research communications
II dimer containing a 2-[(diisopropylphosphanyl)methyl]quinoline-8-thiolate pincer ligand
of a dicationic PdaLaboratoire Hétérochimie Fondamentale et Appliquée, LHFA UMR-CNRS 5069, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 09, France, and bUniversité de Toulouse III Paul Sabatier, Institut de Chimie de Toulouse, ICT, UAR 2599, 118, route de Narbonne, F-31062 Toulouse, France
*Correspondence e-mail: dbouriss@chimie.ups-tlse.fr
A dicationic PdII dimer, bis{2-[(diisopropylphosphanyl)methyl]quinoline-8-thiolato}palladium(II) bis(hexafluoridoantimonate) dichloromethane monosolvate, [Pd2(C32H42N2P2S2)](SbF6)2·CH2Cl2, containing a 2-[(diisopropylphosphanyl)methyl]quinoline-8-thiolate pincer ligand, was isolated and its determined. The title compound crystallizes in the orthorhombic Pbca. A dimeric structure is formed by bridging coordination of the S atoms. The geometry of the butterfly-shaped Pd2S2 core is bent, with a hinge angle of 108.0 (1)° and a short Pd⋯Pd distance of 2.8425 (7) Å. These values are the lowest measured compared to ten dicationic dimers with a Pd2S2 core featuring sulfur atoms embedded in a chelating ligand. One of the two hexafluoridoantimonate anions is disordered over two sets of positions with site-occupancy factors of 0.711 (5) and 0.289 (5). The is stabilized by many C—H⋯F and C—H⋯π interactions, forming a supramolecular network.
Keywords: crystal structure; PdII pincer complex; dimer; S-bridging coordination; quinoline.
CCDC reference: 2124311
1. Chemical context
The stereoelectronic properties of transition-metal complexes can be finely modulated thanks to the ligands introduced on the metal coordination sphere, and this plays a fundamental role in organometallic chemistry. Over the past two decades, impressive developments have been achieved with pincer complexes, which nicely illustrate how the properties and reactivity of a complex can be adjusted through ligand modifications (Morales-Morales, 2018). In pincer complexes, the central M—X bond is enforced by the coordination of two peripheral donor groups (D), and the chelating rigid nature of the monoanionic DXD pincer ligand bestows a unique balance between stability and reactivity. This has led to spectacular catalytic developments, including with pincer complexes based on Pd, a transition metal that occupies a central place in organometallic catalysis. As far as Pd is concerned, the main topology of the used monoanionic pincer ligands consists of an aryl central moiety featuring two coordinating side arms, as illustrated in Fig. 1 (model I). These complexes have been successfully applied to C—C or C—X bond-forming catalytic transformations. The impact of the side groups (coordinating atom and linker) on the catalytic performances has been explored (Selander et al., 2011). We have developed new models of Pd pincer complexes varying the aromatic central ring, introducing indenyl and indolyl moieties (model II in Fig. 1). The nature of the central ring was found to significantly impact the of the Pd complexes in the allylation of (Lisena et al., 2013).
Seeking to further modify the structure of the Pd pincer complexes so that the π-system as the central moiety (so that rigidity is increased). We have thus designed and prepared a pincer PNS Pd complex based on a 8-thiolate-quinoline featuring a methylenephosphine side arm (model III in Fig. 1). We report herein that when cationizing the corresponding chloro palladium pincer complex 1 with AgSbF6, a dimeric dicationic species 2 crystallized with a tight S-bridging assembling of the two quinoline-based PNS Pd pincer fragments. The structural features are discussed. It is worth noting that we have previously reported S-bridged homo and hetero polymetallic species derived from Pd pincer complexes of type II (Nebra et al., 2011, 2012).
can be modulated, we now aim to incorporate an extended2. Structural commentary
X-ray diffraction of the yellow crystals obtained from 2(SbF6)2 revealed a dimeric structure, composed of two cationic PNSPd fragments, that crystallizes in the orthorhombic system and Pbca (Figs. 2 and 3; selected bond lengths and bond angles are given in Table 1). The dicationic nature of the structure is confirmed by the presence of two SbF6− units per dimer. The two PNSPd fragments are connected to each other by two bridging S atoms. The S donor atom of each PNSPd fragment completes the coordination sphere of the other, forming a Pd2S2 diamond core.
|
For each PNSPd fragment, besides the two bridging S atoms, the Pd atom is coordinated by one N atom and one P atom, completing a tetracoordinate sphere that deviates slightly from square-planar geometry (deviation estimated by the τ index, with values of 0.15 and 0.16 for Pd1 and Pd2, respectively) (Yang et al., 2007). The Pd—N and the Pd—P bond lengths are almost identical for the two fragments [Pd1—N1 = 2.027 (5), Pd2—N2 = 2.027 (5) Å and Pd1—P1 = 2.2455 (18), Pd2—P2 = 2.2417 (18) Å], and the values are in the range of those observed for quinoline/phosphine chelate Pd complexes (Mori et al., 2021; Scharf et al., 2014 for example). The coordination environment around each Pd atom and the quinoline moiety is approximately planar [dihedral angles of 13.1 (1)° for Pd1 and 2.3 (1)° for Pd2, as estimated by the dihedral angle between the mean planes of the two fragments].
As for the Pd2S2 core, the two Pd—S bond lengths for each Pd atom are slightly different and, interestingly, the bonds between the Pd atoms and the bridging S atom of the other fragment are shorter [2.3149 (16) and 2.3184 (16) for Pd1—S2 and Pd2—S1, respectively] than the bonds between the Pd atoms and the chelating S atom of the pincer ligand [2.3657 (17) and 2.3602 (17) for Pd1—S1 and Pd2—S2, respectively]. This is most likely due to the rigidity of the 8-thio-quinoline moiety (the C3—C4—S1 and C26—C27—S2 angles deviate from 120° by less than 2°). The two S atoms are noticeably pyramidalized (ΣS = 287 and 290° for S1 and S2, respectively). The hinge angle of the core unit (involving the two [S,Pd,S] planes) has a value of 108.0 (1)°, which is in fact the lowest value reported for such kind of dicationic species with a Pd2S2 core (see the Database survey section). This results in a rather short Pd1—Pd2 distance of 2.8425 (7) Å, which is significantly shorter than the sum of van der Waals radii (4.10 Å; Batsanov et al., 2001) and exceeds the sum of the covalent radii (2.78 Å; Cordero et al., 2008) by only 2%.
3. Supramolecular features
The crystal packing of the title compound, illustrated in Fig. 4, involves weak intramolecular C—H⋯Cg contacts, and intermolecular C—H⋯F contacts between the cations and anions, which link the components in a three-dimensional network (Table 2, Figs. 5 and 6). No classical hydrogen-bonding interactions were found.
Each dicationic unit is surrounded by eight SbF6− anions, engaged in weak C—H⋯F contacts with C⋯F distances in the range 3.128 (9)–3.172 (13) Å (associated with H⋯F distances in the range 2.27–2.54 Å) (Fig. 5). As for the SbF6− anions, two different situations can be observed. One of the anions (containing Sb1) displays weak C—H⋯F contacts with C—H bonds from five different dicationic units, while the other one (containing Sb2), interacts weakly with C—H bonds from three dicationic units and from a CH2Cl2 solvent molecule. Finally, an intramolecular C—H⋯Cg short contact is observed between one of the CH3 of the iPr groups of one PNSPd pincer fragment (Pd2) and the benzo ring of the quinoline moiety of the other fragment [C16⋯Cg1 = 3.701 (8) Å, associated with a H16A⋯Cg1 distance of 2.93 Å] (Fig. 6). It should be noted that a significantly longer distance (H28B⋯Cg2 of 3.2 Å) is observed for the other part of the unit (CH3 group of the Pd2 fragment with the benzo ring of the other), indicating a non-symmetrical organization of the dimer.
4. Database survey
To the best of our knowledge, structures of quinoline-based PNSPd dicationic dimers as described herein have not been reported previously. A structure survey was carried out in the Cambridge Structural Database (CSD version 5.42, update of November 2020; Groom et al., 2016). It revealed 28 hits for dicationic dimers with a Pd2S2 core, of which ten can be compared with the title compound as they feature the sulfur atoms embedded in a chelating ligand [refcodes CUYLIT (Kouno et al., 2015), NORGEG (Albinati et al., 1997), NOXVAZ (Chen et al. 2015), POTMUG (Kersting, 1998), QOCCUG (Su et al., 2000), SELGUL (Leung et al., 1998), TEGWUY (Cabeza et al., 2006), TIXLOE (Mane et al., 2019), XAHBUI (Nayan Sharma et al., 2015), XULYUZ (Azizpoor Fard et al., 2015)]. Hinge angles in the range 115.3–156.6° were measured for these compounds, all values higher than that measured for the title compound [108.0 (1)°].
5. Synthesis and crystallization
A solution of PNS-Pd-Cl 1 (Scharf et al., 2014) (1.0 equiv., 0.1 M) was added dropwise over 5 min to a suspension of AgSbF6 (1.0 equiv.) in CH2Cl2 (0.1 M) at 195 K. After the addition, the reaction mixture was allowed to quickly warm up to room temperature and was stirred for 2 h. The reaction was then filtered via canula, and the solvent was removed in vacuo to yield the corresponding dicationic complex as a reddish powder (95%). X-ray quality crystals were grown by slow diffusion at 273 K of pentane into a concentrated solution of 2 in CH2Cl2. 1H NMR (300 MHz, CD2Cl2): δ = 8.60 (d, J = 8.5 Hz, 2H), 8.23 (dd, J = 7.5, 1.2 Hz, 2H), 8.13 (dd, J = 8.5, 1.2 Hz, 2H), 7.87–7.75 (m, 4H), 4.16 (dd, J = 18.9, 9.7 Hz, 2H), 3.86 (dd, J = 18.9, 11.2 Hz, 2H), 2.47 (m, 2H), 1.79 (dd, J = 20.1, 7.1 Hz, 6H), 1.49 (dd, J = 17.4, 6.9 Hz, 6H), 1.28 (m, 2H), 0.82 (dd, J = 16.1, 6.9 Hz, 6H), 0.08 (dd, J = 19.7, 7.1 Hz, 6H).
6. Refinement
Crystal data, data collection and structure . One of the two hexafluoridoantimonate anions is disordered over two positions, for which occupancies were refined, converging to 0.711 (5) and 0.289 (5). SAME, DELU and SIMU restraints were applied (Sheldrick, 2015b). All H atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic), 0.98 Å (CH3), 0.99 Å (CH2) or 1.0 Å (CH), with Uiso(H) = 1.2Ueq(CH, CH2) or 1.5Ueq(CH3).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2124311
https://doi.org/10.1107/S2056989021012561/zq2270sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021012561/zq2270Isup3.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: PLATON (Spek, 2020) and publCIF (Westrip, 2010).[Pd2(C32H42N2P2S2)](SbF6)2·CH2Cl2 | Dx = 1.964 Mg m−3 |
Mr = 1349.96 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9991 reflections |
a = 23.5167 (19) Å | θ = 3.0–22.0° |
b = 16.1492 (14) Å | µ = 2.30 mm−1 |
c = 24.0414 (18) Å | T = 193 K |
V = 9130.3 (13) Å3 | Plate, yellow |
Z = 8 | 0.10 × 0.08 × 0.04 mm |
F(000) = 5232 |
Bruker Kappa APEXII CCD Quazar diffractometer | 6263 reflections with I > 2σ(I) |
Radiation source: Incoatec microfocus sealed tube | Rint = 0.122 |
Phi and ω scans | θmax = 26.9°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −29→29 |
Tmin = 0.677, Tmax = 0.728 | k = −20→20 |
152552 measured reflections | l = −30→30 |
9812 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0384P)2 + 45.7164P] where P = (Fo2 + 2Fc2)/3 |
9812 reflections | (Δ/σ)max = 0.002 |
577 parameters | Δρmax = 1.50 e Å−3 |
213 restraints | Δρmin = −1.07 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Pd1 | 0.57179 (2) | 0.75620 (3) | 0.64839 (2) | 0.02433 (12) | |
Pd2 | 0.45502 (2) | 0.74339 (3) | 0.67769 (2) | 0.02348 (12) | |
P1 | 0.61946 (7) | 0.69467 (10) | 0.57882 (7) | 0.0291 (4) | |
P2 | 0.37442 (7) | 0.81155 (10) | 0.65817 (7) | 0.0268 (4) | |
S1 | 0.51907 (7) | 0.84184 (10) | 0.70934 (6) | 0.0284 (4) | |
S2 | 0.52977 (7) | 0.65162 (10) | 0.69984 (7) | 0.0304 (4) | |
N1 | 0.5978 (2) | 0.8622 (3) | 0.6110 (2) | 0.0248 (11) | |
N2 | 0.4144 (2) | 0.6430 (3) | 0.6462 (2) | 0.0243 (11) | |
C1 | 0.6648 (3) | 0.7812 (4) | 0.5584 (3) | 0.0311 (15) | |
H1A | 0.701799 | 0.776732 | 0.577766 | 0.037* | |
H1B | 0.671982 | 0.778550 | 0.517885 | 0.037* | |
C2 | 0.6380 (3) | 0.8623 (4) | 0.5723 (3) | 0.0270 (14) | |
C3 | 0.5708 (3) | 0.9343 (4) | 0.6262 (3) | 0.0285 (14) | |
C4 | 0.5282 (3) | 0.9334 (4) | 0.6688 (2) | 0.0274 (14) | |
C5 | 0.5009 (3) | 1.0053 (4) | 0.6821 (3) | 0.0355 (16) | |
H5 | 0.472562 | 1.005157 | 0.710333 | 0.043* | |
C6 | 0.5141 (3) | 1.0796 (4) | 0.6546 (3) | 0.046 (2) | |
H6 | 0.493775 | 1.128646 | 0.663638 | 0.056* | |
C7 | 0.5560 (3) | 1.0825 (4) | 0.6149 (3) | 0.0418 (18) | |
H7 | 0.565065 | 1.133373 | 0.597251 | 0.050* | |
C8 | 0.5854 (3) | 1.0096 (4) | 0.6005 (3) | 0.0328 (16) | |
C9 | 0.6293 (3) | 1.0089 (4) | 0.5603 (3) | 0.0352 (16) | |
H9 | 0.640761 | 1.058936 | 0.542901 | 0.042* | |
C10 | 0.6549 (3) | 0.9363 (4) | 0.5467 (3) | 0.0360 (16) | |
H10 | 0.684390 | 0.935601 | 0.519667 | 0.043* | |
C11 | 0.6661 (3) | 0.6081 (4) | 0.5938 (3) | 0.0432 (19) | |
H11 | 0.641178 | 0.558737 | 0.599777 | 0.052* | |
C12 | 0.6989 (4) | 0.6226 (5) | 0.6488 (3) | 0.059 (2) | |
H12A | 0.722728 | 0.574233 | 0.656806 | 0.089* | |
H12B | 0.671824 | 0.630923 | 0.679202 | 0.089* | |
H12C | 0.723057 | 0.671770 | 0.645046 | 0.089* | |
C13 | 0.7053 (4) | 0.5874 (5) | 0.5455 (4) | 0.067 (3) | |
H13A | 0.731357 | 0.633794 | 0.538993 | 0.101* | |
H13B | 0.682578 | 0.577628 | 0.511957 | 0.101* | |
H13C | 0.727221 | 0.537571 | 0.554384 | 0.101* | |
C14 | 0.5769 (3) | 0.6701 (4) | 0.5169 (3) | 0.0381 (17) | |
H14 | 0.603766 | 0.662319 | 0.485083 | 0.046* | |
C15 | 0.5379 (3) | 0.7421 (5) | 0.5027 (3) | 0.055 (2) | |
H15A | 0.515430 | 0.728286 | 0.469620 | 0.082* | |
H15B | 0.560770 | 0.791607 | 0.495211 | 0.082* | |
H15C | 0.512291 | 0.752911 | 0.534025 | 0.082* | |
C16 | 0.5430 (4) | 0.5895 (5) | 0.5238 (3) | 0.055 (2) | |
H16A | 0.515351 | 0.596008 | 0.553935 | 0.083* | |
H16B | 0.569058 | 0.544039 | 0.532664 | 0.083* | |
H16C | 0.522942 | 0.577044 | 0.489023 | 0.083* | |
C17 | 0.3362 (3) | 0.7327 (4) | 0.6178 (3) | 0.0331 (16) | |
H17A | 0.295987 | 0.731432 | 0.629853 | 0.040* | |
H17B | 0.336994 | 0.748252 | 0.577947 | 0.040* | |
C18 | 0.3612 (3) | 0.6488 (4) | 0.6244 (3) | 0.0311 (15) | |
C19 | 0.3333 (3) | 0.5775 (4) | 0.6056 (3) | 0.0341 (16) | |
H19 | 0.295630 | 0.581288 | 0.591709 | 0.041* | |
C20 | 0.3598 (3) | 0.5032 (4) | 0.6072 (3) | 0.0351 (17) | |
H20 | 0.340085 | 0.455065 | 0.595184 | 0.042* | |
C21 | 0.4163 (3) | 0.4960 (4) | 0.6265 (3) | 0.0308 (15) | |
C22 | 0.4467 (3) | 0.4207 (4) | 0.6265 (3) | 0.0385 (18) | |
H22 | 0.428883 | 0.371171 | 0.614199 | 0.046* | |
C23 | 0.5014 (4) | 0.4194 (4) | 0.6440 (3) | 0.0446 (19) | |
H23 | 0.522041 | 0.368879 | 0.643264 | 0.053* | |
C24 | 0.5279 (3) | 0.4912 (4) | 0.6632 (3) | 0.0383 (17) | |
H24 | 0.566472 | 0.488814 | 0.675010 | 0.046* | |
C25 | 0.4995 (3) | 0.5650 (4) | 0.6654 (2) | 0.0283 (15) | |
C26 | 0.4427 (3) | 0.5686 (4) | 0.6464 (2) | 0.0257 (14) | |
C27 | 0.3749 (3) | 0.9063 (4) | 0.6176 (3) | 0.0360 (16) | |
H27 | 0.388653 | 0.951774 | 0.642469 | 0.043* | |
C28 | 0.4167 (3) | 0.8992 (5) | 0.5693 (3) | 0.0457 (19) | |
H28A | 0.402839 | 0.857879 | 0.542684 | 0.069* | |
H28B | 0.454011 | 0.882220 | 0.583404 | 0.069* | |
H28C | 0.420108 | 0.952991 | 0.550674 | 0.069* | |
C29 | 0.3144 (3) | 0.9306 (5) | 0.5971 (4) | 0.058 (2) | |
H29A | 0.315917 | 0.984838 | 0.578951 | 0.086* | |
H29B | 0.288394 | 0.933056 | 0.628914 | 0.086* | |
H29C | 0.300799 | 0.889035 | 0.570524 | 0.086* | |
C30 | 0.3325 (3) | 0.8286 (4) | 0.7209 (3) | 0.0330 (16) | |
H30 | 0.293211 | 0.845049 | 0.709329 | 0.040* | |
C31 | 0.3281 (3) | 0.7487 (5) | 0.7547 (3) | 0.0458 (19) | |
H31A | 0.366266 | 0.730653 | 0.765698 | 0.069* | |
H31B | 0.310159 | 0.705558 | 0.732012 | 0.069* | |
H31C | 0.305098 | 0.758646 | 0.788001 | 0.069* | |
C32 | 0.3579 (3) | 0.8998 (5) | 0.7557 (3) | 0.051 (2) | |
H32A | 0.337543 | 0.903830 | 0.791199 | 0.077* | |
H32B | 0.354032 | 0.951989 | 0.735303 | 0.077* | |
H32C | 0.398210 | 0.888704 | 0.762806 | 0.077* | |
Sb1 | 0.34706 (2) | 0.68208 (3) | 0.44208 (2) | 0.03304 (12) | |
F1 | 0.4044 (2) | 0.7271 (3) | 0.3981 (2) | 0.0681 (14) | |
F2 | 0.3620 (3) | 0.5810 (3) | 0.4107 (3) | 0.119 (3) | |
F3 | 0.2940 (2) | 0.7045 (5) | 0.38843 (19) | 0.099 (2) | |
F4 | 0.28965 (19) | 0.6387 (3) | 0.48634 (19) | 0.0688 (14) | |
F5 | 0.3330 (3) | 0.7845 (3) | 0.4738 (3) | 0.095 (2) | |
F6 | 0.3986 (2) | 0.6626 (5) | 0.4985 (2) | 0.115 (3) | |
Sb2 | 0.15370 (2) | 0.80751 (3) | 0.14915 (2) | 0.04860 (16) | |
F7 | 0.1744 (6) | 0.8508 (6) | 0.0840 (4) | 0.116 (3) | 0.711 (5) |
F8 | 0.0865 (4) | 0.7708 (5) | 0.1235 (5) | 0.113 (3) | 0.711 (5) |
F9 | 0.1845 (4) | 0.7047 (4) | 0.1293 (4) | 0.089 (3) | 0.711 (5) |
F10 | 0.1376 (5) | 0.7592 (5) | 0.2189 (4) | 0.115 (3) | 0.711 (5) |
F11 | 0.2224 (3) | 0.8451 (5) | 0.1768 (4) | 0.099 (3) | 0.711 (5) |
F12 | 0.1235 (3) | 0.9068 (4) | 0.1753 (3) | 0.0580 (19) | 0.711 (5) |
F7' | 0.0894 (7) | 0.7609 (10) | 0.1732 (9) | 0.082 (4) | 0.289 (5) |
F8' | 0.1563 (10) | 0.7305 (11) | 0.0906 (8) | 0.095 (4) | 0.289 (5) |
F9' | 0.1123 (9) | 0.8545 (12) | 0.0867 (7) | 0.098 (4) | 0.289 (5) |
F10' | 0.2132 (8) | 0.8578 (12) | 0.1071 (10) | 0.094 (4) | 0.289 (5) |
F11' | 0.1990 (9) | 0.7690 (13) | 0.1991 (8) | 0.114 (5) | 0.289 (5) |
F12' | 0.1486 (10) | 0.8969 (11) | 0.1936 (9) | 0.091 (4) | 0.289 (5) |
C33 | 0.1687 (4) | 0.5737 (6) | 0.2499 (4) | 0.072 (3) | |
H33A | 0.133730 | 0.607493 | 0.246158 | 0.087* | |
H33B | 0.190008 | 0.577838 | 0.214525 | 0.087* | |
Cl1 | 0.21006 (11) | 0.61408 (19) | 0.30332 (10) | 0.0835 (9) | |
Cl2 | 0.14970 (13) | 0.47124 (16) | 0.26099 (10) | 0.0816 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.0225 (2) | 0.0220 (2) | 0.0285 (2) | −0.0019 (2) | −0.0001 (2) | 0.0012 (2) |
Pd2 | 0.0227 (2) | 0.0216 (2) | 0.0262 (2) | −0.0024 (2) | 0.0003 (2) | −0.0004 (2) |
P1 | 0.0255 (9) | 0.0231 (9) | 0.0385 (9) | −0.0015 (7) | 0.0033 (8) | −0.0045 (7) |
P2 | 0.0244 (9) | 0.0243 (8) | 0.0318 (9) | −0.0001 (7) | 0.0001 (7) | −0.0035 (7) |
S1 | 0.0293 (9) | 0.0279 (9) | 0.0279 (8) | −0.0046 (7) | 0.0004 (7) | −0.0035 (7) |
S2 | 0.0302 (9) | 0.0280 (9) | 0.0329 (8) | −0.0021 (7) | −0.0019 (7) | 0.0081 (7) |
N1 | 0.024 (3) | 0.021 (3) | 0.029 (3) | 0.000 (2) | −0.001 (2) | 0.000 (2) |
N2 | 0.021 (3) | 0.024 (3) | 0.028 (3) | −0.001 (2) | 0.001 (2) | −0.001 (2) |
C1 | 0.027 (4) | 0.029 (3) | 0.038 (4) | 0.000 (3) | 0.006 (3) | 0.000 (3) |
C2 | 0.019 (3) | 0.028 (3) | 0.034 (3) | −0.005 (3) | 0.002 (3) | 0.000 (3) |
C3 | 0.023 (3) | 0.029 (4) | 0.034 (3) | −0.007 (3) | −0.007 (3) | 0.001 (3) |
C4 | 0.025 (4) | 0.026 (3) | 0.031 (3) | −0.002 (3) | −0.003 (3) | −0.005 (3) |
C5 | 0.032 (4) | 0.028 (4) | 0.047 (4) | −0.005 (3) | 0.002 (3) | −0.010 (3) |
C6 | 0.047 (5) | 0.022 (4) | 0.070 (5) | 0.007 (3) | −0.005 (4) | −0.010 (4) |
C7 | 0.041 (5) | 0.022 (4) | 0.062 (5) | 0.002 (3) | 0.000 (4) | 0.009 (3) |
C8 | 0.031 (4) | 0.027 (4) | 0.041 (4) | −0.002 (3) | −0.005 (3) | −0.004 (3) |
C9 | 0.036 (4) | 0.030 (4) | 0.039 (4) | −0.012 (3) | −0.004 (3) | 0.011 (3) |
C10 | 0.037 (4) | 0.034 (4) | 0.037 (4) | −0.010 (3) | 0.007 (3) | 0.005 (3) |
C11 | 0.035 (4) | 0.024 (4) | 0.071 (5) | 0.007 (3) | 0.012 (4) | 0.001 (3) |
C12 | 0.047 (5) | 0.054 (5) | 0.077 (6) | 0.018 (4) | −0.015 (5) | 0.015 (5) |
C13 | 0.045 (5) | 0.054 (5) | 0.103 (7) | 0.015 (4) | 0.021 (5) | −0.009 (5) |
C14 | 0.036 (4) | 0.043 (4) | 0.036 (4) | −0.005 (4) | 0.003 (3) | −0.011 (3) |
C15 | 0.048 (5) | 0.070 (6) | 0.045 (4) | −0.001 (5) | −0.013 (4) | −0.009 (4) |
C16 | 0.056 (5) | 0.065 (6) | 0.044 (4) | −0.026 (5) | −0.001 (4) | −0.013 (4) |
C17 | 0.028 (4) | 0.034 (4) | 0.038 (4) | −0.002 (3) | −0.005 (3) | −0.003 (3) |
C18 | 0.036 (4) | 0.031 (4) | 0.027 (3) | −0.004 (3) | −0.001 (3) | 0.000 (3) |
C19 | 0.035 (4) | 0.030 (4) | 0.037 (4) | −0.007 (3) | −0.006 (3) | −0.005 (3) |
C20 | 0.043 (4) | 0.026 (4) | 0.037 (4) | −0.014 (3) | 0.000 (3) | −0.004 (3) |
C21 | 0.034 (4) | 0.023 (3) | 0.035 (4) | −0.004 (3) | 0.009 (3) | 0.005 (3) |
C22 | 0.055 (5) | 0.020 (4) | 0.041 (4) | 0.000 (3) | 0.006 (4) | 0.003 (3) |
C23 | 0.063 (6) | 0.024 (4) | 0.047 (4) | 0.011 (4) | 0.009 (4) | 0.008 (3) |
C24 | 0.039 (4) | 0.035 (4) | 0.040 (4) | 0.012 (3) | 0.007 (3) | 0.014 (3) |
C25 | 0.030 (4) | 0.027 (3) | 0.028 (3) | 0.000 (3) | 0.001 (3) | 0.006 (3) |
C26 | 0.031 (4) | 0.020 (3) | 0.026 (3) | 0.001 (3) | 0.007 (3) | 0.003 (3) |
C27 | 0.040 (4) | 0.029 (4) | 0.038 (4) | 0.000 (3) | −0.003 (3) | 0.001 (3) |
C28 | 0.056 (5) | 0.043 (4) | 0.038 (4) | −0.010 (4) | −0.008 (4) | 0.011 (3) |
C29 | 0.055 (5) | 0.045 (5) | 0.073 (6) | 0.010 (4) | −0.014 (5) | 0.016 (4) |
C30 | 0.022 (3) | 0.039 (4) | 0.038 (4) | 0.001 (3) | 0.002 (3) | −0.006 (3) |
C31 | 0.049 (5) | 0.047 (4) | 0.042 (4) | −0.009 (4) | 0.015 (4) | 0.000 (4) |
C32 | 0.049 (5) | 0.056 (5) | 0.049 (5) | −0.009 (4) | 0.010 (4) | −0.023 (4) |
Sb1 | 0.0302 (2) | 0.0269 (2) | 0.0420 (3) | 0.0011 (2) | 0.0001 (2) | −0.0041 (2) |
F1 | 0.057 (3) | 0.047 (3) | 0.100 (4) | −0.007 (2) | 0.027 (3) | 0.015 (3) |
F2 | 0.129 (6) | 0.031 (3) | 0.196 (7) | −0.014 (3) | 0.092 (5) | −0.030 (4) |
F3 | 0.061 (3) | 0.196 (7) | 0.040 (3) | 0.004 (4) | −0.009 (3) | 0.014 (3) |
F4 | 0.046 (3) | 0.097 (4) | 0.063 (3) | 0.002 (3) | 0.011 (2) | 0.018 (3) |
F5 | 0.121 (5) | 0.051 (3) | 0.114 (5) | −0.002 (3) | 0.023 (4) | −0.037 (3) |
F6 | 0.054 (4) | 0.205 (8) | 0.087 (4) | 0.011 (4) | −0.014 (3) | 0.050 (5) |
Sb2 | 0.0383 (3) | 0.0289 (3) | 0.0786 (4) | −0.0006 (2) | 0.0062 (3) | −0.0009 (3) |
F7 | 0.183 (8) | 0.084 (5) | 0.081 (5) | −0.011 (6) | 0.015 (5) | 0.008 (4) |
F8 | 0.085 (5) | 0.063 (5) | 0.191 (7) | −0.004 (4) | −0.046 (5) | −0.031 (5) |
F9 | 0.081 (5) | 0.038 (4) | 0.149 (7) | 0.014 (4) | 0.048 (5) | −0.010 (4) |
F10 | 0.153 (7) | 0.080 (5) | 0.113 (5) | 0.024 (5) | 0.052 (5) | 0.038 (4) |
F11 | 0.048 (4) | 0.097 (6) | 0.153 (6) | 0.004 (4) | −0.011 (4) | −0.032 (5) |
F12 | 0.041 (4) | 0.028 (3) | 0.105 (5) | 0.007 (3) | −0.011 (4) | −0.004 (3) |
F7' | 0.077 (7) | 0.042 (7) | 0.126 (9) | −0.007 (6) | 0.047 (7) | −0.014 (8) |
F8' | 0.114 (9) | 0.061 (7) | 0.110 (8) | −0.003 (7) | 0.027 (7) | −0.020 (6) |
F9' | 0.104 (9) | 0.094 (9) | 0.095 (8) | 0.013 (8) | −0.024 (7) | 0.010 (7) |
F10' | 0.066 (7) | 0.068 (8) | 0.146 (10) | −0.008 (7) | 0.030 (7) | 0.015 (8) |
F11' | 0.109 (9) | 0.103 (9) | 0.130 (8) | 0.039 (8) | −0.028 (8) | 0.030 (8) |
F12' | 0.095 (10) | 0.058 (7) | 0.120 (9) | −0.001 (7) | −0.005 (8) | −0.028 (7) |
C33 | 0.074 (7) | 0.075 (7) | 0.068 (6) | −0.026 (6) | −0.003 (5) | 0.005 (5) |
Cl1 | 0.0607 (15) | 0.122 (2) | 0.0683 (15) | −0.0330 (16) | 0.0194 (12) | −0.0330 (15) |
Cl2 | 0.115 (2) | 0.0626 (15) | 0.0675 (15) | −0.0009 (15) | −0.0043 (15) | −0.0104 (12) |
Pd1—N1 | 2.027 (5) | C17—H17A | 0.9900 |
Pd1—P1 | 2.2455 (18) | C17—H17B | 0.9900 |
Pd1—S2 | 2.3149 (16) | C18—C19 | 1.401 (9) |
Pd1—S1 | 2.3657 (17) | C19—C20 | 1.352 (9) |
Pd1—Pd2 | 2.8425 (7) | C19—H19 | 0.9500 |
Pd2—N2 | 2.027 (5) | C20—C21 | 1.411 (9) |
Pd2—P2 | 2.2417 (18) | C20—H20 | 0.9500 |
Pd2—S1 | 2.3184 (16) | C21—C26 | 1.410 (9) |
Pd2—S2 | 2.3602 (17) | C21—C22 | 1.411 (9) |
P1—C11 | 1.812 (7) | C22—C23 | 1.355 (10) |
P1—C1 | 1.825 (6) | C22—H22 | 0.9500 |
P1—C14 | 1.836 (7) | C23—C24 | 1.395 (10) |
P2—C27 | 1.814 (7) | C23—H23 | 0.9500 |
P2—C30 | 1.822 (6) | C24—C25 | 1.366 (9) |
P2—C17 | 1.836 (6) | C24—H24 | 0.9500 |
S1—C4 | 1.784 (6) | C25—C26 | 1.414 (9) |
S2—C25 | 1.774 (7) | C27—C28 | 1.528 (10) |
N1—C2 | 1.327 (7) | C27—C29 | 1.556 (10) |
N1—C3 | 1.376 (8) | C27—H27 | 1.0000 |
N2—C18 | 1.360 (8) | C28—H28A | 0.9800 |
N2—C26 | 1.373 (7) | C28—H28B | 0.9800 |
C1—C2 | 1.491 (9) | C28—H28C | 0.9800 |
C1—H1A | 0.9900 | C29—H29A | 0.9800 |
C1—H1B | 0.9900 | C29—H29B | 0.9800 |
C2—C10 | 1.401 (9) | C29—H29C | 0.9800 |
C3—C8 | 1.407 (9) | C30—C31 | 1.528 (9) |
C3—C4 | 1.433 (9) | C30—C32 | 1.543 (9) |
C4—C5 | 1.366 (9) | C30—H30 | 1.0000 |
C5—C6 | 1.405 (10) | C31—H31A | 0.9800 |
C5—H5 | 0.9500 | C31—H31B | 0.9800 |
C6—C7 | 1.371 (10) | C31—H31C | 0.9800 |
C6—H6 | 0.9500 | C32—H32A | 0.9800 |
C7—C8 | 1.409 (9) | C32—H32B | 0.9800 |
C7—H7 | 0.9500 | C32—H32C | 0.9800 |
C8—C9 | 1.413 (9) | Sb1—F3 | 1.830 (5) |
C9—C10 | 1.359 (9) | Sb1—F2 | 1.832 (5) |
C9—H9 | 0.9500 | Sb1—F6 | 1.845 (5) |
C10—H10 | 0.9500 | Sb1—F5 | 1.852 (5) |
C11—C13 | 1.520 (10) | Sb1—F4 | 1.856 (4) |
C11—C12 | 1.549 (11) | Sb1—F1 | 1.861 (4) |
C11—H11 | 1.0000 | Sb2—F11' | 1.721 (13) |
C12—H12A | 0.9800 | Sb2—F7 | 1.783 (8) |
C12—H12B | 0.9800 | Sb2—F7' | 1.784 (13) |
C12—H12C | 0.9800 | Sb2—F8 | 1.796 (8) |
C13—H13A | 0.9800 | Sb2—F12' | 1.800 (13) |
C13—H13B | 0.9800 | Sb2—F11 | 1.849 (7) |
C13—H13C | 0.9800 | Sb2—F12 | 1.862 (6) |
C14—C15 | 1.522 (10) | Sb2—F9 | 1.874 (6) |
C14—C16 | 1.535 (10) | Sb2—F8' | 1.879 (14) |
C14—H14 | 1.0000 | Sb2—F10 | 1.888 (8) |
C15—H15A | 0.9800 | Sb2—F10' | 1.907 (13) |
C15—H15B | 0.9800 | Sb2—F9' | 1.945 (13) |
C15—H15C | 0.9800 | C33—Cl2 | 1.735 (9) |
C16—H16A | 0.9800 | C33—Cl1 | 1.738 (9) |
C16—H16B | 0.9800 | C33—H33A | 0.9900 |
C16—H16C | 0.9800 | C33—H33B | 0.9900 |
C17—C18 | 1.486 (9) | ||
N1—Pd1—P1 | 83.86 (15) | P2—C17—H17B | 109.1 |
N1—Pd1—S2 | 168.93 (15) | H17A—C17—H17B | 107.8 |
P1—Pd1—S2 | 106.75 (6) | N2—C18—C19 | 119.9 (6) |
N1—Pd1—S1 | 86.49 (15) | N2—C18—C17 | 118.0 (6) |
P1—Pd1—S1 | 169.03 (6) | C19—C18—C17 | 122.0 (6) |
S2—Pd1—S1 | 82.64 (6) | C20—C19—C18 | 120.4 (6) |
N1—Pd1—Pd2 | 117.54 (14) | C20—C19—H19 | 119.8 |
P1—Pd1—Pd2 | 129.40 (5) | C18—C19—H19 | 119.8 |
S2—Pd1—Pd2 | 53.28 (4) | C19—C20—C21 | 121.0 (6) |
S1—Pd1—Pd2 | 51.89 (4) | C19—C20—H20 | 119.5 |
Pd2—S1—Pd1 | 74.71 (5) | C21—C20—H20 | 119.5 |
N2—Pd2—P2 | 85.21 (15) | C26—C21—C22 | 119.6 (6) |
N2—Pd2—S1 | 167.55 (15) | C26—C21—C20 | 117.3 (6) |
P2—Pd2—S1 | 106.34 (6) | C22—C21—C20 | 123.2 (6) |
N2—Pd2—S2 | 86.13 (15) | C23—C22—C21 | 119.6 (7) |
P2—Pd2—S2 | 170.20 (6) | C23—C22—H22 | 120.2 |
S1—Pd2—S2 | 82.69 (6) | C21—C22—H22 | 120.2 |
N2—Pd2—Pd1 | 114.86 (14) | C22—C23—C24 | 121.0 (7) |
P2—Pd2—Pd1 | 136.83 (5) | C22—C23—H23 | 119.5 |
S1—Pd2—Pd1 | 53.40 (4) | C24—C23—H23 | 119.5 |
S2—Pd2—Pd1 | 51.83 (4) | C25—C24—C23 | 121.2 (7) |
C11—P1—C1 | 106.9 (3) | C25—C24—H24 | 119.4 |
C11—P1—C14 | 108.9 (3) | C23—C24—H24 | 119.4 |
C1—P1—C14 | 105.4 (3) | C24—C25—C26 | 119.1 (6) |
C11—P1—Pd1 | 119.7 (3) | C24—C25—S2 | 120.6 (5) |
C1—P1—Pd1 | 98.8 (2) | C26—C25—S2 | 119.8 (5) |
C14—P1—Pd1 | 115.3 (2) | N2—C26—C21 | 120.9 (6) |
C27—P2—C30 | 108.7 (3) | N2—C26—C25 | 119.6 (6) |
C27—P2—C17 | 107.7 (3) | C21—C26—C25 | 119.5 (6) |
C30—P2—C17 | 106.1 (3) | C28—C27—C29 | 111.5 (6) |
C27—P2—Pd2 | 121.4 (2) | C28—C27—P2 | 110.5 (5) |
C30—P2—Pd2 | 111.0 (2) | C29—C27—P2 | 112.2 (5) |
C17—P2—Pd2 | 100.6 (2) | C28—C27—H27 | 107.5 |
C4—S1—Pd2 | 117.9 (2) | C29—C27—H27 | 107.5 |
C4—S1—Pd1 | 94.8 (2) | P2—C27—H27 | 107.5 |
C25—S2—Pd1 | 119.8 (2) | C27—C28—H28A | 109.5 |
C25—S2—Pd2 | 95.2 (2) | C27—C28—H28B | 109.5 |
Pd1—S2—Pd2 | 74.88 (5) | H28A—C28—H28B | 109.5 |
C2—N1—C3 | 120.8 (5) | C27—C28—H28C | 109.5 |
C2—N1—Pd1 | 121.8 (4) | H28A—C28—H28C | 109.5 |
C3—N1—Pd1 | 117.3 (4) | H28B—C28—H28C | 109.5 |
C18—N2—C26 | 120.4 (5) | C27—C29—H29A | 109.5 |
C18—N2—Pd2 | 121.4 (4) | C27—C29—H29B | 109.5 |
C26—N2—Pd2 | 118.1 (4) | H29A—C29—H29B | 109.5 |
C2—C1—P1 | 111.5 (4) | C27—C29—H29C | 109.5 |
C2—C1—H1A | 109.3 | H29A—C29—H29C | 109.5 |
P1—C1—H1A | 109.3 | H29B—C29—H29C | 109.5 |
C2—C1—H1B | 109.3 | C31—C30—C32 | 111.5 (6) |
P1—C1—H1B | 109.3 | C31—C30—P2 | 110.4 (5) |
H1A—C1—H1B | 108.0 | C32—C30—P2 | 110.6 (5) |
N1—C2—C10 | 120.9 (6) | C31—C30—H30 | 108.1 |
N1—C2—C1 | 117.1 (5) | C32—C30—H30 | 108.1 |
C10—C2—C1 | 122.0 (6) | P2—C30—H30 | 108.1 |
N1—C3—C8 | 120.2 (6) | C30—C31—H31A | 109.5 |
N1—C3—C4 | 120.2 (6) | C30—C31—H31B | 109.5 |
C8—C3—C4 | 119.6 (6) | H31A—C31—H31B | 109.5 |
C5—C4—C3 | 119.2 (6) | C30—C31—H31C | 109.5 |
C5—C4—S1 | 121.4 (5) | H31A—C31—H31C | 109.5 |
C3—C4—S1 | 118.9 (5) | H31B—C31—H31C | 109.5 |
C4—C5—C6 | 120.8 (7) | C30—C32—H32A | 109.5 |
C4—C5—H5 | 119.6 | C30—C32—H32B | 109.5 |
C6—C5—H5 | 119.6 | H32A—C32—H32B | 109.5 |
C7—C6—C5 | 121.0 (7) | C30—C32—H32C | 109.5 |
C7—C6—H6 | 119.5 | H32A—C32—H32C | 109.5 |
C5—C6—H6 | 119.5 | H32B—C32—H32C | 109.5 |
C6—C7—C8 | 119.7 (7) | F3—Sb1—F2 | 91.0 (4) |
C6—C7—H7 | 120.1 | F3—Sb1—F6 | 177.3 (3) |
C8—C7—H7 | 120.1 | F2—Sb1—F6 | 91.4 (4) |
C3—C8—C7 | 119.6 (6) | F3—Sb1—F5 | 89.5 (3) |
C3—C8—C9 | 118.1 (6) | F2—Sb1—F5 | 179.2 (3) |
C7—C8—C9 | 122.3 (6) | F6—Sb1—F5 | 88.1 (3) |
C10—C9—C8 | 119.8 (6) | F3—Sb1—F4 | 89.0 (2) |
C10—C9—H9 | 120.1 | F2—Sb1—F4 | 92.3 (2) |
C8—C9—H9 | 120.1 | F6—Sb1—F4 | 89.5 (2) |
C9—C10—C2 | 120.2 (6) | F5—Sb1—F4 | 88.3 (3) |
C9—C10—H10 | 119.9 | F3—Sb1—F1 | 90.9 (2) |
C2—C10—H10 | 119.9 | F2—Sb1—F1 | 88.5 (2) |
C13—C11—C12 | 112.5 (7) | F6—Sb1—F1 | 90.5 (3) |
C13—C11—P1 | 112.6 (6) | F5—Sb1—F1 | 90.8 (2) |
C12—C11—P1 | 110.8 (5) | F4—Sb1—F1 | 179.2 (2) |
C13—C11—H11 | 106.8 | F11'—Sb2—F7' | 98.4 (10) |
C12—C11—H11 | 106.8 | F7—Sb2—F8 | 93.9 (6) |
P1—C11—H11 | 106.8 | F11'—Sb2—F12' | 85.3 (10) |
C11—C12—H12A | 109.5 | F7'—Sb2—F12' | 95.1 (9) |
C11—C12—H12B | 109.5 | F7—Sb2—F11 | 87.1 (5) |
H12A—C12—H12B | 109.5 | F8—Sb2—F11 | 179.0 (5) |
C11—C12—H12C | 109.5 | F7—Sb2—F12 | 93.6 (4) |
H12A—C12—H12C | 109.5 | F8—Sb2—F12 | 93.7 (4) |
H12B—C12—H12C | 109.5 | F11—Sb2—F12 | 85.9 (3) |
C11—C13—H13A | 109.5 | F7—Sb2—F9 | 91.0 (4) |
C11—C13—H13B | 109.5 | F8—Sb2—F9 | 87.7 (4) |
H13A—C13—H13B | 109.5 | F11—Sb2—F9 | 92.5 (4) |
C11—C13—H13C | 109.5 | F12—Sb2—F9 | 175.0 (4) |
H13A—C13—H13C | 109.5 | F11'—Sb2—F8' | 105.2 (10) |
H13B—C13—H13C | 109.5 | F7'—Sb2—F8' | 89.5 (8) |
C15—C14—C16 | 111.0 (6) | F12'—Sb2—F8' | 167.8 (10) |
C15—C14—P1 | 110.2 (5) | F7—Sb2—F10 | 175.7 (5) |
C16—C14—P1 | 112.3 (5) | F8—Sb2—F10 | 89.5 (5) |
C15—C14—H14 | 107.7 | F11—Sb2—F10 | 89.5 (5) |
C16—C14—H14 | 107.7 | F12—Sb2—F10 | 88.8 (4) |
P1—C14—H14 | 107.7 | F9—Sb2—F10 | 86.4 (4) |
C14—C15—H15A | 109.5 | F11'—Sb2—F10' | 94.0 (10) |
C14—C15—H15B | 109.5 | F7'—Sb2—F10' | 166.5 (11) |
H15A—C15—H15B | 109.5 | F12'—Sb2—F10' | 91.3 (10) |
C14—C15—H15C | 109.5 | F8'—Sb2—F10' | 82.0 (8) |
H15A—C15—H15C | 109.5 | F11'—Sb2—F9' | 171.8 (10) |
H15B—C15—H15C | 109.5 | F7'—Sb2—F9' | 89.5 (9) |
C14—C16—H16A | 109.5 | F12'—Sb2—F9' | 96.4 (9) |
C14—C16—H16B | 109.5 | F8'—Sb2—F9' | 72.3 (9) |
H16A—C16—H16B | 109.5 | F10'—Sb2—F9' | 78.0 (9) |
C14—C16—H16C | 109.5 | Cl2—C33—Cl1 | 112.8 (5) |
H16A—C16—H16C | 109.5 | Cl2—C33—H33A | 109.0 |
H16B—C16—H16C | 109.5 | Cl1—C33—H33A | 109.0 |
C18—C17—P2 | 112.4 (4) | Cl2—C33—H33B | 109.0 |
C18—C17—H17A | 109.1 | Cl1—C33—H33B | 109.0 |
P2—C17—H17A | 109.1 | H33A—C33—H33B | 107.8 |
C18—C17—H17B | 109.1 | ||
C11—P1—C1—C2 | −151.4 (5) | C27—P2—C17—C18 | 143.6 (5) |
C14—P1—C1—C2 | 92.8 (5) | C30—P2—C17—C18 | −100.2 (5) |
Pd1—P1—C1—C2 | −26.6 (5) | Pd2—P2—C17—C18 | 15.5 (5) |
C3—N1—C2—C10 | 1.4 (9) | C26—N2—C18—C19 | 4.7 (9) |
Pd1—N1—C2—C10 | 179.4 (5) | Pd2—N2—C18—C19 | −176.8 (5) |
C3—N1—C2—C1 | −179.9 (5) | C26—N2—C18—C17 | −171.1 (5) |
Pd1—N1—C2—C1 | −1.8 (8) | Pd2—N2—C18—C17 | 7.4 (8) |
P1—C1—C2—N1 | 21.0 (7) | P2—C17—C18—N2 | −15.9 (8) |
P1—C1—C2—C10 | −160.3 (5) | P2—C17—C18—C19 | 168.4 (5) |
C2—N1—C3—C8 | 0.3 (9) | N2—C18—C19—C20 | −2.4 (10) |
Pd1—N1—C3—C8 | −177.8 (5) | C17—C18—C19—C20 | 173.2 (6) |
C2—N1—C3—C4 | −178.9 (6) | C18—C19—C20—C21 | −1.5 (10) |
Pd1—N1—C3—C4 | 3.0 (7) | C19—C20—C21—C26 | 3.0 (9) |
N1—C3—C4—C5 | −178.2 (6) | C19—C20—C21—C22 | −176.8 (7) |
C8—C3—C4—C5 | 2.6 (9) | C26—C21—C22—C23 | −1.9 (10) |
N1—C3—C4—S1 | 10.2 (8) | C20—C21—C22—C23 | 177.9 (6) |
C8—C3—C4—S1 | −169.0 (5) | C21—C22—C23—C24 | 1.3 (10) |
Pd2—S1—C4—C5 | 98.5 (5) | C22—C23—C24—C25 | 0.6 (11) |
Pd1—S1—C4—C5 | 173.7 (5) | C23—C24—C25—C26 | −1.8 (10) |
Pd2—S1—C4—C3 | −90.1 (5) | C23—C24—C25—S2 | 170.1 (5) |
Pd1—S1—C4—C3 | −14.9 (5) | Pd1—S2—C25—C24 | 101.8 (5) |
C3—C4—C5—C6 | 0.0 (10) | Pd2—S2—C25—C24 | 177.4 (5) |
S1—C4—C5—C6 | 171.4 (5) | Pd1—S2—C25—C26 | −86.4 (5) |
C4—C5—C6—C7 | −2.0 (11) | Pd2—S2—C25—C26 | −10.8 (5) |
C5—C6—C7—C8 | 1.4 (11) | C18—N2—C26—C21 | −3.1 (8) |
N1—C3—C8—C7 | 177.6 (6) | Pd2—N2—C26—C21 | 178.3 (4) |
C4—C3—C8—C7 | −3.2 (10) | C18—N2—C26—C25 | 175.3 (5) |
N1—C3—C8—C9 | −1.8 (9) | Pd2—N2—C26—C25 | −3.3 (7) |
C4—C3—C8—C9 | 177.4 (6) | C22—C21—C26—N2 | 179.1 (6) |
C6—C7—C8—C3 | 1.2 (11) | C20—C21—C26—N2 | −0.7 (9) |
C6—C7—C8—C9 | −179.4 (7) | C22—C21—C26—C25 | 0.7 (9) |
C3—C8—C9—C10 | 1.6 (10) | C20—C21—C26—C25 | −179.1 (6) |
C7—C8—C9—C10 | −177.8 (7) | C24—C25—C26—N2 | −177.3 (6) |
C8—C9—C10—C2 | 0.0 (10) | S2—C25—C26—N2 | 10.8 (8) |
N1—C2—C10—C9 | −1.6 (10) | C24—C25—C26—C21 | 1.1 (9) |
C1—C2—C10—C9 | 179.7 (6) | S2—C25—C26—C21 | −170.8 (5) |
C1—P1—C11—C13 | −55.3 (7) | C30—P2—C27—C28 | 171.5 (5) |
C14—P1—C11—C13 | 58.2 (7) | C17—P2—C27—C28 | −74.0 (6) |
Pd1—P1—C11—C13 | −166.2 (5) | Pd2—P2—C27—C28 | 40.9 (6) |
C1—P1—C11—C12 | 71.7 (6) | C30—P2—C27—C29 | −63.5 (6) |
C14—P1—C11—C12 | −174.9 (5) | C17—P2—C27—C29 | 51.0 (6) |
Pd1—P1—C11—C12 | −39.2 (6) | Pd2—P2—C27—C29 | 165.9 (4) |
C11—P1—C14—C15 | −179.2 (5) | C27—P2—C30—C31 | 176.8 (5) |
C1—P1—C14—C15 | −64.7 (6) | C17—P2—C30—C31 | 61.2 (5) |
Pd1—P1—C14—C15 | 43.1 (6) | Pd2—P2—C30—C31 | −47.2 (5) |
C11—P1—C14—C16 | 56.5 (6) | C27—P2—C30—C32 | −59.4 (6) |
C1—P1—C14—C16 | 170.9 (5) | C17—P2—C30—C32 | −174.9 (5) |
Pd1—P1—C14—C16 | −81.3 (5) | Pd2—P2—C30—C32 | 76.7 (5) |
Cg1 is the centroid of the C21–C26 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···F3i | 0.99 | 2.34 | 3.305 (9) | 166 |
C7—H7···F1ii | 0.95 | 2.37 | 3.229 (8) | 151 |
C11—H11···F2iii | 1.00 | 2.27 | 3.128 (9) | 143 |
C17—H17A···F11iv | 0.99 | 2.41 | 3.279 (10) | 147 |
C22—H22···F8v | 0.95 | 2.33 | 3.190 (11) | 150 |
C23—H23···F1iii | 0.95 | 2.53 | 3.396 (9) | 152 |
C27—H27···F12vi | 1.00 | 2.43 | 3.322 (10) | 148 |
C31—H31C···F3iv | 0.98 | 2.50 | 3.399 (9) | 152 |
C33—H33A···F10 | 0.99 | 2.54 | 3.172 (13) | 122 |
C16—H16A···Cg1 | 0.98 | 2.93 | 3.701 (8) | 136 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x, −y+3/2, z+1/2; (v) −x+1/2, −y+1, z+1/2; (vi) −x+1/2, −y+2, z+1/2. |
Pd1-N1 | 2.027 (5) |
Pd1-P1 | 2.2455 (18) |
Pd1-S2 | 2.3149 (16) |
Pd1-S1 | 2.3657 (17) |
P1-C1 | 1.825 (6) |
S1-C4 | 1.784 (6) |
Pd1-Pd2 | 2.8425 (7) |
Pd2-N2 | 2.027 (5) |
Pd2-P2 | 2.2417 (18) |
Pd2-S1 | 2.3184 (16) |
Pd2-S2 | 2.3602 (17) |
P2-C17 | 1.836 (6) |
S2-C25 | 1.774 (7) |
N1-Pd1-P1 | 83.86 (15) |
N1-Pd1-S2 | 168.93 (15) |
P1-Pd1-S2 | 106.75 (6) |
N1-Pd1-S1 | 86.49 (15) |
P1-Pd1-S1 | 169.03 (6) |
S2-Pd1-S1 | 82.64 (6) |
N1-Pd1-Pd2 | 117.54 (14) |
P1-Pd1-Pd2 | 129.40 (5) |
S2-Pd1-Pd2 | 53.28 (4) |
S1-Pd1-Pd2 | 51.89 (4) |
Pd2-S1-Pd1 | 74.71 (5) |
Pd1-S2-Pd2 | 74.88 (5) |
Funding information
Funding for this research was provided by: ANR AAPG2020 CE07 MLC Photophos project .
References
Albinati, A., Herrmann, J. & Pregosin, P. S. (1997). Inorg. Chim. Acta, 264, 33–42. CSD CrossRef CAS Web of Science Google Scholar
Azizpoor Fard, M., Willans, M. J., Khalili Najafabadi, B., Levchenko, T. I. & Corrigan, J. (2015). Dalton Trans. 44, 8267–8277. Web of Science CSD CrossRef CAS PubMed Google Scholar
Batsanov, S. S. (2001). Inorg. Mater. 37, 871–885. Web of Science CrossRef CAS Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cabeza, J. A., del Río, I., Sánchez-Vega, M. G. & Suárez, M. (2006). Organometallics, 25, 1831–1834. Web of Science CSD CrossRef CAS Google Scholar
Chen, C., Xia, Q., Qiu, H. & Chen, W. (2015). J. Organomet. Chem. 775, 103–108. Web of Science CSD CrossRef CAS Google Scholar
Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832–2838. Web of Science CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kersting, B. (1998). Eur. J. Inorg. Chem. pp. 1071–1077. CrossRef Google Scholar
Kouno, M., Miyashita, Y., Yoshinari, N. & Konno, T. (2015). Chem. Lett. 44, 1512–1514. Web of Science CSD CrossRef CAS Google Scholar
Leung, P. H., Siah, S. Y., White, J. P. & Williams, J. (1998). J. Chem. Soc. Dalton Trans. pp. 893–900. Web of Science CSD CrossRef Google Scholar
Lisena, J., Monot, J., Mallet-Ladeira, S., Martin-Vaca, B. & Bourissou, D. (2013). Organometallics, 32, 4301–4305. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mane, P. A., Dey, S., Pathak, A. K., Kumar, M. & Bhuvanesh, N. (2019). Inorg. Chem. 58, 2965–2978. Web of Science CSD CrossRef CAS PubMed Google Scholar
Morales-Morales, D. (2018). Editor. Pincer compounds: Chemistry and Applications. Oxford: Elsevier. Google Scholar
Mori, M., Namioka, A. & Suzuki, T. (2021). Acta Cryst. E77, 52–57. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nayan Sharma, K., Joshi, H., Prakash, O., Sharma, A. K., Bhaskar, R. & Singh, A. K. (2015). Eur. J. Inorg. Chem. pp. 4829–4838. Web of Science CSD CrossRef Google Scholar
Nebra, N., Ladeira, S., Maron, L., Martin–Vaca, B. & Bourissou, D. (2012). Chem. Eur. J. 18, 8474–8481. Web of Science CSD CrossRef CAS PubMed Google Scholar
Nebra, N., Saffon, N., Maron, L., Martin-Vaca, B. & Bourissou, D. (2011). Inorg. Chem. 50, 6378–6383. Web of Science CSD CrossRef CAS PubMed Google Scholar
Scharf, A., Goldberg, I. & Vigalok, A. (2014). Inorg. Chem. 53, 12–14. Web of Science CSD CrossRef CAS PubMed Google Scholar
Selander, N. & Szabó, K. J. (2011). Chem. Rev. 111, 2048–2076. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Su, W., Cao, R., Hong, M., Wu, D. & Lu, J. (2000). J. Chem. Soc. Dalton Trans. pp. 1527–1532. Web of Science CSD CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.