research communications
5-Amino-1H-benzimidazole-2(3H)-thione: molecular, and Hirshfeld surface analysis
aNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St, Tashkent, 100174, Uzbekistan, bUzbekistan–Japan Innovation Center of Youth, University Street 2B, 100095, Tashkent, Uzbekistan, and cState Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, 60 Nauky ave., 61001 Kharkiv, Ukraine
*Correspondence e-mail: d.rakhmonova81@mail.ru
The title compound, C7H7N3S, which has potential biological activity, can be used as a ligand in metal complexation. This compound exists as the thione tautomer in the crystal phase, which is confirmed by the study of its molecular structure. The amino group has pyramidal configuration. In the crystal phase, the two independent molecules in the form tetramers as a result of N—H⋯S hydrogen bonds. These tetramers are linked by N—H⋯N hydrogen bonds, forming chains/tubes in the [010] direction. The Hirshfeld surface analysis showed that the highest contribution to the total surface is provided by H⋯H interactions as well as S⋯H/H⋯S and C⋯H/H⋯C contacts associated with X—H⋯S hydrogen bonds and X—H⋯C(π) interactions.
Keywords: molecular structure; crystal structure; 5-amino-1H-benzimidazole-2(3H)-thione; hydrogen bond; Hirshfeld analysis; periodic calculations.
CCDC reference: 2143895
1. Chemical context
Benzimidazoles belong to an important class of et al., 2020), antimicrobial (Alam et al., 2014), antitumor (Kharitonova et al., 2018; Galal et al., 2010), anti-inflammatory (Rathore et al., 2017), antioxidant (Anastassova et al., 2017), anthelmintic (Kenchappa et al., 2017), antifungal and cytotoxic (Leila et al., 2019) activity. They are also important as starting materials for terminal alkyne cyclotrimerization reactions (Xi et al., 2013) and are used as highly active catalysts for ethylene (Haghverdi et al., 2018). The synthesis of 2-amino-1,3-benzimidazole-2-thione has been reported, prepared by first treating o-phenylenediamine CS2 in the presence of KOH under microwave irradiation to give the intermediate 1,3-benzimidazole-2-thione. Nitration of the intermediate followed by reduction of the nitro group with iron powder and concentrated hydrochloric acid gave 2-amino-1,3-benzimidazole-2-thione in a moderately good yield (Samanta et al., 2013; Ahamed et al., 2013). Taking into account the possible biological activity of the obtained compound, it is important to study its molecular and crystal structures.
because of their wide spectra of biological activity. In particular, benzimidazole derivatives are known to possess antibacterial (Chkirate2. Structural commentary
Two independent molecules (A and B) comprise the of the title compound (Fig. 1). The molecules slightly differ from each other in their degree of planarity: all non-hydrogen atoms lie in the same plane with an accuracy of 0.05 Å in molecule A and with an accuracy of 0.02 Å in molecule B. Analysis of the molecular structure revealed that the C=S tautomer is found in the crystal, as confirmed by the length of the C7—S1 bond [1.687 (3) Å in molecule A and 1.684 (3) Å in molecule B], the equal lengths of the C7—N1 and C7—N2 bonds [1.345 (3) and 1.347 (3) Å in molecule A and 1.351 (3) and 1.349 (3) Å in molecule B] and the localization of hydrogen atoms at all the nitrogen atoms from the electron-density difference maps. The amino groups in both molecules are pyramidal, the sum of the bond angles centered at the nitrogen atom is 331.5° in molecule A and 340.9° in molecule B.
3. Supramolecular features
In the crystal, the molecules form tetramers as a result of the N2A—H2NA⋯S1B and N2B—H2NB⋯S1A hydrogen bonds (Fig. 2, Table 1). The tetramers are linked by N1A⋯H1NA—N3B and N1B—H1NB⋯N3A hydrogen bonds, forming a tube in the [010] direction (Figs. 3 and 4). Adjacent tubes are connected by weaker N—H⋯C(π), C—H⋯S, N—H⋯S and C—H⋯C(π) interactions (Table 1).
4. Hirshfeld surface analysis
One of the modern methods for analysing intermolecular interactions is Hirshfeld surface analysis (Spackman & Jayatilaka, 2009; Turner et al., 2017), which allows analysis of the interactions between molecules in a quantitative manner. The Hirshfeld surfaces of molecules A and B mapped over dnorm proved to be very similar (Fig. 5). The red spots indicating strong interactions are found at both hydrogen atoms of the NH fragments as well as in the area of the nitrogen lone pair of the amino group. In addition, red spots are seen at the sulfur atom.
Analysis of the fingerprint plots showed the presence of strong intermolecular interactions indicated as sharp spikes (Fig. 6a, 6b). The most significant contribution to the total Hirshfeld surface is provided by H⋯H interactions in both molecules (Fig. 6c, 6g). The contributions of S⋯H/H⋯S and C⋯H/H⋯C interactions associated with X—H⋯S and X—H⋯C (π) hydrogen bonds are similar (Fig. 6d–i). Surprisingly, the contribution of N⋯H/H⋯N interactions proved to be the lowest (Fig. 6f, 6j). It may be explained by the participation of the nitrogen lone pair in hydrogen bonding as a proton acceptor.
5. Database survey
A search of the Cambridge Structural Database (Version 5.42, update of November 2020; Groom et al., 2016) revealed the structure of the monohydrate of the title compound (ODAXID; Hadjikakou & Light, 2016). It should be noted that the amino group was refined as planar in this structure. However, analysis of the intermolecular interactions showed that this amino group participates in a hydrogen bond with the hydrate water molecule as a proton acceptor. Such a hydrogen bonding has to result in pyramidalization of the amino group. To check this presumption, we have optimized the ODAXID structure with a periodic boundary using the PBE functional (Adamo & Barone, 1999) within Quantum Espresso (Giannozzi et al., 2009, 2017). The unit-cell parameters were fixed while the molecular structures of both molecules found in the were optimized. The result of this optimization shows that the amino group has to be pyramidal (Fig. 7).
6. Crystallization
5-Amino-1H-benzimidazole-2(3H)-thione was purchased from Sigma-Aldrich for use as a ligand in complexation with metals. The reaction of the title compound with nickel acetate in an aqueous alcoholic medium did not result in complex formation. The formed colourless needle-like crystals proved to be anhydrous form of the ligand with Tmelt. = 513–517 K.
7. Refinement
Crystal data, data collection and structure . All the hydrogen atoms were located in difference-Fourier maps and refined using an isotropic approximation.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2143895
https://doi.org/10.1107/S2056989022000792/ex2051sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022000792/ex2051Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022000792/ex2051Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).C7H7N3S | F(000) = 1376 |
Mr = 165.22 | Dx = 1.385 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 16.1179 (14) Å | Cell parameters from 2937 reflections |
b = 11.8796 (11) Å | θ = 3.5–26.9° |
c = 16.5649 (15) Å | µ = 0.34 mm−1 |
β = 91.974 (8)° | T = 293 K |
V = 3169.9 (5) Å3 | Plate, colorless |
Z = 16 | 0.80 × 0.26 × 0.08 mm |
Xcalibur, Sapphire3 diffractometer | 2787 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2417 reflections with I > 2σ(I) |
Detector resolution: 16.1827 pixels mm-1 | Rint = 0.079 |
ω scans | θmax = 25.0°, θmin = 3.2° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | h = −19→18 |
Tmin = 0.370, Tmax = 1.000 | k = −14→14 |
12390 measured reflections | l = −19→19 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | All H-atom parameters refined |
wR(F2) = 0.138 | w = 1/[σ2(Fo2) + (0.0719P)2 + 1.8442P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
2787 reflections | Δρmax = 0.33 e Å−3 |
255 parameters | Δρmin = −0.27 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1B | 0.37352 (5) | 0.24474 (6) | 0.14471 (5) | 0.0546 (3) | |
N1B | 0.44866 (14) | 0.44339 (17) | 0.11231 (14) | 0.0388 (5) | |
H1NB | 0.402 (2) | 0.477 (3) | 0.098 (2) | 0.060 (9)* | |
N2B | 0.53394 (13) | 0.31429 (19) | 0.15625 (14) | 0.0406 (5) | |
H2NB | 0.5498 (18) | 0.248 (2) | 0.1694 (18) | 0.048 (8)* | |
N3B | 0.66860 (17) | 0.7248 (2) | 0.07344 (15) | 0.0425 (6) | |
H3NC | 0.6461 (19) | 0.754 (2) | 0.031 (2) | 0.047 (9)* | |
H3ND | 0.721 (2) | 0.729 (2) | 0.0726 (18) | 0.049 (9)* | |
C1B | 0.52713 (14) | 0.4917 (2) | 0.11265 (14) | 0.0345 (6) | |
C2B | 0.55387 (16) | 0.5967 (2) | 0.08966 (15) | 0.0365 (6) | |
H2B | 0.5159 (17) | 0.655 (2) | 0.0704 (16) | 0.049 (8)* | |
C3B | 0.63884 (15) | 0.6175 (2) | 0.09525 (14) | 0.0360 (6) | |
C4B | 0.69335 (17) | 0.5355 (2) | 0.12677 (17) | 0.0428 (6) | |
H4B | 0.748 (2) | 0.556 (2) | 0.1314 (18) | 0.051 (8)* | |
C5B | 0.66596 (17) | 0.4308 (2) | 0.15038 (18) | 0.0449 (7) | |
H5B | 0.699 (2) | 0.378 (3) | 0.174 (2) | 0.063 (9)* | |
C6B | 0.58190 (15) | 0.4093 (2) | 0.14187 (15) | 0.0365 (6) | |
C7B | 0.45329 (16) | 0.3353 (2) | 0.13759 (15) | 0.0382 (6) | |
S1A | 0.60205 (5) | 1.05022 (6) | 0.13822 (4) | 0.0479 (3) | |
N1A | 0.63692 (14) | 0.85370 (18) | 0.21461 (13) | 0.0397 (5) | |
H1NA | 0.6481 (17) | 0.819 (3) | 0.1755 (18) | 0.044 (8)* | |
N2A | 0.59495 (13) | 0.9834 (2) | 0.29505 (13) | 0.0383 (5) | |
H2NA | 0.5855 (18) | 1.049 (3) | 0.3087 (18) | 0.046 (8)* | |
N3A | 0.69384 (16) | 0.57892 (19) | 0.43321 (16) | 0.0420 (6) | |
H3NA | 0.737 (2) | 0.556 (3) | 0.411 (2) | 0.061 (11)* | |
H3NB | 0.705 (2) | 0.580 (3) | 0.486 (2) | 0.067 (10)* | |
C1A | 0.63986 (15) | 0.8070 (2) | 0.29109 (14) | 0.0343 (6) | |
C2A | 0.66733 (16) | 0.7028 (2) | 0.31939 (16) | 0.0382 (6) | |
H2A | 0.6856 (16) | 0.644 (2) | 0.2830 (17) | 0.044 (7)* | |
C3A | 0.66781 (15) | 0.6855 (2) | 0.40200 (15) | 0.0354 (6) | |
C4A | 0.63934 (17) | 0.7692 (2) | 0.45370 (17) | 0.0421 (6) | |
H4A | 0.6398 (18) | 0.753 (2) | 0.5104 (19) | 0.050 (8)* | |
C5A | 0.61082 (18) | 0.8722 (2) | 0.42509 (16) | 0.0432 (6) | |
H5A | 0.5872 (16) | 0.927 (2) | 0.4604 (16) | 0.039 (7)* | |
C6A | 0.61262 (15) | 0.8897 (2) | 0.34291 (15) | 0.0344 (5) | |
C7A | 0.61113 (15) | 0.9613 (2) | 0.21741 (15) | 0.0373 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1B | 0.0502 (5) | 0.0400 (4) | 0.0723 (6) | −0.0110 (3) | −0.0143 (4) | 0.0145 (3) |
N1B | 0.0347 (12) | 0.0318 (11) | 0.0493 (13) | 0.0011 (9) | −0.0089 (10) | 0.0041 (10) |
N2B | 0.0421 (12) | 0.0278 (12) | 0.0514 (13) | 0.0040 (9) | −0.0072 (10) | 0.0060 (10) |
N3B | 0.0432 (14) | 0.0435 (14) | 0.0408 (13) | −0.0074 (11) | 0.0015 (11) | 0.0010 (11) |
C1B | 0.0343 (13) | 0.0337 (13) | 0.0350 (12) | 0.0000 (10) | −0.0058 (10) | −0.0007 (10) |
C2B | 0.0388 (14) | 0.0304 (13) | 0.0399 (13) | 0.0032 (11) | −0.0035 (11) | 0.0005 (11) |
C3B | 0.0421 (14) | 0.0340 (13) | 0.0320 (12) | −0.0014 (11) | 0.0004 (11) | −0.0065 (10) |
C4B | 0.0343 (14) | 0.0460 (16) | 0.0477 (15) | 0.0009 (12) | −0.0031 (12) | −0.0043 (12) |
C5B | 0.0383 (15) | 0.0410 (15) | 0.0546 (16) | 0.0082 (12) | −0.0109 (13) | 0.0001 (13) |
C6B | 0.0379 (13) | 0.0321 (13) | 0.0391 (13) | 0.0036 (11) | −0.0056 (11) | 0.0005 (11) |
C7B | 0.0439 (14) | 0.0322 (13) | 0.0379 (13) | −0.0004 (11) | −0.0069 (11) | 0.0027 (11) |
S1A | 0.0595 (5) | 0.0385 (4) | 0.0459 (4) | 0.0055 (3) | 0.0033 (3) | 0.0090 (3) |
N1A | 0.0565 (14) | 0.0307 (12) | 0.0322 (11) | 0.0023 (10) | 0.0034 (10) | −0.0023 (10) |
N2A | 0.0462 (13) | 0.0302 (12) | 0.0384 (12) | 0.0063 (10) | 0.0006 (10) | −0.0047 (10) |
N3A | 0.0443 (14) | 0.0378 (13) | 0.0432 (13) | −0.0024 (10) | −0.0074 (12) | 0.0044 (11) |
C1A | 0.0376 (13) | 0.0309 (13) | 0.0342 (12) | −0.0024 (10) | −0.0023 (10) | −0.0008 (10) |
C2A | 0.0455 (15) | 0.0297 (13) | 0.0392 (14) | −0.0013 (11) | −0.0011 (11) | −0.0038 (11) |
C3A | 0.0358 (13) | 0.0318 (13) | 0.0383 (13) | −0.0060 (10) | −0.0054 (10) | 0.0000 (11) |
C4A | 0.0474 (15) | 0.0447 (15) | 0.0338 (14) | −0.0055 (12) | −0.0048 (12) | 0.0008 (12) |
C5A | 0.0542 (16) | 0.0397 (15) | 0.0354 (14) | 0.0016 (12) | −0.0008 (12) | −0.0068 (12) |
C6A | 0.0358 (13) | 0.0305 (13) | 0.0368 (13) | 0.0002 (10) | −0.0024 (10) | −0.0014 (10) |
C7A | 0.0355 (13) | 0.0330 (13) | 0.0430 (15) | −0.0003 (10) | −0.0017 (11) | −0.0011 (11) |
S1B—C7B | 1.684 (3) | S1A—C7A | 1.686 (3) |
N1B—C7B | 1.351 (3) | N1A—C7A | 1.346 (3) |
N1B—C1B | 1.389 (3) | N1A—C1A | 1.382 (3) |
N1B—H1NB | 0.88 (3) | N1A—H1NA | 0.80 (3) |
N2B—C7B | 1.349 (3) | N2A—C7A | 1.347 (3) |
N2B—C6B | 1.393 (3) | N2A—C6A | 1.390 (3) |
N2B—H2NB | 0.85 (3) | N2A—H2NA | 0.82 (3) |
N3B—C3B | 1.413 (3) | N3A—C3A | 1.426 (3) |
N3B—H3NC | 0.86 (3) | N3A—H3NA | 0.84 (4) |
N3B—H3ND | 0.85 (3) | N3A—H3NB | 0.89 (4) |
C1B—C2B | 1.378 (4) | C1A—C6A | 1.386 (3) |
C1B—C6B | 1.394 (3) | C1A—C2A | 1.390 (4) |
C2B—C3B | 1.391 (4) | C2A—C3A | 1.384 (3) |
C2B—H2B | 0.97 (3) | C2A—H2A | 0.98 (3) |
C3B—C4B | 1.401 (4) | C3A—C4A | 1.400 (4) |
C4B—C5B | 1.380 (4) | C4A—C5A | 1.385 (4) |
C4B—H4B | 0.92 (3) | C4A—H4A | 0.96 (3) |
C5B—C6B | 1.381 (4) | C5A—C6A | 1.378 (4) |
C5B—H5B | 0.90 (3) | C5A—H5A | 0.96 (3) |
C7B—N1B—C1B | 110.5 (2) | C7A—N1A—C1A | 110.5 (2) |
C7B—N1B—H1NB | 124 (2) | C7A—N1A—H1NA | 127 (2) |
C1B—N1B—H1NB | 125 (2) | C1A—N1A—H1NA | 122 (2) |
C7B—N2B—C6B | 110.3 (2) | C7A—N2A—C6A | 110.3 (2) |
C7B—N2B—H2NB | 121 (2) | C7A—N2A—H2NA | 119 (2) |
C6B—N2B—H2NB | 129 (2) | C6A—N2A—H2NA | 129 (2) |
C3B—N3B—H3NC | 116 (2) | C3A—N3A—H3NA | 111 (2) |
C3B—N3B—H3ND | 114 (2) | C3A—N3A—H3NB | 113 (2) |
H3NC—N3B—H3ND | 111 (3) | H3NA—N3A—H3NB | 108 (3) |
C2B—C1B—N1B | 131.8 (2) | N1A—C1A—C6A | 106.3 (2) |
C2B—C1B—C6B | 122.1 (2) | N1A—C1A—C2A | 131.8 (2) |
N1B—C1B—C6B | 106.1 (2) | C6A—C1A—C2A | 121.8 (2) |
C1B—C2B—C3B | 117.3 (2) | C3A—C2A—C1A | 117.2 (2) |
C1B—C2B—H2B | 122.3 (17) | C3A—C2A—H2A | 120.9 (16) |
C3B—C2B—H2B | 120.4 (17) | C1A—C2A—H2A | 122.0 (16) |
C2B—C3B—C4B | 120.3 (2) | C2A—C3A—C4A | 120.6 (2) |
C2B—C3B—N3B | 119.0 (2) | C2A—C3A—N3A | 118.8 (2) |
C4B—C3B—N3B | 120.6 (2) | C4A—C3A—N3A | 120.5 (2) |
C5B—C4B—C3B | 122.0 (3) | C5A—C4A—C3A | 122.0 (3) |
C5B—C4B—H4B | 122.1 (18) | C5A—C4A—H4A | 120.0 (17) |
C3B—C4B—H4B | 115.9 (18) | C3A—C4A—H4A | 118.0 (17) |
C4B—C5B—C6B | 117.4 (3) | C6A—C5A—C4A | 117.0 (3) |
C4B—C5B—H5B | 124 (2) | C6A—C5A—H5A | 121.3 (16) |
C6B—C5B—H5B | 119 (2) | C4A—C5A—H5A | 121.6 (16) |
C5B—C6B—N2B | 132.9 (2) | C5A—C6A—C1A | 121.5 (2) |
C5B—C6B—C1B | 120.8 (2) | C5A—C6A—N2A | 132.3 (2) |
N2B—C6B—C1B | 106.3 (2) | C1A—C6A—N2A | 106.1 (2) |
N2B—C7B—N1B | 106.8 (2) | N1A—C7A—N2A | 106.7 (2) |
N2B—C7B—S1B | 126.69 (19) | N1A—C7A—S1A | 125.9 (2) |
N1B—C7B—S1B | 126.5 (2) | N2A—C7A—S1A | 127.3 (2) |
C7B—N1B—C1B—C2B | 177.4 (3) | C7A—N1A—C1A—C6A | 1.4 (3) |
C7B—N1B—C1B—C6B | −1.7 (3) | C7A—N1A—C1A—C2A | −175.1 (3) |
N1B—C1B—C2B—C3B | −177.8 (2) | N1A—C1A—C2A—C3A | 174.9 (3) |
C6B—C1B—C2B—C3B | 1.2 (4) | C6A—C1A—C2A—C3A | −1.1 (4) |
C1B—C2B—C3B—C4B | −2.9 (4) | C1A—C2A—C3A—C4A | 1.8 (4) |
C1B—C2B—C3B—N3B | −179.0 (2) | C1A—C2A—C3A—N3A | 178.6 (2) |
C2B—C3B—C4B—C5B | 2.4 (4) | C2A—C3A—C4A—C5A | −0.8 (4) |
N3B—C3B—C4B—C5B | 178.5 (3) | N3A—C3A—C4A—C5A | −177.6 (2) |
C3B—C4B—C5B—C6B | 0.0 (4) | C3A—C4A—C5A—C6A | −0.8 (4) |
C4B—C5B—C6B—N2B | 177.3 (3) | C4A—C5A—C6A—C1A | 1.5 (4) |
C4B—C5B—C6B—C1B | −1.8 (4) | C4A—C5A—C6A—N2A | −174.7 (3) |
C7B—N2B—C6B—C5B | −179.4 (3) | N1A—C1A—C6A—C5A | −177.5 (2) |
C7B—N2B—C6B—C1B | −0.3 (3) | C2A—C1A—C6A—C5A | −0.6 (4) |
C2B—C1B—C6B—C5B | 1.2 (4) | N1A—C1A—C6A—N2A | −0.4 (3) |
N1B—C1B—C6B—C5B | −179.6 (2) | C2A—C1A—C6A—N2A | 176.5 (2) |
C2B—C1B—C6B—N2B | −178.1 (2) | C7A—N2A—C6A—C5A | 176.0 (3) |
N1B—C1B—C6B—N2B | 1.2 (3) | C7A—N2A—C6A—C1A | −0.7 (3) |
C6B—N2B—C7B—N1B | −0.8 (3) | C1A—N1A—C7A—N2A | −1.8 (3) |
C6B—N2B—C7B—S1B | 179.5 (2) | C1A—N1A—C7A—S1A | 177.73 (19) |
C1B—N1B—C7B—N2B | 1.5 (3) | C6A—N2A—C7A—N1A | 1.6 (3) |
C1B—N1B—C7B—S1B | −178.68 (19) | C6A—N2A—C7A—S1A | −177.99 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1NA···N3B | 0.80 (3) | 2.06 (3) | 2.856 (3) | 176 (3) |
N2A—H2NA···S1Bi | 0.82 (3) | 2.54 (3) | 3.295 (2) | 154 (3) |
N3A—H3NA···S1Aii | 0.84 (4) | 2.75 (4) | 3.551 (3) | 159 (3) |
N3A—H3NB···C4Biii | 0.89 (4) | 2.71 (4) | 3.483 (4) | 145 (3) |
N3A—H3NB···C5Biii | 0.89 (4) | 2.81 (4) | 3.643 (4) | 155 (3) |
N1B—H1NB···N3Aiv | 0.88 (3) | 2.02 (3) | 2.884 (3) | 171 (3) |
N2B—H2NB···S1Av | 0.85 (3) | 2.56 (3) | 3.340 (2) | 153 (3) |
N3B—H3NC···S1Bvi | 0.86 (3) | 2.91 (3) | 3.672 (3) | 149 (2) |
N3B—H3ND···S1Bvii | 0.85 (3) | 2.70 (3) | 3.477 (3) | 153 (3) |
C5A—H5A···S1Aviii | 0.96 (3) | 2.96 (3) | 3.656 (3) | 130.2 (19) |
C5B—H5B···C1Aii | 0.90 (3) | 2.78 (3) | 3.562 (4) | 147 (3) |
Symmetry codes: (i) −x+1, y+1, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x, −y+1, z+1/2; (iv) −x+1, y, −z+1/2; (v) x, y−1, z; (vi) −x+1, −y+1, −z; (vii) x+1/2, y+1/2, z; (viii) x, −y+2, z+1/2. |
References
Adamo, C. & Barone, V. (1999). J. Chem. Phys. 110, 6158–6170. Web of Science CrossRef CAS Google Scholar
Ahamed, M. R., Narren, S. F. & Sadiq, A. S. (2013). J. Al-Nahrain Uni. 16, 77–83. Google Scholar
Alam, F., Dey, B. K., Sharma, K., Chakraborty, A. & Kalita, P. (2014). Int. J. Drug Res. Tech. 4(3), 31–38. Google Scholar
Anastassova, N., Mavrova, A., Yancheva, D., Kondeva-Burdina, M., Tzankova, V., Stoyanov, S., Shivachev, B. L. & Nikolova, R. P. (2017). Arab. J. Chem. 11, 353–369. CrossRef Google Scholar
Chkirate, K., Karrouchi, K., Dege, N., Sebbar, N. K., Ejjoummany, A., Radi, S., Adarsh, N. N., Talbaoui, A., Ferbinteanu, M., Essassi, E. M. & Garcia, Y. (2020). New J. Chem. 44, 2210–2221. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Galal, S. A., Hegab, K. H., Hashem, A. M. & Youssef, N. S. (2010). Eur. J. Med. Chem. 45, 5685–5691. CrossRef CAS PubMed Google Scholar
Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., de Gironcoli, S., Delugas, P., DiStasio, R. A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H. Y., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N. L., Nguyen, H. V., Otero-de-la-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A. P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X. & Baroni, S. (2017). J. Phys. Condens. Matter, 29, 465901. Web of Science CrossRef PubMed Google Scholar
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P. & Wentzcovitch, R. M. (2009). J. Phys. Condens. Matter, 21, 395502. Web of Science CrossRef PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hadjikakou, S. & Light, M. E. (2016). Private communication (refcode ODAXID). CCDC, Cambridge, England. Google Scholar
Haghverdi, M., Tadjarodi, A., Bahri–Laleh, N. & Nekoomanesh–Haghighi, M. (2018). Appl. Organomet. Chem. 32, e4015. CrossRef Google Scholar
Kenchappa, R., Bodke, Y. D., Telkar, S. & Aruna Sindhe, M. (2017). J. Chem. Biol. 10, 11–23. CrossRef CAS PubMed Google Scholar
Kharitonova, M. I., Konstantinova, I. D. & Miroshnikov, A. I. (2018). Russ. Chem. Rev. 87, 1111–1138. CrossRef CAS Google Scholar
Leila, Z., Zeinab, F., Kamiar, Z., Fatemeh Bi Bi, M., Asghar, J. & Soghra, K. (2019). Res. Pharma. Sci. 14, 504–514. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rathore, A., Sudhakar, R., Ahsan, M. J., Ali, A., Subbarao, N., Jadav, S. S., Umar, S. & Yar, M. S. (2017). Bioorg. Chem. 70, 107–117. CrossRef CAS PubMed Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Samanta, S., Lim, T. L. & Lam, Y. (2013). ChemMedChem, 8, 994–1001. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net Google Scholar
Xi, C., Sun, Z. & Liu, Y. (2013). Dalton Trans. 42, 13327–13330. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.