research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and mol­ecular docking study of di­ethyl 2,2′-({[(1E,1′E)-(hydrazine-1,2-diyl­­idene)bis­­(methanylyl­­idene)]bis­­(4,1-phenyl­ene)}bis­­(­­oxy))di­acetate

crossmark logo

aLaboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohammed I University, 60000 Oujda, Morocco, bSamsun University, Faculty of Engineering, Department of Fundamental Sciences, 55420, Samsun, Turkey, cSamsun University, Faculty of Engineering, Biomedical Engineering, Samsun, 55420, Turkey, dOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, eDepartment of Computer and Electronic Engineering Technology, Sanaa Community College, Sanaa, Yemen, fDepartment of Electrical and Electronic Engineering, Faculty of Engineering, Ondokuz Mayıs University, 55139, Samsun, Turkey, and gLaboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
*Correspondence e-mail: saiddaouilabo2017@gmail.com, sevgi.kansiz@samsun.edu.tr, eiad.saif@scc.edu.ye

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 11 November 2021; accepted 19 December 2021; online 1 January 2022)

The title Schiff base, C22H24N2O6, adopts an E configuration. The mol­ecule is planar, the mean planes of the phenyl ring system (r.m.s deviation = 0.0059 Å) forms a dihedral angle of 0.96 (4)° with the mean plane of the phenyl ring moiety (r.m.s deviation = 0.0076 Å). In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds into chains extending along the c-axis and b-axis directions, respectively. A mol­ecular docking study between the title mol­ecule and 5-HT2C, which is a G protein receptor and ligand-gated ion channels found in nervous systems (PDB ID: 6BQH) was executed. The experiment shows that it is a good potential agent because of its affinity and ability to stick to the active sites of the receptor.

1. Chemical context

Compounds with an azomethine group (–C=N–) are known as Schiff bases, which are usually synthesized from the condensation of active carbonyl groups and primary amines (Yang et al., 2001[Yang, Z. H., Wang, L. X., Zhou, Z. H., Zhou, Q. L. & Tang, C. C. (2001). Tetrahedron Asymmetry, 12, 1579-1582.]). Furthermore, these derivatives represent an important class of organic compounds, especially in the medicinal and pharmaceutical fields (Murtaza et al., 2014[Murtaza, G., Mumtaz, A., Khan, F. A., Ahmad, S., Azhar, S., Khan, S. A., Najam-Ul-Haq, M., Atif, M., Khan, S. A., Maalik, A., Azhar, S. & Murtaza, G. (2014). Acta Pol. Pharm. 71, 531-535.]). It is well known from the literature that Schiff bases display excellent biological properties, such as anti­oxidant and analgesic (Karrouchi et al., 2016[Karrouchi, K., Chemlal, L., Taoufik, J., Cherrah, Y., Radi, S., El Abbes Faouzi, M. & Ansar, M. (2016). Annales Pharmaceutiques Françaises, 74, 431-438.]), anti­bacterial and cytotoxic (Maaref et al., 2020[Maaref, H., Sheikhhosseini, E., Foroughi, M. M., Akhgar, M. R. & Jahani, S. (2020). Appl. Organomet. Chem. 34, e5557.]), anti­diabetic (Karrouchi et al., 2022[Karrouchi, K., Fettach, S., Tamer, Ö., Avci, D., Başoğlu, A., Atalay, Y., Ayaz, Z., Radi, S., Ghabbour, H. A., Mabkhot, Y. N., Faouzi, M. E. A. & Ansar, M. (2022). J. Mol. Struct. 1248, 131506.]) and anti-inflammatory activities (Rana et al., 2012[Rana, K., Pandurangan, A., Singh, N. & Tiwari, A. K. (2012). Int. J. Curr. Pharm. Res. 4, 5-11.]). These deriv­atives are also used as corrosion inhibitors, which relies on their ability to spontaneously form a monolayer on the surface being protected (El Arrouji et al., 2020[El Arrouji, S., Karrouchi, K., Berisha, A., Alaoui, K. I., Warad, I., Rais, Z., Radi, S., Taleb, M., Ansar, M. & Zarrouk, A. (2020). Colloids Surf. A Physicochem. Eng. Asp. 604, 125325.]). In this study, the title compound, diethyl 2,2′-({[(1E,1′E)-(hydrazine-1,2-diyl­idene)bis(methanylyl­idene)]bis­(4,1-phenyl­ene)}bis­(­oxy))di­acetate, was characterized by single crystal X-ray and studied by Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The asymmetric unit contains one independent mol­ecule, which is planar, the mean plane of the C5–C10 phenyl ring (r.m.s deviation = 0.006 Å) forms a dihedral angle of 0.96 (4)° with the mean plane of the C16–C20 phenyl ring (r.m.s deviation = 0.008 Å). The C3—O1 and C14—O4 bond lengths in the mol­ecule are 1.213 (8) and 1.212 (8) Å, respectively, while the C11—N1 and C22—N2 bond lengths are 1.274 (7) and 1.275 (7) Å, respectively (Table 1[link]). These results suggest a double-bond character for the C=O and C=N bonds. The N1—N2 bond distance, 1.419 (7) Å, is compatible with 1.411 Å (Manawar et al., 2019[Manawar, R. B., Mamtora, M. J., Shah, M. K., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E76, 53-61.]; Kansiz et al., 2021[Kansiz, S., Tatlidil, D., Dege, N., Aktas, F. A., Al-Asbahy, S. O. M. & Alaman Agar, A. (2021). Acta Cryst. E77, 658-662.]). These results suggest a single bond character for N—N, as expected from hydrazine structures. The exocyclic angles C4—C3—O2 [115.4 (6)°], O1—C3—O2 [125.4 (8)°], C15—C14—O4 [125.5 (7)°] and C15—C14—O5 [111.9 (6)°] deviate significantly from the normal value of 120°; this may be due to steric repulsion (H4A⋯H10 = 2.22 Å and H15B⋯H17 = 2.32 Å). Bond lengths and angles are within normal ranges and are comparable to those observed in related structures (see Database survey section).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O4i 0.93 2.57 3.483 (9) 169
C4—H4B⋯N1ii 0.97 2.69 3.618 (10) 161
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z-{\script{3\over 2}}]; (ii) [x-1, y, z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

3. Supra­molecular features

In the crystal, there are two inter­molecular hydrogen bonds. The C6—H6⋯O4i hydrogen bond links the mol­ecules to each other along the c-axis direction while the C4—H4B⋯N1ii hydrogen bond links the mol­ecules to each other along the b-axis direction (symmetry codes as in Table 1[link]). A view of the crystal packing is shown in Fig. 2[link].

[Figure 2]
Figure 2
The crystal packing of the title compound with the inter­molecular C—H⋯O hydrogen bonds shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, update of May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the ethyl 2-(p-tol­yloxy)acetate skeleton revealed seven similar compounds, viz.: ethyl 4-[1-(4-bromo­phen­yl)-3-methyl-5-oxo-4,5-di­hydro-1H-1,2,4-triazol-4-yl­imino­meth­yl]phen­oxy­acetate (EKEYEY; Thamotharan et al., 2003[Thamotharan, S., Parthasarathi, V., Sunagar, V., Badami, B. & Schenk, K. J. (2003). Acta Cryst. E59, o1272-o1274.]), di[3-fluoro-6-meth­oxy-4-(eth­oxy­carbonyl­meth­oxy)benz­yl] ether (HIGLEP; Wallner et al., 2007[Wallner, F. K., Spjut, S., Boström, D. & Elofsson, M. (2007). Org. Biomol. Chem. 5, 2464-2471.]), ethyl (2-fluoro-4-hy­droxy­methyl-5-meth­oxy­phen­oxy)acetate (HIGLIT; Wallner et al., 2007[Wallner, F. K., Spjut, S., Boström, D. & Elofsson, M. (2007). Org. Biomol. Chem. 5, 2464-2471.]), diethyl 3,3-bis­{3-[4-(2-eth­oxy-2-oxoeth­oxy)-3-meth­oxy­phen­yl]acrylo­yl}penta­nedioate (JUMJEI; Xu et al., 2015[Xu, G., Wang, J., Si, G., Wang, M., Wu, B. & Zhou, S. (2015). Dyes Pigments, 123, 267-273.]), ethyl (4-{3-[2,4-bis­(2-eth­oxy-2-oxoeth­oxy)phen­yl]-3-oxoprop-1-en-1-yl}phen­oxy)acetate (PIXWAW; Liu, 2014[Liu, X. (2014). Acta Cryst. E70, o51.]), ethyl [(2-oxo-2H-chromen-7-yl)­oxy]acetate (WIHDEY; Fun et al., 2013[Fun, H.-K., Quah, C. K., Aich, K., Das, S. & Goswami, S. (2013). Acta Cryst. E69, o502.]) and ethyl {4-[(E)-2-(3,4,5-tri­meth­oxy­phen­yl)vin­yl]phen­oxy}acetate (XEWZIJ; Baolin et al., 2007[Baolin, L., Jian, G., Xiquan, Z., Yitian, L. & Huaiming, H. (2007). Z. Naturforsch. B: Chem. Sci. 62, 244-248.]). In EKEYEY, the eth­oxy­carbonyl­meth­oxy group is oriented at an angle of 29.42 (15)° with respect to the mean plane of the benzene ring. The mean plane of the 2H-chromene ring system (O1/C1–C9, r.m.s deviation = 0.026 Å) forms a dihedral angle of 81.71 (6)° with the mean plane of ethyl 2-hy­droxy­acetate moiety (O1/N3/C9/C10, r.m.s deviation = 0.026 Å) in WIHDEY. This dihedral angle for the title compound is smaller than in both EKEYEY and WIHDEY with a value of 4.38 (8)°. The C10—C11 bond distance of 1.516 (2) Å in WIHDEY, corresponding to a single bond, is slightly longer than observed for the title compound [C3—C4 = 1.498 (10) Å]. This bond length is also longer than in XEWZIJ [C18–C19 = 1.493 (3) Å; Baolin et al., 2007[Baolin, L., Jian, G., Xiquan, Z., Yitian, L. & Huaiming, H. (2007). Z. Naturforsch. B: Chem. Sci. 62, 244-248.])].

5. Mol­ecular docking study

Mol­ecular docking is a substantial process for finding the inter­actions between small mol­ecules and macromolecules. Inter­molecular bonds that occur between ligand and receptor are indicated by mol­ecular docking. In this study, AutoDockVina (Trott & Olson, 2010[Trott, O. & Olson, A. J. (2010). J. Comput. Chem. 31, 455-461.]) was used for predictive binding sites between the title mol­ecule and the 5-HT2C receptor (Peng et al., 2018[Peng, Y., McCorvy, J. D., Harpsøe, K., Lansu, K., Yuan, S., Popov, P., Qu, L., Pu, M., Che, T., Nikolajsen, L. F., Huang, X.-P., Wu, Y., Shen, L., Bjørn-Yoshimoto, W. E., Ding, K., Wacker, D., Han, G. W., Cheng, J., Katritch, V., Jensen, A. A., Hanson, M. A., Zhao, S., Gloriam, D. E., Roth, B. L., Stevens, R. C. & Liu, Z.-J. (2018). Cell, 172, 719-730.]). 6BQH is a serotonin receptor, which can be efficient for designing drugs to treat ailments such as anxiety, aggression, sleep disorders, and other psychological diseases. The three-dimensional structure of 6BQH was taken from the Protein Data Bank (PDB). Before the docking calculations, the receptor must be prepared for efficient insertion. For this reason, all water and ligand mol­ecules were cleared on receptor active sites. According to these active sites, grid box dimensions were defined as 100 x 80 x 110 Å. In addition, –x, y, z centres were adjusted to be −40.569, 33.142, 45.392, respectively, and then the 5-HT2C receptor was saved in PDBQT format for the calculations. In the next step, rotatable angles for the coupling structure were determined and recorded in PDBQT format. Discovery Studio Visualizer (Biovia, 2017[Biovia (2017). Discovery Studio Visualizer. Vol. 936. Biovia, San Diego, CA, USA.]) was used for observations and preparations. All docking calculations were calculated with AutoDockVina. Twenty variable links were decided by AutoDockVina for the ligands connected to the receptor of the protein. The best affinity energy was observed in the first calculation, which is −6.2 kcal mol−1. The bonding type of inter­action is represented in Fig. 3[link]. The 2D and 3D visuals of the inter­molecular inter­actions for the best binding pose of the title compound docked into macromolecule 6BQH can be seen in Fig. 4[link]. In addition, docking conformation can be seen in Fig. 5[link]. Consequently, the title compound could be a possible mol­ecule for drug design to treat psychological disorders, because its ability is suitable to stick to active sites of the receptor.

[Figure 3]
Figure 3
Three-dimensional visual of the inter­molecular inter­actions for the best binding pose of the title compound docking with 6BQH.
[Figure 4]
Figure 4
Two-dimensional visual of the inter­molecular inter­actions for the best binding pose of the title compound docking with 6BQH.
[Figure 5]
Figure 5
Three-dimensional conformation of the title compound with 6BQH.

6. Synthesis and crystallization

Hydrazine hydrate (0.013 g, 0.24 mmol) was added dropwise to a solution of ethyl 2-(4-formyl­phen­oxy)acetate (0.5 g, 0.48 mmol) in ethanol (20 ml), and the mixture was refluxed for 4 h. After cooling, the solvent was removed under reduced pressure, and the residue was purified by recrystallization from ethanol to afford single crystals (yield 80%).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and Uiso(H) = 1.2Ueq(C) for all other H atoms. The crystal studied was refined as a two-component inversion twin, but the absolute structure was indeterminate.

Table 2
Experimental details

Crystal data
Chemical formula C22H24N2O6
Mr 412.43
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 8.1864 (4), 9.2061 (5), 27.7903 (18)
V3) 2094.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.68 × 0.44 × 0.22
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.945, 0.979
No. of measured, independent and observed [I > 2σ(I)] reflections 11156, 4091, 2453
Rint 0.037
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.246, 1.01
No. of reflections 4091
No. of parameters 254
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.67
Absolute structure Refined as an inversion twin, but the absolute structure was indeterminate
Absolute structure parameter −1 (4)
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2017/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).

Diethyl 2,2'-({[(1E,1'E)-(hydrazine-1,2-diylidene)bis(methanylylidene)]bis(4,1-phenylene)}bis(oxy))diacetate top
Crystal data top
C22H24N2O6Dx = 1.308 Mg m3
Mr = 412.43Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9754 reflections
a = 8.1864 (4) Åθ = 2.2–27.8°
b = 9.2061 (5) ŵ = 0.10 mm1
c = 27.7903 (18) ÅT = 296 K
V = 2094.4 (2) Å3Prism, colorless
Z = 40.68 × 0.44 × 0.22 mm
F(000) = 872
Data collection top
Stoe IPDS 2
diffractometer
4091 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2453 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.037
rotation method scansθmax = 26.0°, θmin = 2.3°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 810
Tmin = 0.945, Tmax = 0.979k = 1111
11156 measured reflectionsl = 2734
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.073 w = 1/[σ2(Fo2) + (0.1576P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.246(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.50 e Å3
4091 reflectionsΔρmin = 0.67 e Å3
254 parametersAbsolute structure: Refined as an inversion twin
2 restraintsAbsolute structure parameter: 1 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O60.4659 (6)0.4221 (5)0.88303 (18)0.0861 (14)
O30.9934 (5)0.3444 (5)0.61477 (18)0.0815 (13)
N20.1980 (6)0.3968 (4)0.76468 (19)0.0658 (12)
O21.2412 (6)0.2842 (6)0.5611 (2)0.0968 (15)
N10.3161 (6)0.3494 (5)0.73078 (19)0.0671 (13)
O40.7008 (8)0.4943 (6)0.9435 (2)0.122 (2)
O50.8443 (9)0.2982 (8)0.9259 (3)0.145 (2)
O11.3702 (7)0.4910 (7)0.5761 (2)0.123 (2)
C190.0707 (7)0.3464 (5)0.7945 (2)0.0587 (13)
C80.5825 (7)0.4041 (5)0.7005 (2)0.0590 (13)
C31.2583 (9)0.4068 (9)0.5824 (3)0.090 (2)
C50.8617 (7)0.3742 (6)0.6434 (2)0.0659 (15)
C160.3406 (8)0.3906 (6)0.8529 (2)0.0656 (15)
C110.4446 (7)0.4275 (5)0.7311 (2)0.0618 (14)
H110.4489690.5047180.7526710.074*
C90.7122 (7)0.5040 (6)0.7029 (2)0.0689 (15)
H90.7055370.5813690.7242700.083*
C180.2009 (7)0.2516 (5)0.7937 (2)0.0655 (15)
H180.1980360.1721600.7730280.079*
C170.3358 (7)0.2717 (6)0.8230 (2)0.0677 (15)
H170.4219320.2058140.8224240.081*
C100.8487 (7)0.4902 (6)0.6743 (2)0.0677 (15)
H100.9317170.5589270.6759660.081*
C220.0682 (7)0.3205 (5)0.7625 (2)0.0617 (14)
H220.0617510.2461430.7399220.074*
C200.0776 (9)0.4663 (5)0.8255 (2)0.0710 (16)
H200.0096210.5308670.8270390.085*
C60.7324 (8)0.2740 (6)0.6404 (2)0.0764 (17)
H60.7391970.1962460.6191410.092*
C210.2131 (8)0.4884 (6)0.8537 (2)0.0756 (17)
H210.2189700.5698870.8733610.091*
C41.1264 (9)0.4449 (8)0.6175 (3)0.0857 (19)
H4A1.0868210.5421350.6108210.103*
H4B1.1710010.4442970.6498650.103*
C70.5976 (8)0.2901 (6)0.6684 (2)0.0711 (16)
H70.5133260.2227750.6659580.085*
C140.7176 (9)0.3829 (8)0.9207 (3)0.0848 (19)
C150.6016 (8)0.3258 (7)0.8849 (3)0.0785 (17)
H15A0.6535220.3200030.8535520.094*
H15B0.5658090.2292460.8940060.094*
C120.9676 (12)0.3616 (12)0.9585 (5)0.145 (2)
H12A1.0240400.4405910.9424660.175*
H12B0.9145410.4001860.9869750.175*
C131.0808 (13)0.2527 (12)0.9718 (4)0.145 (2)
H13A1.1612450.2934580.9930550.218*
H13B1.0244800.1752710.9879350.218*
H13C1.1336620.2155590.9435550.218*
C21.3727 (13)0.2480 (11)0.5256 (4)0.139 (3)
H2A1.3819330.3236630.5014100.167*
H2B1.4771610.2374480.5416300.167*
C11.3215 (13)0.1070 (10)0.5029 (4)0.139 (3)
H1A1.4015920.0779040.4795920.209*
H1B1.2177250.1193690.4873280.209*
H1C1.3123880.0336650.5273090.209*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O60.080 (3)0.089 (3)0.089 (3)0.000 (2)0.019 (3)0.013 (2)
O30.069 (3)0.093 (3)0.082 (3)0.014 (2)0.010 (2)0.004 (2)
N20.066 (3)0.055 (2)0.076 (3)0.001 (2)0.002 (3)0.001 (2)
O20.077 (3)0.097 (3)0.117 (4)0.014 (3)0.032 (3)0.019 (3)
N10.063 (3)0.063 (2)0.076 (3)0.001 (2)0.005 (3)0.000 (2)
O40.132 (5)0.109 (4)0.124 (4)0.004 (4)0.050 (4)0.017 (3)
O50.118 (4)0.160 (4)0.159 (5)0.008 (3)0.057 (4)0.021 (4)
O10.091 (4)0.144 (4)0.133 (5)0.035 (4)0.027 (4)0.004 (4)
C190.060 (3)0.051 (2)0.065 (3)0.004 (2)0.002 (3)0.002 (2)
C80.059 (3)0.054 (2)0.064 (3)0.003 (2)0.005 (3)0.004 (2)
C30.071 (5)0.096 (5)0.102 (5)0.003 (4)0.002 (4)0.034 (4)
C50.056 (3)0.071 (3)0.071 (4)0.003 (3)0.004 (3)0.008 (3)
C160.068 (3)0.063 (3)0.066 (4)0.002 (3)0.002 (3)0.001 (3)
C110.066 (4)0.052 (2)0.067 (3)0.005 (2)0.010 (3)0.004 (2)
C90.064 (4)0.064 (3)0.079 (4)0.005 (3)0.006 (3)0.008 (3)
C180.062 (3)0.056 (3)0.078 (4)0.006 (2)0.001 (3)0.005 (3)
C170.064 (3)0.063 (3)0.077 (4)0.002 (3)0.004 (3)0.003 (3)
C100.061 (3)0.064 (3)0.078 (4)0.016 (3)0.001 (3)0.007 (3)
C220.062 (3)0.047 (2)0.076 (4)0.002 (2)0.002 (3)0.003 (2)
C200.075 (4)0.056 (3)0.082 (4)0.006 (3)0.001 (4)0.001 (3)
C60.075 (4)0.069 (3)0.085 (4)0.003 (3)0.002 (4)0.018 (3)
C210.082 (4)0.062 (3)0.083 (4)0.006 (3)0.009 (4)0.015 (3)
C40.079 (5)0.099 (4)0.079 (4)0.018 (4)0.004 (4)0.007 (4)
C70.064 (4)0.060 (3)0.089 (4)0.007 (3)0.007 (4)0.004 (3)
C140.082 (5)0.089 (4)0.083 (5)0.011 (4)0.017 (4)0.004 (4)
C150.075 (4)0.082 (3)0.078 (4)0.001 (3)0.008 (4)0.006 (3)
C120.118 (4)0.160 (4)0.159 (5)0.008 (3)0.057 (4)0.021 (4)
C130.118 (4)0.160 (4)0.159 (5)0.008 (3)0.057 (4)0.021 (4)
C20.121 (5)0.146 (5)0.151 (6)0.013 (5)0.061 (5)0.007 (5)
C10.121 (5)0.146 (5)0.151 (6)0.013 (5)0.061 (5)0.007 (5)
Geometric parameters (Å, º) top
O6—C161.355 (7)C18—H180.9300
O6—C151.422 (8)C17—H170.9300
O3—C51.367 (7)C10—H100.9300
O3—C41.432 (8)C22—H220.9300
N2—C221.275 (7)C20—C211.372 (9)
N2—N11.419 (7)C20—H200.9300
O2—C31.282 (9)C6—C71.359 (9)
O2—C21.497 (10)C6—H60.9300
N1—C111.274 (7)C21—H210.9300
O4—C141.212 (8)C4—H4A0.9700
O5—C141.306 (9)C4—H4B0.9700
O5—C121.477 (10)C7—H70.9300
O1—C31.213 (8)C14—C151.474 (9)
C19—C181.378 (7)C15—H15A0.9700
C19—C201.403 (8)C15—H15B0.9700
C19—C221.463 (8)C12—C131.415 (10)
C8—C71.382 (8)C12—H12A0.9700
C8—C91.406 (8)C12—H12B0.9700
C8—C111.431 (8)C13—H13A0.9600
C3—C41.498 (10)C13—H13B0.9600
C5—C101.375 (8)C13—H13C0.9600
C5—C61.407 (8)C2—C11.502 (10)
C16—C171.375 (8)C2—H2A0.9700
C16—C211.379 (8)C2—H2B0.9700
C11—H110.9300C1—H1A0.9600
C9—C101.376 (8)C1—H1B0.9600
C9—H90.9300C1—H1C0.9600
C18—C171.385 (8)
C16—O6—C15118.7 (5)C20—C21—C16120.4 (5)
C5—O3—C4116.0 (5)C20—C21—H21119.8
C22—N2—N1111.5 (5)C16—C21—H21119.8
C3—O2—C2114.9 (6)O3—C4—C3111.2 (6)
C11—N1—N2112.6 (4)O3—C4—H4A109.4
C14—O5—C12112.0 (7)C3—C4—H4A109.4
C18—C19—C20118.5 (5)O3—C4—H4B109.4
C18—C19—C22119.3 (5)C3—C4—H4B109.4
C20—C19—C22122.2 (5)H4A—C4—H4B108.0
C7—C8—C9117.4 (6)C6—C7—C8121.6 (6)
C7—C8—C11124.6 (5)C6—C7—H7119.2
C9—C8—C11118.0 (5)C8—C7—H7119.2
O1—C3—O2125.4 (8)O4—C14—O5122.6 (7)
O1—C3—C4119.2 (8)O4—C14—C15125.5 (7)
O2—C3—C4115.4 (6)O5—C14—C15111.9 (6)
O3—C5—C10125.5 (5)O6—C15—C14107.8 (6)
O3—C5—C6115.3 (5)O6—C15—H15A110.1
C10—C5—C6119.2 (6)C14—C15—H15A110.1
O6—C16—C17124.4 (6)O6—C15—H15B110.1
O6—C16—C21115.1 (5)C14—C15—H15B110.1
C17—C16—C21120.5 (6)H15A—C15—H15B108.5
N1—C11—C8124.2 (5)C13—C12—O5109.2 (8)
N1—C11—H11117.9C13—C12—H12A109.8
C8—C11—H11117.9O5—C12—H12A109.8
C10—C9—C8121.7 (5)C13—C12—H12B109.8
C10—C9—H9119.1O5—C12—H12B109.8
C8—C9—H9119.1H12A—C12—H12B108.3
C19—C18—C17121.6 (5)C12—C13—H13A109.5
C19—C18—H18119.2C12—C13—H13B109.5
C17—C18—H18119.2H13A—C13—H13B109.5
C16—C17—C18119.0 (6)C12—C13—H13C109.5
C16—C17—H17120.5H13A—C13—H13C109.5
C18—C17—H17120.5H13B—C13—H13C109.5
C5—C10—C9119.7 (5)O2—C2—C1105.5 (8)
C5—C10—H10120.2O2—C2—H2A110.6
C9—C10—H10120.2C1—C2—H2A110.6
N2—C22—C19122.0 (5)O2—C2—H2B110.6
N2—C22—H22119.0C1—C2—H2B110.6
C19—C22—H22119.0H2A—C2—H2B108.8
C21—C20—C19120.0 (6)C2—C1—H1A109.5
C21—C20—H20120.0C2—C1—H1B109.5
C19—C20—H20120.0H1A—C1—H1B109.5
C7—C6—C5120.4 (5)C2—C1—H1C109.5
C7—C6—H6119.8H1A—C1—H1C109.5
C5—C6—H6119.8H1B—C1—H1C109.5
C22—N2—N1—C11177.6 (5)C20—C19—C22—N27.5 (8)
C2—O2—C3—O10.7 (11)C18—C19—C20—C211.1 (8)
C2—O2—C3—C4179.3 (7)C22—C19—C20—C21177.9 (6)
C4—O3—C5—C100.8 (9)O3—C5—C6—C7177.8 (6)
C4—O3—C5—C6179.7 (5)C10—C5—C6—C71.2 (9)
C15—O6—C16—C171.0 (9)C19—C20—C21—C162.3 (9)
C15—O6—C16—C21179.3 (5)O6—C16—C21—C20178.5 (6)
N2—N1—C11—C8179.8 (5)C17—C16—C21—C201.8 (9)
C7—C8—C11—N13.4 (9)C5—O3—C4—C3176.2 (5)
C9—C8—C11—N1176.4 (5)O1—C3—C4—O3171.2 (6)
C7—C8—C9—C100.4 (8)O2—C3—C4—O38.8 (9)
C11—C8—C9—C10179.4 (5)C5—C6—C7—C80.0 (10)
C20—C19—C18—C170.6 (8)C9—C8—C7—C60.4 (9)
C22—C19—C18—C17179.6 (5)C11—C8—C7—C6179.8 (5)
O6—C16—C17—C18179.8 (5)C12—O5—C14—O45.3 (13)
C21—C16—C17—C180.1 (9)C12—O5—C14—C15174.9 (8)
C19—C18—C17—C161.1 (9)C16—O6—C15—C14178.8 (5)
O3—C5—C10—C9176.9 (6)O4—C14—C15—O61.8 (11)
C6—C5—C10—C92.0 (9)O5—C14—C15—O6178.0 (6)
C8—C9—C10—C51.6 (9)C14—O5—C12—C13165.9 (10)
N1—N2—C22—C19178.9 (5)C3—O2—C2—C1176.1 (8)
C18—C19—C22—N2173.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O4i0.932.573.483 (9)169
C4—H4B···N1ii0.972.693.618 (10)161
Symmetry codes: (i) x, y+1/2, z3/2; (ii) x1, y, z.
 

Acknowledgements

Author contributions are as follows. Conceptualization, SD, SK, and KK; synthesis, SD and KK; writing (review and editing of the manuscript) SD, SK, FAA and KK; formal analysis, SD, KK and NB; crystal-structure determination, KK, SK and ND; validation, KK, ES and NB; project administration, KK, SD, ES and SK; mol­ecular docking, FAA.

Funding information

Funding for this research was provided by Ondokuz Mayıs University under Project No. PYO·FEN.1906.19.001.

References

First citationBaolin, L., Jian, G., Xiquan, Z., Yitian, L. & Huaiming, H. (2007). Z. Naturforsch. B: Chem. Sci. 62, 244–248.  Google Scholar
First citationBiovia (2017). Discovery Studio Visualizer. Vol. 936. Biovia, San Diego, CA, USA.  Google Scholar
First citationEl Arrouji, S., Karrouchi, K., Berisha, A., Alaoui, K. I., Warad, I., Rais, Z., Radi, S., Taleb, M., Ansar, M. & Zarrouk, A. (2020). Colloids Surf. A Physicochem. Eng. Asp. 604, 125325.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Aich, K., Das, S. & Goswami, S. (2013). Acta Cryst. E69, o502.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKansiz, S., Tatlidil, D., Dege, N., Aktas, F. A., Al-Asbahy, S. O. M. & Alaman Agar, A. (2021). Acta Cryst. E77, 658–662.  CrossRef IUCr Journals Google Scholar
First citationKarrouchi, K., Chemlal, L., Taoufik, J., Cherrah, Y., Radi, S., El Abbes Faouzi, M. & Ansar, M. (2016). Annales Pharmaceutiques Françaises, 74, 431–438.  CrossRef CAS Google Scholar
First citationKarrouchi, K., Fettach, S., Tamer, Ö., Avci, D., Başoğlu, A., Atalay, Y., Ayaz, Z., Radi, S., Ghabbour, H. A., Mabkhot, Y. N., Faouzi, M. E. A. & Ansar, M. (2022). J. Mol. Struct. 1248, 131506.  CrossRef Google Scholar
First citationLiu, X. (2014). Acta Cryst. E70, o51.  CrossRef IUCr Journals Google Scholar
First citationMaaref, H., Sheikhhosseini, E., Foroughi, M. M., Akhgar, M. R. & Jahani, S. (2020). Appl. Organomet. Chem. 34, e5557.  CrossRef Google Scholar
First citationManawar, R. B., Mamtora, M. J., Shah, M. K., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E76, 53–61.  CrossRef IUCr Journals Google Scholar
First citationMurtaza, G., Mumtaz, A., Khan, F. A., Ahmad, S., Azhar, S., Khan, S. A., Najam-Ul-Haq, M., Atif, M., Khan, S. A., Maalik, A., Azhar, S. & Murtaza, G. (2014). Acta Pol. Pharm. 71, 531–535.  PubMed Google Scholar
First citationPeng, Y., McCorvy, J. D., Harpsøe, K., Lansu, K., Yuan, S., Popov, P., Qu, L., Pu, M., Che, T., Nikolajsen, L. F., Huang, X.-P., Wu, Y., Shen, L., Bjørn-Yoshimoto, W. E., Ding, K., Wacker, D., Han, G. W., Cheng, J., Katritch, V., Jensen, A. A., Hanson, M. A., Zhao, S., Gloriam, D. E., Roth, B. L., Stevens, R. C. & Liu, Z.-J. (2018). Cell, 172, 719–730.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRana, K., Pandurangan, A., Singh, N. & Tiwari, A. K. (2012). Int. J. Curr. Pharm. Res. 4, 5–11.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationThamotharan, S., Parthasarathi, V., Sunagar, V., Badami, B. & Schenk, K. J. (2003). Acta Cryst. E59, o1272–o1274.  CrossRef IUCr Journals Google Scholar
First citationTrott, O. & Olson, A. J. (2010). J. Comput. Chem. 31, 455–461.  Web of Science PubMed CAS Google Scholar
First citationWallner, F. K., Spjut, S., Boström, D. & Elofsson, M. (2007). Org. Biomol. Chem. 5, 2464–2471.  CrossRef PubMed CAS Google Scholar
First citationXu, G., Wang, J., Si, G., Wang, M., Wu, B. & Zhou, S. (2015). Dyes Pigments, 123, 267–273.  CrossRef CAS Google Scholar
First citationYang, Z. H., Wang, L. X., Zhou, Z. H., Zhou, Q. L. & Tang, C. C. (2001). Tetrahedron Asymmetry, 12, 1579–1582.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds