x+2, -y+2, -z+1].

Table 2
Summary of short inter­atomic contacts (Å) in the title structure

Contact Distance Symmetry operation
O1⋯C3 3.1574 (15) 1 + x, y, z
F1⋯H10B 2.86 1 + x, y, −1 + z
F3⋯F1 2.9074 (11) 2 − x, 1 − y, −z
H10C⋯O1 2.83 1 − x, 2 − y, 1 − z
F2⋯H10A 2.64 x, y, −1 + z
H2⋯F2 2.80 1 − x, 1 − y, −z
C3⋯N1 3.3055 (16) 1 − x, 1 − y, 1 − z
[Figure 2]
Figure 2
A general view of the C—H⋯O and C—H⋯N hydrogen bonds and ππ stacking inter­actions in the title compound, depicted by dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted. [Symmetry codes: (i) −x, −y + 1, −z + 1; (ii) −x + 2, −y + 2, −z + 1; (iii) x + 1, y, z; (iv) −1 + x, y, z.]
[Figure 3]
Figure 3
Packing diagram of the title compound, viewed down the a axis showing the C—H⋯O and C—H⋯N hydrogen bonds and the F⋯F and ππ stacking inter­actions. Hydrogen atoms not involved in hydrogen bonding are omitted.
[Figure 4]
Figure 4
Packing diagram of the title compound, viewed down the b axis showing the C—H⋯O and C—H⋯N hydrogen bonds and the F⋯F and ππ stacking inter­actions. Hydrogen atoms not involved in hydrogen bonding are omitted.
[Figure 5]
Figure 5
Packing diagram of the title compound, viewed down the c axis showing the C—H⋯O and C—H⋯N hydrogen bonds and the F⋯F and ππ stacking inter­actions. Hydrogen atoms not involved in hydrogen bonding are omitted.

To visualize the inter­molecular inter­actions in the title compound, the 3D Hirshfeld surfaces and two-dimensional fingerprint plots were computed using Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia. https://hirshfeldsurface.net]). The Hirshfeld surface plotted over dnorm in the range −0.3137 to 1.1314 a.u. is shown in Fig. 6[link]. The intense red spots with negative dnorm values represent C—H⋯O and C—H⋯N hydrogen bonds. Pale red spots correspond to ππ inter­actions, which are also seen in the shape-index surface (Fig. 7[link]) generated in the range −1 to 1 Å, where they are indicated by adjacent red and blue triangles. The Hirshfeld surface mapped over the electrostatic potential is shown in Fig. 8[link], where the hydrogen-bond acceptors are represented as red regions. The overall two-dimensional fingerprint plot, and those delineated into F⋯H/H⋯F (31.6%), H⋯H (16.8%), C⋯H/H⋯C (13.8%) and O⋯H/H⋯O (8.5%) contacts are illustrated in Fig. 9[link]. Other minor contributions to the Hirshfeld surface are from N⋯H/H⋯N (7.7%), F⋯F (6.1%), O⋯C/C⋯O (4.2%), N⋯C/C⋯N (3.8%), C⋯C (2.4%), F⋯C/C⋯F (1.7%), F⋯N/N⋯F (1.4%), N⋯N (1.1%) and O⋯N/N⋯O (0.9%) contacts.

[Figure 6]
Figure 6
Hirshfeld surface of the title mol­ecule mapped over dnorm.
[Figure 7]
Figure 7
Hirshfeld surface of the title compound plotted over shape-index.
[Figure 8]
Figure 8
View of the three-dimensional Hirshfeld surface of the title mol­ecule plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. calculated at the Hartree–Fock level of theory using the STO-3 G basis set. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.
[Figure 9]
Figure 9
(a) The overall two-dimensional fingerprint plot and those delineated into (b) F⋯H/H⋯F, (c) H⋯H, (d) C⋯H/H⋯C and (e) O⋯H/H⋯O inter­actions.

4. Database survey

The most closely related compounds containing a similar imidazo[1,2-a]pyridine skeleton, but with different substituents on the amide N atom are: N-t-butyl-2-(phenyl­ethyn­yl)imidazo[1,2-a]pyridin-3-amine (XOWVOX; Tber et al., 2019[Tber, Z., Kansiz, S., El Hafi, M., Loubidi, M., Jouha, J., Dege, N., Essassi, E. M. & Mague, J. T. (2019). Acta Cryst. E75, 1564-1567.]), 6-bromo-2-(4-bromo­phen­yl)imidazo[1,2-a]pyridine (KOXGEM; Khamees et al., 2019[Khamees, H. A., Chaluvaiah, K., El-khatatneh, N. A., Swamynayaka, A., Chong, K. H., Dasappa, J. P. & Madegowda, M. (2019). Acta Cryst. E75, 1620-1626.]), N-t-butyl-2-(2-nitro­phen­yl)imidazo[1,2-a]pyridin-3-amine (PILGAV01; Dhanalakshmi et al., 2019[Dhanalakshmi, G., Mala, R., Thennarasu, S. & Aravindhan, S. (2019). IUCrData, 4, x191477.]), 2-(4-meth­oxy­phen­yl)-6-nitro­imidazo[1,2-a]pyridine-3-carbaldehyde (DABTEI; Koudad et al., 2015[Koudad, M., Elaatiaoui, A., Benchat, N., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o979-o980.]), 2-(ethyl­sulfin­yl)imidazo[1,2-a]pyridine-3-sulfonamide (ZAP­JAD; Gong et al., 2012[Gong, Y., Ma, H. & Li, J. (2012). Acta Cryst. E68, o1342.]) and 2-methyl-6-(tri­fluoro­meth­yl)imidazo[1,2-a]pyridine-3-carbo­nitrile (ULEGOI; Fun et al., 2011[Fun, H.-K., Rosli, M. M., Kumar, D. J. M., Prasad, D. J. & Nagaraja, G. K. (2011). Acta Cryst. E67, o573.]). In the crystal of XOWVOX, mol­ecules are linked by N—H⋯H hydrogen bonds, forming chains along the c-axis direction. The chains are linked by C—H⋯π inter­actions, forming slabs parallel to the ac plane. In the structure of KOXGEM, an intra­molecular C—H⋯N hydrogen bond forms an S(5) ring motif. In the crystal, a short H⋯H contact links adjacent mol­ecules into centrosymmetric dimers. The dimers are joined by weak C—H⋯π and slipped ππ stacking inter­actions, forming layers parallel to (110), which are connected into a three-dimensional network by short Br⋯H contacts. In the crystal of PILGAV01, N—H⋯N hydrogen bonds link the mol­ecules into [010] chains. The cohesion of the crystal structure of DABTEI is ensured by C—H⋯N and C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. In ZAPJAD, the supra­molecular structure is defined by two kinds of inter­molecular hydrogen bonds. Pairs of N—H⋯N hydrogen bonds link the mol­ecules into centrosymmetric dimers and N—H⋯O hydrogen bonds link the dimers into tubular chains running along the a-axis direction. In the crystal of ULEGOI, mol­ecules are linked into chains through pairs of C—H⋯N inter­actions, forming R22(12) and R22(8) hydrogen-bond ring motifs. These chains are stacked along the a axis.

5. Synthesis and crystallization

A mixture of (E/Z)-3-bromo-1,1,1-tri­fluoro-4-isopropoxybut-3-en-2-one (0.522 mg, 2 mmol) and 4-methyl­pyridin-2-amine (0.216 mg, 2 mmol) in dry isopropyl alcohol (15 mL) was refluxed for 4 h. Then the solvent was removed on a rotary evaporator under reduced pressure. The residue was recrystallized from methanol. Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution. Colourless solid (yield 94%), m.p. 405–406 K. Analysis calculated for C10H7F3N2O (M = 228.17): C 52.64, H 3.09, N 12.28; found: C 52.55, H 3.07, N 12.19%. 1H NMR (300 MHz, CDCl3) δ 2.48 (3H, CH3), 7.32–8.60 (3H, Ar), 9.32 (1H, CH). 13C NMR (75 MHz, CDCl3) δ 174.45, 150.22, 141.32, 135.67, 131.04, 123.55, 118.66, 118.21, 116.32 and 21.56. ESI–MS: m/z: 229.18 [M + H]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) for CH hydrogen atoms and Uiso(H) = 1.5Ueq(C) for CH3 hydrogen atoms.

Table 3
Experimental details

Crystal data
Chemical formula C10H7F3N2O
Mr 228.18
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 5.4384 (1), 8.8298 (2), 10.0744 (2)
α, β, γ (°) 102.501 (2), 96.764 (2), 91.415 (2)
V3) 468.39 (2)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.30
Crystal size (mm) 0.15 × 0.06 × 0.02
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.])
Tmin, Tmax 0.323, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14165, 2006, 1927
Rint 0.050
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.09
No. of reflections 2006
No. of parameters 147
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.26
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

2,2,2-Trifluoro-1-(7-methylimidazo[1,2-a]pyridin-3-yl)ethan-1-one top
Crystal data top
C10H7F3N2OZ = 2
Mr = 228.18F(000) = 232
Triclinic, P1Dx = 1.618 Mg m3
a = 5.4384 (1) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.8298 (2) ÅCell parameters from 11472 reflections
c = 10.0744 (2) Åθ = 4.5–79.1°
α = 102.501 (2)°µ = 1.30 mm1
β = 96.764 (2)°T = 100 K
γ = 91.415 (2)°Block, colorless
V = 468.39 (2) Å30.15 × 0.06 × 0.02 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2006 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1927 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.050
Detector resolution: 10.0000 pixels mm-1θmax = 79.5°, θmin = 4.5°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2021)
k = 1110
Tmin = 0.323, Tmax = 1.000l = 1212
14165 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0617P)2 + 0.1479P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.37 e Å3
2006 reflectionsΔρmin = 0.26 e Å3
147 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0061 (14)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F30.83669 (15)0.51338 (8)0.12281 (8)0.0298 (2)
F11.03655 (15)0.72062 (9)0.10632 (8)0.0306 (2)
F20.63947 (16)0.69737 (10)0.05569 (8)0.0352 (2)
O10.94235 (16)0.85798 (10)0.34833 (9)0.0231 (2)
N20.53525 (17)0.75163 (11)0.47862 (10)0.0178 (2)
N10.25848 (19)0.55184 (12)0.38082 (11)0.0224 (2)
C30.3285 (2)0.66590 (13)0.49404 (12)0.0195 (3)
C70.6410 (2)0.87311 (13)0.57981 (12)0.0199 (3)
H70.7836930.9303220.5675820.024*
C60.5364 (2)0.90977 (14)0.69840 (12)0.0214 (3)
H60.6080510.9936400.7693950.026*
C40.2206 (2)0.70392 (14)0.61568 (13)0.0214 (3)
H40.0779510.6460520.6269990.026*
C50.3224 (2)0.82541 (14)0.71850 (13)0.0211 (3)
C20.4210 (2)0.56623 (14)0.29402 (12)0.0210 (3)
H20.4164030.5008890.2053420.025*
C10.5986 (2)0.68799 (13)0.34799 (12)0.0191 (3)
C90.8297 (2)0.66755 (14)0.14284 (13)0.0231 (3)
C80.7991 (2)0.74800 (13)0.29223 (12)0.0190 (3)
C100.2118 (2)0.87010 (16)0.85047 (13)0.0267 (3)
H10A0.3361480.8630350.9273120.040*
H10B0.0685690.7995450.8481130.040*
H10C0.1584300.9768750.8620580.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F30.0391 (5)0.0189 (4)0.0298 (4)0.0012 (3)0.0086 (3)0.0001 (3)
F10.0318 (4)0.0315 (4)0.0291 (4)0.0052 (3)0.0120 (3)0.0047 (3)
F20.0349 (5)0.0452 (5)0.0241 (4)0.0054 (4)0.0037 (3)0.0081 (3)
O10.0223 (4)0.0190 (4)0.0270 (4)0.0048 (3)0.0026 (3)0.0037 (3)
N20.0161 (5)0.0153 (5)0.0222 (5)0.0015 (3)0.0010 (4)0.0058 (4)
N10.0197 (5)0.0184 (5)0.0280 (5)0.0036 (4)0.0008 (4)0.0044 (4)
C30.0158 (5)0.0162 (5)0.0272 (6)0.0019 (4)0.0002 (4)0.0079 (4)
C70.0180 (5)0.0167 (5)0.0241 (6)0.0029 (4)0.0006 (4)0.0051 (4)
C60.0208 (6)0.0192 (6)0.0231 (6)0.0002 (4)0.0002 (4)0.0044 (4)
C40.0177 (5)0.0206 (6)0.0282 (6)0.0006 (4)0.0026 (4)0.0110 (5)
C50.0201 (6)0.0203 (6)0.0250 (6)0.0029 (4)0.0023 (4)0.0098 (5)
C20.0196 (6)0.0180 (6)0.0240 (6)0.0017 (4)0.0000 (4)0.0034 (4)
C10.0191 (6)0.0167 (5)0.0213 (6)0.0006 (4)0.0008 (4)0.0046 (4)
C90.0228 (6)0.0225 (6)0.0244 (6)0.0014 (4)0.0025 (5)0.0065 (5)
C80.0186 (5)0.0162 (5)0.0227 (6)0.0010 (4)0.0009 (4)0.0063 (4)
C100.0278 (6)0.0282 (7)0.0264 (6)0.0017 (5)0.0054 (5)0.0097 (5)
Geometric parameters (Å, º) top
F3—C91.3345 (14)C6—H60.9500
F1—C91.3292 (14)C6—C51.4245 (17)
F2—C91.3453 (14)C4—H40.9500
O1—C81.2208 (15)C4—C51.3728 (18)
N2—C31.3827 (14)C5—C101.5028 (17)
N2—C71.3706 (15)C2—H20.9500
N2—C11.4011 (15)C2—C11.3987 (16)
N1—C31.3571 (16)C1—C81.4247 (16)
N1—C21.3367 (16)C9—C81.5489 (17)
C3—C41.3997 (17)C10—H10A0.9800
C7—H70.9500C10—H10B0.9800
C7—C61.3629 (17)C10—H10C0.9800
C3—N2—C1106.60 (10)N1—C2—C1112.65 (11)
C7—N2—C3122.01 (10)C1—C2—H2123.7
C7—N2—C1131.39 (10)N2—C1—C8123.53 (11)
C2—N1—C3105.23 (10)C2—C1—N2104.25 (10)
N2—C3—C4119.63 (11)C2—C1—C8132.19 (11)
N1—C3—N2111.28 (10)F3—C9—F2106.95 (10)
N1—C3—C4129.10 (11)F3—C9—C8113.36 (9)
N2—C7—H7120.8F1—C9—F3107.82 (10)
C6—C7—N2118.35 (11)F1—C9—F2107.29 (10)
C6—C7—H7120.8F1—C9—C8110.72 (10)
C7—C6—H6119.2F2—C9—C8110.45 (10)
C7—C6—C5121.61 (11)O1—C8—C1126.81 (11)
C5—C6—H6119.2O1—C8—C9117.43 (10)
C3—C4—H4120.2C1—C8—C9115.72 (10)
C5—C4—C3119.55 (11)C5—C10—H10A109.5
C5—C4—H4120.2C5—C10—H10B109.5
C6—C5—C10119.98 (11)C5—C10—H10C109.5
C4—C5—C6118.86 (11)H10A—C10—H10B109.5
C4—C5—C10121.17 (11)H10A—C10—H10C109.5
N1—C2—H2123.7H10B—C10—H10C109.5
F3—C9—C8—O1130.29 (11)C3—N1—C2—C10.16 (13)
F3—C9—C8—C151.85 (14)C3—C4—C5—C60.07 (16)
F1—C9—C8—O18.98 (15)C3—C4—C5—C10179.86 (10)
F1—C9—C8—C1173.16 (10)C7—N2—C3—N1179.78 (10)
F2—C9—C8—O1109.71 (12)C7—N2—C3—C40.59 (16)
F2—C9—C8—C168.15 (13)C7—N2—C1—C2179.87 (11)
N2—C3—C4—C50.35 (17)C7—N2—C1—C82.02 (19)
N2—C7—C6—C50.07 (17)C7—C6—C5—C40.29 (17)
N2—C1—C8—O11.14 (19)C7—C6—C5—C10179.65 (10)
N2—C1—C8—C9176.48 (9)C2—N1—C3—N20.18 (13)
N1—C3—C4—C5179.91 (11)C2—N1—C3—C4179.41 (11)
N1—C2—C1—N20.09 (13)C2—C1—C8—O1178.67 (12)
N1—C2—C1—C8177.96 (12)C2—C1—C8—C91.04 (18)
C3—N2—C7—C60.37 (16)C1—N2—C3—N10.13 (13)
C3—N2—C1—C20.03 (12)C1—N2—C3—C4179.50 (9)
C3—N2—C1—C8178.08 (10)C1—N2—C7—C6179.75 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F30.952.532.9876 (14)110
C4—H4···N1i0.952.483.4139 (16)167
C7—H7···O10.952.432.9864 (14)117
C7—H7···O1ii0.952.303.1464 (14)147
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y+2, z+1.
Summary of short interatomic contacts (Å) in the title structure top
ContactDistanceSymmetry operation
O1···C33.1574 (15)1 + x, y, z
F1···H10B2.861 + x, y, -1 + z
F3···F12.9074 (11)2 - x, 1 - y, -z
H10C···O12.831 - x, 2 - y, 1 - z
F2···H10A2.64x, y, -1 + z
H2···F22.801 - x, 1 - y, -z
C3···N13.3055 (16)1 - x, 1 - y, 1 - z
 

Acknowledgements

The author's contributions are as follows. Conceptualization, FIG, MA and AB; synthesis, FIG and KIK; X-ray analysis, BIU, ZA and MA; writing (review and editing of the manuscript), FIG, ZA, MA and AB.

References

First citationBagdi, A. K., Santra, S., Monir, K. & Hajra, A. (2015). Chem. Commun. 51, 1555–1575.  Web of Science CrossRef CAS Google Scholar
First citationDhanalakshmi, G., Mala, R., Thennarasu, S. & Aravindhan, S. (2019). IUCrData, 4, x191477.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Rosli, M. M., Kumar, D. J. M., Prasad, D. J. & Nagaraja, G. K. (2011). Acta Cryst. E67, o573.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGong, Y., Ma, H. & Li, J. (2012). Acta Cryst. E68, o1342.  CSD CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGuseinov, F. I., Malinnikov, V. M., Lialin, K. N., Kobrakov, K. I., Shuvalova, E. V., Nelyubina, Y. V., Ugrak, B. I., Kustov, L. M. & Mahmudov, K. T. (2022). Dyes Pigments, 197, 109898.  Web of Science CSD CrossRef Google Scholar
First citationKhamees, H. A., Chaluvaiah, K., El-khatatneh, N. A., Swamynayaka, A., Chong, K. H., Dasappa, J. P. & Madegowda, M. (2019). Acta Cryst. E75, 1620–1626.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250.  Web of Science CrossRef CAS Google Scholar
First citationKoudad, M., Elaatiaoui, A., Benchat, N., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o979–o980.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.  Web of Science CrossRef Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Huseynov, F. E., Aliyeva, V. A., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Chem. Eur. J. 27, 14370–14389.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. 2012, 2305–2313.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTber, Z., Kansiz, S., El Hafi, M., Loubidi, M., Jouha, J., Dege, N., Essassi, E. M. & Mague, J. T. (2019). Acta Cryst. E75, 1564–1567.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia. https://hirshfeldsurface.net  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds