research communications
The molecular and crystal structures of 2-(3-hydroxypropyl)benzimidazole and its nitrate salt
aNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St, Tashkent, 100174, Uzbekistan, bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str, 83, Tashkent, 700125, Uzbekistan, and cState Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, 60 Nauky ave., 61001 Kharkiv, Ukraine
*Correspondence e-mail: d.rakhmonova81@mail.ru
2-(3-Hydroxypropyl)-1H-benzimidazole, C10H12N2O, which has potential biological activity, can be used as a ligand for complexation with metals. This compound is an due to the lone pair of the nitrogen atom in the imidazole ring. This nitrogen atom also acts as a proton acceptor. In the crystalline phase, the nitrate salt, namely, 2-(3-hydroxypropyl)-1H-benzimidazol-3-ium nitrate, C10H13N2O+·NO3−, has been studied. The protonation of the 2-(3-hydroxypropyl)benzimidazole unit results in significant delocalization of the electron density within the imidazole ring. The salt formation leads to variations in the intermolecular interactions, which were studied by analysis of the Hirshfeld surfaces and two-dimensional fingerprint plots.
1. Chemical context
Benzimidazole derivatives and their complex compounds possess a wide spectrum of biological activity (Salahuddin et al., 2012), including antibacterial (Chkirate et al., 2020), antifungal (Khabnadideh et al., 2012), antiviral (Kharitonova et al., 2017), antiparasitic (Katti et al., 2019), anti-inflammatory and analgesic (Gaba et al., 2014) activities.
Nitrogen-containing heterocycles can be lone-pair donors, forming complex compounds with a metal; in some, the nitrogen heterocycle binds to the metal atom (Mottillo et al., 2015). The lone pair of the cyclic nitrogen atom can be protonated, forming an organic cation (Yan et al., 2009; Yu et al., 2007, Bayar et al., 2018; Chen et al., 2010). It has been shown (Pilipenko & Tananaiko, 1983) that compounds containing a protonated cation are formed as a result of the combination with counter-ions. Such compounds, also called ionic associates, are intermediate compounds between simple salts and complex (coordination) compounds. They have properties similar to those of mixed-ligand complexes, although the properties of the compound as a whole depends on many factors.
In the present paper we report the molecular and crystal structures of 2-(3-hydroxypropyl)benzimidazole (BIZ) and its nitrate salt (BIZHNO3), which were determined to study the influence of protonation.
2. Structural commentary
Analysis of the molecular structures of the title compounds revealed that the C7—N1 and C7—N2 bonds have different lengths [N1—C7 = 1.322 (4) Å and N2—C7 = 1.352 (4) Å] in the neutral BIZ molecule (Fig. 1) but are equal within standard uncertainties [N1—C7 = 1.329 (2) Å and N2—C7 = 1.331 (2) Å] in its protonated form in BIZHNO3 (Fig. 2). Such a delocalization of the electron density during protonation allows the structure of protonated BIZ molecule to be described as a superposition of two resonance structures, as shown in the scheme below.
The neutral and protonated BIZ molecules differ in the conformation of the hydroxyalkyl substituent (Figs. 1 and 2). In the neutral BIZ molecule, the hydroxyalkyl substituent is almost coplanar to the benzimidazole fragment [the N2—C7—C8—C9 torsion angle is 15.3 (4)°]. The hydroxyalkyl substituent has an all-trans conformation [C7—C8—C9—C10 and C8—C9—C10—O1 = −179.8 (3) and −178.7 (3)°, respectively]. In the protonated BIZ molecule, the hydroxyalkyl substituent is rotated orthogonally to the benzimidazole fragments [N2—C7—C8—C9 = 103.1 (2)°] and has an ap−,−sc conformation [C7—C8—C9—C10 and C8—C9—C10—O1 = −179.3 (2) and −62.3 (2)°, respectively].
3. Supramolecular features
In the crystal, BIZ molecules are linked by O—H⋯N and N—H⋯O hydrogen bonds (Table 1). The zigzag chains formed by the N–H⋯O hydrogen bonds propagate in the [100] direction (Fig. 3, on the left). These chains are connected by O—H⋯N hydrogen bonds in the [010] and [001] directions (Fig. 3, on the right; the chains are highlighted in blue). In addition, weak C3—H⋯C3 (π) interactions (Table 1) are observed between the BIZ molecules.
In the crystal of the nitrate salt, the protonated BIZ molecules are connected by N—H⋯O hydrogen bonds (Table 2), forming centrosymmetric dimers (Fig. 4). These dimers are linked by the bridging nitrate anions in the [001] direction via N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds (Fig. 5). Stacking interactions of the head-to-tail type between the imidazole rings of BIZH+ molecules are observed in the [010] direction, the distance between π-systems being 3.502 (2) Å.
4. Hirshfeld surface analysis
Hirshfeld surface analysis (Turner et al., 2017) is one of the modern methods allowing intermolecular interactions to be studied in a more analytical way. This method appears to be effective for comparing the capability of the neutral BIZ molecule and its protonated form to participate in intermolecular interactions of different types. The Hirshfeld surfaces were calculated for the BIZ and BIZH+ molecules using a standard high surface resolution, mapped over dnorm (Fig. 6). Bright-red spots are observed for all the donors and acceptors of strong hydrogen bonds in the two structures under study, indicating their participation in intermolecular interactions. It should be noted that the bright-red spot on the N1 atom in the BIZ molecule indicates its capability to be protonated or participate in complexation with a metal.
The two-dimensional fingerprint plots constructed for the BIZ and BIZH+ molecules show that the hydrogen bonds are stronger in the structure of the nitrate salt (see the sharp spikes in Fig. 6). To compare intermolecular interactions of different types in the structures under study, we have analysed their contributions to the total Hirshfeld surfaces (Fig. 7). As can be seen from the histogram, the protonation of the BIZ molecule and presence of the nitrate anion results in a significant increase of the contribution of O⋯H/H⋯O interactions associated with X—H⋯O hydrogen bonds. In addition, the contributions of N⋯C/C⋯N and C⋯C interactions indicate that stacking between imidazole rings also increases in the BIZHNO3 structure (Fig. 7). A significant decrease in the contribution of N⋯H/H⋯N interactions (X—H⋯N bonding) in the BIZHNO3 structure can be explained by the protonation of the N1 atom, which participates as proton acceptor of hydrogen bonds in the BIZ structure. The different contributions of C⋯H/H⋯C interactions associated with X—H⋯C (π) hydrogen bonds coincide with the presence of a C—H⋯C(π) hydrogen bond in the BIZ structure (Table 1) and the absence of similar interactions in the BIZHNO3 structure (Table 2). The nitrate anions act as bridging moieties in the BIZHNO3 structure, which results in an increase in the distances between BIZH+ molecules. This fact can explain the decrease in the contribution of H⋯H interactions in the BIZHNO3 structure (Fig. 7).
5. Database survey
A search of the Cambridge Structural Database (CSD, version 5.42, update of November 2020; Groom et al., 2016) revealed three structures containing the BIZ molecule [refcodes FIYXAN and FIYXER (Elmali et al., 2005) and RIYNUL (Zhao et al., 2019)]. Two of these structures (FIYXAN and FIYXER) contain protonated BIZ molecules, which form salts with PtCl42− or PtCl62− anions. In the RIYNUL structure, the BIZ molecule forms a coordination bond with the Cd atom.
In addition, three structures with a close analogue of the BIZ molecule containing a carboxylic group instead of a hydroxyl group were found in the CSD [refcodes JOQROZ (Fu et al., 2016), NOVCEI (Liu et al., 2015) and TILGOL (Zeng et al., 2007)]. In all of these structures, the organic ligand forms an N—M+ coordination bond with participation of the N2 atom of the imidazole ring.
6. Synthesis and crystallization
All chemicals were obtained from commercial sources and used directly without further purification. 1,2-Phenylenediamine (2.16 g, 0.02 mol) was dissolved in hydrochloric acid (25 mL, 4 M) at 373 K, and γ-hydroxybutyric acid (2.82 g, 0.02 mol) was added to the solution. The mixture was heated with reflux for 6 h at 398 K. After cooling to room temperature, the mixture was neutralized using NaOH (pH 7–9). The product was dissolved in aqueous ethanol and treated with for purification. The 2-hydroxypropylbenzimidazole precipitate was filtered off and dried in air. Pale-beige single crystals of the title compound suitable for X-ray were recrystallized from ethanol solution by slow evaporation, yield 80%, m.p. 437 K.
Synthesis of the [BIZH+]NO3− salt:
A weighed portion of copper nitrate (3 × 10 −3 mol) was dissolved in a minimum amount of water and mixed with an alcoholic of the ligand (6 × 10 −3 mol) while heating in a water bath. The solution turned green. The solution was then acidified with nitric acid to pH 5 to prevent the precipitation of hydroxides. The reaction was carried out for 40 minutes while heating in a water bath, after which the reaction mixture was allowed to crystallize. After three days, the precipitated light-yellow crystals were separated, washed with ethanol, and dried in air. The product yield was 62%, m.p. 371–373 K.
7. Refinement
Crystal data, data collection and structure . All hydrogen atoms were located in difference-Fourier maps. All of the hydrogen atoms in the BIZ structure and H atoms participating in strong hydrogen bonds in the BIZHNO3 structure were refined using an isotropic approximation. Other hydrogen atoms in the BIZHNO3 structure were refined as riding with Csp2—H = 0.97 Å, Uiso(H) = 1.2Ueq(C) for the methylene fragments or Car—H = 0.93 Å, Uiso(H) = 1.2Ueq(C) for the aromatic rings.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989022000585/dx2040sup1.cif
contains datablocks BIZ, BIZHNO3. DOI:Structure factors: contains datablock BIZ. DOI: https://doi.org/10.1107/S2056989022000585/dx2040BIZsup2.hkl
Structure factors: contains datablock BIZHNO3. DOI: https://doi.org/10.1107/S2056989022000585/dx2040BIZHNO3sup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022000585/dx2040BIZsup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989022000585/dx2040BIZHNO3sup5.cml
For both structures, data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C10H12N2O | Dx = 1.292 Mg m−3 |
Mr = 176.22 | Cu Kα radiation, λ = 1.54178 Å |
Orthorhombic, P212121 | Cell parameters from 1839 reflections |
a = 5.852 (2) Å | θ = 5.2–32.4° |
b = 12.437 (3) Å | µ = 0.69 mm−1 |
c = 12.444 (3) Å | T = 293 K |
V = 905.7 (4) Å3 | Block, colorless |
Z = 4 | 0.12 × 0.10 × 0.08 mm |
F(000) = 376 |
Oxford Diffraction Xcallibur, Ruby diffractometer | 1371 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1191 reflections with I > 2σ(I) |
Detector resolution: 10.2576 pixels mm-1 | Rint = 0.029 |
ω scans | θmax = 62.0°, θmin = 5.0° |
Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2009) | h = −6→6 |
Tmin = 0.958, Tmax = 1.000 | k = −13→11 |
3945 measured reflections | l = −12→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | All H-atom parameters refined |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.0573P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1371 reflections | Δρmax = 0.11 e Å−3 |
166 parameters | Δρmin = −0.19 e Å−3 |
0 restraints | Absolute structure: Flack x determined using 428 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: difference Fourier map | Absolute structure parameter: 0.1 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.0261 (5) | 0.38855 (16) | 0.5824 (2) | 0.0635 (7) | |
H1 | −0.080 (6) | 0.439 (3) | 0.621 (3) | 0.083 (14)* | |
N1 | 0.6471 (4) | 0.43719 (19) | 0.2047 (2) | 0.0470 (6) | |
N2 | 0.6271 (4) | 0.2901 (2) | 0.3056 (2) | 0.0457 (7) | |
H2N | 0.587 (5) | 0.243 (2) | 0.350 (3) | 0.045 (9)* | |
C1 | 0.8204 (5) | 0.3668 (2) | 0.1742 (2) | 0.0454 (7) | |
C2 | 0.9878 (6) | 0.3766 (3) | 0.0962 (3) | 0.0559 (9) | |
H2 | 0.994 (6) | 0.444 (3) | 0.051 (3) | 0.068 (10)* | |
C3 | 1.1430 (6) | 0.2942 (3) | 0.0847 (3) | 0.0631 (9) | |
H3 | 1.268 (7) | 0.297 (3) | 0.034 (3) | 0.076 (11)* | |
C4 | 1.1335 (6) | 0.2037 (3) | 0.1499 (3) | 0.0616 (10) | |
H4 | 1.232 (6) | 0.148 (3) | 0.144 (3) | 0.081 (12)* | |
C5 | 0.9683 (6) | 0.1915 (3) | 0.2277 (3) | 0.0555 (9) | |
H5 | 0.961 (6) | 0.128 (3) | 0.274 (3) | 0.075 (11)* | |
C6 | 0.8096 (5) | 0.2745 (2) | 0.2377 (2) | 0.0446 (7) | |
C7 | 0.5365 (5) | 0.3875 (2) | 0.2830 (2) | 0.0427 (7) | |
C8 | 0.3317 (6) | 0.4331 (3) | 0.3370 (3) | 0.0505 (8) | |
H8A | 0.369 (6) | 0.511 (3) | 0.353 (3) | 0.076 (11)* | |
H8B | 0.206 (6) | 0.431 (3) | 0.286 (3) | 0.059 (9)* | |
C9 | 0.2555 (6) | 0.3800 (3) | 0.4403 (3) | 0.0485 (8) | |
H9A | 0.376 (6) | 0.382 (3) | 0.493 (3) | 0.055 (9)* | |
H9B | 0.220 (5) | 0.307 (3) | 0.428 (3) | 0.049 (8)* | |
C10 | 0.0467 (6) | 0.4349 (3) | 0.4844 (3) | 0.0507 (8) | |
H10A | 0.073 (5) | 0.512 (3) | 0.495 (3) | 0.051 (8)* | |
H10B | −0.086 (6) | 0.432 (3) | 0.432 (3) | 0.069 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0956 (18) | 0.0401 (12) | 0.0547 (14) | 0.0140 (12) | 0.0202 (13) | 0.0041 (11) |
N1 | 0.0527 (15) | 0.0425 (12) | 0.0457 (15) | −0.0018 (11) | −0.0032 (13) | 0.0034 (11) |
N2 | 0.0518 (15) | 0.0398 (13) | 0.0454 (16) | −0.0046 (11) | −0.0032 (12) | 0.0091 (12) |
C1 | 0.0476 (17) | 0.0427 (15) | 0.0459 (18) | −0.0053 (14) | −0.0035 (14) | −0.0040 (13) |
C2 | 0.064 (2) | 0.0517 (18) | 0.052 (2) | −0.0131 (17) | 0.0045 (16) | −0.0032 (16) |
C3 | 0.060 (2) | 0.066 (2) | 0.064 (2) | −0.0104 (18) | 0.0101 (19) | −0.016 (2) |
C4 | 0.055 (2) | 0.057 (2) | 0.073 (3) | 0.0039 (17) | −0.0013 (18) | −0.0160 (19) |
C5 | 0.059 (2) | 0.0442 (17) | 0.063 (2) | 0.0022 (15) | −0.0082 (18) | −0.0027 (17) |
C6 | 0.0465 (16) | 0.0425 (15) | 0.0448 (18) | −0.0059 (13) | −0.0059 (14) | −0.0025 (13) |
C7 | 0.0468 (16) | 0.0404 (14) | 0.0409 (16) | −0.0043 (13) | −0.0073 (14) | −0.0007 (13) |
C8 | 0.0551 (18) | 0.0509 (17) | 0.0455 (18) | 0.0022 (16) | −0.0049 (16) | 0.0033 (14) |
C9 | 0.058 (2) | 0.0418 (18) | 0.046 (2) | 0.0018 (14) | −0.0023 (15) | −0.0023 (15) |
C10 | 0.0614 (19) | 0.0441 (17) | 0.0467 (19) | 0.0030 (16) | −0.0008 (17) | 0.0035 (15) |
O1—C10 | 1.414 (4) | C4—C5 | 1.376 (5) |
O1—H1 | 0.85 (4) | C4—H4 | 0.91 (4) |
N1—C7 | 1.322 (4) | C5—C6 | 1.394 (4) |
N1—C1 | 1.393 (4) | C5—H5 | 0.98 (4) |
N2—C7 | 1.352 (4) | C7—C8 | 1.486 (5) |
N2—C6 | 1.376 (4) | C8—C9 | 1.513 (4) |
N2—H2N | 0.84 (3) | C8—H8A | 1.02 (4) |
C1—C2 | 1.385 (4) | C8—H8B | 0.97 (3) |
C1—C6 | 1.395 (4) | C9—C10 | 1.503 (5) |
C2—C3 | 1.377 (5) | C9—H9A | 0.96 (4) |
C2—H2 | 1.01 (4) | C9—H9B | 0.94 (3) |
C3—C4 | 1.389 (5) | C10—H10A | 0.98 (3) |
C3—H3 | 0.97 (4) | C10—H10B | 1.01 (4) |
C10—O1—H1 | 107 (3) | C5—C6—C1 | 121.9 (3) |
C7—N1—C1 | 105.3 (2) | N1—C7—N2 | 112.3 (3) |
C7—N2—C6 | 107.6 (3) | N1—C7—C8 | 123.4 (3) |
C7—N2—H2N | 131 (2) | N2—C7—C8 | 124.3 (3) |
C6—N2—H2N | 121 (2) | C7—C8—C9 | 117.1 (3) |
C2—C1—N1 | 130.6 (3) | C7—C8—H8A | 106 (2) |
C2—C1—C6 | 120.1 (3) | C9—C8—H8A | 109 (2) |
N1—C1—C6 | 109.3 (3) | C7—C8—H8B | 107 (2) |
C3—C2—C1 | 118.3 (3) | C9—C8—H8B | 109 (2) |
C3—C2—H2 | 123 (2) | H8A—C8—H8B | 109 (3) |
C1—C2—H2 | 119 (2) | C10—C9—C8 | 110.6 (3) |
C2—C3—C4 | 121.1 (4) | C10—C9—H9A | 109.7 (19) |
C2—C3—H3 | 123 (2) | C8—C9—H9A | 111 (2) |
C4—C3—H3 | 116 (2) | C10—C9—H9B | 108.7 (19) |
C5—C4—C3 | 121.9 (4) | C8—C9—H9B | 110.1 (19) |
C5—C4—H4 | 115 (2) | H9A—C9—H9B | 107 (3) |
C3—C4—H4 | 123 (2) | O1—C10—C9 | 112.0 (3) |
C4—C5—C6 | 116.7 (3) | O1—C10—H10A | 109.1 (19) |
C4—C5—H5 | 122 (2) | C9—C10—H10A | 111.5 (19) |
C6—C5—H5 | 121 (2) | O1—C10—H10B | 108 (2) |
N2—C6—C5 | 132.6 (3) | C9—C10—H10B | 112 (2) |
N2—C6—C1 | 105.5 (3) | H10A—C10—H10B | 104 (3) |
C7—N1—C1—C2 | 179.9 (3) | N1—C1—C6—N2 | 0.5 (3) |
C7—N1—C1—C6 | −0.5 (3) | C2—C1—C6—C5 | 2.1 (4) |
N1—C1—C2—C3 | 178.5 (3) | N1—C1—C6—C5 | −177.5 (3) |
C6—C1—C2—C3 | −1.0 (4) | C1—N1—C7—N2 | 0.3 (3) |
C1—C2—C3—C4 | −0.4 (5) | C1—N1—C7—C8 | −177.9 (3) |
C2—C3—C4—C5 | 0.8 (5) | C6—N2—C7—N1 | 0.0 (3) |
C3—C4—C5—C6 | 0.2 (5) | C6—N2—C7—C8 | 178.2 (3) |
C7—N2—C6—C5 | 177.5 (3) | N1—C7—C8—C9 | −166.7 (3) |
C7—N2—C6—C1 | −0.3 (3) | N2—C7—C8—C9 | 15.3 (4) |
C4—C5—C6—N2 | −179.1 (3) | C7—C8—C9—C10 | −179.8 (3) |
C4—C5—C6—C1 | −1.7 (5) | C8—C9—C10—O1 | −178.7 (3) |
C2—C1—C6—N2 | −179.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O1i | 0.84 (3) | 1.95 (3) | 2.772 (3) | 165 (3) |
O1—H1···N1ii | 0.85 (4) | 1.90 (4) | 2.741 (3) | 169 (4) |
C3—H3···C3iii | 0.97 (4) | 2.87 (4) | 3.770 (4) | 154 (3) |
Symmetry codes: (i) x+1/2, −y+1/2, −z+1; (ii) −x+1/2, −y+1, z+1/2; (iii) x+1/2, −y+1/2, −z. |
C10H13N2O+·NO3− | F(000) = 504 |
Mr = 239.23 | Dx = 1.373 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 8.5100 (3) Å | Cell parameters from 1670 reflections |
b = 8.2525 (4) Å | θ = 5.2–75.5° |
c = 16.5130 (7) Å | µ = 0.91 mm−1 |
β = 93.760 (4)° | T = 293 K |
V = 1157.19 (9) Å3 | Block, colorless |
Z = 4 | 0.12 × 0.10 × 0.08 mm |
Oxford Diffraction Xcalibur, Ruby diffractometer | 2345 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1644 reflections with I > 2σ(I) |
Detector resolution: 10.2576 pixels mm-1 | Rint = 0.021 |
ω scans | θmax = 75.8°, θmin = 5.4° |
Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2009) | h = −9→10 |
Tmin = 0.739, Tmax = 1.000 | k = −10→8 |
4122 measured reflections | l = −20→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.044 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.128 | w = 1/[σ2(Fo2) + (0.0715P)2 + 0.0026P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2345 reflections | Δρmax = 0.16 e Å−3 |
167 parameters | Δρmin = −0.15 e Å−3 |
0 restraints | Extinction correction: SHELXL2016/6 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.0075 (11) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.12121 (17) | 0.57042 (19) | 0.61912 (9) | 0.0691 (5) | |
H1O | 1.102 (4) | 0.662 (3) | 0.6461 (18) | 0.112 (10)* | |
O2 | 0.4689 (2) | 0.27088 (18) | 0.74998 (8) | 0.0732 (5) | |
O3 | 0.4922 (3) | 0.5257 (2) | 0.74234 (10) | 0.1045 (7) | |
O4 | 0.3822 (2) | 0.4195 (2) | 0.84232 (10) | 0.1011 (6) | |
N1 | 0.65129 (19) | 0.34198 (19) | 0.47832 (10) | 0.0519 (4) | |
H1N | 0.726 (3) | 0.374 (3) | 0.4442 (14) | 0.075 (7)* | |
N2 | 0.54243 (17) | 0.29223 (18) | 0.59032 (9) | 0.0477 (4) | |
H2N | 0.527 (3) | 0.290 (3) | 0.6412 (13) | 0.065 (6)* | |
C1 | 0.5164 (2) | 0.2529 (2) | 0.45731 (11) | 0.0464 (4) | |
C2 | 0.4513 (3) | 0.1965 (2) | 0.38345 (12) | 0.0591 (5) | |
H2 | 0.498209 | 0.216950 | 0.335175 | 0.071* | |
N3 | 0.4465 (2) | 0.4091 (2) | 0.77860 (10) | 0.0616 (4) | |
C3 | 0.3151 (3) | 0.1095 (2) | 0.38500 (13) | 0.0663 (6) | |
H3 | 0.268665 | 0.069383 | 0.336521 | 0.080* | |
C4 | 0.2433 (2) | 0.0789 (2) | 0.45704 (14) | 0.0641 (6) | |
H4 | 0.149566 | 0.020639 | 0.455243 | 0.077* | |
C5 | 0.3081 (2) | 0.1330 (2) | 0.53068 (12) | 0.0541 (5) | |
H5 | 0.261444 | 0.111399 | 0.578915 | 0.065* | |
C6 | 0.44674 (19) | 0.22143 (19) | 0.52923 (10) | 0.0444 (4) | |
C7 | 0.6645 (2) | 0.3629 (2) | 0.55826 (11) | 0.0486 (4) | |
C8 | 0.7967 (2) | 0.4460 (2) | 0.60431 (12) | 0.0576 (5) | |
H8A | 0.765574 | 0.471662 | 0.658317 | 0.069* | |
H8B | 0.819160 | 0.547104 | 0.577420 | 0.069* | |
C9 | 0.9449 (2) | 0.3426 (2) | 0.61118 (13) | 0.0567 (5) | |
H9A | 0.921976 | 0.240986 | 0.637422 | 0.068* | |
H9B | 0.976665 | 0.318146 | 0.557167 | 0.068* | |
C10 | 1.0784 (2) | 0.4255 (3) | 0.65864 (12) | 0.0618 (5) | |
H10A | 1.047114 | 0.450854 | 0.712636 | 0.074* | |
H10B | 1.168414 | 0.353286 | 0.664051 | 0.074* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0677 (10) | 0.0726 (10) | 0.0693 (9) | −0.0224 (8) | 0.0217 (7) | −0.0162 (8) |
O2 | 0.1068 (13) | 0.0561 (8) | 0.0580 (8) | 0.0013 (8) | 0.0154 (8) | −0.0021 (7) |
O3 | 0.1610 (19) | 0.0591 (10) | 0.0956 (13) | −0.0156 (11) | 0.0260 (13) | 0.0054 (9) |
O4 | 0.1175 (15) | 0.1153 (15) | 0.0749 (11) | 0.0069 (12) | 0.0408 (10) | −0.0192 (10) |
N1 | 0.0507 (9) | 0.0494 (8) | 0.0569 (9) | −0.0031 (7) | 0.0136 (7) | 0.0017 (7) |
N2 | 0.0479 (8) | 0.0489 (8) | 0.0468 (8) | −0.0003 (6) | 0.0071 (7) | −0.0006 (7) |
C1 | 0.0469 (9) | 0.0403 (8) | 0.0521 (9) | 0.0048 (7) | 0.0040 (7) | 0.0032 (7) |
C2 | 0.0714 (13) | 0.0556 (11) | 0.0498 (10) | 0.0078 (10) | −0.0003 (9) | 0.0008 (9) |
N3 | 0.0658 (11) | 0.0633 (10) | 0.0556 (10) | 0.0006 (8) | 0.0026 (8) | −0.0041 (8) |
C3 | 0.0695 (14) | 0.0583 (12) | 0.0681 (13) | 0.0051 (10) | −0.0170 (11) | −0.0093 (10) |
C4 | 0.0478 (11) | 0.0521 (11) | 0.0911 (16) | −0.0028 (9) | −0.0055 (10) | −0.0061 (10) |
C5 | 0.0473 (10) | 0.0466 (10) | 0.0691 (12) | −0.0012 (8) | 0.0096 (9) | 0.0020 (9) |
C6 | 0.0433 (9) | 0.0393 (8) | 0.0509 (9) | 0.0033 (7) | 0.0041 (7) | 0.0011 (7) |
C7 | 0.0453 (9) | 0.0427 (9) | 0.0582 (10) | 0.0022 (7) | 0.0057 (8) | −0.0029 (8) |
C8 | 0.0489 (11) | 0.0524 (10) | 0.0715 (13) | −0.0021 (8) | 0.0041 (9) | −0.0132 (9) |
C9 | 0.0548 (11) | 0.0457 (9) | 0.0685 (11) | 0.0003 (8) | −0.0027 (9) | −0.0031 (9) |
C10 | 0.0558 (11) | 0.0662 (12) | 0.0622 (12) | 0.0003 (10) | −0.0053 (9) | −0.0056 (10) |
O1—C10 | 1.421 (2) | C3—C4 | 1.396 (3) |
O1—H1O | 0.90 (3) | C3—H3 | 0.9300 |
O2—N3 | 1.254 (2) | C4—C5 | 1.376 (3) |
O3—N3 | 1.211 (2) | C4—H4 | 0.9300 |
O4—N3 | 1.220 (2) | C5—C6 | 1.389 (2) |
N1—C7 | 1.329 (2) | C5—H5 | 0.9300 |
N1—C1 | 1.388 (2) | C7—C8 | 1.484 (2) |
N1—H1N | 0.91 (2) | C8—C9 | 1.521 (3) |
N2—C7 | 1.331 (2) | C8—H8A | 0.9700 |
N2—C6 | 1.384 (2) | C8—H8B | 0.9700 |
N2—H2N | 0.86 (2) | C9—C10 | 1.502 (3) |
C1—C6 | 1.386 (2) | C9—H9A | 0.9700 |
C1—C2 | 1.387 (3) | C9—H9B | 0.9700 |
C2—C3 | 1.365 (3) | C10—H10A | 0.9700 |
C2—H2 | 0.9300 | C10—H10B | 0.9700 |
C10—O1—H1O | 114.7 (19) | N2—C6—C1 | 106.33 (15) |
C7—N1—C1 | 109.37 (16) | N2—C6—C5 | 132.01 (17) |
C7—N1—H1N | 124.0 (14) | C1—C6—C5 | 121.66 (17) |
C1—N1—H1N | 126.4 (14) | N1—C7—N2 | 108.73 (16) |
C7—N2—C6 | 109.41 (15) | N1—C7—C8 | 125.51 (17) |
C7—N2—H2N | 125.0 (15) | N2—C7—C8 | 125.72 (17) |
C6—N2—H2N | 125.6 (15) | C7—C8—C9 | 112.10 (15) |
C6—C1—C2 | 121.46 (17) | C7—C8—H8A | 109.2 |
C6—C1—N1 | 106.16 (15) | C9—C8—H8A | 109.2 |
C2—C1—N1 | 132.37 (18) | C7—C8—H8B | 109.2 |
C3—C2—C1 | 116.80 (19) | C9—C8—H8B | 109.2 |
C3—C2—H2 | 121.6 | H8A—C8—H8B | 107.9 |
C1—C2—H2 | 121.6 | C10—C9—C8 | 112.27 (16) |
O3—N3—O4 | 123.2 (2) | C10—C9—H9A | 109.2 |
O3—N3—O2 | 118.34 (18) | C8—C9—H9A | 109.2 |
O4—N3—O2 | 118.47 (18) | C10—C9—H9B | 109.2 |
C2—C3—C4 | 122.06 (19) | C8—C9—H9B | 109.2 |
C2—C3—H3 | 119.0 | H9A—C9—H9B | 107.9 |
C4—C3—H3 | 119.0 | O1—C10—C9 | 110.57 (17) |
C5—C4—C3 | 121.47 (19) | O1—C10—H10A | 109.5 |
C5—C4—H4 | 119.3 | C9—C10—H10A | 109.5 |
C3—C4—H4 | 119.3 | O1—C10—H10B | 109.5 |
C4—C5—C6 | 116.53 (18) | C9—C10—H10B | 109.5 |
C4—C5—H5 | 121.7 | H10A—C10—H10B | 108.1 |
C6—C5—H5 | 121.7 | ||
C7—N1—C1—C6 | 0.46 (19) | N1—C1—C6—C5 | −179.68 (15) |
C7—N1—C1—C2 | −178.67 (19) | C4—C5—C6—N2 | −179.65 (17) |
C6—C1—C2—C3 | 0.4 (3) | C4—C5—C6—C1 | −0.3 (3) |
N1—C1—C2—C3 | 179.40 (19) | C1—N1—C7—N2 | −0.6 (2) |
C1—C2—C3—C4 | 0.4 (3) | C1—N1—C7—C8 | 177.29 (16) |
C2—C3—C4—C5 | −1.1 (3) | C6—N2—C7—N1 | 0.50 (19) |
C3—C4—C5—C6 | 1.0 (3) | C6—N2—C7—C8 | −177.38 (16) |
C7—N2—C6—C1 | −0.21 (18) | N1—C7—C8—C9 | −74.5 (2) |
C7—N2—C6—C5 | 179.26 (18) | N2—C7—C8—C9 | 103.1 (2) |
C2—C1—C6—N2 | 179.09 (16) | C7—C8—C9—C10 | −179.28 (17) |
N1—C1—C6—N2 | −0.15 (18) | C8—C9—C10—O1 | −62.3 (2) |
C2—C1—C6—C5 | −0.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O2 | 0.86 (2) | 1.90 (2) | 2.755 (2) | 173 (2) |
N1—H1N···O1i | 0.91 (2) | 1.78 (2) | 2.696 (2) | 177 (2) |
O1—H1O···O2ii | 0.90 (3) | 2.06 (3) | 2.866 (2) | 149 (3) |
O1—H1O···O4ii | 0.90 (3) | 2.14 (3) | 2.951 (3) | 150 (3) |
C5—H5···O4iii | 0.93 | 2.43 | 3.251 (3) | 147 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+3/2, y+1/2, −z+3/2; (iii) −x+1/2, y−1/2, −z+3/2. |
References
Bayar, I., Khedhiri, L., Soudani, S., Lefebvre, F., Ferretti, V. & Ben Nasr, C. (2018). J. Mol. Struct. 1161, 486–496. Web of Science CSD CrossRef CAS Google Scholar
Chen, S. H., Yang, F. R., Wang, M. T. & Wang, N. (2010). C. R. Chim. 13, 1391–1396. CSD CrossRef CAS Google Scholar
Chkirate, K., Karrouchi, K., Dege, N., Kheira Sebbar, N., Ejjoummany, A., Radi, S., Adarsh, N. N., Talbaoui, A., Ferbinteanu, M., Essassi, E. M. & Garcia, Y. (2020). New J. Chem. 44, 2210–2221. CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Elmali, A., Elerman, Y., Eren, G., Gümüş, F. & Svoboda, I. (2005). Z. Naturforsch. Teil B, 60, 164–168. CrossRef CAS Google Scholar
Fu, W.-W., Liu, Y.-Y., Zhang, Y.-H., Xu, L., Zhang, J.-L. & Wei, H.-B. (2016). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 46, 1857–1860. CSD CrossRef CAS Google Scholar
Gaba, M., Singh, S. & Mohan, C. (2014). Eur. J. Med. Chem. 76, 494–505. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Katti, S. A., Desai, K. S. & Loharkar, S. V. (2019). WJPR. 8, 1141–1151. CAS Google Scholar
Khabnadideh, S., Rezaei, Z., Pakshir, K., Zomorodian, K. & Ghafari, N. (2012). Res. Pharm. Sci. 7, 65–72. CAS PubMed Google Scholar
Kharitonova, M. I., Antonov, K. V., Fateev, I. V., Berzina, M. Ya., Kaushin, A. L., Paramonov, A. S., Kotovskaya, S. K., Andronova, V. L., Konstantinova, I. D., Galegov, G. A., Charushin, V. N. & Miroshnikov, A. I. (2017). Synthesis, 49, 1043–1052. CrossRef CAS Google Scholar
Liu, Z., Zheng, S. & Feng, S. (2015). Acta Cryst. E71, m5–m6. CSD CrossRef IUCr Journals Google Scholar
Mottillo, C. & Friščić, T. (2015). Chem. Commun. 51, 8924–8927. CSD CrossRef CAS Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pilipenko, A. T. & Tananaiko, M. M. (1983). Mixed-ligand and mixed-metal complexes and their application in analytical chemistry. Moscow: Chemistry. Google Scholar
Salahuddin, Shaharyar, M. & Mazumder, A. (2012). Arab. J. Chem. 10, S157–S173. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Turner CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net Google Scholar
Yan, Z. Z., Hou, N., Liang, H. D., Zhao, S. L. & Tang, Y. (2009). X-ray Struct. Anal. Online, 25, 31–32. CSD CrossRef CAS Google Scholar
Yu, Q.-Y., Cai, Y.-P. & Ng, S. W. (2007). Acta Cryst. E63, o881–o882. CSD CrossRef IUCr Journals Google Scholar
Zeng, M.-H., Yao, M.-X., Liang, H. & Ng, S. W. (2007). J. Coord. Chem. 60, 1983–1987. Web of Science CSD CrossRef CAS Google Scholar
Zhao, Y., Han, X., Yu, F., Wei, D., Cheng, Q., Meng, X., Ding, J. & Hou, H. (2019). Chem. Eur. J. 25, 5246–5250. CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.