research communications
E,1′E)-(hydrazine-1,2-diylidene)bis(methanylylidene)]bis(4,1-phenylene)}bis(oxy))diacetate
and molecular docking study of diethyl 2,2′-({[(1aLaboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohammed I University, 60000 Oujda, Morocco, bSamsun University, Faculty of Engineering, Department of Fundamental Sciences, 55420, Samsun, Turkey, cSamsun University, Faculty of Engineering, Biomedical Engineering, Samsun, 55420, Turkey, dOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, eDepartment of Computer and Electronic Engineering Technology, Sanaa Community College, Sanaa, Yemen, fDepartment of Electrical and Electronic Engineering, Faculty of Engineering, Ondokuz Mayıs University, 55139, Samsun, Turkey, and gLaboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
*Correspondence e-mail: saiddaouilabo2017@gmail.com, sevgi.kansiz@samsun.edu.tr, eiad.saif@scc.edu.ye
The title Schiff base, C22H24N2O6, adopts an E configuration. The molecule is planar, the mean planes of the phenyl ring system (r.m.s deviation = 0.0059 Å) forms a dihedral angle of 0.96 (4)° with the mean plane of the phenyl ring moiety (r.m.s deviation = 0.0076 Å). In the crystal, molecules are linked by weak intermolecular C—H⋯O and C—H⋯N hydrogen bonds into chains extending along the c-axis and b-axis directions, respectively. A molecular docking study between the title molecule and 5-HT2C, which is a G protein receptor and ligand-gated ion channels found in nervous systems (PDB ID: 6BQH) was executed. The experiment shows that it is a good potential agent because of its affinity and ability to stick to the active sites of the receptor.
Keywords: crystal structure; Schiff base; hydrazine; molecular docking.
CCDC reference: 2129693
1. Chemical context
Compounds with an azomethine group (–C=N–) are known as et al., 2001). Furthermore, these derivatives represent an important class of organic compounds, especially in the medicinal and pharmaceutical fields (Murtaza et al., 2014). It is well known from the literature that display excellent biological properties, such as antioxidant and analgesic (Karrouchi et al., 2016), antibacterial and cytotoxic (Maaref et al., 2020), antidiabetic (Karrouchi et al., 2022) and anti-inflammatory activities (Rana et al., 2012). These derivatives are also used as corrosion inhibitors, which relies on their ability to spontaneously form a monolayer on the surface being protected (El Arrouji et al., 2020). In this study, the title compound, diethyl 2,2′-({[(1E,1′E)-(hydrazine-1,2-diylidene)bis(methanylylidene)]bis(4,1-phenylene)}bis(oxy))diacetate, was characterized by single crystal X-ray and studied by Hirshfeld surface analysis.
which are usually synthesized from the condensation of active carbonyl groups and primary (Yang2. Structural commentary
The molecular structure of the title compound is illustrated in Fig. 1. The contains one independent molecule, which is planar, the mean plane of the C5–C10 phenyl ring (r.m.s deviation = 0.006 Å) forms a dihedral angle of 0.96 (4)° with the mean plane of the C16–C20 phenyl ring (r.m.s deviation = 0.008 Å). The C3—O1 and C14—O4 bond lengths in the molecule are 1.213 (8) and 1.212 (8) Å, respectively, while the C11—N1 and C22—N2 bond lengths are 1.274 (7) and 1.275 (7) Å, respectively (Table 1). These results suggest a double-bond character for the C=O and C=N bonds. The N1—N2 bond distance, 1.419 (7) Å, is compatible with 1.411 Å (Manawar et al., 2019; Kansiz et al., 2021). These results suggest a single bond character for N—N, as expected from hydrazine structures. The exocyclic angles C4—C3—O2 [115.4 (6)°], O1—C3—O2 [125.4 (8)°], C15—C14—O4 [125.5 (7)°] and C15—C14—O5 [111.9 (6)°] deviate significantly from the normal value of 120°; this may be due to steric repulsion (H4A⋯H10 = 2.22 Å and H15B⋯H17 = 2.32 Å). Bond lengths and angles are within normal ranges and are comparable to those observed in related structures (see Database survey section).
3. Supramolecular features
In the crystal, there are two intermolecular hydrogen bonds. The C6—H6⋯O4i hydrogen bond links the molecules to each other along the c-axis direction while the C4—H4B⋯N1ii hydrogen bond links the molecules to each other along the b-axis direction (symmetry codes as in Table 1). A view of the crystal packing is shown in Fig. 2.
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.42, update of May 2021; Groom et al., 2016) for the ethyl 2-(p-tolyloxy)acetate skeleton revealed seven similar compounds, viz.: ethyl 4-[1-(4-bromophenyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-4-yliminomethyl]phenoxyacetate (EKEYEY; Thamotharan et al., 2003), di[3-fluoro-6-methoxy-4-(ethoxycarbonylmethoxy)benzyl] ether (HIGLEP; Wallner et al., 2007), ethyl (2-fluoro-4-hydroxymethyl-5-methoxyphenoxy)acetate (HIGLIT; Wallner et al., 2007), diethyl 3,3-bis{3-[4-(2-ethoxy-2-oxoethoxy)-3-methoxyphenyl]acryloyl}pentanedioate (JUMJEI; Xu et al., 2015), ethyl (4-{3-[2,4-bis(2-ethoxy-2-oxoethoxy)phenyl]-3-oxoprop-1-en-1-yl}phenoxy)acetate (PIXWAW; Liu, 2014), ethyl [(2-oxo-2H-chromen-7-yl)oxy]acetate (WIHDEY; Fun et al., 2013) and ethyl {4-[(E)-2-(3,4,5-trimethoxyphenyl)vinyl]phenoxy}acetate (XEWZIJ; Baolin et al., 2007). In EKEYEY, the ethoxycarbonylmethoxy group is oriented at an angle of 29.42 (15)° with respect to the mean plane of the benzene ring. The mean plane of the 2H-chromene ring system (O1/C1–C9, r.m.s deviation = 0.026 Å) forms a dihedral angle of 81.71 (6)° with the mean plane of ethyl 2-hydroxyacetate moiety (O1/N3/C9/C10, r.m.s deviation = 0.026 Å) in WIHDEY. This dihedral angle for the title compound is smaller than in both EKEYEY and WIHDEY with a value of 4.38 (8)°. The C10—C11 bond distance of 1.516 (2) Å in WIHDEY, corresponding to a single bond, is slightly longer than observed for the title compound [C3—C4 = 1.498 (10) Å]. This bond length is also longer than in XEWZIJ [C18–C19 = 1.493 (3) Å; Baolin et al., 2007)].
5. Molecular docking study
Molecular docking is a substantial process for finding the interactions between small molecules and macromolecules. Intermolecular bonds that occur between ligand and receptor are indicated by molecular docking. In this study, AutoDockVina (Trott & Olson, 2010) was used for predictive binding sites between the title molecule and the 5-HT2C receptor (Peng et al., 2018). 6BQH is a serotonin receptor, which can be efficient for designing drugs to treat ailments such as anxiety, aggression, sleep disorders, and other psychological diseases. The three-dimensional structure of 6BQH was taken from the Protein Data Bank (PDB). Before the docking calculations, the receptor must be prepared for efficient insertion. For this reason, all water and ligand molecules were cleared on receptor active sites. According to these active sites, grid box dimensions were defined as 100 x 80 x 110 Å. In addition, –x, y, z centres were adjusted to be −40.569, 33.142, 45.392, respectively, and then the 5-HT2C receptor was saved in PDBQT format for the calculations. In the next step, rotatable angles for the coupling structure were determined and recorded in PDBQT format. Discovery Studio Visualizer (Biovia, 2017) was used for observations and preparations. All docking calculations were calculated with AutoDockVina. Twenty variable links were decided by AutoDockVina for the ligands connected to the receptor of the protein. The best affinity energy was observed in the first calculation, which is −6.2 kcal mol−1. The bonding type of interaction is represented in Fig. 3. The 2D and 3D visuals of the intermolecular interactions for the best binding pose of the title compound docked into macromolecule 6BQH can be seen in Fig. 4. In addition, docking conformation can be seen in Fig. 5. Consequently, the title compound could be a possible molecule for drug design to treat psychological disorders, because its ability is suitable to stick to active sites of the receptor.
6. Synthesis and crystallization
Hydrazine hydrate (0.013 g, 0.24 mmol) was added dropwise to a solution of ethyl 2-(4-formylphenoxy)acetate (0.5 g, 0.48 mmol) in ethanol (20 ml), and the mixture was refluxed for 4 h. After cooling, the solvent was removed under reduced pressure, and the residue was purified by recrystallization from ethanol to afford single crystals (yield 80%).
7. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and Uiso(H) = 1.2Ueq(C) for all other H atoms. The crystal studied was refined as a two-component but the was indeterminate.
details are summarized in Table 2Supporting information
CCDC reference: 2129693
https://doi.org/10.1107/S205698902101344X/zn2012sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902101344X/zn2012Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902101344X/zn2012Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).C22H24N2O6 | Dx = 1.308 Mg m−3 |
Mr = 412.43 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 9754 reflections |
a = 8.1864 (4) Å | θ = 2.2–27.8° |
b = 9.2061 (5) Å | µ = 0.10 mm−1 |
c = 27.7903 (18) Å | T = 296 K |
V = 2094.4 (2) Å3 | Prism, colorless |
Z = 4 | 0.68 × 0.44 × 0.22 mm |
F(000) = 872 |
Stoe IPDS 2 diffractometer | 4091 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2453 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.037 |
rotation method scans | θmax = 26.0°, θmin = 2.3° |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −8→10 |
Tmin = 0.945, Tmax = 0.979 | k = −11→11 |
11156 measured reflections | l = −27→34 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.073 | w = 1/[σ2(Fo2) + (0.1576P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.246 | (Δ/σ)max < 0.001 |
S = 1.00 | Δρmax = 0.50 e Å−3 |
4091 reflections | Δρmin = −0.67 e Å−3 |
254 parameters | Absolute structure: Refined as an inversion twin |
2 restraints | Absolute structure parameter: −1 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
O6 | 0.4659 (6) | −0.4221 (5) | −0.88303 (18) | 0.0861 (14) | |
O3 | −0.9934 (5) | −0.3444 (5) | −0.61477 (18) | 0.0815 (13) | |
N2 | −0.1980 (6) | −0.3968 (4) | −0.76468 (19) | 0.0658 (12) | |
O2 | −1.2412 (6) | −0.2842 (6) | −0.5611 (2) | 0.0968 (15) | |
N1 | −0.3161 (6) | −0.3494 (5) | −0.73078 (19) | 0.0671 (13) | |
O4 | 0.7008 (8) | −0.4943 (6) | −0.9435 (2) | 0.122 (2) | |
O5 | 0.8443 (9) | −0.2982 (8) | −0.9259 (3) | 0.145 (2) | |
O1 | −1.3702 (7) | −0.4910 (7) | −0.5761 (2) | 0.123 (2) | |
C19 | 0.0707 (7) | −0.3464 (5) | −0.7945 (2) | 0.0587 (13) | |
C8 | −0.5825 (7) | −0.4041 (5) | −0.7005 (2) | 0.0590 (13) | |
C3 | −1.2583 (9) | −0.4068 (9) | −0.5824 (3) | 0.090 (2) | |
C5 | −0.8617 (7) | −0.3742 (6) | −0.6434 (2) | 0.0659 (15) | |
C16 | 0.3406 (8) | −0.3906 (6) | −0.8529 (2) | 0.0656 (15) | |
C11 | −0.4446 (7) | −0.4275 (5) | −0.7311 (2) | 0.0618 (14) | |
H11 | −0.448969 | −0.504718 | −0.752671 | 0.074* | |
C9 | −0.7122 (7) | −0.5040 (6) | −0.7029 (2) | 0.0689 (15) | |
H9 | −0.705537 | −0.581369 | −0.724270 | 0.083* | |
C18 | 0.2009 (7) | −0.2516 (5) | −0.7937 (2) | 0.0655 (15) | |
H18 | 0.198036 | −0.172160 | −0.773028 | 0.079* | |
C17 | 0.3358 (7) | −0.2717 (6) | −0.8230 (2) | 0.0677 (15) | |
H17 | 0.421932 | −0.205814 | −0.822424 | 0.081* | |
C10 | −0.8487 (7) | −0.4902 (6) | −0.6743 (2) | 0.0677 (15) | |
H10 | −0.931717 | −0.558927 | −0.675966 | 0.081* | |
C22 | −0.0682 (7) | −0.3205 (5) | −0.7625 (2) | 0.0617 (14) | |
H22 | −0.061751 | −0.246143 | −0.739922 | 0.074* | |
C20 | 0.0776 (9) | −0.4663 (5) | −0.8255 (2) | 0.0710 (16) | |
H20 | −0.009621 | −0.530867 | −0.827039 | 0.085* | |
C6 | −0.7324 (8) | −0.2740 (6) | −0.6404 (2) | 0.0764 (17) | |
H6 | −0.739197 | −0.196246 | −0.619141 | 0.092* | |
C21 | 0.2131 (8) | −0.4884 (6) | −0.8537 (2) | 0.0756 (17) | |
H21 | 0.218970 | −0.569887 | −0.873361 | 0.091* | |
C4 | −1.1264 (9) | −0.4449 (8) | −0.6175 (3) | 0.0857 (19) | |
H4A | −1.086821 | −0.542135 | −0.610821 | 0.103* | |
H4B | −1.171001 | −0.444297 | −0.649865 | 0.103* | |
C7 | −0.5976 (8) | −0.2901 (6) | −0.6684 (2) | 0.0711 (16) | |
H7 | −0.513326 | −0.222775 | −0.665958 | 0.085* | |
C14 | 0.7176 (9) | −0.3829 (8) | −0.9207 (3) | 0.0848 (19) | |
C15 | 0.6016 (8) | −0.3258 (7) | −0.8849 (3) | 0.0785 (17) | |
H15A | 0.653522 | −0.320003 | −0.853552 | 0.094* | |
H15B | 0.565809 | −0.229246 | −0.894006 | 0.094* | |
C12 | 0.9676 (12) | −0.3616 (12) | −0.9585 (5) | 0.145 (2) | |
H12A | 1.024040 | −0.440591 | −0.942466 | 0.175* | |
H12B | 0.914541 | −0.400186 | −0.986975 | 0.175* | |
C13 | 1.0808 (13) | −0.2527 (12) | −0.9718 (4) | 0.145 (2) | |
H13A | 1.161245 | −0.293458 | −0.993055 | 0.218* | |
H13B | 1.024480 | −0.175271 | −0.987935 | 0.218* | |
H13C | 1.133662 | −0.215559 | −0.943555 | 0.218* | |
C2 | −1.3727 (13) | −0.2480 (11) | −0.5256 (4) | 0.139 (3) | |
H2A | −1.381933 | −0.323663 | −0.501410 | 0.167* | |
H2B | −1.477161 | −0.237448 | −0.541630 | 0.167* | |
C1 | −1.3215 (13) | −0.1070 (10) | −0.5029 (4) | 0.139 (3) | |
H1A | −1.401592 | −0.077904 | −0.479592 | 0.209* | |
H1B | −1.217725 | −0.119369 | −0.487328 | 0.209* | |
H1C | −1.312388 | −0.033665 | −0.527309 | 0.209* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O6 | 0.080 (3) | 0.089 (3) | 0.089 (3) | 0.000 (2) | 0.019 (3) | −0.013 (2) |
O3 | 0.069 (3) | 0.093 (3) | 0.082 (3) | −0.014 (2) | 0.010 (2) | −0.004 (2) |
N2 | 0.066 (3) | 0.055 (2) | 0.076 (3) | 0.001 (2) | −0.002 (3) | −0.001 (2) |
O2 | 0.077 (3) | 0.097 (3) | 0.117 (4) | 0.014 (3) | 0.032 (3) | 0.019 (3) |
N1 | 0.063 (3) | 0.063 (2) | 0.076 (3) | 0.001 (2) | 0.005 (3) | 0.000 (2) |
O4 | 0.132 (5) | 0.109 (4) | 0.124 (4) | 0.004 (4) | 0.050 (4) | −0.017 (3) |
O5 | 0.118 (4) | 0.160 (4) | 0.159 (5) | −0.008 (3) | 0.057 (4) | −0.021 (4) |
O1 | 0.091 (4) | 0.144 (4) | 0.133 (5) | −0.035 (4) | 0.027 (4) | 0.004 (4) |
C19 | 0.060 (3) | 0.051 (2) | 0.065 (3) | 0.004 (2) | −0.002 (3) | 0.002 (2) |
C8 | 0.059 (3) | 0.054 (2) | 0.064 (3) | 0.003 (2) | −0.005 (3) | 0.004 (2) |
C3 | 0.071 (5) | 0.096 (5) | 0.102 (5) | −0.003 (4) | −0.002 (4) | 0.034 (4) |
C5 | 0.056 (3) | 0.071 (3) | 0.071 (4) | 0.003 (3) | 0.004 (3) | 0.008 (3) |
C16 | 0.068 (3) | 0.063 (3) | 0.066 (4) | 0.002 (3) | 0.002 (3) | −0.001 (3) |
C11 | 0.066 (4) | 0.052 (2) | 0.067 (3) | 0.005 (2) | −0.010 (3) | 0.004 (2) |
C9 | 0.064 (4) | 0.064 (3) | 0.079 (4) | −0.005 (3) | −0.006 (3) | −0.008 (3) |
C18 | 0.062 (3) | 0.056 (3) | 0.078 (4) | 0.006 (2) | 0.001 (3) | −0.005 (3) |
C17 | 0.064 (3) | 0.063 (3) | 0.077 (4) | −0.002 (3) | −0.004 (3) | −0.003 (3) |
C10 | 0.061 (3) | 0.064 (3) | 0.078 (4) | −0.016 (3) | −0.001 (3) | −0.007 (3) |
C22 | 0.062 (3) | 0.047 (2) | 0.076 (4) | −0.002 (2) | −0.002 (3) | −0.003 (2) |
C20 | 0.075 (4) | 0.056 (3) | 0.082 (4) | −0.006 (3) | −0.001 (4) | −0.001 (3) |
C6 | 0.075 (4) | 0.069 (3) | 0.085 (4) | −0.003 (3) | 0.002 (4) | −0.018 (3) |
C21 | 0.082 (4) | 0.062 (3) | 0.083 (4) | −0.006 (3) | 0.009 (4) | −0.015 (3) |
C4 | 0.079 (5) | 0.099 (4) | 0.079 (4) | −0.018 (4) | 0.004 (4) | 0.007 (4) |
C7 | 0.064 (4) | 0.060 (3) | 0.089 (4) | −0.007 (3) | −0.007 (4) | −0.004 (3) |
C14 | 0.082 (5) | 0.089 (4) | 0.083 (5) | 0.011 (4) | 0.017 (4) | −0.004 (4) |
C15 | 0.075 (4) | 0.082 (3) | 0.078 (4) | −0.001 (3) | 0.008 (4) | 0.006 (3) |
C12 | 0.118 (4) | 0.160 (4) | 0.159 (5) | −0.008 (3) | 0.057 (4) | −0.021 (4) |
C13 | 0.118 (4) | 0.160 (4) | 0.159 (5) | −0.008 (3) | 0.057 (4) | −0.021 (4) |
C2 | 0.121 (5) | 0.146 (5) | 0.151 (6) | 0.013 (5) | 0.061 (5) | 0.007 (5) |
C1 | 0.121 (5) | 0.146 (5) | 0.151 (6) | 0.013 (5) | 0.061 (5) | 0.007 (5) |
O6—C16 | 1.355 (7) | C18—H18 | 0.9300 |
O6—C15 | 1.422 (8) | C17—H17 | 0.9300 |
O3—C5 | 1.367 (7) | C10—H10 | 0.9300 |
O3—C4 | 1.432 (8) | C22—H22 | 0.9300 |
N2—C22 | 1.275 (7) | C20—C21 | 1.372 (9) |
N2—N1 | 1.419 (7) | C20—H20 | 0.9300 |
O2—C3 | 1.282 (9) | C6—C7 | 1.359 (9) |
O2—C2 | 1.497 (10) | C6—H6 | 0.9300 |
N1—C11 | 1.274 (7) | C21—H21 | 0.9300 |
O4—C14 | 1.212 (8) | C4—H4A | 0.9700 |
O5—C14 | 1.306 (9) | C4—H4B | 0.9700 |
O5—C12 | 1.477 (10) | C7—H7 | 0.9300 |
O1—C3 | 1.213 (8) | C14—C15 | 1.474 (9) |
C19—C18 | 1.378 (7) | C15—H15A | 0.9700 |
C19—C20 | 1.403 (8) | C15—H15B | 0.9700 |
C19—C22 | 1.463 (8) | C12—C13 | 1.415 (10) |
C8—C7 | 1.382 (8) | C12—H12A | 0.9700 |
C8—C9 | 1.406 (8) | C12—H12B | 0.9700 |
C8—C11 | 1.431 (8) | C13—H13A | 0.9600 |
C3—C4 | 1.498 (10) | C13—H13B | 0.9600 |
C5—C10 | 1.375 (8) | C13—H13C | 0.9600 |
C5—C6 | 1.407 (8) | C2—C1 | 1.502 (10) |
C16—C17 | 1.375 (8) | C2—H2A | 0.9700 |
C16—C21 | 1.379 (8) | C2—H2B | 0.9700 |
C11—H11 | 0.9300 | C1—H1A | 0.9600 |
C9—C10 | 1.376 (8) | C1—H1B | 0.9600 |
C9—H9 | 0.9300 | C1—H1C | 0.9600 |
C18—C17 | 1.385 (8) | ||
C16—O6—C15 | 118.7 (5) | C20—C21—C16 | 120.4 (5) |
C5—O3—C4 | 116.0 (5) | C20—C21—H21 | 119.8 |
C22—N2—N1 | 111.5 (5) | C16—C21—H21 | 119.8 |
C3—O2—C2 | 114.9 (6) | O3—C4—C3 | 111.2 (6) |
C11—N1—N2 | 112.6 (4) | O3—C4—H4A | 109.4 |
C14—O5—C12 | 112.0 (7) | C3—C4—H4A | 109.4 |
C18—C19—C20 | 118.5 (5) | O3—C4—H4B | 109.4 |
C18—C19—C22 | 119.3 (5) | C3—C4—H4B | 109.4 |
C20—C19—C22 | 122.2 (5) | H4A—C4—H4B | 108.0 |
C7—C8—C9 | 117.4 (6) | C6—C7—C8 | 121.6 (6) |
C7—C8—C11 | 124.6 (5) | C6—C7—H7 | 119.2 |
C9—C8—C11 | 118.0 (5) | C8—C7—H7 | 119.2 |
O1—C3—O2 | 125.4 (8) | O4—C14—O5 | 122.6 (7) |
O1—C3—C4 | 119.2 (8) | O4—C14—C15 | 125.5 (7) |
O2—C3—C4 | 115.4 (6) | O5—C14—C15 | 111.9 (6) |
O3—C5—C10 | 125.5 (5) | O6—C15—C14 | 107.8 (6) |
O3—C5—C6 | 115.3 (5) | O6—C15—H15A | 110.1 |
C10—C5—C6 | 119.2 (6) | C14—C15—H15A | 110.1 |
O6—C16—C17 | 124.4 (6) | O6—C15—H15B | 110.1 |
O6—C16—C21 | 115.1 (5) | C14—C15—H15B | 110.1 |
C17—C16—C21 | 120.5 (6) | H15A—C15—H15B | 108.5 |
N1—C11—C8 | 124.2 (5) | C13—C12—O5 | 109.2 (8) |
N1—C11—H11 | 117.9 | C13—C12—H12A | 109.8 |
C8—C11—H11 | 117.9 | O5—C12—H12A | 109.8 |
C10—C9—C8 | 121.7 (5) | C13—C12—H12B | 109.8 |
C10—C9—H9 | 119.1 | O5—C12—H12B | 109.8 |
C8—C9—H9 | 119.1 | H12A—C12—H12B | 108.3 |
C19—C18—C17 | 121.6 (5) | C12—C13—H13A | 109.5 |
C19—C18—H18 | 119.2 | C12—C13—H13B | 109.5 |
C17—C18—H18 | 119.2 | H13A—C13—H13B | 109.5 |
C16—C17—C18 | 119.0 (6) | C12—C13—H13C | 109.5 |
C16—C17—H17 | 120.5 | H13A—C13—H13C | 109.5 |
C18—C17—H17 | 120.5 | H13B—C13—H13C | 109.5 |
C5—C10—C9 | 119.7 (5) | O2—C2—C1 | 105.5 (8) |
C5—C10—H10 | 120.2 | O2—C2—H2A | 110.6 |
C9—C10—H10 | 120.2 | C1—C2—H2A | 110.6 |
N2—C22—C19 | 122.0 (5) | O2—C2—H2B | 110.6 |
N2—C22—H22 | 119.0 | C1—C2—H2B | 110.6 |
C19—C22—H22 | 119.0 | H2A—C2—H2B | 108.8 |
C21—C20—C19 | 120.0 (6) | C2—C1—H1A | 109.5 |
C21—C20—H20 | 120.0 | C2—C1—H1B | 109.5 |
C19—C20—H20 | 120.0 | H1A—C1—H1B | 109.5 |
C7—C6—C5 | 120.4 (5) | C2—C1—H1C | 109.5 |
C7—C6—H6 | 119.8 | H1A—C1—H1C | 109.5 |
C5—C6—H6 | 119.8 | H1B—C1—H1C | 109.5 |
C22—N2—N1—C11 | −177.6 (5) | C20—C19—C22—N2 | −7.5 (8) |
C2—O2—C3—O1 | 0.7 (11) | C18—C19—C20—C21 | 1.1 (8) |
C2—O2—C3—C4 | −179.3 (7) | C22—C19—C20—C21 | −177.9 (6) |
C4—O3—C5—C10 | 0.8 (9) | O3—C5—C6—C7 | −177.8 (6) |
C4—O3—C5—C6 | 179.7 (5) | C10—C5—C6—C7 | 1.2 (9) |
C15—O6—C16—C17 | −1.0 (9) | C19—C20—C21—C16 | −2.3 (9) |
C15—O6—C16—C21 | 179.3 (5) | O6—C16—C21—C20 | −178.5 (6) |
N2—N1—C11—C8 | 179.8 (5) | C17—C16—C21—C20 | 1.8 (9) |
C7—C8—C11—N1 | 3.4 (9) | C5—O3—C4—C3 | 176.2 (5) |
C9—C8—C11—N1 | −176.4 (5) | O1—C3—C4—O3 | −171.2 (6) |
C7—C8—C9—C10 | −0.4 (8) | O2—C3—C4—O3 | 8.8 (9) |
C11—C8—C9—C10 | 179.4 (5) | C5—C6—C7—C8 | 0.0 (10) |
C20—C19—C18—C17 | 0.6 (8) | C9—C8—C7—C6 | −0.4 (9) |
C22—C19—C18—C17 | 179.6 (5) | C11—C8—C7—C6 | 179.8 (5) |
O6—C16—C17—C18 | −179.8 (5) | C12—O5—C14—O4 | −5.3 (13) |
C21—C16—C17—C18 | −0.1 (9) | C12—O5—C14—C15 | 174.9 (8) |
C19—C18—C17—C16 | −1.1 (9) | C16—O6—C15—C14 | −178.8 (5) |
O3—C5—C10—C9 | 176.9 (6) | O4—C14—C15—O6 | −1.8 (11) |
C6—C5—C10—C9 | −2.0 (9) | O5—C14—C15—O6 | 178.0 (6) |
C8—C9—C10—C5 | 1.6 (9) | C14—O5—C12—C13 | 165.9 (10) |
N1—N2—C22—C19 | −178.9 (5) | C3—O2—C2—C1 | 176.1 (8) |
C18—C19—C22—N2 | 173.6 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O4i | 0.93 | 2.57 | 3.483 (9) | 169 |
C4—H4B···N1ii | 0.97 | 2.69 | 3.618 (10) | 161 |
Symmetry codes: (i) −x, y+1/2, −z−3/2; (ii) x−1, y, z. |
Acknowledgements
Author contributions are as follows. Conceptualization, SD, SK, and KK; synthesis, SD and KK; writing (review and editing of the manuscript) SD, SK, FAA and KK; formal analysis, SD, KK and NB; crystal-structure determination, KK, SK and ND; validation, KK, ES and NB; project administration, KK, SD, ES and SK; molecular docking, FAA.
Funding information
Funding for this research was provided by Ondokuz Mayıs University under Project No. PYO·FEN.1906.19.001.
References
Baolin, L., Jian, G., Xiquan, Z., Yitian, L. & Huaiming, H. (2007). Z. Naturforsch. B: Chem. Sci. 62, 244–248. Google Scholar
Biovia (2017). Discovery Studio Visualizer. Vol. 936. Biovia, San Diego, CA, USA. Google Scholar
El Arrouji, S., Karrouchi, K., Berisha, A., Alaoui, K. I., Warad, I., Rais, Z., Radi, S., Taleb, M., Ansar, M. & Zarrouk, A. (2020). Colloids Surf. A Physicochem. Eng. Asp. 604, 125325. CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Quah, C. K., Aich, K., Das, S. & Goswami, S. (2013). Acta Cryst. E69, o502. CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kansiz, S., Tatlidil, D., Dege, N., Aktas, F. A., Al-Asbahy, S. O. M. & Alaman Agar, A. (2021). Acta Cryst. E77, 658–662. CrossRef IUCr Journals Google Scholar
Karrouchi, K., Chemlal, L., Taoufik, J., Cherrah, Y., Radi, S., El Abbes Faouzi, M. & Ansar, M. (2016). Annales Pharmaceutiques Françaises, 74, 431–438. CrossRef CAS Google Scholar
Karrouchi, K., Fettach, S., Tamer, Ö., Avci, D., Başoğlu, A., Atalay, Y., Ayaz, Z., Radi, S., Ghabbour, H. A., Mabkhot, Y. N., Faouzi, M. E. A. & Ansar, M. (2022). J. Mol. Struct. 1248, 131506. CrossRef Google Scholar
Liu, X. (2014). Acta Cryst. E70, o51. CrossRef IUCr Journals Google Scholar
Maaref, H., Sheikhhosseini, E., Foroughi, M. M., Akhgar, M. R. & Jahani, S. (2020). Appl. Organomet. Chem. 34, e5557. CrossRef Google Scholar
Manawar, R. B., Mamtora, M. J., Shah, M. K., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E76, 53–61. CrossRef IUCr Journals Google Scholar
Murtaza, G., Mumtaz, A., Khan, F. A., Ahmad, S., Azhar, S., Khan, S. A., Najam-Ul-Haq, M., Atif, M., Khan, S. A., Maalik, A., Azhar, S. & Murtaza, G. (2014). Acta Pol. Pharm. 71, 531–535. PubMed Google Scholar
Peng, Y., McCorvy, J. D., Harpsøe, K., Lansu, K., Yuan, S., Popov, P., Qu, L., Pu, M., Che, T., Nikolajsen, L. F., Huang, X.-P., Wu, Y., Shen, L., Bjørn-Yoshimoto, W. E., Ding, K., Wacker, D., Han, G. W., Cheng, J., Katritch, V., Jensen, A. A., Hanson, M. A., Zhao, S., Gloriam, D. E., Roth, B. L., Stevens, R. C. & Liu, Z.-J. (2018). Cell, 172, 719–730. Web of Science CrossRef CAS PubMed Google Scholar
Rana, K., Pandurangan, A., Singh, N. & Tiwari, A. K. (2012). Int. J. Curr. Pharm. Res. 4, 5–11. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Thamotharan, S., Parthasarathi, V., Sunagar, V., Badami, B. & Schenk, K. J. (2003). Acta Cryst. E59, o1272–o1274. CrossRef IUCr Journals Google Scholar
Trott, O. & Olson, A. J. (2010). J. Comput. Chem. 31, 455–461. Web of Science PubMed CAS Google Scholar
Wallner, F. K., Spjut, S., Boström, D. & Elofsson, M. (2007). Org. Biomol. Chem. 5, 2464–2471. CrossRef PubMed CAS Google Scholar
Xu, G., Wang, J., Si, G., Wang, M., Wu, B. & Zhou, S. (2015). Dyes Pigments, 123, 267–273. CrossRef CAS Google Scholar
Yang, Z. H., Wang, L. X., Zhou, Z. H., Zhou, Q. L. & Tang, C. C. (2001). Tetrahedron Asymmetry, 12, 1579–1582. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.