research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (S)-N-methyl-1-phenyl­ethan-1-aminium chloride

crossmark logo

aTechnische Universität Dortmund, Fakultät Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 29 November 2021; accepted 28 December 2021; online 7 January 2022)

The title compound C9H14N+·Cl, (1), can be synthesized starting from (S)-N-methyl-1-phenyl­ethan-1-amine (2). Compound 2 upon addition of HCl·Et2O leads to crystallization of compound 1 as colorless blocks. The configuration of compound 1 is stable as well as preserved in space group P212121. Ammonium chlorides, like the title compound, are often observed as undesirable by-products in amino­silylation of chloro­silanes. Additionally, these by-products are usually soluble in selected organic solvents, which require difficult separation steps. Therefore, detailed studies on structural features and inter­molecular inter­actions performed by Hirshfeld atom refinement (HAR) using NoSpherA2 [Kleemiss et al. (2021[Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675-1692.]). Chem. Sci. 12, 1675–1692] and Hirshfeld surface analysis were used to address structural issues on that separation problem.

1. Chemical context

Chiral amines represent a central role in synthetic chemistry, finding more and more applications in asymmetric syntheses (Liu et al., 2020[Liu, Y., Yue, X., Li, L., Li, Z., Zhang, L., Pu, M., Yang, Z., Wang, C., Xiao, J. & Lei, M. (2020). Inorg. Chem. 59, 8404-8411.]). In addition to asymmetric inductions on double bonds of organic mol­ecules, they also serve as amination reagents of chloro­silanes (Wannagat & Klemke, 1979[Wannagat, U. & Klemke, S. (1979). Monatsh. Chem. 110, 2868-2881.]; Veith, 1987[Veith, M. (1987). Angew. Chem. Int. Ed. Engl. 26, 1-14.]). Next to meth­oxy­silanes, those chlorosilanes are the most important starting compounds for the synthesis of amino­silanes (Bauer & Strohmann, 2012[Bauer, J. O. & Strohmann, C. (2012). Chem. Commun. 48, 7212-7214.]). The title compound (S)-N-methyl-1-phenyl­ethan-1-aminium chloride (1), represents the ammonium chloride salt of (S)-N-methyl-1-phenyl­ethan-1-amine (2), which is often used as a chiral auxiliary in reagent inductions on prochiral silicon centers (Bauer & Strohmann, 2014[Bauer, J. O. & Strohmann, C. (2014). Angew. Chem. Int. Ed. 53, 8167-8171.]). Compound 2 and its derivatives are characterized by well-known methods of enanti­omeric resolution (Ingersoll, 1937[Ingersoll, W. A. (1937). Org. Synth. 17, 80.]; Baltzly & Russell, 1953[Baltzly, R. & Russell, P. B. (1953). J. Am. Chem. Soc. 75, 5598-5602.]). The synthesis of Si–N-functionalized silanes starting from chloro­silanes in combination with amines is also very well known (Sakaba et al., 2015[Sakaba, H., Tonosaki, H., Isozaki, K. & Kwon, E. (2015). Organometallics, 34, 1029-1037.]; Zibula et al., 2020[Zibula, L., Achternbosch, M., Wattenberg, J., Otte, F. & Strohmann, C. (2020). Z. Anorg. Allg. Chem. 646, 978-984.]). However, the formation of the undesirable ammonium chloride is often observed as a by-product, which is also soluble in small amounts of selected organic solvents. The corresponding reaction is shown in the scheme below.

[Scheme 1]

Compound 1 was crystallized for the first time and may be used to analyze supra­molecular inter­actions, in particular those which could be directly related to the aforementioned separation problem. To describe the positions of the hydrogen atoms as accurately as possible, all hydrogen atoms were refined anisotropically by NoSpherA2 (Kleemiss et al., 2021[Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675-1692.]).

2. Structural commentary

Compound 1 crystallized from diethyl ether at room temperature in the shape of colorless blocks with ortho­rhom­bic (P212121) symmetry. The absolute configuration of the chiral ammonium chloride 1 in the measured crystal can be assigned with the (S)-configuration using the Cahn–Ingold–Prelog (CIP) prioritization (Cahn et al., 1966[Cahn, R. S., Ingold, C. & Prelog, V. (1966). Angew. Chem. Int. Ed. Engl. 5, 385-415.]); the Flack parameter amounts to −0.03 (3) (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]). The mol­ecular structure of 1 is illustrated in Fig. 1[link]. All hydrogen atoms except H1b were refined using NoSpherA2 (Kleemiss et al., 2021[Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675-1692.]). No particularly large ellipsoids are observed here, whereas hydrogen atom H1b is highly deformed and distorted in anisotropic treatment. The substantial contribution from deformation of the electron density involving the chloride ion, which also includes polarization, may be responsible for the observed ellipsoidal shape of the hydrogen atom H1b. Thus it is difficult to deconvolute the effect of thermal motion in this inter­action and to model the same satisfactorily. Therefore, the hydrogen atom H1b was isotropically modeled for following analyses as shown in Fig. 1[link](a).

[Figure 1]
Figure 1
(a) The mol­ecular structure of 1 illustrated showing 50% displacement ellipsoids including. All hydrogen atoms except H1b were refined by Hirshfeld atom refinement (HAR) performed by NoSpherA2 implementation in OLEX2. (b) Visualization of the calculated structure of compound 1 with Molekel 4.3 performed at the M062X/6–31+G(d) levels.

In the literature, known Csp3—N bond lengths are in a range of 1.4816 (4) Å (N1—C3) and 1.5034 (4) Å (N1—C3), which are typical for most structurally analyzed ammonium salts (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). To discuss the bond distances in the solid-state structure, quantum chemical calculations were performed at the level M062X/6-31+G(d), which gave comparable results. The mol­ecular structure of compound 1 in the gas phase is shown in Fig. 1[link](b). All conformations were taken from the solid-state structure at the start of the optimization. The result of the calculation provides smaller Csp3—N bond lengths than from the solid-state structure in principle. The calculated bond lengths are 1.4762 Å (N1—C3) and 1.4946 Å (N1—C2).

Hydrogen-bond lengths as well as associated angles are shown in Table 1[link]. The calculated hydrogen bond of 1.7051 Å (N1—H1b⋯Cl1) was not described sufficiently with the addition of the used potential and basis set. Therefore, a large deviation can be observed from the analyzed distance compared to the crystal structure. Further analyses concerning supra­molecular inter­actions are discussed in detail in the next section.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1a⋯Cl1i 1.029 (6) 2.088 (6) 3.1075 (3) 170.4 (5)
N1—H1b⋯Cl1 1.031 (6) 2.062 (6) 3.0925 (4) 177.8 (5)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

The stereogenic carbon center features a tetra­hedral geometry, which is slightly distorted as shown by the angle of 107.44 (2)° (C1—C2—N1). However, the geometric distortion of a tetra­hedral carbon center has been observed in many compounds with different substituents (Xu et al., 2000[Xu, Z., Zhao, C. & Lin, Z. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 2319-2323.]).

3. Supra­molecular features

The crystal packing along the a-axis of compound 1 is shown in Fig. 2[link]. To analyze supra­molecular packing inter­actions in more detail, Hirshfeld surface analyses were performed. The Hirshfeld surface mapped over dnorm in the range from −0.5483 to 1.5337 arbitrary units generated by CrystalExplorer2021 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackmann, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17, University of Western Australia.]) is shown in Fig. 3[link]. Fingerprint plots, which are illustrated in Fig. 4[link], were also generated by CrystalExplorer2021. First, the crystal structure was analyzed to clarify for the influence of hydrogen bonds. Particularly noticeable on the Hirshfeld surface are C—H⋯Cl contacts, which are shown in red on the potential surface in Fig. 3[link].

[Figure 2]
Figure 2
A view along the a-axis direction of the crystal packing of compound 1. Selected hydrogen-bond lengths (in Å) are indicated.
[Figure 3]
Figure 3
Hirshfeld surface of compound 1 generated by CrystalExplorer21.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots of compound 1 showing close contacts of (a) all contributions in the crystal and those delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) Cl⋯H/H⋯Cl-inter­actions. Symmetry codes: (i) [{1\over 2}] − x, −y, [{1\over 2}] + z; (ii) −x, [{1\over 2}] + y, [{1\over 2}] − z; (iii) [{1\over 2}] + x, [{1\over 2}] − y, −z.

The primary share of 66.9% can be assigned to weak van der Waals H⋯H contacts, which should play a minor role in terms of crystal packing. In contrast, Cl⋯H/H⋯Cl contacts in particular, which represent the smallest fraction of inter­actions (15.1%), however represent the most intense contacts on the surface (Fig. 4[link]). Hydrogen bonds with a length up to 2.200 Å are shown in Table 1[link]. The analysis of the hydrogen-bonding network leads to the result that all hydrogen bridges can be assigned to one graph-set motif. Both hydrogen bonds in Table 1[link] can be assigned D11 (2) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

In addition to the influence of C—H⋯Cl contacts, the influence of possible π-inter­actions was analyzed by CrystalExplorer2021. As can be seen in Fig. 2[link], compound 1 forms one-dimensional chains along the a-axis direction in the crystal structure. These can be attributed to the strong C—H⋯Cl inter­actions already mentioned, as well as additional C—H⋯π inter­actions, which are illustrated in Fig. 2[link]. Consequently, these π-inter­actions could contribute a significant part to the crystal packing structure. However, C—H⋯π contacts are only weakly visible on the Hirshfeld surface.

4. Database survey

There are some crystallographically characterized examples based on the structure of compound 1. Depicted examples found in Cambridge Structural Database (WebCSD, November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) include N,N′-bis­(1-phenyl­eth­yl)cyclo­hex-4-ene-1,2-diaminium dichloride monohydrate, C22H32N2O2Cl (CSD refcode KIZHIM; Savoia et al., 2014[Savoia, D., Balestri, D., Grilli, S. & Monari, M. (2014). Eur. J. Org. Chem. 2014, 1907-1914.]), 2-(eth­oxy­carbon­yl)-N-(1-phenyl­eth­yl)cyclo­pent­an-1-aminium chloride, C16H24ClNO2 (BAJSIS; Lee et al., 2021[Lee, H.-S., Kim, J. & Lim, D. (2021). CSD Communication (refcode: BAJSIS). CCDC, Cambridge, England.]), N-[(R)-(cyclo­hexan-(R)-2-ol)]-(R)-a-methyl­benzyl ammonium chloride, C14H22NOCl (TAYWOF; Barbaro et al., 1996[Barbaro, P., Bianchini, C. & Sernau, V. (1996). Tetrahedron Asymmetry, 7, 843-850.]), [2-(1H-inden-3-yl)eth­yl][(1R)-1-phenyl­eth­yl]ammo­nium chloride, C19H22NCl (GOGCUC; Ross et al., 2015[Ross, J. H., Rohjans, S. H., Schmidtmann, M. & Doye, S. (2015). Arkivoc, 2015, 76-92.]), cis-(aR,1R,2S)-2-meth­oxy-1-(1-phenyl­ethyl­amino)­cyclo­penta­ne­carboxamide hydro­chloride, C15H23N2O2Cl (NAFZIE; Meyer et al., 2004[Meyer, U., Breitling, E., Bisel, P. & Frahm, A. W. (2004). Tetrahedron Asymmetry, 15, 2029-2037.]). A comparison with the last two structures mentioned shows that compound 1 is characterized by partic­ularly short C—H⋯Cl (2.0-2.1 Å) hydrogen bonds. The smallest observed hydrogen bond of the two literature known compounds amounts to 2.2 Å. These longer distances could be due to the more sterically demanding substituents, which are less pronounced in compound 1. Moreover, in terms of the crystal packing, the compounds do not exhibit one-dimensional chains, as C—H⋯π contacts were not observed. This unique feature of (S)-N-methyl-1-phenyl­ethan-1-aminium chloride (1), which does not appear in the literature compounds, could again be attributed to the steric crowding of the other compounds.

5. Synthesis and crystallization

The reaction scheme for the synthesis of compound 1 is illustrated in the scheme below. (S)-N-methyl-1-phenyl­ethan-1-amine (2) (1.48 mmol) was dissolved in diethyl ether (5 mL). A 2 M solution of HCl in diethyl ether (1.78 mmol) was added dropwise. The solution was stored at 298 K for three days. Afterwards all volatile compounds were removed and the raw product was washed with cold n-pentane (1 ml). (S)-N-methyl-1-phenyl­ethan-1-aminium chloride (1) was isolated as colorless crystalline plates.

[Scheme 2]

1H NMR (300.13 MHz, CDCl3): δ = 1.88 (s, 3H, CHCH3), 2.46 (s, 3H, NCH3), 1.65–1.90 (br. s, 1H, CHCH3), 7.38–7.45 (m, 3H, CHar, meta, CHar, para), 7.60 (d, 2H, 3JH–H = 3.9 Hz, CHar, ortho), 9.78 (br. s, 1H, NH⋯Cl), 10.17 (br. s, 1H, NH⋯Cl) ppm.

{1H}13C NMR (100.64 MHz, CDCl3): δ = 20.5 (1C, CHCH3), 31.0 (1C, CHCH3), 60.2 (2C, NCH3), 127.9 (2C, CorthoHar), 129.5 (2C, CmetaHar), 135.6 (1C, CparaHar) ppm.

CHN analysis: calculated: C = 62.97%, H = 8.22% N = 8.16%; Found: C = 62.6%, H = 7.9%, N = 7.8%.

Rf: (CH2Cl2 / MeOH; 10:1) = 0.20.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms except H1b were refined freely using independent values of each Uiso(H). Hirshfeld atom refinements (HAR; Fugel et al., 2018[Fugel, M., Jayatilaka, D., Hupf, E., Overgaard, J., Hathwar, V. R., Macchi, P., Turner, M. J., Howard, J. A. K., Dolomanov, O. V., Puschmann, H., Iversen, B. B., Bürgi, H.-B. & Grabowsky, S. (2018). IUCrJ, 5, 32-44.]) was performed with the NoSpherA2 (Kleemiss et al., 2021[Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675-1692.]) implementation in OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), using the restricted Khom–Sham method with the PBE-functional (Perdew et al., 1996[Perdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865-3868.]) and basis set def2-SVP (Weigend & Ahlrichs, 2005[Weigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297-3305.]). For the HAR approach, all H atoms except H1b were refined anisotropically and independently. Atom H1b was refined freely without using HAR by NoSpherA2.

Table 2
Experimental details

Crystal data
Chemical formula C9H14N+·Cl
Mr 171.67
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 6.7723 (6), 7.1806 (5), 20.542 (2)
V3) 998.96 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.32
Crystal size (mm) 0.48 × 0.39 × 0.37
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2021[Bruker (2021). APEX4, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.602, 0.650
No. of measured, independent and observed [I ≥ 2σ(I)] reflections 45327, 4856, 4785
Rint 0.026
(sin θ/λ)max−1) 0.834
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.011, 0.024, 1.14
No. of reflections 4856
No. of parameters 221
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.22
Absolute structure Hooft et al., 2010[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2010). J. Appl. Cryst. 43, 665-668.]
Absolute structure parameter −0.011 (7)
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), CrystalExplorer21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackmann, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17, University of Western Australia.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), NoSpherA2 (Kleemiss et al., 2021[Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675-1692.]), GaussView 6.016 (Frisch et al., 2016[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Far kas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 09. Revision A.02. Gaussian, Inc., Wallingford, CT, USA.]), Gaussian 09 (Frisch et al., 2016[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Far kas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 09. Revision A.02. Gaussian, Inc., Wallingford, CT, USA.]), Molekel 4.3 (Flükiger et al., 2000[Flükiger, P., Lüthi, H. P., Portmann, S. & Weber, J. (2000). MOLEKEL 4.3. Swiss Center for Scientific Computing, Manno, Switzerland.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Cell refinement: SAINT (Bruker, 2021); data reduction: APEX4 (Bruker, 2021); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: APEX4 (Bruker, 2021), CrystalExplorer21 (Spackman et al., 2021; Turner et al., 2017), publCIF (Westrip, 2010), Mercury (Macrae et al., 2020), NoSpherA2 (Kleemiss et al., 2021), GaussView 6.016 (Frisch et al., 2016), Gaussian 09 Revision A.02 (Frisch et al., 2016), Molekel 4.3 (Flükiger et al., 2000), PLATON (Spek, 2020).

(S)-N-Methyl-1-phenylethan-1-aminium chloride top
Crystal data top
C9H14N+·ClDx = 1.141 Mg m3
Mr = 171.67Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1282 reflections
a = 6.7723 (6) Åθ = 3.2–30.5°
b = 7.1806 (5) ŵ = 0.32 mm1
c = 20.542 (2) ÅT = 100 K
V = 998.96 (16) Å3Block, colourless
Z = 40.48 × 0.39 × 0.37 mm
F(000) = 368.574
Data collection top
Bruker D8 Venture
diffractometer
4785 reflections with I 2σ(I)
Detector resolution: 10.4167 pixels mm-1Rint = 0.026
ω and φ scansθmax = 36.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2021)
h = 1111
Tmin = 0.602, Tmax = 0.650k = 1111
45327 measured reflectionsl = 3434
4856 independent reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.011 w = 1/[σ2(Fo2) + (0.0056P)2 + 0.0168P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.024(Δ/σ)max = 0.001
S = 1.14Δρmax = 0.14 e Å3
4856 reflectionsΔρmin = 0.22 e Å3
221 parametersAbsolute structure: Hooft et al., 2010
0 restraintsAbsolute structure parameter: 0.011 (7)
0 constraints
Special details top

Refinement. Refinement using NoSpherA2, an implementation of NOn-SPHERical Atom-form-factors in Olex2. 2021 NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors. Hydrogen atom H1b was refined isotropically and freely without using calculated ED. Distances and Angles concerning H1b were evaluated by PLATON.

The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either Hartree-Fock or DFT using selected funtionals - for a fragment of the crystal. This fragment can be embedded in an electrostatic crystal field by employing cluster charges or modelled using implicit solvation models, depending on the software used. The following options were used: SOFTWARE: Olex2 1.5 alpha, B1387_0m.wfn as wfn-file, PARTITIONING: NoSpherA2, INT ACCURACY: Normal, METHOD: PBE, BASIS SET: def2-SVP, CHARGE: 0, MULTIPLICITY: 1, DATE: 2021.12.08_16:09:30.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.592521 (11)0.543691 (10)0.179385 (3)0.016339 (15)
N10.41684 (4)0.47620 (3)0.316327 (11)0.01307 (4)
H1a0.4079 (9)0.3344 (8)0.3230 (3)0.0295 (14)
H1b0.4763 (8)0.4952 (8)0.2706 (3)0.0192 (14)*
C10.09588 (5)0.45714 (5)0.262760 (15)0.01939 (5)
H1c0.1708 (9)0.4643 (10)0.2151 (3)0.0406 (16)
H1d0.0800 (10)0.3125 (8)0.2759 (3)0.0423 (17)
H1e0.0497 (8)0.5137 (10)0.2588 (3)0.0407 (17)
C20.21347 (4)0.56000 (4)0.314781 (13)0.01314 (4)
H20.2339 (7)0.7048 (6)0.3009 (2)0.0231 (12)
C30.55360 (4)0.55695 (5)0.365038 (15)0.01794 (5)
H3a0.5664 (10)0.7052 (8)0.3574 (3)0.0433 (17)
H3b0.4987 (8)0.5322 (10)0.4134 (3)0.0409 (16)
H3c0.6979 (9)0.4918 (9)0.3592 (3)0.0420 (18)
C40.11585 (4)0.55281 (5)0.380803 (13)0.01459 (4)
C50.10068 (6)0.38632 (5)0.415554 (17)0.02390 (6)
H50.1630 (10)0.2592 (8)0.3963 (3)0.0438 (17)
C60.00496 (6)0.38292 (6)0.47550 (2)0.02996 (8)
H60.0039 (10)0.2515 (11)0.5014 (4)0.062 (2)
C70.07980 (5)0.54394 (7)0.500661 (15)0.02628 (6)
H70.1515 (9)0.5389 (10)0.5478 (3)0.0464 (17)
C80.06743 (5)0.70924 (5)0.465812 (16)0.02150 (6)
H80.1335 (10)0.8354 (8)0.4853 (3)0.0462 (18)
C90.03231 (5)0.71413 (5)0.406506 (15)0.01653 (5)
H90.0436 (8)0.8430 (8)0.3791 (3)0.0330 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02160 (3)0.01263 (2)0.01478 (2)0.00082 (3)0.00376 (2)0.00023 (2)
N10.01278 (8)0.01374 (9)0.01268 (8)0.00043 (8)0.00098 (8)0.00014 (8)
H1a0.028 (3)0.022 (3)0.038 (4)0.001 (3)0.002 (3)0.005 (3)
C10.01783 (11)0.02068 (12)0.01965 (11)0.00110 (14)0.00559 (11)0.00209 (11)
H1c0.034 (3)0.067 (5)0.021 (3)0.008 (4)0.006 (3)0.008 (3)
H1d0.051 (4)0.033 (4)0.043 (4)0.011 (3)0.024 (4)0.002 (3)
H1e0.020 (3)0.055 (5)0.047 (4)0.007 (3)0.014 (3)0.004 (3)
C20.01310 (9)0.01303 (10)0.01329 (10)0.00042 (8)0.00041 (8)0.00049 (9)
H20.023 (3)0.016 (3)0.031 (3)0.003 (2)0.003 (2)0.003 (2)
C30.01450 (11)0.01998 (13)0.01934 (12)0.00051 (10)0.00309 (9)0.00190 (11)
H3a0.049 (4)0.016 (3)0.065 (4)0.005 (3)0.015 (4)0.003 (3)
H3b0.030 (3)0.065 (5)0.028 (3)0.009 (4)0.001 (3)0.001 (3)
H3c0.026 (3)0.059 (5)0.041 (4)0.015 (3)0.003 (3)0.015 (3)
C40.01291 (10)0.01579 (11)0.01505 (10)0.00125 (10)0.00171 (8)0.00135 (10)
C50.02478 (14)0.02138 (14)0.02555 (14)0.00664 (13)0.01142 (13)0.00891 (12)
H50.059 (4)0.028 (3)0.045 (4)0.009 (3)0.020 (3)0.014 (3)
C60.02922 (17)0.03372 (19)0.02696 (17)0.00858 (15)0.01400 (14)0.01358 (15)
H60.071 (5)0.050 (4)0.066 (4)0.026 (4)0.034 (4)0.036 (4)
C70.02098 (13)0.03984 (18)0.01803 (12)0.00485 (17)0.00607 (11)0.00307 (14)
H70.049 (4)0.062 (4)0.028 (3)0.005 (4)0.020 (3)0.005 (3)
C80.01775 (13)0.02930 (15)0.01743 (12)0.00201 (12)0.00142 (10)0.00627 (12)
H80.058 (5)0.036 (4)0.045 (4)0.009 (3)0.016 (4)0.011 (3)
C90.01530 (11)0.01815 (13)0.01614 (11)0.00065 (10)0.00044 (9)0.00345 (10)
H90.026 (3)0.034 (3)0.039 (3)0.001 (3)0.006 (3)0.003 (3)
Geometric parameters (Å, º) top
N1—H1a1.029 (6)C3—H3c1.090 (6)
N1—H1b1.031 (6)C4—C51.3962 (4)
N1—C21.5034 (4)C4—C91.3931 (4)
N1—C31.4816 (4)C5—H51.080 (6)
C1—H1c1.104 (6)C5—C61.3919 (5)
C1—H1d1.079 (6)C6—H61.085 (7)
C1—H1e1.070 (5)C6—C71.3905 (6)
C1—C21.5237 (4)C7—H71.084 (5)
C2—H21.087 (4)C7—C81.3886 (6)
C2—C41.5097 (4)C8—H81.087 (6)
C3—H3a1.080 (6)C8—C91.3935 (5)
C3—H3b1.075 (5)C9—H91.086 (6)
H1b—N1—H1a106.0 (5)H3c—C3—N1108.5 (3)
C2—N1—H1a110.2 (3)H3c—C3—H3a109.6 (5)
C2—N1—H1b106.6 (3)H3c—C3—H3b109.9 (4)
C3—N1—H1a109.5 (3)C5—C4—C2121.39 (3)
C3—N1—H1b108.6 (3)C9—C4—C2119.33 (3)
C3—N1—C2115.49 (2)C9—C4—C5119.23 (3)
H1d—C1—H1c108.3 (5)H5—C5—C4120.5 (3)
H1e—C1—H1c109.8 (4)C6—C5—C4120.11 (3)
H1e—C1—H1d107.0 (5)C6—C5—H5119.4 (3)
C2—C1—H1c111.1 (3)H6—C6—C5118.4 (4)
C2—C1—H1d110.0 (3)C7—C6—C5120.44 (4)
C2—C1—H1e110.6 (3)C7—C6—H6121.2 (4)
C1—C2—N1107.44 (2)H7—C7—C6119.3 (4)
H2—C2—N1105.8 (3)C8—C7—C6119.62 (3)
H2—C2—C1110.3 (3)C8—C7—H7121.1 (4)
C4—C2—N1111.62 (2)H8—C8—C7119.9 (3)
C4—C2—C1112.62 (2)C9—C8—C7120.10 (3)
C4—C2—H2108.9 (2)C9—C8—H8120.0 (3)
H3a—C3—N1109.7 (3)C8—C9—C4120.48 (3)
H3b—C3—N1110.1 (3)H9—C9—C4118.9 (3)
H3b—C3—H3a109.0 (5)H9—C9—C8120.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1a···Cl1i1.029 (6)2.088 (6)3.1075 (3)170.4 (5)
N1—H1b···Cl11.031 (6)2.062 (6)3.0925 (4)177.8 (5)
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

J-LK, LB and CS thank the Fonds der Chemischen Industrie for two doctoral fellowships.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBaltzly, R. & Russell, P. B. (1953). J. Am. Chem. Soc. 75, 5598–5602.  CrossRef CAS Web of Science Google Scholar
First citationBarbaro, P., Bianchini, C. & Sernau, V. (1996). Tetrahedron Asymmetry, 7, 843–850.  CSD CrossRef CAS Web of Science Google Scholar
First citationBauer, J. O. & Strohmann, C. (2012). Chem. Commun. 48, 7212–7214.  Web of Science CSD CrossRef CAS Google Scholar
First citationBauer, J. O. & Strohmann, C. (2014). Angew. Chem. Int. Ed. 53, 8167–8171.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2021). APEX4, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCahn, R. S., Ingold, C. & Prelog, V. (1966). Angew. Chem. Int. Ed. Engl. 5, 385–415.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlükiger, P., Lüthi, H. P., Portmann, S. & Weber, J. (2000). MOLEKEL 4.3. Swiss Center for Scientific Computing, Manno, Switzerland.  Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Far kas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 09. Revision A.02. Gaussian, Inc., Wallingford, CT, USA.  Google Scholar
First citationFugel, M., Jayatilaka, D., Hupf, E., Overgaard, J., Hathwar, V. R., Macchi, P., Turner, M. J., Howard, J. A. K., Dolomanov, O. V., Puschmann, H., Iversen, B. B., Bürgi, H.-B. & Grabowsky, S. (2018). IUCrJ, 5, 32–44.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2010). J. Appl. Cryst. 43, 665–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIngersoll, W. A. (1937). Org. Synth. 17, 80.  Google Scholar
First citationKleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, H.-S., Kim, J. & Lim, D. (2021). CSD Communication (refcode: BAJSIS). CCDC, Cambridge, England.  Google Scholar
First citationLiu, Y., Yue, X., Li, L., Li, Z., Zhang, L., Pu, M., Yang, Z., Wang, C., Xiao, J. & Lei, M. (2020). Inorg. Chem. 59, 8404–8411.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeyer, U., Breitling, E., Bisel, P. & Frahm, A. W. (2004). Tetrahedron Asymmetry, 15, 2029–2037.  Web of Science CSD CrossRef CAS Google Scholar
First citationPerdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865–3868.  CrossRef PubMed CAS Web of Science Google Scholar
First citationRoss, J. H., Rohjans, S. H., Schmidtmann, M. & Doye, S. (2015). Arkivoc, 2015, 76–92.  Web of Science CSD CrossRef Google Scholar
First citationSakaba, H., Tonosaki, H., Isozaki, K. & Kwon, E. (2015). Organometallics, 34, 1029–1037.  Web of Science CSD CrossRef CAS Google Scholar
First citationSavoia, D., Balestri, D., Grilli, S. & Monari, M. (2014). Eur. J. Org. Chem. 2014, 1907–1914.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackmann, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17, University of Western Australia.  Google Scholar
First citationVeith, M. (1987). Angew. Chem. Int. Ed. Engl. 26, 1–14.  CrossRef Web of Science Google Scholar
First citationWannagat, U. & Klemke, S. (1979). Monatsh. Chem. 110, 2868–2881.  Google Scholar
First citationWeigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297–3305.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Z., Zhao, C. & Lin, Z. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 2319–2323.  Web of Science CrossRef Google Scholar
First citationZibula, L., Achternbosch, M., Wattenberg, J., Otte, F. & Strohmann, C. (2020). Z. Anorg. Allg. Chem. 646, 978–984.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds