research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Amino-1H-benzimidazole-2(3H)-thione: mol­ecular, crystal structure and Hirshfeld surface analysis

crossmark logo

aNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St, Tashkent, 100174, Uzbekistan, bUzbekistan–Japan Innovation Center of Youth, University Street 2B, 100095, Tashkent, Uzbekistan, and cState Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, 60 Nauky ave., 61001 Kharkiv, Ukraine
*Correspondence e-mail: d.rakhmonova81@mail.ru

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 3 November 2021; accepted 23 January 2022; online 28 January 2022)

The title compound, C7H7N3S, which has potential biological activity, can be used as a ligand in metal complexation. This compound exists as the thione tautomer in the crystal phase, which is confirmed by the study of its mol­ecular structure. The amino group has pyramidal configuration. In the crystal phase, the two independent mol­ecules in the asymmetric unit form tetra­mers as a result of N—H⋯S hydrogen bonds. These tetra­mers are linked by N—H⋯N hydrogen bonds, forming chains/tubes in the [010] direction. The Hirshfeld surface analysis showed that the highest contribution to the total surface is provided by H⋯H inter­actions as well as S⋯H/H⋯S and C⋯H/H⋯C contacts associated with X—H⋯S hydrogen bonds and X—H⋯C(π) inter­actions.

1. Chemical context

Benzimidazoles belong to an important class of heterocyclic compounds because of their wide spectra of biological activity. In particular, benzimidazole derivatives are known to possess anti­bacterial (Chkirate et al., 2020[Chkirate, K., Karrouchi, K., Dege, N., Sebbar, N. K., Ejjoummany, A., Radi, S., Adarsh, N. N., Talbaoui, A., Ferbinteanu, M., Essassi, E. M. & Garcia, Y. (2020). New J. Chem. 44, 2210-2221.]), anti­microbial (Alam et al., 2014[Alam, F., Dey, B. K., Sharma, K., Chakraborty, A. & Kalita, P. (2014). Int. J. Drug Res. Tech. 4(3), 31-38.]), anti­tumor (Kharitonova et al., 2018[Kharitonova, M. I., Konstantinova, I. D. & Miroshnikov, A. I. (2018). Russ. Chem. Rev. 87, 1111-1138.]; Galal et al., 2010[Galal, S. A., Hegab, K. H., Hashem, A. M. & Youssef, N. S. (2010). Eur. J. Med. Chem. 45, 5685-5691.]), anti-inflammatory (Rathore et al., 2017[Rathore, A., Sudhakar, R., Ahsan, M. J., Ali, A., Subbarao, N., Jadav, S. S., Umar, S. & Yar, M. S. (2017). Bioorg. Chem. 70, 107-117.]), anti­oxidant (Anastassova et al., 2017[Anastassova, N., Mavrova, A., Yancheva, D., Kondeva-Burdina, M., Tzankova, V., Stoyanov, S., Shivachev, B. L. & Nikolova, R. P. (2017). Arab. J. Chem. 11, 353-369.]), anthelmintic (Kenchappa et al., 2017[Kenchappa, R., Bodke, Y. D., Telkar, S. & Aruna Sindhe, M. (2017). J. Chem. Biol. 10, 11-23.]), anti­fungal and cytotoxic (Leila et al., 2019[Leila, Z., Zeinab, F., Kamiar, Z., Fatemeh Bi Bi, M., Asghar, J. & Soghra, K. (2019). Res. Pharma. Sci. 14, 504-514.]) activity. They are also important as starting materials for terminal alkyne cyclo­trimerization reactions (Xi et al., 2013[Xi, C., Sun, Z. & Liu, Y. (2013). Dalton Trans. 42, 13327-13330.]) and are used as highly active catalysts for ethyl­ene oligomerization (Haghverdi et al., 2018[Haghverdi, M., Tadjarodi, A., Bahri-Laleh, N. & Nekoomanesh-Haghighi, M. (2018). Appl. Organomet. Chem. 32, e4015.]). The synthesis of 2-amino-1,3-benzimidazole-2-thione has been reported, prepared by first treating o-phenyl­enedi­amine CS2 in the presence of KOH under microwave irradiation to give the inter­mediate 1,3-benzimidazole-2-thione. Nitration of the inter­mediate followed by reduction of the nitro group with iron powder and concentrated hydro­chloric acid gave 2-amino-1,3-benzimidazole-2-thione in a moderately good yield (Samanta et al., 2013[Samanta, S., Lim, T. L. & Lam, Y. (2013). ChemMedChem, 8, 994-1001.]; Ahamed et al., 2013[Ahamed, M. R., Narren, S. F. & Sadiq, A. S. (2013). J. Al-Nahrain Uni. 16, 77-83.]). Taking into account the possible biological activity of the obtained compound, it is important to study its mol­ecular and crystal structures.

2. Structural commentary

Two independent mol­ecules (A and B) comprise the asymmetric unit of the title compound (Fig. 1[link]). The mol­ecules slightly differ from each other in their degree of planarity: all non-hydrogen atoms lie in the same plane with an accuracy of 0.05 Å in mol­ecule A and with an accuracy of 0.02 Å in mol­ecule B. Analysis of the mol­ecular structure revealed that the C=S tautomer is found in the crystal, as confirmed by the length of the C7—S1 bond [1.687 (3) Å in mol­ecule A and 1.684 (3) Å in mol­ecule B], the equal lengths of the C7—N1 and C7—N2 bonds [1.345 (3) and 1.347 (3) Å in mol­ecule A and 1.351 (3) and 1.349 (3) Å in mol­ecule B] and the localization of hydrogen atoms at all the nitro­gen atoms from the electron-density difference maps. The amino groups in both mol­ecules are pyramidal, the sum of the bond angles centered at the nitro­gen atom is 331.5° in mol­ecule A and 340.9° in mol­ecule B.

[Scheme 1]
[Figure 1]
Figure 1
Mol­ecular structures of mol­ecules A and B showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules form tetra­mers as a result of the N2A—H2NA⋯S1B and N2B—H2NB⋯S1A hydrogen bonds (Fig. 2[link], Table 1[link]). The tetra­mers are linked by N1A⋯H1NA—N3B and N1B—H1NB⋯N3A hydrogen bonds, forming a tube in the [010] direction (Figs. 3[link] and 4[link]). Adjacent tubes are connected by weaker N—H⋯C(π), C—H⋯S, N—H⋯S and C—H⋯C(π) inter­actions (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯N3B 0.80 (3) 2.06 (3) 2.856 (3) 176 (3)
N2A—H2NA⋯S1Bi 0.82 (3) 2.54 (3) 3.295 (2) 154 (3)
N3A—H3NA⋯S1Aii 0.84 (4) 2.75 (4) 3.551 (3) 159 (3)
N3A—H3NB⋯C4Biii 0.89 (4) 2.71 (4) 3.483 (4) 145 (3)
N3A—H3NB⋯C5Biii 0.89 (4) 2.81 (4) 3.643 (4) 155 (3)
N1B—H1NB⋯N3Aiv 0.88 (3) 2.02 (3) 2.884 (3) 171 (3)
N2B—H2NB⋯S1Av 0.85 (3) 2.56 (3) 3.340 (2) 153 (3)
N3B—H3NC⋯S1Bvi 0.86 (3) 2.91 (3) 3.672 (3) 149 (2)
N3B—H3ND⋯S1Bvii 0.85 (3) 2.70 (3) 3.477 (3) 153 (3)
C5A—H5A⋯S1Aviii 0.96 (3) 2.96 (3) 3.656 (3) 130.2 (19)
C5B—H5B⋯C1Aii 0.90 (3) 2.78 (3) 3.562 (4) 147 (3)
Symmetry codes: (i) [-x+1, y+1, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) [-x+1, y, -z+{\script{1\over 2}}]; (v) [x, y-1, z]; (vi) [-x+1, -y+1, -z]; (vii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (viii) [x, -y+2, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Tetra­mer of mol­ecules A and B formed by N2A—H2NA⋯S1B and N2B—H2NB⋯S1A hydrogen bonds.
[Figure 3]
Figure 3
Chain/tube of tetra­mers linked by N1A⋯H1NA—N3B and N1B—H1NB⋯N3A hydrogen bonds.
[Figure 4]
Figure 4
Projection of a tube in the b-axis direction.

4. Hirshfeld surface analysis

One of the modern methods for analysing inter­molecular inter­actions is Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net]), which allows analysis of the inter­actions between mol­ecules in a qu­anti­tative manner. The Hirshfeld surfaces of mol­ecules A and B mapped over dnorm proved to be very similar (Fig. 5[link]). The red spots indicating strong inter­actions are found at both hydrogen atoms of the NH fragments as well as in the area of the nitro­gen lone pair of the amino group. In addition, red spots are seen at the sulfur atom.

[Figure 5]
Figure 5
Hirshfeld surfaces mapped over dnorm calculated for mol­ecules A and B.

Analysis of the fingerprint plots showed the presence of strong inter­molecular inter­actions indicated as sharp spikes (Fig. 6[link]a, 6b). The most significant contribution to the total Hirshfeld surface is provided by H⋯H inter­actions in both mol­ecules (Fig. 6[link]c, 6g). The contributions of S⋯H/H⋯S and C⋯H/H⋯C inter­actions associated with X—H⋯S and X—H⋯C (π) hydrogen bonds are similar (Fig. 6[link]di). Surprisingly, the contribution of N⋯H/H⋯N inter­actions proved to be the lowest (Fig. 6[link]f, 6j). It may be explained by the participation of the nitro­gen lone pair in hydrogen bonding as a proton acceptor.

[Figure 6]
Figure 6
Two-dimensional Hirshfeld fingerprint plot of all contacts for mol­ecules A (a) and B (b) and those delineated into H⋯H (c, g), S⋯H/H⋯S (d, h), C⋯H/H⋯C (e, i) and N⋯·H/H⋯N (f, j) contacts.

5. Database survey

A search of the Cambridge Structural Database (Version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed the structure of the monohydrate of the title compound (ODAXID; Hadjikakou & Light, 2016[Hadjikakou, S. & Light, M. E. (2016). Private communication (refcode ODAXID). CCDC, Cambridge, England.]). It should be noted that the amino group was refined as planar in this structure. However, analysis of the inter­molecular inter­actions showed that this amino group participates in a hydrogen bond with the hydrate water mol­ecule as a proton acceptor. Such a hydrogen bonding has to result in pyramidalization of the amino group. To check this presumption, we have optimized the ODAXID structure with a periodic boundary using the PBE functional (Adamo & Barone, 1999[Adamo, C. & Barone, V. (1999). J. Chem. Phys. 110, 6158-6170.]) within Quantum Espresso (Giannozzi et al., 2009[Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P. & Wentzcovitch, R. M. (2009). J. Phys. Condens. Matter, 21, 395502.], 2017[Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., de Gironcoli, S., Delugas, P., DiStasio, R. A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H. Y., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N. L., Nguyen, H. V., Otero-de-la-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A. P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X. & Baroni, S. (2017). J. Phys. Condens. Matter, 29, 465901.]). The unit-cell parameters were fixed while the mol­ecular structures of both mol­ecules found in the asymmetric unit were optimized. The result of this optimization shows that the amino group has to be pyramidal (Fig. 7[link]).

[Figure 7]
Figure 7
Configuration of the amino group in the structure of ODAXID calculated from the experimental data (Hadjikakou & Light, 2016[Hadjikakou, S. & Light, M. E. (2016). Private communication (refcode ODAXID). CCDC, Cambridge, England.]) and obtained after optimization with a periodic boundary.

6. Crystallization

5-Amino-1H-benzimidazole-2(3H)-thione was purchased from Sigma-Aldrich for use as a ligand in complexation with metals. The reaction of the title compound with nickel acetate in an aqueous alcoholic medium did not result in complex formation. The formed colourless needle-like crystals proved to be anhydrous form of the ligand with Tmelt. = 513–517 K.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All the hydrogen atoms were located in difference-Fourier maps and refined using an isotropic approximation.

Table 2
Experimental details

Crystal data
Chemical formula C7H7N3S
Mr 165.22
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 16.1179 (14), 11.8796 (11), 16.5649 (15)
β (°) 91.974 (8)
V3) 3169.9 (5)
Z 16
Radiation type Mo Kα
μ (mm−1) 0.34
Crystal size (mm) 0.80 × 0.26 × 0.08
 
Data collection
Diffractometer Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.370, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12390, 2787, 2417
Rint 0.079
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.138, 1.05
No. of reflections 2787
No. of parameters 255
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.33, −0.27
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and Olex2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

5-Amino-1H-benzimidazole-2(3H)-thione top
Crystal data top
C7H7N3SF(000) = 1376
Mr = 165.22Dx = 1.385 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.1179 (14) ÅCell parameters from 2937 reflections
b = 11.8796 (11) Åθ = 3.5–26.9°
c = 16.5649 (15) ŵ = 0.34 mm1
β = 91.974 (8)°T = 293 K
V = 3169.9 (5) Å3Plate, colorless
Z = 160.80 × 0.26 × 0.08 mm
Data collection top
Xcalibur, Sapphire3
diffractometer
2787 independent reflections
Radiation source: Enhance (Mo) X-ray Source2417 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.079
ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 1918
Tmin = 0.370, Tmax = 1.000k = 1414
12390 measured reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052All H-atom parameters refined
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0719P)2 + 1.8442P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2787 reflectionsΔρmax = 0.33 e Å3
255 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1B0.37352 (5)0.24474 (6)0.14471 (5)0.0546 (3)
N1B0.44866 (14)0.44339 (17)0.11231 (14)0.0388 (5)
H1NB0.402 (2)0.477 (3)0.098 (2)0.060 (9)*
N2B0.53394 (13)0.31429 (19)0.15625 (14)0.0406 (5)
H2NB0.5498 (18)0.248 (2)0.1694 (18)0.048 (8)*
N3B0.66860 (17)0.7248 (2)0.07344 (15)0.0425 (6)
H3NC0.6461 (19)0.754 (2)0.031 (2)0.047 (9)*
H3ND0.721 (2)0.729 (2)0.0726 (18)0.049 (9)*
C1B0.52713 (14)0.4917 (2)0.11265 (14)0.0345 (6)
C2B0.55387 (16)0.5967 (2)0.08966 (15)0.0365 (6)
H2B0.5159 (17)0.655 (2)0.0704 (16)0.049 (8)*
C3B0.63884 (15)0.6175 (2)0.09525 (14)0.0360 (6)
C4B0.69335 (17)0.5355 (2)0.12677 (17)0.0428 (6)
H4B0.748 (2)0.556 (2)0.1314 (18)0.051 (8)*
C5B0.66596 (17)0.4308 (2)0.15038 (18)0.0449 (7)
H5B0.699 (2)0.378 (3)0.174 (2)0.063 (9)*
C6B0.58190 (15)0.4093 (2)0.14187 (15)0.0365 (6)
C7B0.45329 (16)0.3353 (2)0.13759 (15)0.0382 (6)
S1A0.60205 (5)1.05022 (6)0.13822 (4)0.0479 (3)
N1A0.63692 (14)0.85370 (18)0.21461 (13)0.0397 (5)
H1NA0.6481 (17)0.819 (3)0.1755 (18)0.044 (8)*
N2A0.59495 (13)0.9834 (2)0.29505 (13)0.0383 (5)
H2NA0.5855 (18)1.049 (3)0.3087 (18)0.046 (8)*
N3A0.69384 (16)0.57892 (19)0.43321 (16)0.0420 (6)
H3NA0.737 (2)0.556 (3)0.411 (2)0.061 (11)*
H3NB0.705 (2)0.580 (3)0.486 (2)0.067 (10)*
C1A0.63986 (15)0.8070 (2)0.29109 (14)0.0343 (6)
C2A0.66733 (16)0.7028 (2)0.31939 (16)0.0382 (6)
H2A0.6856 (16)0.644 (2)0.2830 (17)0.044 (7)*
C3A0.66781 (15)0.6855 (2)0.40200 (15)0.0354 (6)
C4A0.63934 (17)0.7692 (2)0.45370 (17)0.0421 (6)
H4A0.6398 (18)0.753 (2)0.5104 (19)0.050 (8)*
C5A0.61082 (18)0.8722 (2)0.42509 (16)0.0432 (6)
H5A0.5872 (16)0.927 (2)0.4604 (16)0.039 (7)*
C6A0.61262 (15)0.8897 (2)0.34291 (15)0.0344 (5)
C7A0.61113 (15)0.9613 (2)0.21741 (15)0.0373 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1B0.0502 (5)0.0400 (4)0.0723 (6)0.0110 (3)0.0143 (4)0.0145 (3)
N1B0.0347 (12)0.0318 (11)0.0493 (13)0.0011 (9)0.0089 (10)0.0041 (10)
N2B0.0421 (12)0.0278 (12)0.0514 (13)0.0040 (9)0.0072 (10)0.0060 (10)
N3B0.0432 (14)0.0435 (14)0.0408 (13)0.0074 (11)0.0015 (11)0.0010 (11)
C1B0.0343 (13)0.0337 (13)0.0350 (12)0.0000 (10)0.0058 (10)0.0007 (10)
C2B0.0388 (14)0.0304 (13)0.0399 (13)0.0032 (11)0.0035 (11)0.0005 (11)
C3B0.0421 (14)0.0340 (13)0.0320 (12)0.0014 (11)0.0004 (11)0.0065 (10)
C4B0.0343 (14)0.0460 (16)0.0477 (15)0.0009 (12)0.0031 (12)0.0043 (12)
C5B0.0383 (15)0.0410 (15)0.0546 (16)0.0082 (12)0.0109 (13)0.0001 (13)
C6B0.0379 (13)0.0321 (13)0.0391 (13)0.0036 (11)0.0056 (11)0.0005 (11)
C7B0.0439 (14)0.0322 (13)0.0379 (13)0.0004 (11)0.0069 (11)0.0027 (11)
S1A0.0595 (5)0.0385 (4)0.0459 (4)0.0055 (3)0.0033 (3)0.0090 (3)
N1A0.0565 (14)0.0307 (12)0.0322 (11)0.0023 (10)0.0034 (10)0.0023 (10)
N2A0.0462 (13)0.0302 (12)0.0384 (12)0.0063 (10)0.0006 (10)0.0047 (10)
N3A0.0443 (14)0.0378 (13)0.0432 (13)0.0024 (10)0.0074 (12)0.0044 (11)
C1A0.0376 (13)0.0309 (13)0.0342 (12)0.0024 (10)0.0023 (10)0.0008 (10)
C2A0.0455 (15)0.0297 (13)0.0392 (14)0.0013 (11)0.0011 (11)0.0038 (11)
C3A0.0358 (13)0.0318 (13)0.0383 (13)0.0060 (10)0.0054 (10)0.0000 (11)
C4A0.0474 (15)0.0447 (15)0.0338 (14)0.0055 (12)0.0048 (12)0.0008 (12)
C5A0.0542 (16)0.0397 (15)0.0354 (14)0.0016 (12)0.0008 (12)0.0068 (12)
C6A0.0358 (13)0.0305 (13)0.0368 (13)0.0002 (10)0.0024 (10)0.0014 (10)
C7A0.0355 (13)0.0330 (13)0.0430 (15)0.0003 (10)0.0017 (11)0.0011 (11)
Geometric parameters (Å, º) top
S1B—C7B1.684 (3)S1A—C7A1.686 (3)
N1B—C7B1.351 (3)N1A—C7A1.346 (3)
N1B—C1B1.389 (3)N1A—C1A1.382 (3)
N1B—H1NB0.88 (3)N1A—H1NA0.80 (3)
N2B—C7B1.349 (3)N2A—C7A1.347 (3)
N2B—C6B1.393 (3)N2A—C6A1.390 (3)
N2B—H2NB0.85 (3)N2A—H2NA0.82 (3)
N3B—C3B1.413 (3)N3A—C3A1.426 (3)
N3B—H3NC0.86 (3)N3A—H3NA0.84 (4)
N3B—H3ND0.85 (3)N3A—H3NB0.89 (4)
C1B—C2B1.378 (4)C1A—C6A1.386 (3)
C1B—C6B1.394 (3)C1A—C2A1.390 (4)
C2B—C3B1.391 (4)C2A—C3A1.384 (3)
C2B—H2B0.97 (3)C2A—H2A0.98 (3)
C3B—C4B1.401 (4)C3A—C4A1.400 (4)
C4B—C5B1.380 (4)C4A—C5A1.385 (4)
C4B—H4B0.92 (3)C4A—H4A0.96 (3)
C5B—C6B1.381 (4)C5A—C6A1.378 (4)
C5B—H5B0.90 (3)C5A—H5A0.96 (3)
C7B—N1B—C1B110.5 (2)C7A—N1A—C1A110.5 (2)
C7B—N1B—H1NB124 (2)C7A—N1A—H1NA127 (2)
C1B—N1B—H1NB125 (2)C1A—N1A—H1NA122 (2)
C7B—N2B—C6B110.3 (2)C7A—N2A—C6A110.3 (2)
C7B—N2B—H2NB121 (2)C7A—N2A—H2NA119 (2)
C6B—N2B—H2NB129 (2)C6A—N2A—H2NA129 (2)
C3B—N3B—H3NC116 (2)C3A—N3A—H3NA111 (2)
C3B—N3B—H3ND114 (2)C3A—N3A—H3NB113 (2)
H3NC—N3B—H3ND111 (3)H3NA—N3A—H3NB108 (3)
C2B—C1B—N1B131.8 (2)N1A—C1A—C6A106.3 (2)
C2B—C1B—C6B122.1 (2)N1A—C1A—C2A131.8 (2)
N1B—C1B—C6B106.1 (2)C6A—C1A—C2A121.8 (2)
C1B—C2B—C3B117.3 (2)C3A—C2A—C1A117.2 (2)
C1B—C2B—H2B122.3 (17)C3A—C2A—H2A120.9 (16)
C3B—C2B—H2B120.4 (17)C1A—C2A—H2A122.0 (16)
C2B—C3B—C4B120.3 (2)C2A—C3A—C4A120.6 (2)
C2B—C3B—N3B119.0 (2)C2A—C3A—N3A118.8 (2)
C4B—C3B—N3B120.6 (2)C4A—C3A—N3A120.5 (2)
C5B—C4B—C3B122.0 (3)C5A—C4A—C3A122.0 (3)
C5B—C4B—H4B122.1 (18)C5A—C4A—H4A120.0 (17)
C3B—C4B—H4B115.9 (18)C3A—C4A—H4A118.0 (17)
C4B—C5B—C6B117.4 (3)C6A—C5A—C4A117.0 (3)
C4B—C5B—H5B124 (2)C6A—C5A—H5A121.3 (16)
C6B—C5B—H5B119 (2)C4A—C5A—H5A121.6 (16)
C5B—C6B—N2B132.9 (2)C5A—C6A—C1A121.5 (2)
C5B—C6B—C1B120.8 (2)C5A—C6A—N2A132.3 (2)
N2B—C6B—C1B106.3 (2)C1A—C6A—N2A106.1 (2)
N2B—C7B—N1B106.8 (2)N1A—C7A—N2A106.7 (2)
N2B—C7B—S1B126.69 (19)N1A—C7A—S1A125.9 (2)
N1B—C7B—S1B126.5 (2)N2A—C7A—S1A127.3 (2)
C7B—N1B—C1B—C2B177.4 (3)C7A—N1A—C1A—C6A1.4 (3)
C7B—N1B—C1B—C6B1.7 (3)C7A—N1A—C1A—C2A175.1 (3)
N1B—C1B—C2B—C3B177.8 (2)N1A—C1A—C2A—C3A174.9 (3)
C6B—C1B—C2B—C3B1.2 (4)C6A—C1A—C2A—C3A1.1 (4)
C1B—C2B—C3B—C4B2.9 (4)C1A—C2A—C3A—C4A1.8 (4)
C1B—C2B—C3B—N3B179.0 (2)C1A—C2A—C3A—N3A178.6 (2)
C2B—C3B—C4B—C5B2.4 (4)C2A—C3A—C4A—C5A0.8 (4)
N3B—C3B—C4B—C5B178.5 (3)N3A—C3A—C4A—C5A177.6 (2)
C3B—C4B—C5B—C6B0.0 (4)C3A—C4A—C5A—C6A0.8 (4)
C4B—C5B—C6B—N2B177.3 (3)C4A—C5A—C6A—C1A1.5 (4)
C4B—C5B—C6B—C1B1.8 (4)C4A—C5A—C6A—N2A174.7 (3)
C7B—N2B—C6B—C5B179.4 (3)N1A—C1A—C6A—C5A177.5 (2)
C7B—N2B—C6B—C1B0.3 (3)C2A—C1A—C6A—C5A0.6 (4)
C2B—C1B—C6B—C5B1.2 (4)N1A—C1A—C6A—N2A0.4 (3)
N1B—C1B—C6B—C5B179.6 (2)C2A—C1A—C6A—N2A176.5 (2)
C2B—C1B—C6B—N2B178.1 (2)C7A—N2A—C6A—C5A176.0 (3)
N1B—C1B—C6B—N2B1.2 (3)C7A—N2A—C6A—C1A0.7 (3)
C6B—N2B—C7B—N1B0.8 (3)C1A—N1A—C7A—N2A1.8 (3)
C6B—N2B—C7B—S1B179.5 (2)C1A—N1A—C7A—S1A177.73 (19)
C1B—N1B—C7B—N2B1.5 (3)C6A—N2A—C7A—N1A1.6 (3)
C1B—N1B—C7B—S1B178.68 (19)C6A—N2A—C7A—S1A177.99 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···N3B0.80 (3)2.06 (3)2.856 (3)176 (3)
N2A—H2NA···S1Bi0.82 (3)2.54 (3)3.295 (2)154 (3)
N3A—H3NA···S1Aii0.84 (4)2.75 (4)3.551 (3)159 (3)
N3A—H3NB···C4Biii0.89 (4)2.71 (4)3.483 (4)145 (3)
N3A—H3NB···C5Biii0.89 (4)2.81 (4)3.643 (4)155 (3)
N1B—H1NB···N3Aiv0.88 (3)2.02 (3)2.884 (3)171 (3)
N2B—H2NB···S1Av0.85 (3)2.56 (3)3.340 (2)153 (3)
N3B—H3NC···S1Bvi0.86 (3)2.91 (3)3.672 (3)149 (2)
N3B—H3ND···S1Bvii0.85 (3)2.70 (3)3.477 (3)153 (3)
C5A—H5A···S1Aviii0.96 (3)2.96 (3)3.656 (3)130.2 (19)
C5B—H5B···C1Aii0.90 (3)2.78 (3)3.562 (4)147 (3)
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x, y+1, z+1/2; (iv) x+1, y, z+1/2; (v) x, y1, z; (vi) x+1, y+1, z; (vii) x+1/2, y+1/2, z; (viii) x, y+2, z+1/2.
 

References

First citationAdamo, C. & Barone, V. (1999). J. Chem. Phys. 110, 6158–6170.  Web of Science CrossRef CAS Google Scholar
First citationAhamed, M. R., Narren, S. F. & Sadiq, A. S. (2013). J. Al-Nahrain Uni. 16, 77–83.  Google Scholar
First citationAlam, F., Dey, B. K., Sharma, K., Chakraborty, A. & Kalita, P. (2014). Int. J. Drug Res. Tech. 4(3), 31–38.  Google Scholar
First citationAnastassova, N., Mavrova, A., Yancheva, D., Kondeva-Burdina, M., Tzankova, V., Stoyanov, S., Shivachev, B. L. & Nikolova, R. P. (2017). Arab. J. Chem. 11, 353–369.  CrossRef Google Scholar
First citationChkirate, K., Karrouchi, K., Dege, N., Sebbar, N. K., Ejjoummany, A., Radi, S., Adarsh, N. N., Talbaoui, A., Ferbinteanu, M., Essassi, E. M. & Garcia, Y. (2020). New J. Chem. 44, 2210–2221.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalal, S. A., Hegab, K. H., Hashem, A. M. & Youssef, N. S. (2010). Eur. J. Med. Chem. 45, 5685–5691.  CrossRef CAS PubMed Google Scholar
First citationGiannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., de Gironcoli, S., Delugas, P., DiStasio, R. A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H. Y., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N. L., Nguyen, H. V., Otero-de-la-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A. P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X. & Baroni, S. (2017). J. Phys. Condens. Matter, 29, 465901.  Web of Science CrossRef PubMed Google Scholar
First citationGiannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P. & Wentzcovitch, R. M. (2009). J. Phys. Condens. Matter, 21, 395502.  Web of Science CrossRef PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHadjikakou, S. & Light, M. E. (2016). Private communication (refcode ODAXID). CCDC, Cambridge, England.  Google Scholar
First citationHaghverdi, M., Tadjarodi, A., Bahri–Laleh, N. & Nekoomanesh–Haghighi, M. (2018). Appl. Organomet. Chem. 32, e4015.  CrossRef Google Scholar
First citationKenchappa, R., Bodke, Y. D., Telkar, S. & Aruna Sindhe, M. (2017). J. Chem. Biol. 10, 11–23.  CrossRef CAS PubMed Google Scholar
First citationKharitonova, M. I., Konstantinova, I. D. & Miroshnikov, A. I. (2018). Russ. Chem. Rev. 87, 1111–1138.  CrossRef CAS Google Scholar
First citationLeila, Z., Zeinab, F., Kamiar, Z., Fatemeh Bi Bi, M., Asghar, J. & Soghra, K. (2019). Res. Pharma. Sci. 14, 504–514.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRathore, A., Sudhakar, R., Ahsan, M. J., Ali, A., Subbarao, N., Jadav, S. S., Umar, S. & Yar, M. S. (2017). Bioorg. Chem. 70, 107–117.  CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSamanta, S., Lim, T. L. & Lam, Y. (2013). ChemMedChem, 8, 994–1001.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net  Google Scholar
First citationXi, C., Sun, Z. & Liu, Y. (2013). Dalton Trans. 42, 13327–13330.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds