research communications
and Hirshfeld surface analysis of 1-[(benzyldimethylsilyl)methyl]-1-ethylpiperidin-1-ium ethanesulfonate
aTechnische Universität Dortmund, Fakultät Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de
The title molecular salt, C17H30NSi+·C2H5O4S−, belongs to the class of a-aminosilanes and was synthesized by the alkylation of 1-[(benzyldimethylsilyl)methyl]piperidine using diethyl sulfate. This achiral salt crystallizes in the P21. One of the Si—C bonds in the cation is unusually long [1.9075 (12) Å], which correlates with the adjacent quaternary N+ atom and was verified by quantum chemical calculations. In the crystal, the components are linked by weak C—H⋯O hydrogen bonds: a Hirshfeld surface analysis was performed to further investigate these intermolecular interactions and their effects on the crystal packing.
Keywords: crystal structure; α-aminosilanes; long Si—C bonds; hydrogen bonds; Hirshfeld surface analysis.
CCDC reference: 2131144
1. Chemical context
Selective bond transformations on silicon compounds for the cleavage of Si—C bonds are of high interest in silicon chemistry (Denmark et al., 2007; Denmark & Liu, 2010). Compared to C—C bonds, analogous Si—C bonds can be cleaved heterolytically using strong nucleophiles (Tomooka et al., 2000; Li & Hu, 2007). However, the selectivity of such reactions is limited to specific In particular, α-amino-functionalized are well suited for these processes, as shown by our previous studies (Koller et al., 2017). Our group has focused on using lithium organyls as strong nucleophiles to perform these Si—C transformations on highly substituted (Bauer & Strohmann, 2014). In particular, derivatives of α-piperdinobenzylsilanes have been intensively studied by our group (Strohmann et al., 2004; Otte et al., 2017). When strong nucleophiles are used, deprotonation in the benzyl position competes with the selective Si—C bond cleavage of the benzyl group. For this purpose, the α-aminofunctionality seems to play a key role, which could be responsible for the activation of the subsequent Si—C bond cleavage. In addition, the positively charged ammonium group leads to an increased which enhances the electron-withdrawing effect of the substituted α-aminofunctionality. Consequently, the π-character of the Si—C bond is more pronounced, leading to an elongation of the bond. Thus, a selective cleavage of the amino functionality due to the elongated Si—C bond is also conceivable (Bent, 1960, 1961; Otte et al., 2017).
Several derivates of these α-piperdinobenzylsilanes have been synthesized by our research group: 1-[(benzyldimethylsilyl)methyl]-1-ethylpiperidin-1-ium ethanesulfonate (1), the title compound, represents a compound that could lead to an extension of the aforementioned Si—C bond to the nitrogen atom via the quaternary ammonium cation. Structural studies concerning this type of compound should better elucidate the reactivity as well as selectivity of Si—C cleavages of the benzyl-substituted α-aminosilanes.
2. Structural commentary
Compound 1 crystallized from an n-pentane solution at 243 K in the form of colorless blocks with monoclinic (P21) symmetry. The indicates that the achiral compound in the elementary cell is packed chirally; the Flack parameter amounts to −0.005 (6) (Flack, 1983). The molecular structure of 1 is illustrated in Fig. 1. The Si—C bonds span the range 1.862 (2) to 1.908 (1) Å, as shown in Table 1. These values for the bond lengths are consistent with those in the literature, except for the long Si1—C10 bond length, which is related to the α-aminosilane functionality (Allen et al., 1987). This observed elongation of the bond can be explained by the very electropositive feature of carbon atom C10. In addition, the ethylated ammonium cation pushes even more electron density from C10 toward the amino functionality. There are only a few known species with such a long Si—C bond, which in turn may play a crucial role in the reactivity of α-amino-substituted Quantum chemical calculations at the M062X/6-31+G(d) level confirm the experimentally observed long Si—C bond. The calculated structure of compound 1 is shown in Fig. 2.
|
The silicon center in 1 features a tetrahedral geometry, which is significantly distorted, as shown by the smallest angle of 98.35 (5)° (C7—Si1—C10) and the largest angle of 114.32 (7)° (C8—Si1—C10). This geometric distortion has been observed in many complex substituted silicon compounds and depends on the substituents (Otte et al., 2017). However, the distortion is large for compound 1 compared to most known (Krupp et al., 2020).
3. Supramolecular features
The crystal packing along the b-axis of compound 1 is illustrated in Fig. 3. Further studies of the packing in the solid state were aimed at finding hydrogen bonds of compound 1 as well as discussing the intensities of those hydrogen bonds. These studies were performed using Hirshfeld surface analysis. The Hirshfeld surface mapped over dnorm in the range from −0.072 to 1.201 arbitrary units as well as the related fingerprints plots generated by CrystalExplorer2021 (Spackman et al., 2021, Turner et al., 2017) are illustrated in Fig. 4. With a share of 71.4%, most of the interactions relate to weak van der Waals H⋯H contacts, which should play a minor role for the packing of the crystal. In contrast, the role of O⋯H/H⋯O contacts should be predominant in the crystal arrangement in the as shown by the significant red spots on the Hirshfeld surface. Numerous hydrogen bonds of the ethyl sulfate group to the ammonium cation are visible on the surface. The contribution of these contacts amounts to 16.6%. C⋯H/H⋯C contacts as well as H⋯H contacts do not show as intense spots on the Hirshfeld surface and should not be considered as relevant as the O⋯H/H⋯O contacts for the crystal packing. All hydrogen bonds up to a distance of 3.4 Å as well as an angle of at least 155° are listed in Table 2. According to Perlstein (2001), all hydrogen bonds listed in Table 2 have a weak to moderately strong character, which can be explained in particular by the non-linear angles of 156 (7)° (C7—H7B⋯O2ii) to 167 (2)° (C3—H3⋯O2i). The shortest hydrogen-bond length is 3.1815 (16) Å and is the strongest supramolecular interaction with an angle of 162.8 (17)° (C17—H17A⋯O4). Analysis of the hydrogen-bonding network shows that all the hydrogen bonds shown in Table 2 can be assigned to one graph-set motif [D11(2); Etter et al., 1990] and all of these bonds are linearly connected to two different atoms.
4. Database survey
There are some other examples of crystallographically characterized α-aminosilane derivatives that are structurally based on compound 1 and its starting compound 2. Examples of such α-piperidinosilanes found in the Cambridge Structural Database (WebCSD, November 2021; Groom et al., 2016) are (R)-1-methyl-1-{[methyl(phenyl)(trimethylgermyl)silyl]methyl}piperidinium iodide, C17H32GeNSiI (CSD refcode BOFLOY; Strohmann et al., 2008), (triphenylsilylpiperidinylcarbene)tetracarbonyltungsten(0), C28H25NO4SiW (DIZWUE; Schubert et al., 1986), [bis(trimethylsilyl)methyl]bis[diphenyl(N-piperidinomethylsilyl)methyl]gallium n-pentane solvate, C45H67GaN2Si4·0.5(C5H12) (MASLUN; Uhl et al., 2000), 8-chloro-8,8-dimethyl-1-aza-7-oxa-8-silabicyclo(4.3.0)non-6-ene, C8H16ClNOSi (FUSYIB; Macharashvili et al., 1987), 1-{[benzyl(methyl)phenylsilyl]methyl}piperidinium bromide, C20H28NSiBr (NUPMUI; Barth et al., 2015), N-(triphenylsilylmethyl)-5,6-aza-C60fulleroid, C79H17NSi (YOXBOD; Hachiya et al., 2009).
5. Synthesis and crystallization
The reaction scheme for the synthesis of 1 is illustrated in Fig. 5: 1-[(benzyldimethylsilyl)methyl]piperidine (2) (0.81 mmol) was dissolved in acetone (3 ml) and diethyl sulfate (0.81 mmol) was added dropwise to the solution. The reaction mixture was stirred and heated for 6 h at 329 K. Afterwards the reaction was quenched by the addition of a mixture of H2O (2 ml) and NH3 (2 ml). The aqueous phase was extracted three times with CH2Cl2 and the combined organic phases were dried over Na2SO4. After the removal of volatile compounds, the raw product was dissolved in n-pentane (1 ml) and stored at 243 K. The title salt (1) was isolated as colorless crystalline blocks.
1H NMR (300.25 MHz, CDCl3): δ = 0.30 [s, 6H, Si(CH3)2], 1.24–1.31 (m, 6H, OCH2CH3, NCH2CH3), 1.65–1.90 [br. m, 6H, N(CH2CH2)2, NCH2CH2CH2], 2.29 (s, 2H, SiCH2Car), 3.12 (s, 2H, SiCH2N), 3.37–3.56 [br. m, 6H, N(CH2)3], 4.12 (q, 2H, 3JH–H = 7.1Hz, OCH2CH3), 7.04 (d, 2H, 3JH–H = 7.0Hz, CHar), 7.10–7.15 (m, 1H, CHar), 7.24 (d, 2H, 3JH–H = 7.6Hz, CHar) ppm.
6. Refinement
Crystal data, data collection and structure . All H atoms were refined freely using independent values for each Uiso(H).
details are summarized in Table 3Supporting information
CCDC reference: 2131144
https://doi.org/10.1107/S205698902101361X/hb8003sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902101361X/hb8003Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902101361X/hb8003Isup3.cml
Data collection: APEX4 (Bruker, 2021); cell
SAINT (Bruker, 2021); data reduction: SAINT (Bruker, 2021); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: CrystalExplorer21 (Spackman et al., 2021; Turner et al., 2017), publCIF (Westrip, 2010), Mercury (Macrae et al., 2020), GaussView 6.016 (Frisch et al., 2016), Gaussian 09 Revision A.02 (Frisch et al., 2016), SCHAKAL99 (Keller, 1999), Molekel 4.3 (Flükiger et al., 2000).C17H30NSi+·C2H5O4S− | F(000) = 436 |
Mr = 401.63 | Dx = 1.237 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.4627 (8) Å | Cell parameters from 9642 reflections |
b = 12.8187 (11) Å | θ = 3.0–30.6° |
c = 10.3926 (9) Å | µ = 0.23 mm−1 |
β = 107.033 (3)° | T = 100 K |
V = 1077.95 (17) Å3 | Block, colourless |
Z = 2 | 0.82 × 0.44 × 0.38 mm |
Bruker D8 VENTURE diffractometer | 8122 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 7987 reflections with I > 2σ(I) |
HELIOS mirror optics monochromator | Rint = 0.021 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 33.0°, θmin = 2.5° |
ω and φ scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Bruker, 2021) | k = −19→19 |
Tmin = 0.699, Tmax = 0.747 | l = −15→15 |
68418 measured reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.024 | w = 1/[σ2(Fo2) + (0.039P)2 + 0.1456P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.065 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.53 e Å−3 |
8122 reflections | Δρmin = −0.59 e Å−3 |
375 parameters | Absolute structure: Flack x determined using 3811 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: −0.005 (6) |
Primary atom site location: iterative |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.88614 (3) | 0.62026 (2) | 0.40720 (3) | 0.01913 (6) | |
Si1 | 0.05612 (4) | 0.31084 (3) | 0.20000 (3) | 0.01987 (7) | |
O3 | 1.05747 (10) | 0.61067 (7) | 0.48491 (8) | 0.01886 (15) | |
O1 | 0.85485 (10) | 0.74269 (6) | 0.37242 (10) | 0.01822 (15) | |
O4 | 0.77064 (16) | 0.60053 (10) | 0.4817 (2) | 0.0533 (5) | |
O2 | 0.85245 (18) | 0.56667 (8) | 0.27863 (13) | 0.0439 (4) | |
N1 | 0.35820 (12) | 0.43767 (7) | 0.34820 (11) | 0.01724 (16) | |
C10 | 0.19151 (13) | 0.39252 (8) | 0.34376 (12) | 0.01601 (18) | |
C14 | 0.53245 (16) | 0.29189 (10) | 0.48490 (16) | 0.0253 (2) | |
C17 | 0.41837 (15) | 0.50777 (10) | 0.47118 (15) | 0.0230 (2) | |
C6 | −0.27742 (13) | 0.25033 (8) | 0.16162 (10) | 0.01469 (17) | |
C5 | −0.31035 (14) | 0.14496 (9) | 0.17585 (11) | 0.01782 (18) | |
C13 | 0.48527 (15) | 0.35320 (9) | 0.35398 (14) | 0.0211 (2) | |
C7 | −0.13320 (13) | 0.30314 (9) | 0.25953 (11) | 0.01589 (17) | |
C1 | −0.38217 (16) | 0.30517 (11) | 0.05336 (13) | 0.0247 (2) | |
C15 | 0.59552 (18) | 0.36517 (13) | 0.60478 (17) | 0.0298 (3) | |
C18 | 0.96437 (15) | 0.78813 (9) | 0.30464 (13) | 0.0206 (2) | |
C4 | −0.44312 (17) | 0.09575 (11) | 0.08387 (14) | 0.0258 (2) | |
C3 | −0.54609 (16) | 0.15050 (14) | −0.02339 (13) | 0.0295 (3) | |
C16 | 0.46575 (16) | 0.44744 (12) | 0.60249 (15) | 0.0276 (3) | |
C11 | 0.35005 (16) | 0.50178 (10) | 0.22355 (15) | 0.0245 (2) | |
C19 | 0.93127 (16) | 0.90390 (9) | 0.29232 (12) | 0.0202 (2) | |
C12 | 0.23198 (19) | 0.59372 (11) | 0.19959 (18) | 0.0306 (3) | |
C8 | 0.0020 (3) | 0.3761 (2) | 0.03268 (16) | 0.0472 (5) | |
C2 | −0.51474 (18) | 0.25531 (15) | −0.03823 (14) | 0.0316 (3) | |
C9 | 0.1422 (2) | 0.17830 (15) | 0.1885 (3) | 0.0455 (5) | |
H13A | 0.442 (2) | 0.3078 (18) | 0.274 (2) | 0.024 (4)* | |
H3 | −0.638 (3) | 0.121 (2) | −0.085 (3) | 0.043 (6)* | |
H13B | 0.583 (3) | 0.3899 (17) | 0.346 (2) | 0.025 (5)* | |
H5 | −0.241 (2) | 0.1076 (17) | 0.250 (2) | 0.024 (4)* | |
H11A | 0.318 (2) | 0.4547 (16) | 0.1467 (19) | 0.017 (4)* | |
H12A | 0.122 (3) | 0.5740 (19) | 0.193 (2) | 0.029 (5)* | |
H10A | 0.128 (3) | 0.4494 (18) | 0.358 (2) | 0.026 (5)* | |
H7A | −0.108 (3) | 0.2671 (17) | 0.343 (2) | 0.023 (4)* | |
H16A | 0.368 (3) | 0.4130 (18) | 0.614 (2) | 0.032 (5)* | |
H7B | −0.162 (3) | 0.369 (2) | 0.277 (3) | 0.041 (6)* | |
H8A | −0.071 (4) | 0.332 (3) | −0.020 (3) | 0.056 (8)* | |
H18A | 1.077 (3) | 0.7716 (19) | 0.355 (2) | 0.037 (6)* | |
H17A | 0.512 (3) | 0.5403 (16) | 0.456 (2) | 0.023 (5)* | |
H16B | 0.512 (3) | 0.504 (2) | 0.676 (3) | 0.040 (6)* | |
H17B | 0.331 (3) | 0.5512 (18) | 0.475 (2) | 0.032 (5)* | |
H12B | 0.233 (3) | 0.630 (2) | 0.106 (3) | 0.043 (6)* | |
H2 | −0.586 (3) | 0.296 (2) | −0.110 (2) | 0.041 (6)* | |
H11B | 0.454 (3) | 0.525 (2) | 0.235 (2) | 0.033 (6)* | |
H14A | 0.439 (3) | 0.2515 (19) | 0.494 (2) | 0.030 (5)* | |
H14B | 0.617 (3) | 0.2459 (19) | 0.477 (2) | 0.033 (6)* | |
H19A | 0.825 (3) | 0.916 (2) | 0.235 (3) | 0.040 (6)* | |
H19B | 0.945 (3) | 0.933 (2) | 0.382 (2) | 0.037 (6)* | |
H9A | 0.058 (3) | 0.133 (2) | 0.123 (3) | 0.048 (7)* | |
H19C | 1.009 (3) | 0.943 (2) | 0.251 (2) | 0.031 (5)* | |
H1 | −0.362 (3) | 0.379 (2) | 0.045 (3) | 0.041 (6)* | |
H10B | 0.205 (3) | 0.3469 (18) | 0.418 (2) | 0.027 (5)* | |
H9B | 0.231 (5) | 0.175 (4) | 0.154 (4) | 0.090 (13)* | |
H4 | −0.477 (3) | 0.018 (2) | 0.093 (3) | 0.037 (6)* | |
H8B | 0.103 (6) | 0.397 (4) | 0.005 (4) | 0.095 (14)* | |
H18B | 0.945 (3) | 0.751 (2) | 0.216 (2) | 0.037 (6)* | |
H15A | 0.700 (4) | 0.397 (2) | 0.597 (3) | 0.058 (8)* | |
H12C | 0.274 (3) | 0.647 (2) | 0.270 (3) | 0.046 (7)* | |
H15B | 0.623 (4) | 0.327 (2) | 0.686 (3) | 0.051 (7)* | |
H8C | −0.044 (5) | 0.439 (4) | 0.038 (4) | 0.078 (11)* | |
H9C | 0.167 (5) | 0.140 (4) | 0.293 (4) | 0.092 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01109 (10) | 0.01196 (10) | 0.03141 (13) | 0.00019 (8) | 0.00167 (8) | 0.00310 (9) |
Si1 | 0.01993 (14) | 0.02043 (14) | 0.02339 (14) | −0.00530 (11) | 0.01279 (11) | −0.00846 (11) |
O3 | 0.0134 (3) | 0.0214 (4) | 0.0193 (3) | 0.0031 (3) | 0.0009 (3) | 0.0034 (3) |
O1 | 0.0140 (3) | 0.0118 (3) | 0.0301 (4) | 0.0013 (3) | 0.0084 (3) | 0.0021 (3) |
O4 | 0.0297 (5) | 0.0335 (7) | 0.1128 (13) | 0.0101 (5) | 0.0458 (7) | 0.0345 (7) |
O2 | 0.0507 (7) | 0.0172 (4) | 0.0404 (6) | 0.0058 (4) | −0.0234 (5) | −0.0085 (4) |
N1 | 0.0133 (4) | 0.0120 (4) | 0.0294 (5) | −0.0001 (3) | 0.0109 (3) | −0.0006 (3) |
C10 | 0.0127 (4) | 0.0146 (4) | 0.0237 (5) | −0.0019 (3) | 0.0099 (3) | −0.0023 (3) |
C14 | 0.0194 (5) | 0.0169 (5) | 0.0405 (7) | 0.0031 (4) | 0.0104 (5) | 0.0045 (4) |
C17 | 0.0145 (4) | 0.0161 (5) | 0.0387 (6) | −0.0020 (4) | 0.0082 (4) | −0.0083 (4) |
C6 | 0.0134 (4) | 0.0151 (4) | 0.0158 (4) | 0.0024 (3) | 0.0045 (3) | −0.0004 (3) |
C5 | 0.0185 (4) | 0.0157 (4) | 0.0178 (4) | −0.0026 (3) | 0.0030 (3) | −0.0012 (3) |
C13 | 0.0168 (4) | 0.0148 (4) | 0.0361 (6) | 0.0035 (4) | 0.0148 (4) | −0.0004 (4) |
C7 | 0.0156 (4) | 0.0146 (4) | 0.0185 (4) | −0.0018 (3) | 0.0066 (3) | −0.0030 (3) |
C1 | 0.0215 (5) | 0.0259 (5) | 0.0243 (5) | 0.0078 (4) | 0.0032 (4) | 0.0072 (5) |
C15 | 0.0190 (5) | 0.0313 (7) | 0.0367 (7) | 0.0027 (5) | 0.0047 (5) | 0.0017 (5) |
C18 | 0.0222 (5) | 0.0148 (4) | 0.0282 (5) | 0.0033 (4) | 0.0129 (4) | 0.0036 (4) |
C4 | 0.0235 (5) | 0.0286 (6) | 0.0240 (5) | −0.0094 (4) | 0.0052 (4) | −0.0081 (4) |
C3 | 0.0162 (5) | 0.0506 (8) | 0.0197 (5) | −0.0043 (5) | 0.0022 (4) | −0.0102 (5) |
C16 | 0.0177 (5) | 0.0326 (6) | 0.0321 (6) | −0.0019 (5) | 0.0064 (4) | −0.0093 (5) |
C11 | 0.0217 (5) | 0.0200 (5) | 0.0367 (6) | 0.0007 (4) | 0.0163 (5) | 0.0072 (5) |
C19 | 0.0250 (5) | 0.0131 (4) | 0.0230 (5) | −0.0009 (4) | 0.0081 (4) | −0.0012 (4) |
C12 | 0.0283 (6) | 0.0195 (5) | 0.0444 (8) | 0.0042 (4) | 0.0115 (6) | 0.0082 (5) |
C8 | 0.0582 (11) | 0.0667 (13) | 0.0200 (6) | −0.0352 (11) | 0.0163 (7) | −0.0063 (7) |
C2 | 0.0201 (5) | 0.0496 (9) | 0.0211 (5) | 0.0105 (6) | −0.0004 (4) | 0.0041 (5) |
C9 | 0.0296 (7) | 0.0320 (7) | 0.0824 (14) | −0.0062 (6) | 0.0279 (9) | −0.0332 (9) |
S1—O3 | 1.4435 (8) | C1—C2 | 1.396 (2) |
S1—O1 | 1.6149 (9) | C1—H1 | 0.98 (3) |
S1—O4 | 1.4364 (12) | C15—C16 | 1.518 (2) |
S1—O2 | 1.4545 (13) | C15—H15A | 1.00 (3) |
Si1—C7 | 1.8814 (11) | C15—H15B | 0.95 (3) |
Si1—C8 | 1.862 (2) | C18—C19 | 1.5086 (16) |
Si1—C9 | 1.8662 (18) | C18—H18A | 0.97 (3) |
Si1—C10 | 1.9075 (12) | C18—H18B | 1.00 (3) |
O1—C18 | 1.4412 (14) | C4—C3 | 1.388 (2) |
N1—C10 | 1.5130 (14) | C4—H4 | 1.05 (3) |
N1—C17 | 1.5227 (17) | C3—C2 | 1.387 (3) |
N1—C13 | 1.5148 (15) | C3—H3 | 0.93 (3) |
N1—C11 | 1.5186 (17) | C16—H16A | 0.98 (2) |
C10—H10A | 0.94 (2) | C16—H16B | 1.04 (3) |
C10—H10B | 0.95 (2) | C11—C12 | 1.5177 (19) |
C14—C13 | 1.5199 (19) | C11—H11A | 0.97 (2) |
C14—C15 | 1.526 (2) | C11—H11B | 0.91 (2) |
C14—H14A | 0.97 (2) | C19—H19A | 0.94 (3) |
C14—H14B | 0.95 (2) | C19—H19B | 0.99 (2) |
C17—C16 | 1.517 (2) | C19—H19C | 1.01 (2) |
C17—H17A | 0.95 (2) | C12—H12A | 0.94 (2) |
C17—H17B | 0.93 (2) | C12—H12B | 1.08 (3) |
C6—C5 | 1.3957 (15) | C12—H12C | 0.99 (3) |
C6—C7 | 1.5019 (15) | C8—H8A | 0.89 (3) |
C6—C1 | 1.4005 (16) | C8—H8B | 1.01 (5) |
C5—C4 | 1.3946 (16) | C8—H8C | 0.91 (4) |
C5—H5 | 0.95 (2) | C2—H2 | 0.96 (3) |
C13—H13A | 0.99 (2) | C9—H9A | 1.01 (3) |
C13—H13B | 0.97 (2) | C9—H9B | 0.92 (4) |
C7—H7A | 0.95 (2) | C9—H9C | 1.15 (4) |
C7—H7B | 0.91 (3) | ||
O3—S1—O1 | 106.26 (5) | C14—C15—H15A | 106.7 (18) |
O3—S1—O2 | 111.61 (7) | C14—C15—H15B | 110.4 (18) |
O4—S1—O3 | 114.45 (8) | C16—C15—C14 | 109.66 (11) |
O4—S1—O1 | 101.47 (6) | C16—C15—H15A | 111.9 (18) |
O4—S1—O2 | 115.54 (11) | C16—C15—H15B | 111.2 (18) |
O2—S1—O1 | 106.15 (6) | H15A—C15—H15B | 107 (3) |
C7—Si1—C10 | 98.35 (5) | O1—C18—C19 | 108.00 (9) |
C8—Si1—C10 | 114.32 (7) | O1—C18—H18A | 108.5 (14) |
C8—Si1—C7 | 109.31 (9) | O1—C18—H18B | 107.5 (15) |
C8—Si1—C9 | 110.06 (12) | C19—C18—H18A | 112.9 (15) |
C9—Si1—C10 | 113.19 (8) | C19—C18—H18B | 114.0 (15) |
C9—Si1—C7 | 111.06 (7) | H18A—C18—H18B | 106 (2) |
C18—O1—S1 | 114.55 (7) | C5—C4—H4 | 123.5 (14) |
C10—N1—C17 | 109.32 (9) | C3—C4—C5 | 120.81 (13) |
C10—N1—C13 | 111.87 (9) | C3—C4—H4 | 115.5 (14) |
C10—N1—C11 | 111.84 (9) | C4—C3—H3 | 123.5 (18) |
C13—N1—C17 | 109.24 (10) | C2—C3—C4 | 118.93 (12) |
C13—N1—C11 | 105.96 (9) | C2—C3—H3 | 117.5 (18) |
C11—N1—C17 | 108.49 (10) | C17—C16—C15 | 111.58 (12) |
Si1—C10—H10A | 107.8 (13) | C17—C16—H16A | 109.3 (13) |
Si1—C10—H10B | 101.7 (14) | C17—C16—H16B | 104.1 (15) |
N1—C10—Si1 | 125.08 (8) | C15—C16—H16A | 108.7 (14) |
N1—C10—H10A | 105.8 (14) | C15—C16—H16B | 110.8 (15) |
N1—C10—H10B | 108.7 (13) | H16A—C16—H16B | 112.3 (19) |
H10A—C10—H10B | 106.6 (18) | N1—C11—H11A | 107.2 (12) |
C13—C14—C15 | 110.47 (11) | N1—C11—H11B | 105.7 (15) |
C13—C14—H14A | 110.8 (14) | C12—C11—N1 | 115.05 (11) |
C13—C14—H14B | 104.5 (14) | C12—C11—H11A | 109.7 (12) |
C15—C14—H14A | 110.4 (14) | C12—C11—H11B | 109.4 (16) |
C15—C14—H14B | 111.0 (15) | H11A—C11—H11B | 109.7 (19) |
H14A—C14—H14B | 110 (2) | C18—C19—H19A | 109.5 (16) |
N1—C17—H17A | 101.9 (12) | C18—C19—H19B | 109.3 (15) |
N1—C17—H17B | 108.3 (14) | C18—C19—H19C | 113.5 (14) |
C16—C17—N1 | 112.92 (10) | H19A—C19—H19B | 111 (2) |
C16—C17—H17A | 111.3 (13) | H19A—C19—H19C | 106 (2) |
C16—C17—H17B | 105.7 (14) | H19B—C19—H19C | 107 (2) |
H17A—C17—H17B | 117 (2) | C11—C12—H12A | 112.9 (14) |
C5—C6—C7 | 120.82 (10) | C11—C12—H12B | 107.8 (14) |
C5—C6—C1 | 118.15 (11) | C11—C12—H12C | 109.8 (16) |
C1—C6—C7 | 121.03 (10) | H12A—C12—H12B | 108.6 (19) |
C6—C5—H5 | 118.5 (13) | H12A—C12—H12C | 112 (2) |
C4—C5—C6 | 120.72 (11) | H12B—C12—H12C | 106 (2) |
C4—C5—H5 | 120.8 (13) | Si1—C8—H8A | 103 (2) |
N1—C13—C14 | 113.73 (10) | Si1—C8—H8B | 113 (3) |
N1—C13—H13A | 107.5 (12) | Si1—C8—H8C | 110 (2) |
N1—C13—H13B | 105.1 (13) | H8A—C8—H8B | 118 (3) |
C14—C13—H13A | 112.5 (13) | H8A—C8—H8C | 112 (3) |
C14—C13—H13B | 108.6 (13) | H8B—C8—H8C | 101 (3) |
H13A—C13—H13B | 109.1 (17) | C1—C2—H2 | 118.4 (17) |
Si1—C7—H7A | 109.8 (13) | C3—C2—C1 | 120.64 (13) |
Si1—C7—H7B | 108.6 (17) | C3—C2—H2 | 121.0 (17) |
C6—C7—Si1 | 113.71 (7) | Si1—C9—H9A | 110.7 (16) |
C6—C7—H7A | 108.8 (13) | Si1—C9—H9B | 116 (3) |
C6—C7—H7B | 109.9 (17) | Si1—C9—H9C | 107 (2) |
H7A—C7—H7B | 106 (2) | H9A—C9—H9B | 102 (3) |
C6—C1—H1 | 118.4 (16) | H9A—C9—H9C | 107 (3) |
C2—C1—C6 | 120.75 (13) | H9B—C9—H9C | 114 (3) |
C2—C1—H1 | 120.8 (16) | ||
S1—O1—C18—C19 | −174.27 (8) | C5—C4—C3—C2 | 0.2 (2) |
O3—S1—O1—C18 | 55.64 (10) | C13—N1—C10—Si1 | −65.17 (13) |
O4—S1—O1—C18 | 175.59 (11) | C13—N1—C17—C16 | −52.78 (12) |
O2—S1—O1—C18 | −63.30 (11) | C13—N1—C11—C12 | −178.50 (12) |
N1—C17—C16—C15 | 56.11 (14) | C13—C14—C15—C16 | 56.25 (15) |
C10—Si1—C7—C6 | 174.81 (8) | C7—C6—C5—C4 | −179.20 (11) |
C10—N1—C17—C16 | 69.94 (12) | C7—C6—C1—C2 | 179.19 (11) |
C10—N1—C13—C14 | −67.70 (13) | C1—C6—C5—C4 | 0.58 (17) |
C10—N1—C11—C12 | 59.35 (15) | C1—C6—C7—Si1 | −82.81 (12) |
C14—C15—C16—C17 | −56.65 (16) | C15—C14—C13—N1 | −56.46 (14) |
C17—N1—C10—Si1 | 173.69 (8) | C4—C3—C2—C1 | −0.2 (2) |
C17—N1—C13—C14 | 53.48 (13) | C11—N1—C10—Si1 | 53.52 (12) |
C17—N1—C11—C12 | −61.30 (14) | C11—N1—C17—C16 | −167.85 (10) |
C6—C5—C4—C3 | −0.40 (19) | C11—N1—C13—C14 | 170.17 (10) |
C6—C1—C2—C3 | 0.4 (2) | C8—Si1—C7—C6 | 55.31 (11) |
C5—C6—C7—Si1 | 96.96 (11) | C9—Si1—C7—C6 | −66.31 (12) |
C5—C6—C1—C2 | −0.59 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2i | 0.93 (3) | 2.39 (3) | 3.2990 (17) | 167 (2) |
C7—H7B···O2ii | 0.91 (3) | 2.54 (3) | 3.3881 (16) | 156 (2) |
C17—H17A···O4 | 0.95 (2) | 2.26 (2) | 3.1815 (16) | 162.8 (17) |
C17—H17B···O3ii | 0.93 (2) | 2.47 (2) | 3.3680 (15) | 161.3 (19) |
Symmetry codes: (i) −x, y−1/2, −z; (ii) x−1, y, z. |
Acknowledgements
J-LK and CS would like to thank the Fonds der Chemischen Industrie for a doctoral fellowship.
Funding information
Funding for this research was provided by: Verband der Chemischen Industrie.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. 1–19. Google Scholar
Barth, E. R., Golz, C., Koller, S. G. & Strohmann, C. (2015). Acta Cryst. E71, o759. CSD CrossRef IUCr Journals Google Scholar
Bauer, J. O. & Strohmann, C. (2014). Angew. Chem. Int. Ed. 53, 8167–8171. Web of Science CSD CrossRef CAS Google Scholar
Bent, H. A. (1960). J. Chem. Educ. 37, 616–624. CrossRef CAS Google Scholar
Bent, H. A. (1961). Chem. Rev. 61, 275–311. CrossRef CAS Web of Science Google Scholar
Bruker (2021). APEX4, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Denmark, S., Baird, J. D. & Regens, C. S. (2007). J. Org. Chem. 73, 1440–1455. Web of Science CrossRef Google Scholar
Denmark, S. & Liu, J. H.-C. (2010). Angew. Chem. Int. Ed. 49, 2978–2986. Web of Science CrossRef CAS Google Scholar
Ditchfield, R., Hehre, W. F. & Pople, J. A. (1970). J. Chem. Phys. 54, 724–728. CrossRef Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Flükiger, P., Lüthi, H. P., Portmann, S. & Weber, J. (2000). MOLEKEL 4.3. Swiss Center for Scientific Computing, Manno , Switzerland. Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 09, Revision A. 02. Gaussian, Inc., Wallingford, CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hachiya, H., Kakuta, T., Takami, M. & Kabe, Y. (2009). J. Organomet. Chem. 694, 630–636. Web of Science CSD CrossRef CAS Google Scholar
Keller, E. (1999). SCHAKAL99. University of Freiburg, Germany. Google Scholar
Koller, S. G., Bauer, J. O. & Strohmann, C. (2017). Angew. Chem. Int. Ed. 56, 7991–7994. Web of Science CSD CrossRef CAS Google Scholar
Krupp, A., Wegge, J., Otte, F., Kleinheider, J., Wall, H. & Strohmann, C. (2020). Acta Cryst. E76, 1437–1441. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, Y. & Hu, J. (2007). Angew. Chem. Int. Ed. 46, 2489–2492. Web of Science CrossRef CAS Google Scholar
Macharashvili, A. A., Baukov, Y. I., Kramarova, E. P., Oleneva, G. I., Pestunovich, V. A., Struchkov, Y. T. & Shklover, V. (1987). Zh. Strukt. Khim. 28, 114–115. CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Otte, F., Koller, S. G., Cuellar, E., Golz, C. & Strohmann, C. (2017). Inorg. Chim. Acta, 456, 44–48. Web of Science CSD CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Perlstein, J. (2001). J. Am. Chem. Soc. 123, 191–192. CrossRef CAS Google Scholar
Schubert, U., Hepp, W. & Müller, J. (1986). Organometallics, 1986, 5, 173–175. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Strohmann, C., Bindl, M., Fraass, V. C. & Hörnig, J. (2004). Angew. Chem. Int. Ed. 43, 1011–1014. Web of Science CSD CrossRef CAS Google Scholar
Strohmann, C. & Däschlein, C. (2008). Organometallics, 27, 2499–2504. Web of Science CSD CrossRef CAS Google Scholar
Tomooka, K., Nakazaki, A. & Nakai, T. (2000). J. Am. Chem. Soc. 122, 408–409. Web of Science CSD CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackmann, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. Google Scholar
Uhl, W., Cuypers, L., Schüler, K., Spies, T., Strohmann, C. & Lehmen, K. (2000). Z. Anorg. Allg. Chem. 626, 1526–1534. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, Y. & Truhlar, D. G. (2008). Theor. Chem. Acc. 120, 215–241. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.