research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­ethano­lbis(thio­cyanato)­bis­(urotropine)cobalt(II) and tetra­ethano­lbis(thio­cyanato)­cobalt(II)–urotropine (1/2)

crossmark logo

aInstitute of Inorganic Chemistry, University of Kiel, Max-Eyth.-Str. 2, 24118 Kiel, Germany, and bInstitute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Kraków, Poland
*Correspondence e-mail: ckrebs@ac.uni-kiel.de

Edited by A. S. Batsanov, University of Durham, England (Received 14 October 2021; accepted 14 December 2021; online 1 January 2022)

The reaction of one equivalent Co(NCS)2 with four equivalents of urotropine (hexa­methyl­ene­tetra­mine) in ethanol leads to the formation of two compounds, namely, bis­(ethanol-κO)bis­(thio­cyanato-κN)bis­(urotropine-κN)cobalt(II), [Co(NCS)2(C6H12N4)2(C2H6O)2] (1), and tetra­kis­(ethanol-κO)bis­(thio­cyanato-κN)cobalt(II)–urotropine (1/2), [Co(NCS)2(C2H6O)4]·2C6H12N4 (2). In 1, the Co cations are located on centers of inversion and are sixfold coordinated by two terminal N-bonded thio­cyanate anions, two ethanol and two urotropine ligands whereas in 2 the cobalt cations occupy position Wyckoff position c and are sixfold coordinated by two anionic ligands and four ethanol ligands. Compound 2 contains two additional urotropine solvate mol­ecules per formula unit, which are hydrogen bonded to the complexes. In both compounds, the building blocks are connected via inter­molecular O—H⋯N (1 and 2) and C—H⋯S (1) hydrogen bonding to form three-dimensional networks.

1. Chemical context

Thio­cyanate anions are versatile ligands that exhibit a variety of coordination modes, leading to rich structural chemistry (Näther et al., 2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]). For less chalcophilic metal cations such as MnII, FeII, CoII or NiII, most compounds contain terminal N-bonded thio­cyanate anions, whereas for chalcophilic metal cations such as for example CdII, the μ-1,3-bridging mode is preferred. Therefore, the synthesis of bridging compounds with the former cations is sometimes difficult to achieve, which is a pity, because such compounds are of inter­est due to their magnetic properties (Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Mekuimemba et al., 2018[Mekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184-2192.]; Mousavi et al., 2020[Mousavi, M., Duhayon, C., Bretosh, K., Béreau, V. & Sutter, J. P. (2020). Inorg. Chem. 59, 7603-7613.]; Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.]). This is especially the case with cobalt, which frequently exhibits inter­esting behavior due to its large magnetic anisotropy, so we and others have been studying such compounds for several years (Shi et al., 2006[Shi, J.-M., Chen, J.-N. & Liu, L.-D. (2006). Pol. J. Chem. 80, 1909-1913.]; Jin et al., 2007[Jin, Y., Che, Y. X. & Zheng, J. M. (2007). J. Coord. Chem. 60, 2067-2074.]; Wellm et al., 2020[Wellm, C., Majcher-Fitas, A., Rams, M. & Näther, C. (2020). Dalton Trans. 49, 16707-16714.]; Prananto et al., 2017[Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516-528.]). Within this project we are inter­ested for example in the influence of the co-ligand on the magnetic anisotropy and the magnetic behavior of compounds, in which the cations are linked by thio­cyanate anions into chains (Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.]; Rams et al., 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]; Ceglarska et al., 2021[Ceglarska, M., Böhme, M., Neumann, T., Plass, W., Näther, C. & Rams, M. (2021). Phys. Chem. Chem. Phys. 23, 10281-10289.]; Werner et al., 2014[Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333-17342.], 2015[Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015). Dalton Trans. 44, 14149-14158.]).

In the course of our systematic work, we became inter­ested in urotropine as a co-ligand. Therefore, we reacted Co(NCS)2 with urotropine in aceto­nitrile, which leads to the formation of a compound with the composition [Co(NCS)2(H2O)2(urotropine)2]·(urotropine)2(MeCN)2 consisting of discrete complexes, which are linked by urotropine and aceto­nitrile solvate mol­ecules into a hydrogen-bonded network (Krebs et al., 2021[Krebs, C., Ceglarska, M. & Näther, C. (2021). Acta Cryst. E77, 1082-1086.]). In principle, the formation of discrete solvato complexes would be no problem because in several cases such complexes can be transformed by thermal decomposition into the desired compounds with a bridging coordination of the anionic ligands (Näther et al., 2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]), but XRPD measurements proved that this crystalline phase was not obtained pure.

In further work, we used ethanol as a solvent leading to the formation of two different crystals in the same batch that were characterized by single-crystal X-ray diffraction. The crystals in this batch were crushed and investigated by XRPD. Comparison of the experimental pattern with that calculated for 1 and 2 reveal that only 1 can be detected together with at least one additional and unknown crystalline phase. The reason for this observation is unclear, but it might be that 2 is unstable and transforms into a new phase on grinding.

[Scheme 1]

2. Structural commentary

The asymmetric unit of 1, Co(NCS)2(urotropine)2(EtOH)2, consists of one crystallographically independent Co cation, located on a center of inversion, as well as one thio­cyanate anion, one urotropine ligand and one ethanol mol­ecule occupying general positions (Fig. 1[link]). In 2, [Co(NCS)2)(EtOH)4]·(urotropine)2, the asymmetric unit contains one cobalt cation on position of site symmetry 222 (Wyckoff position c), one thio­cyanate anion that is located on a twofold rotation axis and one urotropine mol­ecule on an inversion axis (Fig. 2[link]). The Co—N distance to the thio­cyanate anions in 1 is slightly shorter than in 2, whereas the Co—O bond length to the ethanol ligand is longer (compare Tables 1[link] and 2[link]). The former can be traced back to the fact that in 2 the Co cation is exclusively coordinated by ethanol, whereas in 1 this cation is additionally coordinated by a urotropine ligand, which is a stronger donor than ethanol, transferring additional charge to the Co center. This leads to a strengthening of the Co—N thio­cyanate bond and therefore this bond length is shorter. This is also supported by previous investigations when discrete complexes with an N6 (four N atoms of N-donor co-ligands) or N4O2 (two N-donor co-ligands and two e.g. water mol­ecules) coordination were compared. For N4O2 coordin­ation, the CN stretching vibration of the thio­cyanate anions is significantly shifted to higher values, which indicates that the C—N bond becomes stronger, leading to a weakening of the Co—N bond (Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.]). The angles around the Co cations deviate from the ideal octa­hedral values, which shows that the octa­hedra are slightly distorted (see supporting information). The octa­hedron in 2 is more distorted than in 1, which is obvious from the octa­hedral angle variance (1.8138 for 1 and 8.1624 for 2) and the mean octa­hedral quadratic elongation (1.0062 for 1 and 1.0023 for 2) calculated by the method of Robinson et al. (1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]).

Table 1
Selected bond lengths (Å) for 1[link]

Co1—N1 2.037 (2) Co1—O1 2.1620 (18)
Co1—N11 2.321 (2)    

Table 2
Selected bond lengths (Å) for 2[link]

Co1—N1 2.078 (2) Co1—O1 2.0894 (15)
[Figure 1]
Figure 1
Crystal structure of compound 1 with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes for the generation of equivalent atoms: (i) −x + 1, −y + 1, −z + 1.
[Figure 2]
Figure 2
Crystal structure of compound 2 with labeling and displacement ellipsoids drawn at the 50% probability level with O—H⋯N hydrogen bonding shown as dashed lines. Symmetry codes for the generation of equivalent atoms: (i) −x − 1, −y, +z; (ii) y − [{1\over 2}], [{1\over 2}] + x, z − [{1\over 2}]; (iii) −[{1\over 2}] − y, −[{1\over 2}] − x, −[{1\over 2}] − z; (iv) 1 − x, 1 − y, +z; (v) y, −x − 1, −z; (vi) −y − 1, +x, −z.

3. Supra­molecular features

In the crystal structures of both compounds, inter­molecular hydrogen bonding is observed (Tables 3[link] and 4[link]). In 1, the discrete complexes are linked via inter­molecular O—H⋯N hydrogen bonding between the hydroxyl H atoms of one complex and the N atoms of neighboring complexes into chains extending in the a-axis direction (Fig. 3[link] and Table 3[link]). These chains are further linked into a three-dimensional network by C—H⋯S hydrogen bonding between the thio­cyanate S atoms and each one H atom of urotropine ligands (Fig. 4[link]). There are additional C—H⋯N and C—H⋯O contacts but from the distances and angles it is indicated that these are very weak inter­actions (Table 3[link]).

Table 3
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯S1i 0.99 2.81 3.781 (3) 168
C14—H14A⋯S1ii 0.99 2.98 3.816 (3) 143
C16—H16A⋯N1iii 0.99 2.57 3.166 (3) 119
C16—H16B⋯O1iii 0.99 2.49 3.090 (3) 119
O1—H1⋯N13iv 0.84 (2) 2.05 (3) 2.870 (3) 165 (4)
C22—H22B⋯S1v 0.98 3.02 3.989 (3) 169
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, -z+1]; (iv) [x-1, y, z]; (v) x, y+1, z.

Table 4
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N11 0.87 (2) 1.95 (2) 2.799 (3) 163 (4)
C2—H2B⋯N1i 0.99 2.68 3.211 (3) 114
Symmetry code: (i) [-x+1, -y+2, z].
[Figure 3]
Figure 3
Crystal structure of compound 1 with a view of a chain formed by inter­molecular O—H⋯N hydrogen bonding along the crystallographic a-axis. Inter­molecular hydrogen bonding is shown as dashed lines.
[Figure 4]
Figure 4
Crystal structure of compound 1 with a view along the crystallographic a-axis with inter­molecular C—H⋯S hydrogen bonding shown as dashed lines.

In the crystal structure of 2, each complex is linked to neighboring complexes via inter­molecular O—H⋯N hydrogen bonds between the four O—H hydrogen atoms of one complex and the N atoms of the urotropine mol­ecules of four neighboring complexes to form a three-dimensional network (Fig. 5[link] and Table 4[link]). From the H⋯N distance and the O—H⋯N angle it is obvious that this corresponds to a strong inter­action. In contrast to 1, no C—H⋯S hydrogen bonding is observed and the additional C—H⋯N contact represents a weak inter­action (Table 4[link]).

[Figure 5]
Figure 5
Crystal structure of compound 2 with a view along the crystallographic a-axis with inter­molecular O—H⋯N hydrogen bonding shown as dashed lines.

4. Database survey

The Cambridge structure Database (CSD version 5.42, last update November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) already contains some structures of transition-metal thio­cyanate coordination compounds with urotropine as a co-ligand. This includes a mixed complex with the composition [Co(NCS)2(C6H12N4)(CH3OH)2(H2O)], in which the cobalt cations are coordinated by water, ethanol, urotropine and N-bonded thio­cyanate anions (Refcode: POFGAT; Shang et al., 2008[Shang, W.-L., Bai, Y., Ma, C.-Z. & Li, Z.-M. (2008). Acta Cryst. E64, m1184-m1185.]). It also contains two compounds with the composition [Co(NCS)2(H2O)4]·2C6H12N4 (Refcode: XILXOG; Li et al., 2007[Li, X.-L., Niu, D.-Z. & Lu, Z.-S (2007). Acta Cryst. E63, m2478.]) and [Co(NCS)2(C6H12N4)2(H2O)2][Co(NCS)2(H2O)4]·2H2O (Refcode: MOTNIS; Liu et al., 2002[Liu, Q., Xi, H.-T., Sun, X.-Q., Zhu, J.-F. & Yu, K.-B. (2002). Chin. J. Struct. Chem. 21, 355-359.], MOTNIS01; Zhang et al., 1999[Zhang, Y., Li, J., Xu, H., Hou, H., Nishiura, M. & Imamoto, T. (1999). J. Mol. Struct. 510, 191-196.], MOTNIS02; Chakraborty et al., 2006[Chakraborty, J., Samanta, B., Rosair, G., Gramlich, V., Salah El Fallah, M., Ribas, J., Matsushita, T. & Mitra, S. (2006). Polyhedron, 25, 3006-3016.], MOTNIS03; Lu et al., 2010[Lu, J., Liu, H.-T., Zhang, X.-X., Wang, D.-Q. & Niu, M.-J. (2010). Z. Anorg. Allg. Chem. 636, 641-647.]), that also form discrete complexes with terminal N-bonded thio­cyanate anions. The structure of these compounds is somehow related to that in 1 and 2 with the major difference being that the ethanol is replaced by water. Discrete complexes have also been reported with other transition-metal thio­cyanates including, for example, nickel (Refcode: XILROA; Bai et al., 2007[Bai, Y., Shang, W.-L., Zhang, F.-L., Pan, X.-J. & Niu, X.-F. (2007). Acta Cryst. E63, m2628.], XILROA01; Lu et al., 2010[Lu, J., Liu, H.-T., Zhang, X.-X., Wang, D.-Q. & Niu, M.-J. (2010). Z. Anorg. Allg. Chem. 636, 641-647.]) and zinc (Refcode: SIMXIY; Kruszynski & Swiatkowski, 2018[Kruszynski, R. & Swiatkowski, M. (2018). J. Saudi Chem. Soc. 22, 816-825.]), but none of them contains ethanol as a co-ligand. The latter structure with the composition [Zn(NCS)2(urotropine)2(H2O)2]·[Zn(NCS)2(H2O)4]·2H2O contains two different complexes, one of them similar to 1 and the second similar to 2 with the difference that the EtOH is exchanged by water.

Finally, it is noted that with cadmium and mercury a crystal structure with urotropine is reported in which the Cd cations are linked by pairs of thio­cyanate anions into chains, which are further linked by the urotropine ligand (Refcode: DOZZOI; Bai et al., 2009[Bai, Y., Shang, W.-L., Dang, D.-B., Sun, J.-D. & Gao, H. (2009). Spectrochim. Acta Part A, 72, 407-411.] and DIJSIY; Mak & Wu, 1985[Mak, T. C. W. & Wu, Y.-K. (1985). Inorg. Chim. Acta, 104, 149-153.]). The formation of such a compound can be traced back to the fact that cadmium and mercury are much more chalcophilic than cobalt. There is one additional structure with cadmium similar to that mentioned above. In this structure, the cadmium cations are linked by pairs of thio­cyanate anions into chains that are either connected by two EtOH mol­ecules or urotropine ligands, which connect neighboring chains (FEWZOY; Barszcz et al., 2013[Barszcz, B., Masternak, J. & Sawka-Dobrowolska, W. (2013). Dalton Trans. 42, 5960-5963.]).

5. Synthesis and crystallization

Synthesis Co(NCS)2 and urotropine were purchased from Merck. All chemicals were used without further purification.

Single crystals of 1 and 2 were obtained by reacting 0.15 mmol of Co(NCS)2 (26.3 mg) with 0.6 mmol of urotropine (84.1 mg) in 1 mL of ethanol after one day.

Experimental details

The data collection for single crystal structure analysis was performed using a Rigaku XtaLAB Synergy Dualflex kappa-diffractometer equipped with HyPix hybrid photon counting HPC detector, using Cu-Kα radiation from a PhotonJet micro-focus X-ray source.

The PXRD measurements were performed with Cu Kα1 radiation (λ = 1.540598 Å) using a Stoe Transmission Powder Diffraction System (STADI P) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. All non-hydrogen atoms were refined anisotropically. The C—H hydrogen atoms were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropically with Uĩso(H) = 1.2Ueq(C) (1.5 for methyl H atoms). The O—H hydrogen atoms were located in the difference map and were refined with restraints for the O—H distance (DFIX) and varying isotropic displacement parameters. The crystal of 1 was twinned by non-merohedry and therefore, a twin refinement using data in HKLF-5 format was performed where all equivalents were merged [BASF parameter = 0.309 (1)].

Table 5
Experimental details

  1 2
Crystal data
Chemical formula [Co(NCS)2(C6H12N4)2(C2H6O)2] [Co(NCS)2(C2H6O)4]·2C6H12N4
Mr 547.62 499.56
Crystal system, space group Monoclinic, P21/n Tetragonal, P[\overline{4}]n2
Temperature (K) 100 100
a, b, c (Å) 7.73205 (19), 11.5092 (3), 13.6693 (3) 9.69601 (6), 9.69601 (6), 12.94912 (14)
α, β, γ (°) 90, 95.376 (2), 90 90, 90, 90
V3) 1211.08 (5) 1217.38 (2)
Z 2 2
Radiation type Cu Kα Cu Kα
μ (mm−1) 7.48 7.40
Crystal size (mm) 0.12 × 0.03 × 0.02 0.2 × 0.16 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.])
Tmin, Tmax 0.586, 1.000 0.786, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4731, 4731, 4504 34865, 1343, 1338
Rint 0.030
(sin θ/λ)max−1) 0.639 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.06 0.024, 0.064, 1.08
No. of reflections 4731 1343
No. of parameters 157 75
No. of restraints 1 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.63, −0.43 0.20, −0.37
Absolute structure F[(I+)−(I)]/[(I+)+(I)] lack x determined using 573 quotients (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.0070 (19)
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(ethanol-κO)bis(thiocyanato-κN)bis(urotropine-κN)cobalt(II) (1) top
Crystal data top
[Co(NCS)2(C6H12N4)2(C2H6O)2]F(000) = 578
Mr = 547.62Dx = 1.502 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 7.73205 (19) ÅCell parameters from 16954 reflections
b = 11.5092 (3) Åθ = 5.0–79.3°
c = 13.6693 (3) ŵ = 7.48 mm1
β = 95.376 (2)°T = 100 K
V = 1211.08 (5) Å3Needle, light pink
Z = 20.12 × 0.03 × 0.02 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
4731 measured reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source4731 independent reflections
Mirror monochromator4504 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1θmax = 80.3°, θmin = 5.0°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 1414
Tmin = 0.586, Tmax = 1.000l = 1617
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0719P)2 + 0.7955P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4731 reflectionsΔρmax = 0.63 e Å3
157 parametersΔρmin = 0.43 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.5000000.5000000.5000000.01842 (17)
N10.3761 (3)0.35322 (18)0.44802 (17)0.0228 (4)
C10.3160 (3)0.2624 (2)0.43241 (18)0.0227 (5)
S10.23069 (10)0.13371 (6)0.41163 (5)0.0324 (2)
N110.6678 (3)0.50619 (16)0.36795 (16)0.0187 (4)
C110.6534 (3)0.3991 (2)0.30608 (19)0.0225 (5)
H11A0.6827960.3306980.3482960.027*
H11B0.5315620.3902440.2776160.027*
N120.7674 (3)0.40116 (19)0.22623 (16)0.0240 (5)
C120.9479 (4)0.4157 (2)0.2689 (2)0.0244 (5)
H12A1.0256540.4176290.2153280.029*
H12B0.9813590.3482020.3113470.029*
N130.9718 (3)0.52416 (19)0.32779 (16)0.0216 (4)
C130.9175 (3)0.6229 (2)0.2625 (2)0.0226 (5)
H13A0.9308000.6960670.3005100.027*
H13B0.9949290.6270960.2088950.027*
N140.7371 (3)0.61247 (18)0.21969 (16)0.0211 (4)
C140.6256 (3)0.6071 (2)0.30005 (19)0.0203 (5)
H14A0.5030200.6008550.2722450.024*
H14B0.6379580.6801510.3382600.024*
C150.7207 (4)0.5030 (2)0.1637 (2)0.0244 (6)
H15A0.7973500.5059630.1096290.029*
H15B0.5995680.4944470.1340390.029*
C160.8536 (3)0.5178 (2)0.40565 (19)0.0199 (5)
H16A0.8679480.5887740.4464840.024*
H16B0.8867780.4504350.4484200.024*
O10.2998 (2)0.60272 (15)0.41991 (14)0.0217 (4)
H10.215 (4)0.570 (4)0.389 (3)0.058 (13)*
C210.2958 (3)0.7251 (2)0.3965 (2)0.0248 (5)
H21A0.2577440.7349610.3258470.030*
H21B0.4147790.7570960.4085120.030*
C220.1752 (4)0.7938 (2)0.4565 (2)0.0287 (6)
H22A0.0568670.7630780.4445350.043*
H22B0.1762500.8757270.4370660.043*
H22C0.2146190.7868130.5264780.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0184 (3)0.0121 (3)0.0244 (3)0.00104 (19)0.0005 (2)0.0001 (2)
N10.0221 (10)0.0161 (10)0.0303 (11)0.0029 (8)0.0037 (8)0.0025 (8)
C10.0216 (11)0.0232 (12)0.0236 (11)0.0011 (9)0.0038 (9)0.0023 (10)
S10.0378 (4)0.0239 (3)0.0362 (4)0.0115 (3)0.0076 (3)0.0050 (3)
N110.0193 (10)0.0150 (10)0.0215 (10)0.0013 (7)0.0006 (8)0.0007 (7)
C110.0262 (12)0.0160 (11)0.0250 (12)0.0013 (9)0.0008 (10)0.0009 (10)
N120.0314 (12)0.0179 (10)0.0229 (10)0.0009 (8)0.0031 (9)0.0016 (8)
C120.0269 (13)0.0199 (12)0.0270 (13)0.0040 (10)0.0050 (10)0.0012 (10)
N130.0219 (10)0.0193 (10)0.0239 (10)0.0014 (8)0.0028 (8)0.0016 (9)
C130.0220 (12)0.0196 (11)0.0264 (13)0.0003 (9)0.0034 (10)0.0031 (10)
N140.0235 (10)0.0172 (9)0.0225 (10)0.0006 (8)0.0013 (8)0.0019 (8)
C140.0214 (11)0.0153 (11)0.0240 (12)0.0018 (9)0.0007 (10)0.0010 (9)
C150.0303 (14)0.0210 (13)0.0216 (13)0.0005 (9)0.0006 (11)0.0007 (9)
C160.0194 (11)0.0181 (10)0.0221 (12)0.0001 (9)0.0009 (9)0.0016 (9)
O10.0210 (8)0.0143 (8)0.0297 (9)0.0002 (6)0.0009 (7)0.0034 (7)
C210.0248 (12)0.0171 (11)0.0328 (13)0.0001 (9)0.0036 (10)0.0033 (10)
C220.0333 (14)0.0217 (12)0.0305 (13)0.0027 (10)0.0005 (11)0.0029 (11)
Geometric parameters (Å, º) top
Co1—N1i2.037 (2)N13—C161.468 (3)
Co1—N12.037 (2)C13—H13A0.9900
Co1—N11i2.321 (2)C13—H13B0.9900
Co1—N112.321 (2)C13—N141.466 (3)
Co1—O12.1620 (18)N14—C141.460 (3)
Co1—O1i2.1620 (18)N14—C151.474 (3)
N1—C11.156 (3)C14—H14A0.9900
C1—S11.635 (3)C14—H14B0.9900
N11—C111.493 (3)C15—H15A0.9900
N11—C141.503 (3)C15—H15B0.9900
N11—C161.486 (3)C16—H16A0.9900
C11—H11A0.9900C16—H16B0.9900
C11—H11B0.9900O1—H10.84 (2)
C11—N121.466 (3)O1—C211.444 (3)
N12—C121.471 (4)C21—H21A0.9900
N12—C151.475 (3)C21—H21B0.9900
C12—H12A0.9900C21—C221.519 (4)
C12—H12B0.9900C22—H22A0.9800
C12—N131.487 (3)C22—H22B0.9800
N13—C131.481 (3)C22—H22C0.9800
N1i—Co1—N1180.0N13—C13—H13B109.1
N1—Co1—N1191.89 (8)H13A—C13—H13B107.8
N1i—Co1—N11i91.89 (8)N14—C13—N13112.5 (2)
N1i—Co1—N1188.11 (8)N14—C13—H13A109.1
N1—Co1—N11i88.11 (8)N14—C13—H13B109.1
N1i—Co1—O1i89.19 (8)C13—N14—C15108.0 (2)
N1—Co1—O189.19 (8)C14—N14—C13108.1 (2)
N1—Co1—O1i90.81 (8)C14—N14—C15109.0 (2)
N1i—Co1—O190.81 (8)N11—C14—H14A109.0
N11i—Co1—N11180.0N11—C14—H14B109.0
O1—Co1—N1190.87 (7)N14—C14—N11112.8 (2)
O1i—Co1—N1189.13 (7)N14—C14—H14A109.0
O1i—Co1—N11i90.87 (7)N14—C14—H14B109.0
O1—Co1—N11i89.13 (7)H14A—C14—H14B107.8
O1i—Co1—O1180.0N12—C15—H15A109.2
C1—N1—Co1169.3 (2)N12—C15—H15B109.2
N1—C1—S1179.4 (3)N14—C15—N12111.9 (2)
C11—N11—Co1113.44 (15)N14—C15—H15A109.2
C11—N11—C14106.7 (2)N14—C15—H15B109.2
C14—N11—Co1113.53 (15)H15A—C15—H15B107.9
C16—N11—Co1109.01 (16)N11—C16—H16A108.8
C16—N11—C11106.79 (19)N11—C16—H16B108.8
C16—N11—C14106.96 (19)N13—C16—N11113.6 (2)
N11—C11—H11A109.0N13—C16—H16A108.8
N11—C11—H11B109.0N13—C16—H16B108.8
H11A—C11—H11B107.8H16A—C16—H16B107.7
N12—C11—N11113.0 (2)Co1—O1—H1120 (3)
N12—C11—H11A109.0C21—O1—Co1130.16 (16)
N12—C11—H11B109.0C21—O1—H1109 (3)
C11—N12—C12108.7 (2)O1—C21—H21A109.0
C11—N12—C15108.2 (2)O1—C21—H21B109.0
C12—N12—C15108.1 (2)O1—C21—C22112.9 (2)
N12—C12—H12A109.2H21A—C21—H21B107.8
N12—C12—H12B109.2C22—C21—H21A109.0
N12—C12—N13112.0 (2)C22—C21—H21B109.0
H12A—C12—H12B107.9C21—C22—H22A109.5
N13—C12—H12A109.2C21—C22—H22B109.5
N13—C12—H12B109.2C21—C22—H22C109.5
C13—N13—C12107.7 (2)H22A—C22—H22B109.5
C16—N13—C12107.3 (2)H22A—C22—H22C109.5
C16—N13—C13108.4 (2)H22B—C22—H22C109.5
N13—C13—H13A109.1
Co1—N11—C11—N12176.71 (16)C12—N13—C16—N1159.2 (3)
Co1—N11—C14—N14177.58 (15)N13—C13—N14—C1459.1 (3)
Co1—N11—C16—N13179.20 (15)N13—C13—N14—C1558.7 (3)
Co1—O1—C21—C22107.1 (2)C13—N13—C16—N1156.8 (3)
N11—C11—N12—C1258.0 (3)C13—N14—C14—N1159.3 (3)
N11—C11—N12—C1559.2 (3)C13—N14—C15—N1259.0 (3)
C11—N11—C14—N1456.7 (3)C14—N11—C11—N1257.5 (3)
C11—N11—C16—N1357.9 (3)C14—N11—C16—N1356.1 (3)
C11—N12—C12—N1358.6 (3)C14—N14—C15—N1258.2 (3)
C11—N12—C15—N1458.4 (3)C15—N12—C12—N1358.7 (3)
N12—C12—N13—C1357.9 (3)C15—N14—C14—N1157.9 (3)
N12—C12—N13—C1658.6 (3)C16—N11—C11—N1256.6 (3)
C12—N12—C15—N1459.2 (3)C16—N11—C14—N1457.3 (3)
C12—N13—C13—N1458.0 (3)C16—N13—C13—N1457.7 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···S1ii0.992.813.781 (3)168
C14—H14A···S1iii0.992.983.816 (3)143
C16—H16A···N1i0.992.573.166 (3)119
C16—H16B···O1i0.992.493.090 (3)119
O1—H1···N13iv0.84 (2)2.05 (3)2.870 (3)165 (4)
C22—H22B···S1v0.983.023.989 (3)169
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x1, y, z; (v) x, y+1, z.
Tetrakis(ethanol-κO)bis(thiocyanato-κN)cobalt(II)–urotropine (1/2) (2) top
Crystal data top
[Co(NCS)2(C2H6O)4]·2C6H12N4Dx = 1.363 Mg m3
Mr = 499.56Cu Kα radiation, λ = 1.54184 Å
Tetragonal, P4n2Cell parameters from 26612 reflections
a = 9.69601 (6) Åθ = 5.7–79.2°
c = 12.94912 (14) ŵ = 7.40 mm1
V = 1217.38 (2) Å3T = 100 K
Z = 2Plate, light violet
F(000) = 5300.2 × 0.16 × 0.03 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1343 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1338 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.0000 pixels mm-1θmax = 80.1°, θmin = 5.7°
ω scansh = 1211
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 1212
Tmin = 0.786, Tmax = 1.000l = 1616
34865 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0326P)2 + 0.587P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.024(Δ/σ)max < 0.001
wR(F2) = 0.064Δρmax = 0.20 e Å3
S = 1.08Δρmin = 0.37 e Å3
1343 reflectionsExtinction correction: SHELXL-2016/6 (Sheldrick 2016), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
75 parametersExtinction coefficient: 0.0019 (4)
1 restraintAbsolute structure: F[(I+)-(I-)]/[(I+)+(I-)] lack x determined using 573 quotients
(Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.0070 (19)
Hydrogen site location: mixed
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.5000001.0000000.7500000.01833 (18)
N10.34847 (17)0.84847 (17)0.7500000.0233 (5)
C10.2634 (2)0.7634 (2)0.7500000.0212 (5)
S10.14431 (5)0.64431 (5)0.7500000.0340 (2)
O10.5977 (2)0.88742 (18)0.86652 (13)0.0275 (4)
H10.587 (4)0.799 (2)0.875 (3)0.048 (10)*
C20.7177 (3)0.9247 (3)0.9237 (2)0.0361 (6)
H2A0.7092020.8901370.9954110.043*
H2B0.7255161.0264200.9264840.043*
C30.8444 (3)0.8658 (4)0.8752 (3)0.0557 (10)
H3A0.8529580.9001090.8043520.084*
H3B0.8378570.7649010.8743240.084*
H3C0.9256150.8935810.9152120.084*
N110.54520 (19)0.61785 (19)0.93312 (14)0.0186 (4)
C110.5000000.5000000.8688 (2)0.0197 (6)
H11A0.5771090.4704260.8238300.024*0.5
H11B0.4228880.5295740.8238320.024*0.5
C120.6597 (2)0.5713 (2)0.99965 (16)0.0195 (4)
H12A0.6909970.6491751.0432270.023*
H12B0.7381590.5423000.9558160.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0176 (2)0.0176 (2)0.0198 (3)0.0025 (2)0.0000.000
N10.0229 (7)0.0229 (7)0.0241 (11)0.0033 (9)0.0000 (9)0.0000 (9)
C10.0203 (8)0.0203 (8)0.0230 (12)0.0031 (10)0.0012 (10)0.0012 (10)
S10.0265 (3)0.0265 (3)0.0488 (5)0.0090 (3)0.0070 (3)0.0070 (3)
O10.0293 (9)0.0198 (8)0.0332 (8)0.0061 (6)0.0102 (7)0.0058 (7)
C20.0442 (16)0.0289 (12)0.0352 (13)0.0127 (11)0.0183 (12)0.0089 (11)
C30.0286 (14)0.074 (2)0.064 (2)0.0106 (15)0.0070 (15)0.0378 (19)
N110.0164 (8)0.0185 (8)0.0210 (8)0.0007 (7)0.0006 (7)0.0021 (7)
C110.0193 (14)0.0198 (14)0.0199 (14)0.0005 (11)0.0000.000
C120.0164 (10)0.0194 (11)0.0226 (10)0.0016 (8)0.0021 (8)0.0016 (8)
Geometric parameters (Å, º) top
Co1—N1i2.078 (2)C2—C31.494 (5)
Co1—N12.078 (2)C3—H3A0.9800
Co1—O12.0894 (15)C3—H3B0.9800
Co1—O1i2.0894 (15)C3—H3C0.9800
Co1—O1ii2.0894 (15)N11—C111.481 (2)
Co1—O1iii2.0894 (15)N11—C12iv1.483 (3)
N1—C11.166 (4)N11—C121.476 (3)
C1—S11.633 (3)C11—H11A0.9900
O1—H10.87 (2)C11—H11B0.9900
O1—C21.426 (3)C12—H12A0.9900
C2—H2A0.9900C12—H12B0.9900
C2—H2B0.9900
N1i—Co1—N1180.0C3—C2—H2A109.5
N1—Co1—O1i92.80 (6)C3—C2—H2B109.5
N1—Co1—O1iii92.80 (6)C2—C3—H3A109.5
N1i—Co1—O1ii92.80 (6)C2—C3—H3B109.5
N1i—Co1—O1iii87.20 (6)C2—C3—H3C109.5
N1—Co1—O1ii87.20 (6)H3A—C3—H3B109.5
N1—Co1—O187.20 (6)H3A—C3—H3C109.5
N1i—Co1—O1i87.20 (6)H3B—C3—H3C109.5
N1i—Co1—O192.80 (6)C11—N11—C12iv108.42 (15)
O1i—Co1—O1iii174.40 (11)C12—N11—C11108.38 (16)
O1ii—Co1—O1iii87.54 (9)C12—N11—C12iv108.31 (13)
O1i—Co1—O187.53 (9)N11—C11—N11v111.5 (2)
O1ii—Co1—O1i92.74 (9)N11v—C11—H11A109.3
O1ii—Co1—O1174.40 (11)N11—C11—H11A109.3
O1iii—Co1—O192.74 (10)N11—C11—H11B109.3
C1—N1—Co1180.00 (18)N11v—C11—H11B109.3
N1—C1—S1180.0 (2)H11A—C11—H11B108.0
Co1—O1—H1123 (2)N11—C12—N11vi111.70 (19)
C2—O1—Co1127.80 (16)N11—C12—H12A109.3
C2—O1—H1107 (2)N11vi—C12—H12A109.3
O1—C2—H2A109.5N11—C12—H12B109.3
O1—C2—H2B109.5N11vi—C12—H12B109.3
O1—C2—C3110.8 (3)H12A—C12—H12B107.9
H2A—C2—H2B108.1
Co1—O1—C2—C394.0 (2)C12iv—N11—C11—N11v58.55 (12)
C11—N11—C12—N11vi58.9 (2)C12iv—N11—C12—N11vi58.52 (16)
C12—N11—C11—N11v58.80 (12)
Symmetry codes: (i) x+1, y+2, z; (ii) y1/2, x+1/2, z+3/2; (iii) y+3/2, x+3/2, z+3/2; (iv) y+1, x, z+2; (v) x+1, y+1, z; (vi) y, x+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N110.87 (2)1.95 (2)2.799 (3)163 (4)
C2—H2B···N1i0.992.683.211 (3)114
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

This project was supported by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft.

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. NA 720/5-2).

References

First citationBai, Y., Shang, W.-L., Dang, D.-B., Sun, J.-D. & Gao, H. (2009). Spectrochim. Acta Part A, 72, 407–411.  CSD CrossRef Google Scholar
First citationBai, Y., Shang, W.-L., Zhang, F.-L., Pan, X.-J. & Niu, X.-F. (2007). Acta Cryst. E63, m2628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarszcz, B., Masternak, J. & Sawka-Dobrowolska, W. (2013). Dalton Trans. 42, 5960–5963.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBöhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325–5338.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCeglarska, M., Böhme, M., Neumann, T., Plass, W., Näther, C. & Rams, M. (2021). Phys. Chem. Chem. Phys. 23, 10281–10289.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChakraborty, J., Samanta, B., Rosair, G., Gramlich, V., Salah El Fallah, M., Ribas, J., Matsushita, T. & Mitra, S. (2006). Polyhedron, 25, 3006–3016.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJin, Y., Che, Y. X. & Zheng, J. M. (2007). J. Coord. Chem. 60, 2067–2074.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrebs, C., Ceglarska, M. & Näther, C. (2021). Acta Cryst. E77, 1082–1086.  CSD CrossRef IUCr Journals Google Scholar
First citationKruszynski, R. & Swiatkowski, M. (2018). J. Saudi Chem. Soc. 22, 816–825.  CSD CrossRef CAS Google Scholar
First citationLi, X.-L., Niu, D.-Z. & Lu, Z.-S (2007). Acta Cryst. E63, m2478.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Q., Xi, H.-T., Sun, X.-Q., Zhu, J.-F. & Yu, K.-B. (2002). Chin. J. Struct. Chem. 21, 355–359.  CAS Google Scholar
First citationLu, J., Liu, H.-T., Zhang, X.-X., Wang, D.-Q. & Niu, M.-J. (2010). Z. Anorg. Allg. Chem. 636, 641–647.  Web of Science CSD CrossRef CAS Google Scholar
First citationMak, T. C. W. & Wu, Y.-K. (1985). Inorg. Chim. Acta, 104, 149–153.  CSD CrossRef CAS Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationMekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184–2192.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMousavi, M., Duhayon, C., Bretosh, K., Béreau, V. & Sutter, J. P. (2020). Inorg. Chem. 59, 7603–7613.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNäther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714.  Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPrananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516–528.  Web of Science CSD CrossRef CAS Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.  Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationShang, W.-L., Bai, Y., Ma, C.-Z. & Li, Z.-M. (2008). Acta Cryst. E64, m1184–m1185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J.-M., Chen, J.-N. & Liu, L.-D. (2006). Pol. J. Chem. 80, 1909–1913.  CAS Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWellm, C., Majcher-Fitas, A., Rams, M. & Näther, C. (2020). Dalton Trans. 49, 16707–16714.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015). Dalton Trans. 44, 14149–14158.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Li, J., Xu, H., Hou, H., Nishiura, M. & Imamoto, T. (1999). J. Mol. Struct. 510, 191–196.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds