research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a dicationic PdII dimer containing a 2-[(diiso­propylphosphanyl)methyl]quinoline-8-thiolate pincer ligand

crossmark logo

aLaboratoire Hétérochimie Fondamentale et Appliquée, LHFA UMR-CNRS 5069, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 09, France, and bUniversité de Toulouse III Paul Sabatier, Institut de Chimie de Toulouse, ICT, UAR 2599, 118, route de Narbonne, F-31062 Toulouse, France
*Correspondence e-mail: dbouriss@chimie.ups-tlse.fr

Edited by O. Blacque, University of Zürich, Switzerland (Received 16 November 2021; accepted 25 November 2021; online 1 January 2022)

A dicationic PdII dimer, bis{2-[(diisopropylphosphanyl)methyl]quinoline-8-thiolato}palladium(II) bis(hexafluoridoantimonate) dichloromethane monosolvate, [Pd2(C32H42N2P2S2)](SbF6)2·CH2Cl2, containing a 2-[(diisopropylphos­phanyl)methyl]quinoline-8-thiolate pincer ligand, was isolated and its crystal structure determined. The title compound crystallizes in the ortho­rhom­bic space group Pbca. A dimeric structure is formed by bridging coordination of the S atoms. The geometry of the butterfly-shaped Pd2S2 core is bent, with a hinge angle of 108.0 (1)° and a short Pd⋯Pd distance of 2.8425 (7) Å. These values are the lowest measured compared to ten dicationic dimers with a Pd2S2 core featuring sulfur atoms embedded in a chelating ligand. One of the two hexa­fluorido­anti­monate anions is disordered over two sets of positions with site-occupancy factors of 0.711 (5) and 0.289 (5). The crystal structure is stabilized by many C—H⋯F and C—H⋯π inter­actions, forming a supra­molecular network.

1. Chemical context

The stereoelectronic properties of transition-metal complexes can be finely modulated thanks to the ligands introduced on the metal coordination sphere, and this plays a fundamental role in organometallic chemistry. Over the past two decades, impressive developments have been achieved with pincer complexes, which nicely illustrate how the properties and reactivity of a complex can be adjusted through ligand modifications (Morales-Morales, 2018[Morales-Morales, D. (2018). Editor. Pincer compounds: Chemistry and Applications. Oxford: Elsevier.]). In pincer complexes, the central MX bond is enforced by the coordination of two peripheral donor groups (D), and the chelating rigid nature of the monoanionic DXD pincer ligand bestows a unique balance between stability and reactivity. This has led to spectacular catalytic developments, including with pincer complexes based on Pd, a transition metal that occupies a central place in organometallic catalysis. As far as Pd is concerned, the main topology of the used monoanionic pincer ligands consists of an aryl central moiety featuring two coordinating side arms, as illustrated in Fig. 1[link] (model I). These complexes have been successfully applied to C—C or C—X bond-forming catalytic transformations. The impact of the side groups (coordinating atom and linker) on the catalytic performances has been explored (Selander et al., 2011[Selander, N. & Szabó, K. J. (2011). Chem. Rev. 111, 2048-2076.]). We have developed new models of Pd pincer complexes varying the aromatic central ring, introducing indenyl and indolyl moieties (model II in Fig. 1[link]). The nature of the central ring was found to significantly impact the catalytic activity of the Pd complexes in the allyl­ation of amines (Lisena et al., 2013[Lisena, J., Monot, J., Mallet-Ladeira, S., Martin-Vaca, B. & Bourissou, D. (2013). Organometallics, 32, 4301-4305.]).

[Figure 1]
Figure 1
Schematic representation of Pd pincer complexes IIII

Seeking to further modify the structure of the Pd pincer complexes so that the catalytic activity can be modulated, we now aim to incorporate an extended π-system as the central moiety (so that rigidity is increased). We have thus designed and prepared a pincer PNS Pd complex based on a 8-thiol­ate-quinoline featuring a methyl­enephosphine side arm (model III in Fig. 1[link]). We report herein that when cationizing the corresponding chloro palladium pincer complex 1 with AgSbF6, a dimeric dicationic species 2 crystallized with a tight S-bridging assembling of the two quinoline-based PNS Pd pincer fragments. The structural features are discussed. It is worth noting that we have previously reported S-bridged homo and hetero polymetallic species derived from Pd pincer complexes of type II (Nebra et al., 2011[Nebra, N., Saffon, N., Maron, L., Martin-Vaca, B. & Bourissou, D. (2011). Inorg. Chem. 50, 6378-6383.], 2012[Nebra, N., Ladeira, S., Maron, L., Martin-Vaca, B. & Bourissou, D. (2012). Chem. Eur. J. 18, 8474-8481.]).

[Scheme 1]

2. Structural commentary

X-ray diffraction of the yellow crystals obtained from 2(SbF6)2 revealed a dimeric structure, composed of two cationic PNSPd fragments, that crystallizes in the ortho­rhom­bic system and Pbca space group (Figs. 2[link] and 3[link]; selected bond lengths and bond angles are given in Table 1[link]). The dicationic nature of the structure is confirmed by the presence of two SbF6 units per dimer. The two PNSPd fragments are connected to each other by two bridging S atoms. The S donor atom of each PNSPd fragment completes the coordination sphere of the other, forming a Pd2S2 diamond core.

Table 1
Selected geometric parameters (Å, °)

Pd1—N1 2.027 (5) Pd2—S1 2.3184 (16)
Pd1—P1 2.2455 (18) Pd2—S2 2.3602 (17)
Pd1—S2 2.3149 (16) P1—C1 1.825 (6)
Pd1—S1 2.3657 (17) P2—C17 1.836 (6)
Pd1—Pd2 2.8425 (7) S1—C4 1.784 (6)
Pd2—N2 2.027 (5) S2—C25 1.774 (7)
Pd2—P2 2.2417 (18)    
       
N1—Pd1—P1 83.86 (15) N2—Pd2—P2 85.21 (15)
N1—Pd1—S2 168.93 (15) N2—Pd2—S1 167.55 (15)
P1—Pd1—S2 106.75 (6) P2—Pd2—S1 106.34 (6)
N1—Pd1—S1 86.49 (15) N2—Pd2—S2 86.13 (15)
P1—Pd1—S1 169.03 (6) P2—Pd2—S2 170.20 (6)
S2—Pd1—S1 82.64 (6) S1—Pd2—S2 82.69 (6)
N1—Pd1—Pd2 117.54 (14) N2—Pd2—Pd1 114.86 (14)
P1—Pd1—Pd2 129.40 (5) P2—Pd2—Pd1 136.83 (5)
S2—Pd1—Pd2 53.28 (4) S1—Pd2—Pd1 53.40 (4)
S1—Pd1—Pd2 51.89 (4) S2—Pd2—Pd1 51.83 (4)
Pd2—S1—Pd1 74.71 (5) Pd1—S2—Pd2 74.88 (5)
[Figure 2]
Figure 2
The mol­ecular structure of the title compound with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
Detail of the mol­ecular structure of 22+, showing the main atom-numbering scheme and displacement ellipsoids at the 50% probability level. H atoms and iPr groups have been omitted for clarity.

For each PNSPd fragment, besides the two bridging S atoms, the Pd atom is coordinated by one N atom and one P atom, completing a tetra­coordinate sphere that deviates slightly from square-planar geometry (deviation estimated by the τ index, with values of 0.15 and 0.16 for Pd1 and Pd2, respectively) (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). The Pd—N and the Pd—P bond lengths are almost identical for the two fragments [Pd1—N1 = 2.027 (5), Pd2—N2 = 2.027 (5) Å and Pd1—P1 = 2.2455 (18), Pd2—P2 = 2.2417 (18) Å], and the values are in the range of those observed for quinoline/phosphine chelate Pd complexes (Mori et al., 2021[Mori, M., Namioka, A. & Suzuki, T. (2021). Acta Cryst. E77, 52-57.]; Scharf et al., 2014[Scharf, A., Goldberg, I. & Vigalok, A. (2014). Inorg. Chem. 53, 12-14.] for example). The coordination environment around each Pd atom and the quinoline moiety is approximately planar [dihedral angles of 13.1 (1)° for Pd1 and 2.3 (1)° for Pd2, as estimated by the dihedral angle between the mean planes of the two fragments].

As for the Pd2S2 core, the two Pd—S bond lengths for each Pd atom are slightly different and, inter­estingly, the bonds between the Pd atoms and the bridging S atom of the other fragment are shorter [2.3149 (16) and 2.3184 (16) for Pd1—S2 and Pd2—S1, respectively] than the bonds between the Pd atoms and the chelating S atom of the pincer ligand [2.3657 (17) and 2.3602 (17) for Pd1—S1 and Pd2—S2, respectively]. This is most likely due to the rigidity of the 8-thio-quinoline moiety (the C3—C4—S1 and C26—C27—S2 angles deviate from 120° by less than 2°). The two S atoms are noticeably pyramidalized (ΣS = 287 and 290° for S1 and S2, respectively). The hinge angle of the core unit (involving the two [S,Pd,S] planes) has a value of 108.0 (1)°, which is in fact the lowest value reported for such kind of dicationic species with a Pd2S2 core (see the Database survey section). This results in a rather short Pd1—Pd2 distance of 2.8425 (7) Å, which is significantly shorter than the sum of van der Waals radii (4.10 Å; Batsanov et al., 2001[Batsanov, S. S. (2001). Inorg. Mater. 37, 871-885.]) and exceeds the sum of the covalent radii (2.78 Å; Cordero et al., 2008[Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832-2838.]) by only 2%.

3. Supra­molecular features

The crystal packing of the title compound, illustrated in Fig. 4[link], involves weak intra­molecular C—H⋯Cg contacts, and inter­molecular C—H⋯F contacts between the cations and anions, which link the components in a three-dimensional network (Table 2[link], Figs. 5[link] and 6[link]). No classical hydrogen-bonding inter­actions were found.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C21–C26 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯F3i 0.99 2.34 3.305 (9) 166
C7—H7⋯F1ii 0.95 2.37 3.229 (8) 151
C11—H11⋯F2iii 1.00 2.27 3.128 (9) 143
C17—H17A⋯F11iv 0.99 2.41 3.279 (10) 147
C22—H22⋯F8v 0.95 2.33 3.190 (11) 150
C23—H23⋯F1iii 0.95 2.53 3.396 (9) 152
C27—H27⋯F12vi 1.00 2.43 3.322 (10) 148
C31—H31C⋯F3iv 0.98 2.50 3.399 (9) 152
C33—H33A⋯F10 0.99 2.54 3.172 (13) 122
C16—H16ACg1 0.98 2.93 3.701 (8) 136
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+1, -y+2, -z+1]; (iii) [-x+1, -y+1, -z+1]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}].
[Figure 4]
Figure 4
A partial packing diagram of 2(SBF6)2; H atoms, and solvent omitted for clarity.
[Figure 5]
Figure 5
C—H⋯F hydrogen bonds (blue dotted lines).
[Figure 6]
Figure 6
C—H⋯Cg contact.

Each dicationic unit is surrounded by eight SbF6 anions, engaged in weak C—H⋯F contacts with C⋯F distances in the range 3.128 (9)–3.172 (13) Å (associated with H⋯F distances in the range 2.27–2.54 Å) (Fig. 5[link]). As for the SbF6 anions, two different situations can be observed. One of the anions (containing Sb1) displays weak C—H⋯F contacts with C—H bonds from five different dicationic units, while the other one (containing Sb2), inter­acts weakly with C—H bonds from three dicationic units and from a CH2Cl2 solvent mol­ecule. Finally, an intra­molecular C—H⋯Cg short contact is observed between one of the CH3 of the iPr groups of one PNSPd pincer fragment (Pd2) and the benzo ring of the quinoline moiety of the other fragment [C16⋯Cg1 = 3.701 (8) Å, associated with a H16ACg1 distance of 2.93 Å] (Fig. 6[link]). It should be noted that a significantly longer distance (H28BCg2 of 3.2 Å) is observed for the other part of the unit (CH3 group of the Pd2 fragment with the benzo ring of the other), indicating a non-symmetrical organization of the dimer.

4. Database survey

To the best of our knowledge, structures of quinoline-based PNSPd dicationic dimers as described herein have not been reported previously. A structure survey was carried out in the Cambridge Structural Database (CSD version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). It revealed 28 hits for dicationic dimers with a Pd2S2 core, of which ten can be compared with the title compound as they feature the sulfur atoms embedded in a chelating ligand [refcodes CUYLIT (Kouno et al., 2015[Kouno, M., Miyashita, Y., Yoshinari, N. & Konno, T. (2015). Chem. Lett. 44, 1512-1514.]), NORGEG (Albinati et al., 1997[Albinati, A., Herrmann, J. & Pregosin, P. S. (1997). Inorg. Chim. Acta, 264, 33-42.]), NOXVAZ (Chen et al. 2015[Chen, C., Xia, Q., Qiu, H. & Chen, W. (2015). J. Organomet. Chem. 775, 103-108.]), POTMUG (Kersting, 1998[Kersting, B. (1998). Eur. J. Inorg. Chem. pp. 1071-1077.]), QOCCUG (Su et al., 2000[Su, W., Cao, R., Hong, M., Wu, D. & Lu, J. (2000). J. Chem. Soc. Dalton Trans. pp. 1527-1532.]), SELGUL (Leung et al., 1998[Leung, P. H., Siah, S. Y., White, J. P. & Williams, J. (1998). J. Chem. Soc. Dalton Trans. pp. 893-900.]), TEGWUY (Cabeza et al., 2006[Cabeza, J. A., del Río, I., Sánchez-Vega, M. G. & Suárez, M. (2006). Organometallics, 25, 1831-1834.]), TIXLOE (Mane et al., 2019[Mane, P. A., Dey, S., Pathak, A. K., Kumar, M. & Bhuvanesh, N. (2019). Inorg. Chem. 58, 2965-2978.]), XAHBUI (Nayan Sharma et al., 2015[Nayan Sharma, K., Joshi, H., Prakash, O., Sharma, A. K., Bhaskar, R. & Singh, A. K. (2015). Eur. J. Inorg. Chem. pp. 4829-4838.]), XULYUZ (Azizpoor Fard et al., 2015[Azizpoor Fard, M., Willans, M. J., Khalili Najafabadi, B., Levchenko, T. I. & Corrigan, J. (2015). Dalton Trans. 44, 8267-8277.])]. Hinge angles in the range 115.3–156.6° were measured for these compounds, all values higher than that measured for the title compound [108.0 (1)°].

5. Synthesis and crystallization

A solution of PNS-Pd-Cl 1 (Scharf et al., 2014[Scharf, A., Goldberg, I. & Vigalok, A. (2014). Inorg. Chem. 53, 12-14.]) (1.0 equiv., 0.1 M) was added dropwise over 5 min to a suspension of AgSbF6 (1.0 equiv.) in CH2Cl2 (0.1 M) at 195 K. After the addition, the reaction mixture was allowed to quickly warm up to room temperature and was stirred for 2 h. The reaction was then filtered via canula, and the solvent was removed in vacuo to yield the corresponding dicationic complex as a reddish powder (95%). X-ray quality crystals were grown by slow diffusion at 273 K of pentane into a concentrated solution of 2 in CH2Cl2. 1H NMR (300 MHz, CD2Cl2): δ = 8.60 (d, J = 8.5 Hz, 2H), 8.23 (dd, J = 7.5, 1.2 Hz, 2H), 8.13 (dd, J = 8.5, 1.2 Hz, 2H), 7.87–7.75 (m, 4H), 4.16 (dd, J = 18.9, 9.7 Hz, 2H), 3.86 (dd, J = 18.9, 11.2 Hz, 2H), 2.47 (m, 2H), 1.79 (dd, J = 20.1, 7.1 Hz, 6H), 1.49 (dd, J = 17.4, 6.9 Hz, 6H), 1.28 (m, 2H), 0.82 (dd, J = 16.1, 6.9 Hz, 6H), 0.08 (dd, J = 19.7, 7.1 Hz, 6H).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. One of the two hexa­fluorido­anti­monate anions is disordered over two positions, for which occupancies were refined, converging to 0.711 (5) and 0.289 (5). SAME, DELU and SIMU restraints were applied (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). All H atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic), 0.98 Å (CH3), 0.99 Å (CH2) or 1.0 Å (CH), with Uiso(H) = 1.2Ueq(CH, CH2) or 1.5Ueq(CH3).

Table 3
Experimental details

Crystal data
Chemical formula [Pd2(C32H42N2P2S2)](SbF6)2·CH2Cl2
Mr 1349.96
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 193
a, b, c (Å) 23.5167 (19), 16.1492 (14), 24.0414 (18)
V3) 9130.3 (13)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.30
Crystal size (mm) 0.10 × 0.08 × 0.04
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Quazar
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.677, 0.728
No. of measured, independent and observed [I > 2σ(I)] reflections 152552, 9812, 6263
Rint 0.122
(sin θ/λ)max−1) 0.637
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.113, 1.01
No. of reflections 9812
No. of parameters 577
No. of restraints 213
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.50, −1.07
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Bis{2-[(diisopropylphosphanyl)methyl]quinoline-8-thiolato}palladium(II) bis(hexafluoridoantimonate) dichloromethane monosolvate) top
Crystal data top
[Pd2(C32H42N2P2S2)](SbF6)2·CH2Cl2Dx = 1.964 Mg m3
Mr = 1349.96Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9991 reflections
a = 23.5167 (19) Åθ = 3.0–22.0°
b = 16.1492 (14) ŵ = 2.30 mm1
c = 24.0414 (18) ÅT = 193 K
V = 9130.3 (13) Å3Plate, yellow
Z = 80.10 × 0.08 × 0.04 mm
F(000) = 5232
Data collection top
Bruker Kappa APEXII CCD Quazar
diffractometer
6263 reflections with I > 2σ(I)
Radiation source: Incoatec microfocus sealed tubeRint = 0.122
Phi and ω scansθmax = 26.9°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 2929
Tmin = 0.677, Tmax = 0.728k = 2020
152552 measured reflectionsl = 3030
9812 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0384P)2 + 45.7164P]
where P = (Fo2 + 2Fc2)/3
9812 reflections(Δ/σ)max = 0.002
577 parametersΔρmax = 1.50 e Å3
213 restraintsΔρmin = 1.07 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.57179 (2)0.75620 (3)0.64839 (2)0.02433 (12)
Pd20.45502 (2)0.74339 (3)0.67769 (2)0.02348 (12)
P10.61946 (7)0.69467 (10)0.57882 (7)0.0291 (4)
P20.37442 (7)0.81155 (10)0.65817 (7)0.0268 (4)
S10.51907 (7)0.84184 (10)0.70934 (6)0.0284 (4)
S20.52977 (7)0.65162 (10)0.69984 (7)0.0304 (4)
N10.5978 (2)0.8622 (3)0.6110 (2)0.0248 (11)
N20.4144 (2)0.6430 (3)0.6462 (2)0.0243 (11)
C10.6648 (3)0.7812 (4)0.5584 (3)0.0311 (15)
H1A0.7017990.7767320.5777660.037*
H1B0.6719820.7785500.5178850.037*
C20.6380 (3)0.8623 (4)0.5723 (3)0.0270 (14)
C30.5708 (3)0.9343 (4)0.6262 (3)0.0285 (14)
C40.5282 (3)0.9334 (4)0.6688 (2)0.0274 (14)
C50.5009 (3)1.0053 (4)0.6821 (3)0.0355 (16)
H50.4725621.0051570.7103330.043*
C60.5141 (3)1.0796 (4)0.6546 (3)0.046 (2)
H60.4937751.1286460.6636380.056*
C70.5560 (3)1.0825 (4)0.6149 (3)0.0418 (18)
H70.5650651.1333730.5972510.050*
C80.5854 (3)1.0096 (4)0.6005 (3)0.0328 (16)
C90.6293 (3)1.0089 (4)0.5603 (3)0.0352 (16)
H90.6407611.0589360.5429010.042*
C100.6549 (3)0.9363 (4)0.5467 (3)0.0360 (16)
H100.6843900.9356010.5196670.043*
C110.6661 (3)0.6081 (4)0.5938 (3)0.0432 (19)
H110.6411780.5587370.5997770.052*
C120.6989 (4)0.6226 (5)0.6488 (3)0.059 (2)
H12A0.7227280.5742330.6568060.089*
H12B0.6718240.6309230.6792020.089*
H12C0.7230570.6717700.6450460.089*
C130.7053 (4)0.5874 (5)0.5455 (4)0.067 (3)
H13A0.7313570.6337940.5389930.101*
H13B0.6825780.5776280.5119570.101*
H13C0.7272210.5375710.5543840.101*
C140.5769 (3)0.6701 (4)0.5169 (3)0.0381 (17)
H140.6037660.6623190.4850830.046*
C150.5379 (3)0.7421 (5)0.5027 (3)0.055 (2)
H15A0.5154300.7282860.4696200.082*
H15B0.5607700.7916070.4952110.082*
H15C0.5122910.7529110.5340250.082*
C160.5430 (4)0.5895 (5)0.5238 (3)0.055 (2)
H16A0.5153510.5960080.5539350.083*
H16B0.5690580.5440390.5326640.083*
H16C0.5229420.5770440.4890230.083*
C170.3362 (3)0.7327 (4)0.6178 (3)0.0331 (16)
H17A0.2959870.7314320.6298530.040*
H17B0.3369940.7482520.5779470.040*
C180.3612 (3)0.6488 (4)0.6244 (3)0.0311 (15)
C190.3333 (3)0.5775 (4)0.6056 (3)0.0341 (16)
H190.2956300.5812880.5917090.041*
C200.3598 (3)0.5032 (4)0.6072 (3)0.0351 (17)
H200.3400850.4550650.5951840.042*
C210.4163 (3)0.4960 (4)0.6265 (3)0.0308 (15)
C220.4467 (3)0.4207 (4)0.6265 (3)0.0385 (18)
H220.4288830.3711710.6141990.046*
C230.5014 (4)0.4194 (4)0.6440 (3)0.0446 (19)
H230.5220410.3688790.6432640.053*
C240.5279 (3)0.4912 (4)0.6632 (3)0.0383 (17)
H240.5664720.4888140.6750100.046*
C250.4995 (3)0.5650 (4)0.6654 (2)0.0283 (15)
C260.4427 (3)0.5686 (4)0.6464 (2)0.0257 (14)
C270.3749 (3)0.9063 (4)0.6176 (3)0.0360 (16)
H270.3886530.9517740.6424690.043*
C280.4167 (3)0.8992 (5)0.5693 (3)0.0457 (19)
H28A0.4028390.8578790.5426840.069*
H28B0.4540110.8822200.5834040.069*
H28C0.4201080.9529910.5506740.069*
C290.3144 (3)0.9306 (5)0.5971 (4)0.058 (2)
H29A0.3159170.9848380.5789510.086*
H29B0.2883940.9330560.6289140.086*
H29C0.3007990.8890350.5705240.086*
C300.3325 (3)0.8286 (4)0.7209 (3)0.0330 (16)
H300.2932110.8450490.7093290.040*
C310.3281 (3)0.7487 (5)0.7547 (3)0.0458 (19)
H31A0.3662660.7306530.7656980.069*
H31B0.3101590.7055580.7320120.069*
H31C0.3050980.7586460.7880010.069*
C320.3579 (3)0.8998 (5)0.7557 (3)0.051 (2)
H32A0.3375430.9038300.7911990.077*
H32B0.3540320.9519890.7353030.077*
H32C0.3982100.8887040.7628060.077*
Sb10.34706 (2)0.68208 (3)0.44208 (2)0.03304 (12)
F10.4044 (2)0.7271 (3)0.3981 (2)0.0681 (14)
F20.3620 (3)0.5810 (3)0.4107 (3)0.119 (3)
F30.2940 (2)0.7045 (5)0.38843 (19)0.099 (2)
F40.28965 (19)0.6387 (3)0.48634 (19)0.0688 (14)
F50.3330 (3)0.7845 (3)0.4738 (3)0.095 (2)
F60.3986 (2)0.6626 (5)0.4985 (2)0.115 (3)
Sb20.15370 (2)0.80751 (3)0.14915 (2)0.04860 (16)
F70.1744 (6)0.8508 (6)0.0840 (4)0.116 (3)0.711 (5)
F80.0865 (4)0.7708 (5)0.1235 (5)0.113 (3)0.711 (5)
F90.1845 (4)0.7047 (4)0.1293 (4)0.089 (3)0.711 (5)
F100.1376 (5)0.7592 (5)0.2189 (4)0.115 (3)0.711 (5)
F110.2224 (3)0.8451 (5)0.1768 (4)0.099 (3)0.711 (5)
F120.1235 (3)0.9068 (4)0.1753 (3)0.0580 (19)0.711 (5)
F7'0.0894 (7)0.7609 (10)0.1732 (9)0.082 (4)0.289 (5)
F8'0.1563 (10)0.7305 (11)0.0906 (8)0.095 (4)0.289 (5)
F9'0.1123 (9)0.8545 (12)0.0867 (7)0.098 (4)0.289 (5)
F10'0.2132 (8)0.8578 (12)0.1071 (10)0.094 (4)0.289 (5)
F11'0.1990 (9)0.7690 (13)0.1991 (8)0.114 (5)0.289 (5)
F12'0.1486 (10)0.8969 (11)0.1936 (9)0.091 (4)0.289 (5)
C330.1687 (4)0.5737 (6)0.2499 (4)0.072 (3)
H33A0.1337300.6074930.2461580.087*
H33B0.1900080.5778380.2145250.087*
Cl10.21006 (11)0.61408 (19)0.30332 (10)0.0835 (9)
Cl20.14970 (13)0.47124 (16)0.26099 (10)0.0816 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0225 (2)0.0220 (2)0.0285 (2)0.0019 (2)0.0001 (2)0.0012 (2)
Pd20.0227 (2)0.0216 (2)0.0262 (2)0.0024 (2)0.0003 (2)0.0004 (2)
P10.0255 (9)0.0231 (9)0.0385 (9)0.0015 (7)0.0033 (8)0.0045 (7)
P20.0244 (9)0.0243 (8)0.0318 (9)0.0001 (7)0.0001 (7)0.0035 (7)
S10.0293 (9)0.0279 (9)0.0279 (8)0.0046 (7)0.0004 (7)0.0035 (7)
S20.0302 (9)0.0280 (9)0.0329 (8)0.0021 (7)0.0019 (7)0.0081 (7)
N10.024 (3)0.021 (3)0.029 (3)0.000 (2)0.001 (2)0.000 (2)
N20.021 (3)0.024 (3)0.028 (3)0.001 (2)0.001 (2)0.001 (2)
C10.027 (4)0.029 (3)0.038 (4)0.000 (3)0.006 (3)0.000 (3)
C20.019 (3)0.028 (3)0.034 (3)0.005 (3)0.002 (3)0.000 (3)
C30.023 (3)0.029 (4)0.034 (3)0.007 (3)0.007 (3)0.001 (3)
C40.025 (4)0.026 (3)0.031 (3)0.002 (3)0.003 (3)0.005 (3)
C50.032 (4)0.028 (4)0.047 (4)0.005 (3)0.002 (3)0.010 (3)
C60.047 (5)0.022 (4)0.070 (5)0.007 (3)0.005 (4)0.010 (4)
C70.041 (5)0.022 (4)0.062 (5)0.002 (3)0.000 (4)0.009 (3)
C80.031 (4)0.027 (4)0.041 (4)0.002 (3)0.005 (3)0.004 (3)
C90.036 (4)0.030 (4)0.039 (4)0.012 (3)0.004 (3)0.011 (3)
C100.037 (4)0.034 (4)0.037 (4)0.010 (3)0.007 (3)0.005 (3)
C110.035 (4)0.024 (4)0.071 (5)0.007 (3)0.012 (4)0.001 (3)
C120.047 (5)0.054 (5)0.077 (6)0.018 (4)0.015 (5)0.015 (5)
C130.045 (5)0.054 (5)0.103 (7)0.015 (4)0.021 (5)0.009 (5)
C140.036 (4)0.043 (4)0.036 (4)0.005 (4)0.003 (3)0.011 (3)
C150.048 (5)0.070 (6)0.045 (4)0.001 (5)0.013 (4)0.009 (4)
C160.056 (5)0.065 (6)0.044 (4)0.026 (5)0.001 (4)0.013 (4)
C170.028 (4)0.034 (4)0.038 (4)0.002 (3)0.005 (3)0.003 (3)
C180.036 (4)0.031 (4)0.027 (3)0.004 (3)0.001 (3)0.000 (3)
C190.035 (4)0.030 (4)0.037 (4)0.007 (3)0.006 (3)0.005 (3)
C200.043 (4)0.026 (4)0.037 (4)0.014 (3)0.000 (3)0.004 (3)
C210.034 (4)0.023 (3)0.035 (4)0.004 (3)0.009 (3)0.005 (3)
C220.055 (5)0.020 (4)0.041 (4)0.000 (3)0.006 (4)0.003 (3)
C230.063 (6)0.024 (4)0.047 (4)0.011 (4)0.009 (4)0.008 (3)
C240.039 (4)0.035 (4)0.040 (4)0.012 (3)0.007 (3)0.014 (3)
C250.030 (4)0.027 (3)0.028 (3)0.000 (3)0.001 (3)0.006 (3)
C260.031 (4)0.020 (3)0.026 (3)0.001 (3)0.007 (3)0.003 (3)
C270.040 (4)0.029 (4)0.038 (4)0.000 (3)0.003 (3)0.001 (3)
C280.056 (5)0.043 (4)0.038 (4)0.010 (4)0.008 (4)0.011 (3)
C290.055 (5)0.045 (5)0.073 (6)0.010 (4)0.014 (5)0.016 (4)
C300.022 (3)0.039 (4)0.038 (4)0.001 (3)0.002 (3)0.006 (3)
C310.049 (5)0.047 (4)0.042 (4)0.009 (4)0.015 (4)0.000 (4)
C320.049 (5)0.056 (5)0.049 (5)0.009 (4)0.010 (4)0.023 (4)
Sb10.0302 (2)0.0269 (2)0.0420 (3)0.0011 (2)0.0001 (2)0.0041 (2)
F10.057 (3)0.047 (3)0.100 (4)0.007 (2)0.027 (3)0.015 (3)
F20.129 (6)0.031 (3)0.196 (7)0.014 (3)0.092 (5)0.030 (4)
F30.061 (3)0.196 (7)0.040 (3)0.004 (4)0.009 (3)0.014 (3)
F40.046 (3)0.097 (4)0.063 (3)0.002 (3)0.011 (2)0.018 (3)
F50.121 (5)0.051 (3)0.114 (5)0.002 (3)0.023 (4)0.037 (3)
F60.054 (4)0.205 (8)0.087 (4)0.011 (4)0.014 (3)0.050 (5)
Sb20.0383 (3)0.0289 (3)0.0786 (4)0.0006 (2)0.0062 (3)0.0009 (3)
F70.183 (8)0.084 (5)0.081 (5)0.011 (6)0.015 (5)0.008 (4)
F80.085 (5)0.063 (5)0.191 (7)0.004 (4)0.046 (5)0.031 (5)
F90.081 (5)0.038 (4)0.149 (7)0.014 (4)0.048 (5)0.010 (4)
F100.153 (7)0.080 (5)0.113 (5)0.024 (5)0.052 (5)0.038 (4)
F110.048 (4)0.097 (6)0.153 (6)0.004 (4)0.011 (4)0.032 (5)
F120.041 (4)0.028 (3)0.105 (5)0.007 (3)0.011 (4)0.004 (3)
F7'0.077 (7)0.042 (7)0.126 (9)0.007 (6)0.047 (7)0.014 (8)
F8'0.114 (9)0.061 (7)0.110 (8)0.003 (7)0.027 (7)0.020 (6)
F9'0.104 (9)0.094 (9)0.095 (8)0.013 (8)0.024 (7)0.010 (7)
F10'0.066 (7)0.068 (8)0.146 (10)0.008 (7)0.030 (7)0.015 (8)
F11'0.109 (9)0.103 (9)0.130 (8)0.039 (8)0.028 (8)0.030 (8)
F12'0.095 (10)0.058 (7)0.120 (9)0.001 (7)0.005 (8)0.028 (7)
C330.074 (7)0.075 (7)0.068 (6)0.026 (6)0.003 (5)0.005 (5)
Cl10.0607 (15)0.122 (2)0.0683 (15)0.0330 (16)0.0194 (12)0.0330 (15)
Cl20.115 (2)0.0626 (15)0.0675 (15)0.0009 (15)0.0043 (15)0.0104 (12)
Geometric parameters (Å, º) top
Pd1—N12.027 (5)C17—H17A0.9900
Pd1—P12.2455 (18)C17—H17B0.9900
Pd1—S22.3149 (16)C18—C191.401 (9)
Pd1—S12.3657 (17)C19—C201.352 (9)
Pd1—Pd22.8425 (7)C19—H190.9500
Pd2—N22.027 (5)C20—C211.411 (9)
Pd2—P22.2417 (18)C20—H200.9500
Pd2—S12.3184 (16)C21—C261.410 (9)
Pd2—S22.3602 (17)C21—C221.411 (9)
P1—C111.812 (7)C22—C231.355 (10)
P1—C11.825 (6)C22—H220.9500
P1—C141.836 (7)C23—C241.395 (10)
P2—C271.814 (7)C23—H230.9500
P2—C301.822 (6)C24—C251.366 (9)
P2—C171.836 (6)C24—H240.9500
S1—C41.784 (6)C25—C261.414 (9)
S2—C251.774 (7)C27—C281.528 (10)
N1—C21.327 (7)C27—C291.556 (10)
N1—C31.376 (8)C27—H271.0000
N2—C181.360 (8)C28—H28A0.9800
N2—C261.373 (7)C28—H28B0.9800
C1—C21.491 (9)C28—H28C0.9800
C1—H1A0.9900C29—H29A0.9800
C1—H1B0.9900C29—H29B0.9800
C2—C101.401 (9)C29—H29C0.9800
C3—C81.407 (9)C30—C311.528 (9)
C3—C41.433 (9)C30—C321.543 (9)
C4—C51.366 (9)C30—H301.0000
C5—C61.405 (10)C31—H31A0.9800
C5—H50.9500C31—H31B0.9800
C6—C71.371 (10)C31—H31C0.9800
C6—H60.9500C32—H32A0.9800
C7—C81.409 (9)C32—H32B0.9800
C7—H70.9500C32—H32C0.9800
C8—C91.413 (9)Sb1—F31.830 (5)
C9—C101.359 (9)Sb1—F21.832 (5)
C9—H90.9500Sb1—F61.845 (5)
C10—H100.9500Sb1—F51.852 (5)
C11—C131.520 (10)Sb1—F41.856 (4)
C11—C121.549 (11)Sb1—F11.861 (4)
C11—H111.0000Sb2—F11'1.721 (13)
C12—H12A0.9800Sb2—F71.783 (8)
C12—H12B0.9800Sb2—F7'1.784 (13)
C12—H12C0.9800Sb2—F81.796 (8)
C13—H13A0.9800Sb2—F12'1.800 (13)
C13—H13B0.9800Sb2—F111.849 (7)
C13—H13C0.9800Sb2—F121.862 (6)
C14—C151.522 (10)Sb2—F91.874 (6)
C14—C161.535 (10)Sb2—F8'1.879 (14)
C14—H141.0000Sb2—F101.888 (8)
C15—H15A0.9800Sb2—F10'1.907 (13)
C15—H15B0.9800Sb2—F9'1.945 (13)
C15—H15C0.9800C33—Cl21.735 (9)
C16—H16A0.9800C33—Cl11.738 (9)
C16—H16B0.9800C33—H33A0.9900
C16—H16C0.9800C33—H33B0.9900
C17—C181.486 (9)
N1—Pd1—P183.86 (15)P2—C17—H17B109.1
N1—Pd1—S2168.93 (15)H17A—C17—H17B107.8
P1—Pd1—S2106.75 (6)N2—C18—C19119.9 (6)
N1—Pd1—S186.49 (15)N2—C18—C17118.0 (6)
P1—Pd1—S1169.03 (6)C19—C18—C17122.0 (6)
S2—Pd1—S182.64 (6)C20—C19—C18120.4 (6)
N1—Pd1—Pd2117.54 (14)C20—C19—H19119.8
P1—Pd1—Pd2129.40 (5)C18—C19—H19119.8
S2—Pd1—Pd253.28 (4)C19—C20—C21121.0 (6)
S1—Pd1—Pd251.89 (4)C19—C20—H20119.5
Pd2—S1—Pd174.71 (5)C21—C20—H20119.5
N2—Pd2—P285.21 (15)C26—C21—C22119.6 (6)
N2—Pd2—S1167.55 (15)C26—C21—C20117.3 (6)
P2—Pd2—S1106.34 (6)C22—C21—C20123.2 (6)
N2—Pd2—S286.13 (15)C23—C22—C21119.6 (7)
P2—Pd2—S2170.20 (6)C23—C22—H22120.2
S1—Pd2—S282.69 (6)C21—C22—H22120.2
N2—Pd2—Pd1114.86 (14)C22—C23—C24121.0 (7)
P2—Pd2—Pd1136.83 (5)C22—C23—H23119.5
S1—Pd2—Pd153.40 (4)C24—C23—H23119.5
S2—Pd2—Pd151.83 (4)C25—C24—C23121.2 (7)
C11—P1—C1106.9 (3)C25—C24—H24119.4
C11—P1—C14108.9 (3)C23—C24—H24119.4
C1—P1—C14105.4 (3)C24—C25—C26119.1 (6)
C11—P1—Pd1119.7 (3)C24—C25—S2120.6 (5)
C1—P1—Pd198.8 (2)C26—C25—S2119.8 (5)
C14—P1—Pd1115.3 (2)N2—C26—C21120.9 (6)
C27—P2—C30108.7 (3)N2—C26—C25119.6 (6)
C27—P2—C17107.7 (3)C21—C26—C25119.5 (6)
C30—P2—C17106.1 (3)C28—C27—C29111.5 (6)
C27—P2—Pd2121.4 (2)C28—C27—P2110.5 (5)
C30—P2—Pd2111.0 (2)C29—C27—P2112.2 (5)
C17—P2—Pd2100.6 (2)C28—C27—H27107.5
C4—S1—Pd2117.9 (2)C29—C27—H27107.5
C4—S1—Pd194.8 (2)P2—C27—H27107.5
C25—S2—Pd1119.8 (2)C27—C28—H28A109.5
C25—S2—Pd295.2 (2)C27—C28—H28B109.5
Pd1—S2—Pd274.88 (5)H28A—C28—H28B109.5
C2—N1—C3120.8 (5)C27—C28—H28C109.5
C2—N1—Pd1121.8 (4)H28A—C28—H28C109.5
C3—N1—Pd1117.3 (4)H28B—C28—H28C109.5
C18—N2—C26120.4 (5)C27—C29—H29A109.5
C18—N2—Pd2121.4 (4)C27—C29—H29B109.5
C26—N2—Pd2118.1 (4)H29A—C29—H29B109.5
C2—C1—P1111.5 (4)C27—C29—H29C109.5
C2—C1—H1A109.3H29A—C29—H29C109.5
P1—C1—H1A109.3H29B—C29—H29C109.5
C2—C1—H1B109.3C31—C30—C32111.5 (6)
P1—C1—H1B109.3C31—C30—P2110.4 (5)
H1A—C1—H1B108.0C32—C30—P2110.6 (5)
N1—C2—C10120.9 (6)C31—C30—H30108.1
N1—C2—C1117.1 (5)C32—C30—H30108.1
C10—C2—C1122.0 (6)P2—C30—H30108.1
N1—C3—C8120.2 (6)C30—C31—H31A109.5
N1—C3—C4120.2 (6)C30—C31—H31B109.5
C8—C3—C4119.6 (6)H31A—C31—H31B109.5
C5—C4—C3119.2 (6)C30—C31—H31C109.5
C5—C4—S1121.4 (5)H31A—C31—H31C109.5
C3—C4—S1118.9 (5)H31B—C31—H31C109.5
C4—C5—C6120.8 (7)C30—C32—H32A109.5
C4—C5—H5119.6C30—C32—H32B109.5
C6—C5—H5119.6H32A—C32—H32B109.5
C7—C6—C5121.0 (7)C30—C32—H32C109.5
C7—C6—H6119.5H32A—C32—H32C109.5
C5—C6—H6119.5H32B—C32—H32C109.5
C6—C7—C8119.7 (7)F3—Sb1—F291.0 (4)
C6—C7—H7120.1F3—Sb1—F6177.3 (3)
C8—C7—H7120.1F2—Sb1—F691.4 (4)
C3—C8—C7119.6 (6)F3—Sb1—F589.5 (3)
C3—C8—C9118.1 (6)F2—Sb1—F5179.2 (3)
C7—C8—C9122.3 (6)F6—Sb1—F588.1 (3)
C10—C9—C8119.8 (6)F3—Sb1—F489.0 (2)
C10—C9—H9120.1F2—Sb1—F492.3 (2)
C8—C9—H9120.1F6—Sb1—F489.5 (2)
C9—C10—C2120.2 (6)F5—Sb1—F488.3 (3)
C9—C10—H10119.9F3—Sb1—F190.9 (2)
C2—C10—H10119.9F2—Sb1—F188.5 (2)
C13—C11—C12112.5 (7)F6—Sb1—F190.5 (3)
C13—C11—P1112.6 (6)F5—Sb1—F190.8 (2)
C12—C11—P1110.8 (5)F4—Sb1—F1179.2 (2)
C13—C11—H11106.8F11'—Sb2—F7'98.4 (10)
C12—C11—H11106.8F7—Sb2—F893.9 (6)
P1—C11—H11106.8F11'—Sb2—F12'85.3 (10)
C11—C12—H12A109.5F7'—Sb2—F12'95.1 (9)
C11—C12—H12B109.5F7—Sb2—F1187.1 (5)
H12A—C12—H12B109.5F8—Sb2—F11179.0 (5)
C11—C12—H12C109.5F7—Sb2—F1293.6 (4)
H12A—C12—H12C109.5F8—Sb2—F1293.7 (4)
H12B—C12—H12C109.5F11—Sb2—F1285.9 (3)
C11—C13—H13A109.5F7—Sb2—F991.0 (4)
C11—C13—H13B109.5F8—Sb2—F987.7 (4)
H13A—C13—H13B109.5F11—Sb2—F992.5 (4)
C11—C13—H13C109.5F12—Sb2—F9175.0 (4)
H13A—C13—H13C109.5F11'—Sb2—F8'105.2 (10)
H13B—C13—H13C109.5F7'—Sb2—F8'89.5 (8)
C15—C14—C16111.0 (6)F12'—Sb2—F8'167.8 (10)
C15—C14—P1110.2 (5)F7—Sb2—F10175.7 (5)
C16—C14—P1112.3 (5)F8—Sb2—F1089.5 (5)
C15—C14—H14107.7F11—Sb2—F1089.5 (5)
C16—C14—H14107.7F12—Sb2—F1088.8 (4)
P1—C14—H14107.7F9—Sb2—F1086.4 (4)
C14—C15—H15A109.5F11'—Sb2—F10'94.0 (10)
C14—C15—H15B109.5F7'—Sb2—F10'166.5 (11)
H15A—C15—H15B109.5F12'—Sb2—F10'91.3 (10)
C14—C15—H15C109.5F8'—Sb2—F10'82.0 (8)
H15A—C15—H15C109.5F11'—Sb2—F9'171.8 (10)
H15B—C15—H15C109.5F7'—Sb2—F9'89.5 (9)
C14—C16—H16A109.5F12'—Sb2—F9'96.4 (9)
C14—C16—H16B109.5F8'—Sb2—F9'72.3 (9)
H16A—C16—H16B109.5F10'—Sb2—F9'78.0 (9)
C14—C16—H16C109.5Cl2—C33—Cl1112.8 (5)
H16A—C16—H16C109.5Cl2—C33—H33A109.0
H16B—C16—H16C109.5Cl1—C33—H33A109.0
C18—C17—P2112.4 (4)Cl2—C33—H33B109.0
C18—C17—H17A109.1Cl1—C33—H33B109.0
P2—C17—H17A109.1H33A—C33—H33B107.8
C18—C17—H17B109.1
C11—P1—C1—C2151.4 (5)C27—P2—C17—C18143.6 (5)
C14—P1—C1—C292.8 (5)C30—P2—C17—C18100.2 (5)
Pd1—P1—C1—C226.6 (5)Pd2—P2—C17—C1815.5 (5)
C3—N1—C2—C101.4 (9)C26—N2—C18—C194.7 (9)
Pd1—N1—C2—C10179.4 (5)Pd2—N2—C18—C19176.8 (5)
C3—N1—C2—C1179.9 (5)C26—N2—C18—C17171.1 (5)
Pd1—N1—C2—C11.8 (8)Pd2—N2—C18—C177.4 (8)
P1—C1—C2—N121.0 (7)P2—C17—C18—N215.9 (8)
P1—C1—C2—C10160.3 (5)P2—C17—C18—C19168.4 (5)
C2—N1—C3—C80.3 (9)N2—C18—C19—C202.4 (10)
Pd1—N1—C3—C8177.8 (5)C17—C18—C19—C20173.2 (6)
C2—N1—C3—C4178.9 (6)C18—C19—C20—C211.5 (10)
Pd1—N1—C3—C43.0 (7)C19—C20—C21—C263.0 (9)
N1—C3—C4—C5178.2 (6)C19—C20—C21—C22176.8 (7)
C8—C3—C4—C52.6 (9)C26—C21—C22—C231.9 (10)
N1—C3—C4—S110.2 (8)C20—C21—C22—C23177.9 (6)
C8—C3—C4—S1169.0 (5)C21—C22—C23—C241.3 (10)
Pd2—S1—C4—C598.5 (5)C22—C23—C24—C250.6 (11)
Pd1—S1—C4—C5173.7 (5)C23—C24—C25—C261.8 (10)
Pd2—S1—C4—C390.1 (5)C23—C24—C25—S2170.1 (5)
Pd1—S1—C4—C314.9 (5)Pd1—S2—C25—C24101.8 (5)
C3—C4—C5—C60.0 (10)Pd2—S2—C25—C24177.4 (5)
S1—C4—C5—C6171.4 (5)Pd1—S2—C25—C2686.4 (5)
C4—C5—C6—C72.0 (11)Pd2—S2—C25—C2610.8 (5)
C5—C6—C7—C81.4 (11)C18—N2—C26—C213.1 (8)
N1—C3—C8—C7177.6 (6)Pd2—N2—C26—C21178.3 (4)
C4—C3—C8—C73.2 (10)C18—N2—C26—C25175.3 (5)
N1—C3—C8—C91.8 (9)Pd2—N2—C26—C253.3 (7)
C4—C3—C8—C9177.4 (6)C22—C21—C26—N2179.1 (6)
C6—C7—C8—C31.2 (11)C20—C21—C26—N20.7 (9)
C6—C7—C8—C9179.4 (7)C22—C21—C26—C250.7 (9)
C3—C8—C9—C101.6 (10)C20—C21—C26—C25179.1 (6)
C7—C8—C9—C10177.8 (7)C24—C25—C26—N2177.3 (6)
C8—C9—C10—C20.0 (10)S2—C25—C26—N210.8 (8)
N1—C2—C10—C91.6 (10)C24—C25—C26—C211.1 (9)
C1—C2—C10—C9179.7 (6)S2—C25—C26—C21170.8 (5)
C1—P1—C11—C1355.3 (7)C30—P2—C27—C28171.5 (5)
C14—P1—C11—C1358.2 (7)C17—P2—C27—C2874.0 (6)
Pd1—P1—C11—C13166.2 (5)Pd2—P2—C27—C2840.9 (6)
C1—P1—C11—C1271.7 (6)C30—P2—C27—C2963.5 (6)
C14—P1—C11—C12174.9 (5)C17—P2—C27—C2951.0 (6)
Pd1—P1—C11—C1239.2 (6)Pd2—P2—C27—C29165.9 (4)
C11—P1—C14—C15179.2 (5)C27—P2—C30—C31176.8 (5)
C1—P1—C14—C1564.7 (6)C17—P2—C30—C3161.2 (5)
Pd1—P1—C14—C1543.1 (6)Pd2—P2—C30—C3147.2 (5)
C11—P1—C14—C1656.5 (6)C27—P2—C30—C3259.4 (6)
C1—P1—C14—C16170.9 (5)C17—P2—C30—C32174.9 (5)
Pd1—P1—C14—C1681.3 (5)Pd2—P2—C30—C3276.7 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C21–C26 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1A···F3i0.992.343.305 (9)166
C7—H7···F1ii0.952.373.229 (8)151
C11—H11···F2iii1.002.273.128 (9)143
C17—H17A···F11iv0.992.413.279 (10)147
C22—H22···F8v0.952.333.190 (11)150
C23—H23···F1iii0.952.533.396 (9)152
C27—H27···F12vi1.002.433.322 (10)148
C31—H31C···F3iv0.982.503.399 (9)152
C33—H33A···F100.992.543.172 (13)122
C16—H16A···Cg10.982.933.701 (8)136
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x, y+3/2, z+1/2; (v) x+1/2, y+1, z+1/2; (vi) x+1/2, y+2, z+1/2.
Selected geometric parameters (Å, °) top
Pd1-N12.027 (5)
Pd1-P12.2455 (18)
Pd1-S22.3149 (16)
Pd1-S12.3657 (17)
P1-C11.825 (6)
S1-C41.784 (6)
Pd1-Pd22.8425 (7)
Pd2-N22.027 (5)
Pd2-P22.2417 (18)
Pd2-S12.3184 (16)
Pd2-S22.3602 (17)
P2-C171.836 (6)
S2-C251.774 (7)
N1-Pd1-P183.86 (15)
N1-Pd1-S2168.93 (15)
P1-Pd1-S2106.75 (6)
N1-Pd1-S186.49 (15)
P1-Pd1-S1169.03 (6)
S2-Pd1-S182.64 (6)
N1-Pd1-Pd2117.54 (14)
P1-Pd1-Pd2129.40 (5)
S2-Pd1-Pd253.28 (4)
S1-Pd1-Pd251.89 (4)
Pd2-S1-Pd174.71 (5)
Pd1-S2-Pd274.88 (5)

Funding information

Funding for this research was provided by: ANR AAPG2020 CE07 MLC Photophos project .

References

First citationAlbinati, A., Herrmann, J. & Pregosin, P. S. (1997). Inorg. Chim. Acta, 264, 33–42.  CSD CrossRef CAS Web of Science Google Scholar
First citationAzizpoor Fard, M., Willans, M. J., Khalili Najafabadi, B., Levchenko, T. I. & Corrigan, J. (2015). Dalton Trans. 44, 8267–8277.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBatsanov, S. S. (2001). Inorg. Mater. 37, 871–885.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCabeza, J. A., del Río, I., Sánchez-Vega, M. G. & Suárez, M. (2006). Organometallics, 25, 1831–1834.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, C., Xia, Q., Qiu, H. & Chen, W. (2015). J. Organomet. Chem. 775, 103–108.  Web of Science CSD CrossRef CAS Google Scholar
First citationCordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832–2838.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKersting, B. (1998). Eur. J. Inorg. Chem. pp. 1071–1077.  CrossRef Google Scholar
First citationKouno, M., Miyashita, Y., Yoshinari, N. & Konno, T. (2015). Chem. Lett. 44, 1512–1514.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeung, P. H., Siah, S. Y., White, J. P. & Williams, J. (1998). J. Chem. Soc. Dalton Trans. pp. 893–900.  Web of Science CSD CrossRef Google Scholar
First citationLisena, J., Monot, J., Mallet-Ladeira, S., Martin-Vaca, B. & Bourissou, D. (2013). Organometallics, 32, 4301–4305.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMane, P. A., Dey, S., Pathak, A. K., Kumar, M. & Bhuvanesh, N. (2019). Inorg. Chem. 58, 2965–2978.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMorales-Morales, D. (2018). Editor. Pincer compounds: Chemistry and Applications. Oxford: Elsevier.  Google Scholar
First citationMori, M., Namioka, A. & Suzuki, T. (2021). Acta Cryst. E77, 52–57.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNayan Sharma, K., Joshi, H., Prakash, O., Sharma, A. K., Bhaskar, R. & Singh, A. K. (2015). Eur. J. Inorg. Chem. pp. 4829–4838.  Web of Science CSD CrossRef Google Scholar
First citationNebra, N., Ladeira, S., Maron, L., Martin–Vaca, B. & Bourissou, D. (2012). Chem. Eur. J. 18, 8474–8481.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNebra, N., Saffon, N., Maron, L., Martin-Vaca, B. & Bourissou, D. (2011). Inorg. Chem. 50, 6378–6383.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationScharf, A., Goldberg, I. & Vigalok, A. (2014). Inorg. Chem. 53, 12–14.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSelander, N. & Szabó, K. J. (2011). Chem. Rev. 111, 2048–2076.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSu, W., Cao, R., Hong, M., Wu, D. & Lu, J. (2000). J. Chem. Soc. Dalton Trans. pp. 1527–1532.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds