research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of the structure of 2-amino-8-thia-1,5-di­aza­spiro­[4.5]dec-1-en-5-ium chloride monohydrate

crossmark logo

aJSC A. B. Bekturov Institute of Chemical Sciences, 106 Shokan Ualikhanov str., 050010, Almaty, Kazakhstan, and bX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 28 Vavilova str., 119991 Moscow, Russian Federation
*Correspondence e-mail: vologzhanina@mail.ru

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 November 2021; accepted 5 January 2022; online 11 January 2022)

The reaction of β-(thio­morpholin-1-yl)propio­amidoxime with tosyl chloride in CHCl3 in the presence of DIPEA when heated at 343 K for 8 h afforded the title hydrated salt, C7H14N3S+·Cl·H2O, in 84% yield. This course of the tosyl­ation reaction differs from the result of tosyl­ation obtained for this substrate at room temperature, when only 2-amino-8-thia-1,5-di­aza­spiro­[4.5]dec-1-ene-5-ammonium tosyl­ate was isolated in 56% yield. The structure of the reaction product was established by physicochemical methods, spectroscopy, and X-ray diffraction. The single-crystal data demonstrated that the previously reported crystal structure of this compound [Kayukova et al. (2021). Chem. J. Kaz, 74, 21–31] had been refined in a wrong space group. In the extended structure, the chloride anions, water mol­ecules and amine groups of the cations form two-periodic hydrogen-bonded networks with the fes topology.

1. Chemical context

Sulfochlorination of amidoximes is known to afford stable products of acyl­ation at the oxygen atom of the amidoxime group; at the same time, the sulfochlorination reaction of derivatives of primary amidoximes can, depending on the structure of the starting amidoxime and reaction conditions, lead to rearranged products with the formation of ureas and substituted cyanamides (Tiemann, 1891[Tiemann, F. (1891). Ber. Dtsch. Chem. Ges. 24, 4162-4167.]; Bakunov et al., 2000[Bakunov, S. A., Rukavishnikov, A. V. & Tkachev, A. V. (2000). Synthesis, pp. 1148-1159.]; Doulou et al., 2014[Doulou, I., Kontogiorgis, C., Koumbis, A. E., Evgenidou, E., Hadjipavlou-Litina, D. & Fylaktakidou, C. (2014). Eur. J. Med. Chem. 80, 145-153.]) .

Previously, in our studies of the acyl­ation of β-amino­propio­amidoximes with acid chlorides of substituted benzoic acids, only O-acyl-β-amino­propio­amidoximes were identified as acyl­ation reaction products. Their structures have been determined by the complex use of spectroscopic methods, as well as X-ray structural analysis (Kayukova, 2003[Kayukova, L. A. (2003). Chem. Heterocycl. Compd, 39, 223-227.]; Beketov et al., 2004[Beketov, K. M., Welch, J. T., Toskano, P., Kayukova, L. A., Akhelova, A. L. & Praliev, K. D. (2004). J. Struct. Chem. 45, 509-517.]; Kayukova et al., 2010a[Kayukova, L. A., Orazbaeva, M. A., Bismilda, L. T. & Chingisova, L. T. (2010a). Pharm. Chem. J. 44, 356-359.]). The dehydration of the products of the O-acyl­ation of β-amino­propio­amidoximes allows for 3,5-disubstituted 1,2,4-oxa­diazo­les to be obtained, which under conditions of acid hydrolysis and in the presence of moisture are capable of undergoing a Boulton–Katritsky rearrangement to 2-amino-1,5-di­aza­spiro­[4.5]dec-1-en-5-ium salts (Kayukova et al., 2010b[Kayukova, L. A., Orazbaeva, M. A., Gapparova, G. I., Beketov, K. M., Espenbetov, A. A., Faskhutdinov, M. F. & Tashkhodjaev, B. T. (2010b). Chem. Heterocycl. Compd, 46, 879-886.], 2018[Kayukova, L. A., Uzakova, A. B., Vologzhanina, A. V., Akatan, K., Shaymardan, E. & Kabdrakhmanova, S. K. (2018). Chem. Heterocycl. Compd, 54, 643-649.], 2021a[Kayukova, L., Vologzhanina, A., Praliyev, K., Dyusembaeva, G., Baitursynova, G., Uzakova, A., Bismilda, V., Chingissova, L. & Akatan, K. (2021a). Molecules, 26, 967-982.]).

Recently, we found that the aryl­sulfochlorination reaction of β-amino­propio­amidoximes at room temperature afforded 2-amino-8-(hetera)-1,5-di­aza­spiro­[4.5]dec-1-en-5-ium aryl­sulfonates as the main products (Kayukova et al., 2020[Kayukova, L. A., Praliyev, K. D., Myrzabek, A. B. & Kainarbayeva, Z. N. (2020). Russ. Chem. Bull. 69, 496-503.], 2021b[Kayukova, L. A., Baitursynova, G. P., Yergaliyeva, E. M., Zhaksylyk, B. A., Yelibayeva, N. S. & Kurmangaliyeva, A. B. (2021b). Chem. J. Kaz, 74, 21-31.]). Herein we report on the result of β-(thio­morpholin-1-yl)propio­amidoxime tosyl­ation at the boiling point of the solvent. By means of such a high-temperature process, the formation of the most stable reaction product is expected. Under such conditions of thermodynamic control of the tosyl­ation reaction of β-(thio­morpholin-1-yl)propio­amidoxime (1) upon prolonged heating for 8 h at the boiling point of the solvent [CHCl3, 8 h, 343 K (bath temperature)], in the presence of DIPEA, the title hydrated salt, 2-amino-8-thia-1,5-di­aza­spiro­[4.5]dec-1-en-5-ium chloride monohydrate (3) was obtained in good yield (84%). In our opinion, the source of hydrate formation was air moisture, since the formation of single crystals took place over a long time under conditions of natural evaporation of the solvent for crystallization with air access. This result of the amidoxime (1) tosyl­ation differs from the result of the same reaction performed at room temperature, when the main kinetic product of the reaction was 2-amino-8-thia-1,5-di­aza­spiro­[4.5]dec-1-en-5-ium tosyl­ate (2) (Fig. 1[link], yield 56%; Kayukova et al., 2021b[Kayukova, L. A., Baitursynova, G. P., Yergaliyeva, E. M., Zhaksylyk, B. A., Yelibayeva, N. S. & Kurmangaliyeva, A. B. (2021b). Chem. J. Kaz, 74, 21-31.]).

[Figure 1]
Figure 1
Results of the β-(thio­morpholin-1-yl)propio­amidoxime (1) tosyl­ation reaction at r.t. and at the boiling point of the solvent.

Spiro­pyrazolinium chloride monohydrate 3 is a white opaque precipitate, poorly soluble in chloro­form. When the reaction was complete, it was filtered off from the reaction mixture and recrystallized from propanol-2 solution over three weeks in the form of transparent prisms with a melting point of 575 K. We previously isolated a compound with the same chemical composition and melting point during the acid hydrolysis of 5-aryl-3-(β-thio­morpholino­eth­yl)-1,2,4-oxa­diazo­les (Kayukova et al., 2010b[Kayukova, L. A., Orazbaeva, M. A., Gapparova, G. I., Beketov, K. M., Espenbetov, A. A., Faskhutdinov, M. F. & Tashkhodjaev, B. T. (2010b). Chem. Heterocycl. Compd, 46, 879-886.]). Not only the composition, but also the ortho­rhom­bic unit-cell parameters were similar for 3 and the previously reported structure; however, the space groups were different: P212121 at room temperature (Kayukova et al., 2010b[Kayukova, L. A., Orazbaeva, M. A., Gapparova, G. I., Beketov, K. M., Espenbetov, A. A., Faskhutdinov, M. F. & Tashkhodjaev, B. T. (2010b). Chem. Heterocycl. Compd, 46, 879-886.]) and Pbca at 120.0 (2) K for 3, thus a single crystal of the reaction product was also determined at 295.0 (2) K and the resulting crystal structures were compared with the previously reported one.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of 3 is shown in Fig. 2[link]. The C3—N1 and N1—N2 bonds are elongated as compared with typical single bonds at 1.521 (1) and 1.463 (1) Å, respectively, which can be related to the anomeric effect of the lone pair of atom N2. The six- and five-membered rings of the C7H14N3S+ cation adopt chair and envelope conformations, respectively. It may be noted that in respect to a chair conformation of the six-membered ring, atom N2 can be situated in the equatorial and axial positions of the N1 atom; however, in this and previously reported salts, only the axial disposition of the N2 atom is observed. This is in accord with our B3LYP/6-31++G(d,p) calculations of standard Gibbs free energies of reactions leading to the formation of various products. We established that the axial stereoisomer is more stable than the equatorial one (ΔG = −144.29 and −124.23 kJ mol−1, respectively; Yergaliyeva et al., 2021[Yergaliyeva, E. M., Kayukova, L. A., Bazhykova, K. B., Gubenko, M. A. & Langer, P. (2021). J. Struct. Chem. 62, 2090-2095.]).

[Figure 2]
Figure 2
Asymmetric unit of 3 at low temperature with displacement ellipsoids at the 50% probability level.

The envelope conformation of the C1/C2/C3/N1/N2 five-membered ring in 3 is expressed as the deviation of C3 from the mean plane formed by atoms N1/N2/C1/C2 (r.m.s. deviation = 0.005 Å): it is equal to 0.401 (1) Å, and the two mol­ecular conformers (corresponding to different directions of this carbon atom shifted in respect to the N—N=C—C mean plane) are equally present in this centrosymmetric crystal. However, the previously reported crystal structure (Kayukova et al., 2010b[Kayukova, L. A., Orazbaeva, M. A., Gapparova, G. I., Beketov, K. M., Espenbetov, A. A., Faskhutdinov, M. F. & Tashkhodjaev, B. T. (2010b). Chem. Heterocycl. Compd, 46, 879-886.]) [refcode APOBOX in the Cambridge Crystallographic Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.])] contains two independent spiro-cations in the asymmetric unit with two different conformations of the five-membered ring (Fig. 3[link]). A question arises as to whether these structures are polymorphs of the same salt, or if the previously reported structure was incorrectly solved and refined. Our study of the same single crystal of 3 at room temperature confirmed that no phase transition occurs between 120 and 295 K. Unfortunately, crystallographic data for APOBOX stored in the CSD could not be re-refined. Thus, we compared the crystal packing and the system of hydrogen bonds for the two models refined in different space groups.

[Figure 3]
Figure 3
The two independent 2-amino-8-thia-1,5-di­aza­spiro­[4.5]dec-1-en-5-ium cations observed in APOBOX depicted as overlaid mol­ecules.

3. Supra­molecular features

First, the system of hydrogen bonds was compared for the two solids at 120.0 (2) and 295.0 (2) K (Tables 1[link] and 2[link]) and they are essentially the same, apart from a slight lengthening of the H⋯X contacts at the higher temperature. In both cases, the amine acts as a donor of hydrogen bonds with a water mol­ecule, an anion and the water mol­ecules act as acceptors of N—H⋯O bonds and as donors in two O—H⋯Cl inter­actions, and the chloride anion is an acceptor of three hydrogen bonds. As a result, infinite layers parallel to the (001) plane are observed (Fig. 4[link]). A topological analysis of the system of hydrogen bonds, where the spiro-cations act as linkers and water mol­ecules and anions are three-connected nodes, indicates that both layers are isoreticular and have the fes topology (the three-letter code is given in terms of the RSCR notation; O'Keeffe et al., 2008[O'Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. (2008). Acc. Chem. Res. 41, 1782-1789.]).

Table 1
Hydrogen-bond geometry (Å, °) for the low-temperature structure[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Cl1i 0.88 2.38 3.2560 (9) 175
N3—H3B⋯O1 0.88 1.95 2.7970 (11) 161
O1—H1A⋯Cl1 0.85 2.26 3.1042 (9) 175
O1—H1B⋯Cl1ii 0.85 2.27 3.1152 (9) 176
C5—H5B⋯N2iii 0.99 2.58 3.3778 (12) 138
C6—H6A⋯N2iv 0.99 2.55 3.3346 (12) 136
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x, -y+1, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °) for the room-temperature structure[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Cl1i 0.86 2.42 3.2786 (18) 174
N3—H3B⋯O1ii 0.86 1.99 2.821 (2) 162
O1—H1C⋯Cl1 0.85 2.28 3.1244 (17) 173
O1—H1D⋯Cl1iii 0.85 2.29 3.1343 (17) 175
C6—H6B⋯N2iv 0.97 2.61 3.391 (2) 138
Symmetry codes: (i) x, y+1, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, -y, -z+1]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 4]
Figure 4
Top: fragment of the hydrogen-bonded layers in 3. Hydrogen bonds are depicted as dotted lines. C-bound H atoms are omitted. Bottom: underlying net of hydrogen bonds in 3 with a fes topology.

Additional analysis of the crystal packing by means of the PLATON package (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) suggests that the Pbca space group is correct for both solids, and by means of the `Crystal Packing Similarity' tool implemented within Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) as described by Childs et al. (2009[Childs, S. L., Wood, P. A., Rodríguez-Hornedo, N., Reddy, L. S. & Hardcastle, K. I. (2009). Cryst. Growth Des. 9, 1869-1888.]) or by Vologzhanina (2019[Vologzhanina, A. V. (2019). Crystals, 9, 478.]) denotes that the packings of 30-mol­ecule clusters for the two solids are also very close to each other (the average r.m.s. deviation of 0.15 Å can be explained by the different experimental temperatures). Thus, we propose that 2-amino-8-thia-1,5-di­aza­spiro­[4.5]dec-1-en-5-ium chloride monohydrate crystallizes in the Pbca space group both at low and room temperatures in contrast with the data given previously in space group P212121(Kayukova et al., 2010b[Kayukova, L. A., Orazbaeva, M. A., Gapparova, G. I., Beketov, K. M., Espenbetov, A. A., Faskhutdinov, M. F. & Tashkhodjaev, B. T. (2010b). Chem. Heterocycl. Compd, 46, 879-886.]).

4. Synthesis and crystallization

IR spectra were obtained on a Thermo Scientific Nicolet 5700 FTIR instrument in KBr pellets. 1H and 13C NMR spectra were recorded on a Bruker Avance III 500 MHz NMR spectrometer (500 and 126 MHz, respectively). Melting points were determined on a TPL apparatus (Khimlabpribor, Russia). The progress of the reaction was monitored using Sorbfil TLC plates (Sorbpolymer, Russia) coated with CTX-1A silica gel, grain size 5–17 µm, UV-254 indicator. The spots were developed in I2 vapours and in the UV light of a chromatoscope (λ = 254 nm) TSX 254/365 (PETROLASER). The eluent for the analysis was a mixture of EtOH:benzene = 1:1 + a few drops of a 25% aqueous solution of NH3. Microanalysis according to the Pregl method was carried out on an elemental analyser with the absorption of CO2 and O2 isolated during combustion with a two-degree repetition of combustion.

The tosyl­ation of β-(thio­morpholin-1-yl)propio­amidoxime (1) was performed in dried CHCl3 with tosyl chloride in the presence of DIPEA, purchased from Sigma–Aldrich and used without purification. Solvents for synthesis, recrystallization and TLC analysis (EtOH, 2-PrOH, benzene, CHCl3) were purified according to the standard procedures described for each solvent.

Synthesis of 2-amino-8-thia-1,5-di­aza­spiro­[4.5]dec-1-en-5-ium chloride hydrate (3):

To a solution of 1.00 g (0.0053 mol) of β-(thio­morpholin-1-yl)propio­amidoxime (1) in 40 ml of CHCl3, 0.92 ml (0.0053 mol) of DIPEA were added. The reaction mixture was cooled to 272 K, and a solution of 1.01 g (0.00530 mol) of tosyl chloride in 4 ml of CHCl3 was added dropwise under stirring. The reaction mixture was stirred for 1 h at room temperature and was then heated and stirred at the reflux temperature of CHCl3 for 8 h until the completion of the reaction, the progress of the reaction being monitored by TLC. The formed white precipitate of the chloride hydrate 3 was filtered off and recrystallized from 2-PrOH solution. The yield of 3 was 1.01 g (84%), m.p. 575 K, Rf 0.08. Found, %: C 37.67, H 7.49. C7H16ClN3OS. Calculated, %: C 37.24, H 7.14. IR, cm−1: 1659 (ν C=N); 1612 [d C—N; d (H)2—O]; 670 (ν S—C); 3135, 3230, 3380, 3384 (ν H—O, ν H—N). 1H NMR, δ, ppm (J, Hz): 2.88 [m, 2H, S(CHeq)2], 3.14 [m, 2H, S(CHax)2], 3.14 [m, 2H, N(+)CH2CH2]§, 3.37 (br. s, 2H, H2O), 3.62 [m, 2H, N(+)C(Heq)2], 3.74 [m, 2H, N(+)C(Hax)2], 3.88 [t, 2H, J = 7.0, N(+)CH2CH2], 7.48 (br s, 2H, NH2). The signals for the methyl­ene protons of the N(+)CH2CH2 group in 3 coincide with the signals of the S(CHax)2 group at δ 3.14 ppm.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The positions of hydrogen atoms were calculated and included in the refinement in isotropic approximation using a riding model with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(X) for the other atoms.

Table 3
Experimental details

  120 K 295 K
Crystal data
Chemical formula C7H14N3S+·Cl·H2O C7H14N3S+·Cl·H2O
Mr 225.74 225.74
Crystal system, space group Orthorhombic, Pbca Orthorhombic, Pbca
a, b, c (Å) 11.0360 (18), 10.1005 (16), 19.291 (3) 11.0924 (4), 10.1898 (4), 19.6434 (8)
V3) 2150.4 (6) 2220.28 (15)
Z 8 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.52 0.50
Crystal size (mm) 0.41 × 0.36 × 0.32 0.41 × 0.36 × 0.32
 
Data collection
Diffractometer Bruker APEXII CCD Bruker D8 Quest PHOTON area detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.633, 0.747 0.518, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 29600, 5145, 3893 29622, 2969, 2269
Rint 0.032 0.106
(sin θ/λ)max−1) 0.830 0.684
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.087, 1.06 0.048, 0.124, 1.05
No. of reflections 5145 2969
No. of parameters 121 118
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.34 0.29, −0.34
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-Amino-8-thia-1,5-diazaspiro[4.5]dec-1-en-5-ium chloride monohydrate (3_LT) top
Crystal data top
C7H14N3S+·Cl·H2ODx = 1.395 Mg m3
Mr = 225.74Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 8488 reflections
a = 11.0360 (18) Åθ = 2.8–35.6°
b = 10.1005 (16) ŵ = 0.52 mm1
c = 19.291 (3) ÅT = 120 K
V = 2150.4 (6) Å3Prism, colourless
Z = 80.41 × 0.36 × 0.32 mm
F(000) = 960
Data collection top
Bruker APEXII CCD
diffractometer
3893 reflections with I > 2σ(I)
φ and ω scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 36.2°, θmin = 2.1°
Tmin = 0.633, Tmax = 0.747h = 1818
29600 measured reflectionsk = 1616
5145 independent reflectionsl = 2632
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.050P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
5145 reflectionsΔρmax = 0.44 e Å3
121 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.00746 (2)0.63396 (2)0.39143 (2)0.02000 (6)
S10.70833 (2)0.12361 (2)0.74087 (2)0.02033 (6)
N10.55731 (6)0.31961 (6)0.64122 (3)0.01183 (11)
N20.53333 (6)0.45906 (6)0.62609 (4)0.01348 (12)
N30.38623 (7)0.57594 (7)0.56713 (4)0.02087 (15)
H3A0.42000.65200.57820.025*
H3B0.31990.57470.54180.025*
C10.43545 (7)0.46295 (7)0.58861 (4)0.01473 (14)
C20.38062 (8)0.33120 (8)0.57138 (5)0.02009 (16)
H2A0.35940.32490.52160.024*
H2B0.30770.31340.59970.024*
C30.48341 (7)0.23868 (8)0.58991 (4)0.01713 (15)
H3C0.53200.21560.54850.021*
H3D0.45270.15640.61150.021*
C40.51885 (7)0.29562 (8)0.71514 (4)0.01528 (14)
H4A0.43040.31020.71890.018*
H4B0.55950.36110.74540.018*
C50.54806 (8)0.15791 (8)0.74105 (4)0.01851 (16)
H5A0.50630.09220.71140.022*
H5B0.51660.14790.78880.022*
C60.73185 (8)0.16153 (8)0.65050 (4)0.01875 (16)
H6A0.81900.15190.63930.022*
H6B0.68620.09750.62170.022*
C70.69134 (7)0.30023 (8)0.63285 (4)0.01590 (14)
H7A0.73450.36370.66320.019*
H7B0.71410.32000.58430.019*
O10.16762 (6)0.51532 (7)0.50099 (3)0.02415 (14)
H1A0.11570.54600.47270.036*
H1B0.12560.47640.53180.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02624 (11)0.01477 (9)0.01898 (10)0.00288 (7)0.00057 (7)0.00344 (7)
S10.02337 (11)0.01616 (10)0.02145 (11)0.00301 (7)0.00515 (8)0.00290 (7)
N10.0134 (3)0.0084 (2)0.0137 (3)0.0004 (2)0.0002 (2)0.0008 (2)
N20.0158 (3)0.0082 (3)0.0165 (3)0.0001 (2)0.0017 (2)0.0006 (2)
N30.0217 (3)0.0126 (3)0.0283 (4)0.0003 (3)0.0115 (3)0.0011 (3)
C10.0149 (3)0.0123 (3)0.0171 (3)0.0004 (3)0.0010 (3)0.0010 (3)
C20.0198 (4)0.0125 (3)0.0279 (4)0.0015 (3)0.0091 (3)0.0019 (3)
C30.0215 (4)0.0110 (3)0.0189 (4)0.0006 (3)0.0058 (3)0.0036 (3)
C40.0183 (3)0.0138 (3)0.0137 (3)0.0017 (3)0.0035 (3)0.0007 (3)
C50.0221 (4)0.0153 (3)0.0181 (4)0.0005 (3)0.0025 (3)0.0038 (3)
C60.0178 (4)0.0169 (3)0.0216 (4)0.0057 (3)0.0005 (3)0.0005 (3)
C70.0121 (3)0.0163 (3)0.0192 (4)0.0010 (3)0.0026 (3)0.0024 (3)
O10.0161 (3)0.0358 (4)0.0205 (3)0.0016 (3)0.0015 (2)0.0046 (3)
Geometric parameters (Å, º) top
S1—C51.8024 (9)C3—H3C0.9900
S1—C61.8038 (9)C3—H3D0.9900
N1—N21.4626 (9)C4—H4A0.9900
N1—C31.5210 (10)C4—H4B0.9900
N1—C41.5074 (10)C4—C51.5128 (11)
N1—C71.5007 (10)C5—H5A0.9900
N2—C11.3003 (10)C5—H5B0.9900
N3—H3A0.8800C6—H6A0.9900
N3—H3B0.8800C6—H6B0.9900
N3—C11.3301 (10)C6—C71.5093 (11)
C1—C21.4992 (11)C7—H7A0.9900
C2—H2A0.9900C7—H7B0.9900
C2—H2B0.9900O1—H1A0.8501
C2—C31.5125 (11)O1—H1B0.8499
C5—S1—C695.87 (4)N1—C4—H4A108.8
N2—N1—C3106.89 (6)N1—C4—H4B108.8
N2—N1—C4107.01 (5)N1—C4—C5113.60 (6)
N2—N1—C7106.41 (6)H4A—C4—H4B107.7
C4—N1—C3112.23 (6)C5—C4—H4A108.8
C7—N1—C3112.85 (6)C5—C4—H4B108.8
C7—N1—C4111.00 (6)S1—C5—H5A109.1
C1—N2—N1106.89 (6)S1—C5—H5B109.1
H3A—N3—H3B120.0C4—C5—S1112.66 (6)
C1—N3—H3A120.0C4—C5—H5A109.1
C1—N3—H3B120.0C4—C5—H5B109.1
N2—C1—N3122.58 (7)H5A—C5—H5B107.8
N2—C1—C2115.57 (7)S1—C6—H6A109.2
N3—C1—C2121.84 (7)S1—C6—H6B109.2
C1—C2—H2A111.5H6A—C6—H6B107.9
C1—C2—H2B111.5C7—C6—S1111.87 (6)
C1—C2—C3101.15 (6)C7—C6—H6A109.2
H2A—C2—H2B109.4C7—C6—H6B109.2
C3—C2—H2A111.5N1—C7—C6112.88 (6)
C3—C2—H2B111.5N1—C7—H7A109.0
N1—C3—H3C111.2N1—C7—H7B109.0
N1—C3—H3D111.2C6—C7—H7A109.0
C2—C3—N1102.94 (6)C6—C7—H7B109.0
C2—C3—H3C111.2H7A—C7—H7B107.8
C2—C3—H3D111.2H1A—O1—H1B104.5
H3C—C3—H3D109.1
S1—C6—C7—N164.89 (8)C3—N1—C4—C568.11 (8)
N1—N2—C1—N3178.26 (7)C3—N1—C7—C666.08 (9)
N1—N2—C1—C21.35 (10)C4—N1—N2—C1103.39 (7)
N1—C4—C5—S161.65 (8)C4—N1—C3—C291.71 (8)
N2—N1—C3—C225.32 (8)C4—N1—C7—C660.89 (8)
N2—N1—C4—C5174.93 (6)C5—S1—C6—C756.71 (7)
N2—N1—C7—C6176.99 (6)C6—S1—C5—C455.24 (7)
N2—C1—C2—C314.59 (10)C7—N1—N2—C1137.87 (7)
N3—C1—C2—C3165.80 (8)C7—N1—C3—C2141.97 (7)
C1—C2—C3—N122.86 (8)C7—N1—C4—C559.21 (8)
C3—N1—N2—C117.04 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl1i0.882.383.2560 (9)175
N3—H3B···O10.881.952.7970 (11)161
O1—H1A···Cl10.852.263.1042 (9)175
O1—H1B···Cl1ii0.852.273.1152 (9)176
C5—H5B···N2iii0.992.583.3778 (12)138
C6—H6A···N2iv0.992.553.3346 (12)136
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1, z+1; (iii) x+1, y1/2, z+3/2; (iv) x+3/2, y1/2, z.
2-Amino-8-thia-1,5-diazaspiro[4.5]dec-1-en-5-ium chloride monohydrate (3_RT) top
Crystal data top
C7H14N3S+·Cl·H2ODx = 1.351 Mg m3
Mr = 225.74Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 8223 reflections
a = 11.0924 (4) Åθ = 2.8–28.8°
b = 10.1898 (4) ŵ = 0.50 mm1
c = 19.6434 (8) ÅT = 295 K
V = 2220.28 (15) Å3Prism, colourless
Z = 80.41 × 0.36 × 0.32 mm
F(000) = 960
Data collection top
Bruker D8 Quest PHOTON area detector
diffractometer
2269 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.106
phi and ω scansθmax = 29.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1514
Tmin = 0.518, Tmax = 0.746k = 1113
29622 measured reflectionsl = 2626
2969 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.7125P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2969 reflectionsΔρmax = 0.29 e Å3
118 parametersΔρmin = 0.34 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.50712 (5)0.13596 (5)0.60611 (3)0.04965 (17)
S10.28950 (5)0.12409 (5)0.73957 (3)0.04811 (17)
N10.44413 (12)0.31778 (13)0.64306 (7)0.0269 (3)
N20.46759 (13)0.45621 (14)0.62725 (8)0.0308 (3)
N30.61220 (16)0.57229 (17)0.56826 (10)0.0481 (5)
H3A0.57890.64580.57870.058*
H3B0.67640.57120.54370.058*
C10.52107 (19)0.23660 (19)0.59441 (11)0.0433 (5)
H1A0.55390.15990.61700.052*
H1B0.47460.20860.55520.052*
C20.61951 (18)0.32998 (19)0.57400 (12)0.0463 (5)
H2A0.69230.31530.60030.056*
H2B0.63820.32250.52590.056*
C30.56420 (16)0.45980 (17)0.59016 (9)0.0325 (4)
C40.47724 (18)0.29721 (19)0.71662 (9)0.0364 (4)
H4A0.43450.36100.74420.044*
H4B0.56290.31320.72220.044*
C50.4484 (2)0.1611 (2)0.74256 (11)0.0438 (5)
H5A0.47640.15330.78920.053*
H5B0.49180.09720.71540.053*
C60.27154 (18)0.1587 (2)0.65017 (11)0.0442 (5)
H6A0.31830.09610.62400.053*
H6B0.18750.14790.63780.053*
C70.31144 (16)0.2961 (2)0.63200 (10)0.0384 (4)
H7A0.29240.31280.58460.046*
H7B0.26660.35850.65940.046*
O10.33147 (14)0.01611 (18)0.49843 (8)0.0577 (5)
H1C0.37550.04500.53050.087*
H1D0.37110.02610.46860.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0635 (4)0.0357 (3)0.0498 (3)0.0080 (2)0.0013 (2)0.0113 (2)
S10.0550 (3)0.0369 (3)0.0524 (3)0.0082 (2)0.0144 (2)0.0064 (2)
N10.0311 (7)0.0193 (6)0.0302 (7)0.0009 (5)0.0013 (5)0.0024 (5)
N20.0360 (8)0.0194 (7)0.0370 (8)0.0012 (6)0.0059 (6)0.0009 (6)
N30.0517 (10)0.0287 (8)0.0640 (12)0.0021 (7)0.0241 (8)0.0024 (8)
C10.0537 (12)0.0260 (9)0.0500 (11)0.0012 (8)0.0201 (9)0.0096 (8)
C20.0443 (11)0.0301 (10)0.0644 (13)0.0043 (8)0.0196 (9)0.0042 (9)
C30.0358 (9)0.0261 (8)0.0355 (9)0.0015 (7)0.0037 (7)0.0016 (7)
C40.0446 (10)0.0318 (9)0.0326 (9)0.0055 (7)0.0092 (7)0.0009 (7)
C50.0549 (12)0.0363 (10)0.0401 (10)0.0013 (9)0.0076 (9)0.0111 (8)
C60.0400 (11)0.0384 (11)0.0540 (12)0.0131 (8)0.0035 (9)0.0026 (9)
C70.0319 (9)0.0390 (10)0.0444 (10)0.0051 (8)0.0081 (7)0.0061 (8)
O10.0387 (8)0.0872 (13)0.0473 (8)0.0039 (8)0.0054 (6)0.0084 (8)
Geometric parameters (Å, º) top
S1—C51.804 (2)C2—H2B0.9700
S1—C61.802 (2)C2—C31.492 (2)
N1—N21.4676 (19)C4—H4A0.9700
N1—C11.525 (2)C4—H4B0.9700
N1—C41.506 (2)C4—C51.512 (3)
N1—C71.504 (2)C5—H5A0.9700
N2—C31.296 (2)C5—H5B0.9700
N3—H3A0.8600C6—H6A0.9700
N3—H3B0.8600C6—H6B0.9700
N3—C31.335 (2)C6—C71.511 (3)
C1—H1A0.9700C7—H7A0.9700
C1—H1B0.9700C7—H7B0.9700
C1—C21.503 (3)O1—H1C0.8500
C2—H2A0.9700O1—H1D0.8499
C6—S1—C595.67 (9)N1—C4—H4A108.9
N2—N1—C1106.83 (13)N1—C4—H4B108.9
N2—N1—C4107.07 (13)N1—C4—C5113.56 (15)
N2—N1—C7106.50 (13)H4A—C4—H4B107.7
C4—N1—C1112.92 (15)C5—C4—H4A108.9
C7—N1—C1112.18 (14)C5—C4—H4B108.9
C7—N1—C4110.91 (14)S1—C5—H5A109.0
C3—N2—N1107.02 (13)S1—C5—H5B109.0
H3A—N3—H3B120.0C4—C5—S1112.80 (14)
C3—N3—H3A120.0C4—C5—H5A109.0
C3—N3—H3B120.0C4—C5—H5B109.0
N1—C1—H1A111.1H5A—C5—H5B107.8
N1—C1—H1B111.1S1—C6—H6A109.1
H1A—C1—H1B109.1S1—C6—H6B109.1
C2—C1—N1103.32 (15)H6A—C6—H6B107.9
C2—C1—H1A111.1C7—C6—S1112.28 (14)
C2—C1—H1B111.1C7—C6—H6A109.1
C1—C2—H2A111.4C7—C6—H6B109.1
C1—C2—H2B111.4N1—C7—C6112.86 (15)
H2A—C2—H2B109.3N1—C7—H7A109.0
C3—C2—C1101.88 (15)N1—C7—H7B109.0
C3—C2—H2A111.4C6—C7—H7A109.0
C3—C2—H2B111.4C6—C7—H7B109.0
N2—C3—N3122.34 (16)H7A—C7—H7B107.8
N2—C3—C2115.74 (16)H1C—O1—H1D112.9
N3—C3—C2121.91 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl1i0.862.423.2786 (18)174
N3—H3B···O1ii0.861.992.821 (2)162
O1—H1C···Cl10.852.283.1244 (17)173
O1—H1D···Cl1iii0.852.293.1343 (17)175
C6—H6B···N2iv0.972.613.391 (2)138
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y, z+1; (iv) x+1/2, y1/2, z.
 

Acknowledgements

The XRD study was carried out using the equipment of Center for Mol­ecular Composition Studies of INEOS RAS.

Funding information

This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kaza­khstan (grant No. BR10965255).

References

First citationBakunov, S. A., Rukavishnikov, A. V. & Tkachev, A. V. (2000). Synthesis, pp. 1148–1159.  CrossRef Google Scholar
First citationBeketov, K. M., Welch, J. T., Toskano, P., Kayukova, L. A., Akhelova, A. L. & Praliev, K. D. (2004). J. Struct. Chem. 45, 509–517.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChilds, S. L., Wood, P. A., Rodríguez-Hornedo, N., Reddy, L. S. & Hardcastle, K. I. (2009). Cryst. Growth Des. 9, 1869–1888.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDoulou, I., Kontogiorgis, C., Koumbis, A. E., Evgenidou, E., Hadjipavlou-Litina, D. & Fylaktakidou, C. (2014). Eur. J. Med. Chem. 80, 145–153.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKayukova, L. A. (2003). Chem. Heterocycl. Compd, 39, 223–227.  CrossRef CAS Google Scholar
First citationKayukova, L. A., Baitursynova, G. P., Yergaliyeva, E. M., Zhaksylyk, B. A., Yelibayeva, N. S. & Kurmangaliyeva, A. B. (2021b). Chem. J. Kaz, 74, 21–31.  CrossRef Google Scholar
First citationKayukova, L. A., Orazbaeva, M. A., Bismilda, L. T. & Chingisova, L. T. (2010a). Pharm. Chem. J. 44, 356–359.  Web of Science CrossRef CAS Google Scholar
First citationKayukova, L. A., Orazbaeva, M. A., Gapparova, G. I., Beketov, K. M., Espenbetov, A. A., Faskhutdinov, M. F. & Tashkhodjaev, B. T. (2010b). Chem. Heterocycl. Compd, 46, 879–886.  Web of Science CrossRef CAS Google Scholar
First citationKayukova, L. A., Praliyev, K. D., Myrzabek, A. B. & Kainarbayeva, Z. N. (2020). Russ. Chem. Bull. 69, 496–503.  Web of Science CSD CrossRef CAS Google Scholar
First citationKayukova, L. A., Uzakova, A. B., Vologzhanina, A. V., Akatan, K., Shaymardan, E. & Kabdrakhmanova, S. K. (2018). Chem. Heterocycl. Compd, 54, 643–649.  Web of Science CSD CrossRef CAS Google Scholar
First citationKayukova, L., Vologzhanina, A., Praliyev, K., Dyusembaeva, G., Baitursynova, G., Uzakova, A., Bismilda, V., Chingissova, L. & Akatan, K. (2021a). Molecules, 26, 967–982.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationO'Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. (2008). Acc. Chem. Res. 41, 1782–1789.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiemann, F. (1891). Ber. Dtsch. Chem. Ges. 24, 4162–4167.  CrossRef Google Scholar
First citationVologzhanina, A. V. (2019). Crystals, 9, 478.  Web of Science CrossRef Google Scholar
First citationYergaliyeva, E. M., Kayukova, L. A., Bazhykova, K. B., Gubenko, M. A. & Langer, P. (2021). J. Struct. Chem. 62, 2090–2095.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds