research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Na3MgB37Si9: an icosa­hedral B12 cluster framework containing {Si8} units

crossmark logo

aInstitute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan, bResearch Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology, 4-2-1, Nigatake, Miyagino-ku, Sendai 983-8551, Japan, cNational Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan, and dInstitute of Multidisciplinary Research for Advanced Materials, Tohoku, University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
*Correspondence e-mail: haruhiko.morito.b5@tohoku.ac.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 December 2021; accepted 13 January 2022; online 18 January 2022)

Single crystals of a novel sodium–magnesium boride silicide, Na3MgB37Si9 [a = 10.1630 (3) Å, c = 16.5742 (6) Å, space group R[\overline{3}]m (No. 166)], were synthesized by heating a mixture of Na, Si and crystalline B with B2O3 flux in Mg vapor at 1373 K. The Mg atoms in the title compound are located at an inter­stitial site of the Dy2.1B37Si9-type structure with an occupancy of 0.5. The (001) layers of B12 icosa­hedra stack along the c-axis direction with shifting in the [–a/3, b/3, c/3] direction. A three-dimensional framework structure of the layers is formed via B—Si bonds and {Si8} units of [Si]3—Si—Si—[Si]3.

1. Chemical context

Boron-rich compounds composed of B12 icosa­hedral clusters are attracting attention as thermoelectric materials because of their low thermal conductivity resulting from their complicated crystal structures (Cahill et al., 1977[Cahill, D. G., Fischer, H. E., Watson, S. K., Pohl, R. O. & Slack, G. A. (1989). Phys. Rev. B, 40, 3254-3260.]). In our previous study, a novel ternary borosilicide, Na8B74.5Si17.5, was synthesized, and its crystal structure (Morito et al. 2010[Morito, H., Eck, B., Dronskowski, R. & Yamane, H. (2010). Dalton Trans. 39, 10197-10202.]) and electronic structure measured using soft X-ray spectrometry (Terauchi et al. 2018[Terauchi, M., Morito, H., Yamane, H., Koshiya, S. & Kimoto, K. (2018). Microscopy, 67, i72-i77.]), have been reported. This compound has a three-dimensional framework structure with layers composed of B12 icosa­hedral clusters and Si chains in the channels of the B12 clusters. During the investigation of this compound, a new crystalline phase was synthesized in which the stacking sequence of the B12 cluster layers differed from that of Na8B74.5Si17.5. The composition analysis revealed that the new phase contained a small amount of Mg derived from an impurity in the starting material of amorphous B powder. Single crystals of this phase were prepared in the present study by heating a starting mixture of Na, crystalline B, a flux of B2O3 with Mg vapor, and the crystal structure was determined using single-crystal X-ray diffraction.

2. Structural commentary

The crystal structure of the new phase of composition Na3MgB37Si9 is trigonal (space group R[\overline{3}]m, No. 166), and the hexa­gonal lattice constants are a = 10.1630 (3) Å and c = 16.5742 (6) Å. The structure is composed of B12 icosa­hedral clusters: the B—B distances of the 30 distinct bonds in the cluster are in the range of 1.791 (3)–1.843 (5) Å and the average distance is 1.811 Å (Table 1[link]). The B12 icosa­hedral clusters are connected by a B2—B2 bond [1.761 (5) Å] on the (001) plane and form layers that stack along the c axis with a sequence of ABCABC by shifts of [–a/3, b/3, c/3] (Figs. 1[link] and 2[link]).

Table 1
Selected geometric parameters (Å, °)

Na1—B2i 2.793 (2) B2—B2viii 1.761 (5)
Na1—B1 2.811 (2) B3—B5i 1.689 (7)
Na1—Si2i 2.8621 (4) B3—Si1i 1.888 (4)
Na1—B4i 2.9605 (16) B4—Si2 2.082 (3)
Mg1—B2ii 2.333 (3) B5—B3iii 1.689 (7)
B1—B3iii 1.791 (3) B5—Si1ix 1.96 (2)
B1—B2iv 1.798 (3) B5—B5ix 2.47 (4)
B1—B1v 1.806 (4) Si1—Si1ix 1.460 (10)
B1—B2vi 1.813 (3) Si2—Si3x 2.3951 (9)
B1—B4vii 1.815 (3) Si3—Si3xi 2.304 (3)
B1—Si2i 2.043 (2)    
       
Si3xi—Si3—Si2x 104.62 (4) Si2x—Si3—Si2xii 113.86 (3)
Symmetry codes: (i) [-x+{\script{2\over 3}}, -y+{\script{1\over 3}}, -z+{\script{1\over 3}}]; (ii) [-y, x-y, z]; (iii) [x-y-{\script{1\over 3}}, x-{\script{2\over 3}}, -z+{\script{1\over 3}}]; (iv) [x-y+{\script{2\over 3}}, -y+{\script{1\over 3}}, -z+{\script{1\over 3}}]; (v) [-x+{\script{2\over 3}}, -x+y+{\script{1\over 3}}, -z+{\script{1\over 3}}]; (vi) [-x+y, -x, z]; (vii) [-x+y+{\script{1\over 3}}, -x+{\script{2\over 3}}, z-{\script{1\over 3}}]; (viii) [-x+y, y, z]; (ix) [-x, -y, -z]; (x) [-x+{\script{1\over 3}}, -y+{\script{2\over 3}}, -z+{\script{2\over 3}}]; (xi) [-x, -y, -z+1]; (xii) [y-{\script{2\over 3}}, -x+y-{\script{1\over 3}}, -z+{\script{2\over 3}}].
[Figure 1]
Figure 1
Inter­connection of B12 clusters, Si1/B5—Si1/B5 bonds, {Si8} units and Na and Mg atoms in Na3MgB37Si9. Displacement ellipsoids are drawn at the 90% probability level. Symmetry codes: (i) x + [{2\over 3}], y + [{1\over 3}], z + [{1\over 3}]; (ii) −x + [{2\over 3}], −y + [{1\over 3}], −z + [{1\over 3}]; (iii) −x + y, 1 − x, z; (iv) 1 − y, 1 + x − y, z; (v) y − [{1\over 3}], −x + y + [{1\over 3}], −z + [{1\over 3}]; (vi) x − y + [{2\over 3}], x + [{1\over 3}], −z + [{1\over 3}]; (vii) −x + [{2\over 3}], −y − [{2\over 3}], −z + [{1\over 3}]; (viii) −x + [{1\over 3}], −y + [{2\over 3}], −z + [{2\over 3}]; (ix) x + [{1\over 3}], y + [{2\over 3}], z − [{1\over 3}]; (x) −y + [{2\over 3}], x − y + [{1\over 3}], z + [{1\over 3}]; (xi) x − [{1\over 3}], y + [{1\over 3}], z + [{1\over 3}]; (xii) −x + y + [{2\over 3}], −x + [{4\over 3}], z + [{1\over 3}]; (xiii) 1 − x + y, 1 − x, z; (xiv) x, 1 + y, z; (xv) −y, x − y, z; (xvi) x − y + [{1\over 3}], x − [{1\over 3}], −z + [{2\over 3}]; (xvii) y + [{1\over 3}], −x + y + [{2\over 3}], −z + [{2\over 3}]; (xviii) −x + [{4\over 3}], −y + [{2\over 3}], −z + [{2\over 3}].
[Figure 2]
Figure 2
[110] projection of the crystal structure of Na3MgB37Si9.

Six B12 units in the layers surround {Si8} units of composition [Si2]3—Si3—Si3—[Si2]3. The bond lengths of 2.304 (3) Å for Si3—Si3 and 2.3951 (9) Å for Si2—Si3 are comparable with the bond length in crystalline silicon (2.35 Å). The bond angles of Si2—Si3—Si2 and Si2—Si3—Si3 are 113.86 (3)° and 104.61 (4)°, respectively, which are distorted from the regular tetra­hedral bond angle of 109.47°. The Si2—B1 distance is 2.043 (2) Å, which is close to the Si—B distances (1.973–2.027 Å) found in β-silicon boride, SiB3 (Salvador et al. 2003[Salvador, J. R., Bilc, D., Mahanti, S. D. & Kanatzidis, M. G. (2003). Angew. Chem. Int. Ed. 42, 1929-1932.]).

The framework structure of B12 icosa­hedra and {Si8} units of the title compound has also been reported in the structures of Mg3B36Si9C (Ludwig et al. 2013[Ludwig, T., Pediaditakis, A., Sagawe, V. & Hillebrecht, H. (2013). J. Solid State Chem. 204, 113-122.]), RE1–xB12Si3.3–δ (RE = Y, Gd–Lu) (0 ≤ x ≤ 0.5, δ ∼ 0.3) (Zhang et al. 2003[Zhang, F. X., Xu, F. F., Mori, T., Liu, Q. L. & Tanaka, T. (2003). J. Solid State Chem. 170, 75-81.]) and RE1-xB36Si9C (RE = Y, Gd–Lu) (Ludwig et al. 2013[Ludwig, T., Pediaditakis, A., Sagawe, V. & Hillebrecht, H. (2013). J. Solid State Chem. 204, 113-122.]) with the same space group of R[\overline{3}]m. The {Si8} units with Si2—B4 bonds [2.082 (3) Å] and Si1/B5—Si1/B5 pairs that bind to the B atoms at B3 connect the B12 layers of Na3MgB37Si9 (Fig. 1[link]). Because the Si1—Si1 distance of 1.460 (10) Å is short for an Si—Si bond and the B5—B5 distance 2.47 (4) Å is long for a B—B bond, it was concluded that disordered pairs of Si1—B5 and B5—Si1 [B—Si = 1.96 (2) Å] are statistically present with equal occupancies. Similar disordered Si/B—Si/B pairs have been reported in Dy0.7B12.33Si3 (Si/B occupancy 0.5/0.5, Si—B length = 1.838 Å; Zhang et al. 2003[Zhang, F. X., Xu, F. F., Mori, T., Liu, Q. L. & Tanaka, T. (2003). J. Solid State Chem. 170, 75-81.]). Instead of Si/B—Si/B pairs (Ludwig et al. 2013[Ludwig, T., Pediaditakis, A., Sagawe, V. & Hillebrecht, H. (2013). J. Solid State Chem. 204, 113-122.]), Mg3B36Si9C contains Si/C—Si/C pairs (Si/C occupancy 0.507/0.493, Si—C length = 1.881 Å).

The Na1 site in the title compound is located around the {Si8} unit between the B12 cluster layers. The Na1—Si2 distance is 2.8620 (4) Å and the Na1—B1 and Na1—B2 distances are 2.811 (2) and 2.793 (2) Å, respectively. These distances are almost the same as the Na—Si distance of Na4Si4 [2.878 (3) Å; Morito et al., 2015[Morito, H., Momma, K. & Yamane, H. (2015). J. Alloys Compd. 623, 473-479.]] and Na—B distance of NaB15 (2.798 Å; Naslain & Kasper, 1970[Naslain, R. & Kasper, J. S. (1970). J. Solid State Chem. 1, 150-151.]). The Mg1 atom is situated above and below the {Si8} unit along the c-axis direction with an occupancy of 0.5. The Mg1—Si3 and Mg1—B2 distances are 2.403 (4) Å and 2.333 (3) Å, respectively, which are close to the Mg—Si (2.436 Å) and Mg—B distances (2.353 Å) in MgB12Si2 (Ludwig & Hillebrecht, 2006[Ludwig, T. & Hillebrecht, H. (2006). J. Solid State Chem. 179, 1623-1629.]). The Na1—Mg1 distance in the title compound is 3.0389 (9) Å, which is close to the Na—Mg distance (3.120 Å) reported in Na4Mg4Sn3 (Yamada et al. 2015[Yamada, T., Ishiyama, R. & Yamane, H. (2015). Jpn. J. Appl. Phys. 54, 07J, C04.]). The site corresponding to the location of Mg1 in the title compound does not exist in Mg3B36Si9C (Ludwig et al. 2013[Ludwig, T., Pediaditakis, A., Sagawe, V. & Hillebrecht, H. (2013). J. Solid State Chem. 204, 113-122.]), RE1-xB12Si3.3-δ (RE = Y, Gd–Lu) (0 ≤ x ≤ 0.5, δ ∼ 0.3) (Zhang et al. 2003[Zhang, F. X., Xu, F. F., Mori, T., Liu, Q. L. & Tanaka, T. (2003). J. Solid State Chem. 170, 75-81.]) and RE1-xB36Si9C (RE = Y, Gd–Lu) (Ludwig et al. 2013[Ludwig, T., Pediaditakis, A., Sagawe, V. & Hillebrecht, H. (2013). J. Solid State Chem. 204, 113-122.]).

The number of electrons provided from Na and Mg to the framework of B37Si9 is five in Na3MgB37Si9. In related compounds, the Mg atom in Mg3B36Si9C and the Dy atom in Dy0.7B12.33Si3 (Dy2.1B37Si9) provide six and 6.3 electrons, respectively, and approximately six electrons are supplied from RE in RE1–xB12Si3.3–δ (RE = Y, Gd–Lu) (0 ≤ x ≤ 0.5, δ ∼ 0.3) and RE1–xB36Si9C (RE = Y, Gd–Lu). The lattice constants and unit-cell volume of Mg3B36Si9C are a = 10.0793 Å, c = 16.372 Å, and V = 1440.4 Å3 (Ludwig et al. 2013[Ludwig, T., Pediaditakis, A., Sagawe, V. & Hillebrecht, H. (2013). J. Solid State Chem. 204, 113-122.]), those of RE1–xB12Si3.3–δ (RE = Y, Gd–Lu) (0 ≤ x ≤ 0.5, δ ∼ 0.3) are a = 10.046–10.095 Å, c = 16.298–16.467 Å, and V = 1429–1454 Å3 (Zhang et al. 2003[Zhang, F. X., Xu, F. F., Mori, T., Liu, Q. L. & Tanaka, T. (2003). J. Solid State Chem. 170, 75-81.]) and those of RE1–xB36Si9C (RE = Y, Gd–Lu) are a = 10.000–10.096 Å, c = 16.225–16.454 Å, and V = 1405–1452 Å3 (Ludwig et al. 2013[Ludwig, T., Pediaditakis, A., Sagawe, V. & Hillebrecht, H. (2013). J. Solid State Chem. 204, 113-122.]). Thus, it may be seen that the lattice constants of Na3MgB37Si9 are larger than those of related compounds and the unit-cell volume of Na3MgB37Si9 is approximately 2% larger than the maximum unit-cell volume of 1454 Å3 for the RE1–xB12Si3.3–δ series with RE = Yb (Zhang et al. 2003[Zhang, F. X., Xu, F. F., Mori, T., Liu, Q. L. & Tanaka, T. (2003). J. Solid State Chem. 170, 75-81.]). This increase in the lattice constants could be related to the occupancy of the Mg1 site, which is not found in other compounds.

Table 2[link] compares the inter­atomic distances for Na3MgB37Si9, Dy2.1B37Si9 and Mg3B36Si9C. The average B—B distances of B12 icosa­hedra, B2—B2 distances between clusters, and Si2—B4 distances for Na3MgB37Si9 are longer than those of other compounds. However, only the bond distance of Si3—Si3, in which Si3 only binds to Si, is specifically shorter. It is assumed that this bond became shorter because of an increase in the bond order from 1 because of a decrease in the number of electrons in the anti­bonding orbitals of the Si3—Si3 unit with a decrease in the electron count for the entire framework. Assuming that the main cause of the lattice expansion of Na3MgB37Si9 is a decrease in the bonding force between B—B and B—Si atoms because of electron deficiency in the bonding orbitals of the B37Si9 framework, the lattice constant can be reduced by increasing the Mg occupancy, which can be attained by increasing the Mg vapor pressure during the synthesis.

Table 2
Cell parameters (Å), cell volumes (Å3) and selected bond lengths (Å) of Na3MgB37Si9, Dy2.1B37Si9a and Mg3B36Si9C

  Na3MgB37Si9 Dy2.1B37Si9 Mg3B36Si9C
a 10.1630 (3) 10.078 10.079
c 16.5742 (6) 16.465 16.372
V 1482.54 (10) 1448.3 1440.4
B—Bav of B12 icosa­hedron 1.811 1.805 1.798
B2—B2 1.761 (5) 1.738 1.738
Si1—B3 1.887 (4) 1.877 1.851
Si1—B5/C 1.96 (2) 1.84 1.88
Si2—B1 2.043 (2) 2.032 2.035
Si2—B4 2.082 (3) 2.053 2.038
Si3—Si2 2.3951 (9) 2.366 2.362
Si3—Si3 2.304 (3) 2.343 2.341
Na1—B1 2.811 (2) 2.794 2.792
Na1—B2 2.793 (2) 2.751 2.729
Na1—B4 2.9604 (16) 2.934 2.934
Na1—Si2 2.8620 (4) 2.835 2.832
Mg1—B2 2.333 (3)    
Mg1—B4 2.568 (3)    
Mg1—Si3 2.403 (4)    
Notes: (a) Zhang et al. (2003[Zhang, F. X., Xu, F. F., Mori, T., Liu, Q. L. & Tanaka, T. (2003). J. Solid State Chem. 170, 75-81.]); (b) Ludwig et al. (2013[Ludwig, T., Pediaditakis, A., Sagawe, V. & Hillebrecht, H. (2013). J. Solid State Chem. 204, 113-122.]).

3. Database survey

In space group R[\overline{3}]m, the framework structures of B12 icosa­hedral clusters containing {Si8} units similar to Na3MgB37Si9 have been reported for Mg3B36Si9C (Ludwig et al. 2013[Ludwig, T., Pediaditakis, A., Sagawe, V. & Hillebrecht, H. (2013). J. Solid State Chem. 204, 113-122.]), RE1–xB12Si3.3–δ (RE = Y, Gd–Lu) (0 ≤ x ≤ 0.5, δ ∼0.3) (Zhang et al. 2003[Zhang, F. X., Xu, F. F., Mori, T., Liu, Q. L. & Tanaka, T. (2003). J. Solid State Chem. 170, 75-81.]) and RE1–xB36Si9C (RE = Y, Gd–Lu) (Ludwig et al. 2013[Ludwig, T., Pediaditakis, A., Sagawe, V. & Hillebrecht, H. (2013). J. Solid State Chem. 204, 113-122.]).

4. Synthesis and crystallization

Na metal pieces (purity 99.95%, Nippon Soda Co., Ltd.), crystalline B powder (99.9%, FUJIFILM Wako Pure Chemical Industries Co., Ltd.) and Si powder (99.999%, Kojundo Chemical Lab. Co., Ltd.) were weighed in a BN crucible (99.5%, Showa Denko K. K., outer diameter = 8.5 mm, inner diameter = 6.5 mm, depth = 18 mm), with a molar ratio of Na:B:Si = 5:4:3 (a total weight 280 mg) in a high-purity Ar-filled glove box (O2 < 1 ppm, H2O < 1 ppm). Then, 10 mg of B2O3 powder (90%, FUJIFILM Wako Pure Chemical Industries, Ltd.) were added to the crucible, which was stacked on another BN crucible containing 30 mg of Mg powder (99.9%, rare metallic), and these crucibles were encapsulated in a stainless steel container (SUS316, outer diameter = 12.7 mm, inner diameter = 10.75 mm, length 80 mm) with Ar gas. The container was heated at 1373 K for 24 h using an electric furnace. After cooling, the crucible was taken out from the reaction container, and any Na and NaSi remaining in the crucible were reacted and removed with 2-propanol and ethanol. Then, the sample was washed with pure water to remove water-soluble compounds such as sodium borate and alkoxide produced by the reaction of Na and alcohol to leave black plates of the title compound. An electron probe microanalyzer (EPMA; JEOL Ltd., JXA-8200) was used to analyze the composition of the obtained single crystal as Na 5.49 (8), Mg 2.37 (7), B 74.8 (7), Si 17.3 (4) atom %, which is nearly matched by Na3MgB37Si9 (Na 6.0, Mg 2.0, B 74.0, Si 18.0 atom %). Other elements such as O were not found.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The occupancy of the Mg1 site in the analysis of the initial model was 0.506 (10), whereas the occupancy of the B5 and Si1 sites was 0.519 (15) and 0.481, respectively. These occupancies were fixed at 0.5, and the composition formula was determined to be Na3MgB37Si9. The crystal structure was refined by considering (001) twinning, which reduced the R-value (all data) from 0.0651 to 0.0380.

Table 3
Experimental details

Crystal data
Chemical formula Na3MgB37Si9
Mr 746.06
Crystal system, space group Trigonal, R[\overline{3}]m
Temperature (K) 298
a, c (Å) 10.1630 (3), 16.5742 (6)
V3) 1482.54 (10)
Z 3
Radiation type Mo Kα
μ (mm−1) 0.72
Crystal size (mm) 0.20 × 0.16 × 0.02
 
Data collection
Diffractometer Burker, D8 QUEST
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.911, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8352, 562, 540
Rint 0.032
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.076, 1.31
No. of reflections 562
No. of parameters 57
Δρmax, Δρmin (e Å−3) 0.58, −0.53
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: Instrument Service (Bruker, 2018); cell refinement: APEX3 (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

3 sodium 1 magnesium 37 boron 9 silicon top
Crystal data top
Na3MgB37Si9Dx = 2.507 Mg m3
Mr = 746.06Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3mCell parameters from 6032 reflections
a = 10.1630 (3) Åθ = 3.7–41.2°
c = 16.5742 (6) ŵ = 0.72 mm1
V = 1482.54 (10) Å3T = 298 K
Z = 3Plate, black
F(000) = 10680.20 × 0.16 × 0.02 mm
Data collection top
Burker, D8 QUEST
diffractometer
540 reflections with I > 2σ(I)
Detector resolution: 10 pixels mm-1Rint = 0.032
ω scansθmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
h = 1414
Tmin = 0.911, Tmax = 1.000k = 1414
8352 measured reflectionsl = 2322
562 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + 11.3797P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.035(Δ/σ)max < 0.001
wR(F2) = 0.076Δρmax = 0.58 e Å3
S = 1.31Δρmin = 0.53 e Å3
562 reflectionsExtinction correction: SHELXL2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
57 parametersExtinction coefficient: 0.0030 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na10.50000.00000.00000.0179 (5)
Mg10.00000.00000.2855 (2)0.0074 (7)0.5
B10.3002 (3)0.0065 (2)0.11511 (13)0.0064 (4)
B20.0027 (3)0.1787 (3)0.19610 (13)0.0072 (4)
B30.7591 (2)0.2409 (2)0.2315 (2)0.0116 (7)
B40.47839 (19)0.52161 (19)0.39743 (19)0.0079 (6)
B50.00000.00000.0744 (12)0.026 (5)0.5
Si10.00000.00000.0441 (3)0.0103 (9)0.5
Si20.46499 (5)0.53501 (5)0.27264 (5)0.0056 (2)
Si30.00000.00000.43049 (10)0.0120 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0137 (7)0.0265 (11)0.0178 (8)0.0132 (6)0.0027 (4)0.0054 (8)
Mg10.0060 (9)0.0060 (9)0.0102 (15)0.0030 (5)0.0000.000
B10.0064 (9)0.0041 (9)0.0080 (8)0.0020 (8)0.0004 (7)0.0001 (8)
B20.0054 (9)0.0053 (9)0.0102 (9)0.0022 (8)0.0005 (8)0.0009 (8)
B30.0087 (10)0.0087 (10)0.0116 (13)0.0001 (12)0.0035 (7)0.0035 (7)
B40.0050 (9)0.0050 (9)0.0116 (13)0.0009 (11)0.0004 (6)0.0004 (6)
B50.033 (8)0.033 (8)0.012 (9)0.017 (4)0.0000.000
Si10.0061 (11)0.0061 (11)0.019 (3)0.0031 (5)0.0000.000
Si20.0044 (3)0.0044 (3)0.0073 (4)0.0015 (3)0.00040 (14)0.00040 (14)
Si30.0055 (4)0.0055 (4)0.0249 (8)0.0028 (2)0.0000.000
Geometric parameters (Å, º) top
Na1—B2i2.793 (2)B3—Si1i1.888 (4)
Na1—B2ii2.793 (2)B3—B5xxx3.343 (19)
Na1—B2iii2.793 (2)B3—Na1xxx4.123 (3)
Na1—B2iv2.793 (2)B3—Na1xxxi4.123 (3)
Na1—B1v2.811 (2)B3—Na1xxxii4.605 (3)
Na1—B1vi2.811 (2)B4—B3xxviii1.799 (5)
Na1—B1vii2.811 (2)B4—B1xxxiii1.815 (3)
Na1—B12.811 (2)B4—B1xxxiv1.815 (3)
Na1—Si2viii2.8620 (4)B4—B2xxxv1.824 (4)
Na1—Si2ix2.8620 (4)B4—B2xv1.824 (4)
Na1—Si2i2.8621 (4)B4—Si22.082 (3)
Na1—Si2ii2.8621 (4)B4—Mg1xv2.568 (3)
Na1—B4viii2.9604 (16)B4—Na1xxiv2.9605 (16)
Na1—B4ix2.9604 (16)B4—Na1xxxiii2.9605 (16)
Na1—B4i2.9605 (16)B4—B5xxx3.319 (3)
Na1—B4ii2.9605 (16)B4—B5i4.031 (12)
Na1—Mg1i3.0389 (9)B4—B5xv4.117 (16)
Na1—Mg1ii3.0389 (9)B5—Si10.503 (18)
Mg1—B2x2.333 (3)B5—B3xviii1.689 (7)
Mg1—B2xi2.333 (3)B5—B3xxxvi1.689 (7)
Mg1—B2xii2.333 (3)B5—B3i1.689 (7)
Mg1—B2xiii2.333 (3)B5—Si1xxi1.96 (2)
Mg1—B2xiv2.333 (3)B5—B5xxi2.47 (4)
Mg1—B22.333 (3)B5—B2xiii2.705 (16)
Mg1—Si32.403 (4)B5—B2xiv2.705 (16)
Mg1—B4xv2.568 (3)B5—B2xi2.705 (16)
Mg1—B4xvi2.568 (3)B5—B2xii2.705 (16)
Mg1—B4xvii2.568 (3)B5—B2x2.705 (16)
Mg1—Si2xv2.933 (2)Si1—Si1xxi1.460 (10)
Mg1—Si2xvii2.933 (2)Si1—B3xviii1.887 (4)
B1—B3xviii1.791 (3)Si1—B3xxxvi1.887 (4)
B1—B2iv1.798 (3)Si1—B3i1.888 (4)
B1—B1xix1.806 (4)Si1—B5xxi1.96 (2)
B1—B2xiv1.813 (3)Si1—Na1xiv5.1337 (7)
B1—B4ix1.815 (3)Si1—Na1xxii5.1337 (7)
B1—Si2i2.043 (2)Si1—Na1xxxvii5.1337 (7)
B1—B53.093 (5)Si1—Na1xxxviii5.1337 (7)
B1—Na1xx3.954 (2)Si1—Na1x5.1337 (7)
B1—B5i4.268 (12)Si2—B1i2.043 (2)
B1—B5xxi4.356 (15)Si2—B1xxix2.043 (2)
B1—Na1xxii4.768 (2)Si2—Si3xv2.3951 (9)
B2—B2xiii1.761 (5)Si2—Na1xxxiii2.8621 (4)
B2—B1xxiii1.798 (3)Si2—Na1xxiv2.8621 (4)
B2—B1x1.813 (3)Si2—Mg1xv2.933 (2)
B2—B3i1.816 (4)Si2—B5i3.5572 (16)
B2—B4xv1.824 (4)Si2—B5xxx4.197 (11)
B2—B2xi1.843 (5)Si2—Na1xxii4.5605 (8)
B2—B52.705 (16)Si2—Na1xxxix5.3470 (8)
B2—Na1xxiv2.793 (2)Si3—Si3xl2.304 (3)
B2—Na1xxv4.143 (2)Si3—Si2xv2.3951 (9)
B2—B5xxvi4.537 (5)Si3—Si2xvi2.3952 (9)
B2—Na1x4.617 (2)Si3—Si2xvii2.3952 (9)
B3—B5i1.689 (7)Si3—Na1xx3.3466 (8)
B3—B1xxvii1.791 (3)Si3—Na1xxv3.3467 (8)
B3—B1iv1.791 (3)Si3—Na1xxiv3.3467 (8)
B3—B4xxviii1.799 (5)Si3—Na1xli4.8918 (14)
B3—B2i1.816 (4)Si3—Na1xlii4.8918 (14)
B3—B2xxix1.816 (4)Si3—Na1xliii4.8918 (14)
B2i—Na1—B2ii180.00 (5)B1iv—B3—B2xxix60.33 (12)
B2i—Na1—B2iii143.25 (9)B4xxviii—B3—B2xxix109.8 (2)
B2ii—Na1—B2iii36.75 (9)B2i—B3—B2xxix60.99 (18)
B2i—Na1—B2iv36.75 (9)B5i—B3—Si1i14.9 (6)
B2ii—Na1—B2iv143.25 (9)B1xxvii—B3—Si1i123.43 (12)
B2iii—Na1—B2iv180.00 (11)B1iv—B3—Si1i123.43 (12)
B2i—Na1—B1v109.34 (7)B4xxviii—B3—Si1i129.2 (2)
B2ii—Na1—B1v70.66 (7)B2i—B3—Si1i113.5 (2)
B2iii—Na1—B1v37.43 (6)B2xxix—B3—Si1i113.5 (2)
B2iv—Na1—B1v142.57 (6)B5i—B3—B5xxx45.3 (8)
B2i—Na1—B1vi37.43 (6)B1xxvii—B3—B5xxx112.55 (16)
B2ii—Na1—B1vi142.57 (6)B1iv—B3—B5xxx112.55 (16)
B2iii—Na1—B1vi109.34 (7)B4xxviii—B3—B5xxx98.8 (3)
B2iv—Na1—B1vi70.66 (7)B2i—B3—B5xxx136.96 (19)
B1v—Na1—B1vi85.53 (9)B2xxix—B3—B5xxx136.96 (19)
B2i—Na1—B1vii142.57 (6)Si1i—B3—B5xxx30.4 (3)
B2ii—Na1—B1vii37.43 (6)B5i—B3—Na1xxx122.5 (5)
B2iii—Na1—B1vii70.66 (7)B1xxvii—B3—Na1xxx99.85 (16)
B2iv—Na1—B1vii109.34 (7)B1iv—B3—Na1xxx33.59 (11)
B1v—Na1—B1vii94.47 (9)B4xxviii—B3—Na1xxx39.37 (5)
B1vi—Na1—B1vii180.00 (6)B2i—B3—Na1xxx133.94 (17)
B2i—Na1—B170.66 (7)B2xxix—B3—Na1xxx93.92 (11)
B2ii—Na1—B1109.34 (7)Si1i—B3—Na1xxx111.86 (14)
B2iii—Na1—B1142.57 (6)B5xxx—B3—Na1xxx88.28 (16)
B2iv—Na1—B137.43 (6)B5i—B3—Na1xxxi122.5 (5)
B1v—Na1—B1180.0B1xxvii—B3—Na1xxxi33.59 (11)
B1vi—Na1—B194.47 (9)B1iv—B3—Na1xxxi99.85 (16)
B1vii—Na1—B185.53 (9)B4xxviii—B3—Na1xxxi39.37 (5)
B2i—Na1—Si2viii78.17 (5)B2i—B3—Na1xxxi93.92 (11)
B2ii—Na1—Si2viii101.83 (5)B2xxix—B3—Na1xxxi133.94 (17)
B2iii—Na1—Si2viii76.28 (5)Si1i—B3—Na1xxxi111.86 (14)
B2iv—Na1—Si2viii103.72 (5)B5xxx—B3—Na1xxxi88.28 (16)
B1v—Na1—Si2viii73.21 (5)Na1xxx—B3—Na1xxxi76.09 (7)
B1vi—Na1—Si2viii42.21 (5)B5i—B3—Na1101.0 (6)
B1vii—Na1—Si2viii137.79 (5)B1xxvii—B3—Na157.83 (11)
B1—Na1—Si2viii106.79 (5)B1iv—B3—Na1111.50 (15)
B2i—Na1—Si2ix101.83 (5)B4xxviii—B3—Na1108.78 (14)
B2ii—Na1—Si2ix78.17 (5)B2i—B3—Na13.02 (8)
B2iii—Na1—Si2ix103.72 (5)B2xxix—B3—Na163.98 (11)
B2iv—Na1—Si2ix76.28 (5)Si1i—B3—Na1113.12 (15)
B1v—Na1—Si2ix106.79 (5)B5xxx—B3—Na1135.32 (13)
B1vi—Na1—Si2ix137.79 (5)Na1xxx—B3—Na1134.78 (8)
B1vii—Na1—Si2ix42.21 (5)Na1xxxi—B3—Na191.40 (4)
B1—Na1—Si2ix73.21 (5)B5i—B3—Na1xxxii101.0 (6)
Si2viii—Na1—Si2ix180.00 (3)B1xxvii—B3—Na1xxxii111.50 (15)
B2i—Na1—Si2i103.71 (5)B1iv—B3—Na1xxxii57.83 (11)
B2ii—Na1—Si2i76.29 (5)B4xxviii—B3—Na1xxxii108.78 (14)
B2iii—Na1—Si2i101.83 (5)B2i—B3—Na1xxxii63.98 (11)
B2iv—Na1—Si2i78.17 (5)B2xxix—B3—Na1xxxii3.02 (8)
B1v—Na1—Si2i137.79 (5)Si1i—B3—Na1xxxii113.12 (15)
B1vi—Na1—Si2i106.80 (5)B5xxx—B3—Na1xxxii135.32 (13)
B1vii—Na1—Si2i73.20 (5)Na1xxx—B3—Na1xxxii91.40 (4)
B1—Na1—Si2i42.21 (5)Na1xxxi—B3—Na1xxxii134.78 (8)
Si2viii—Na1—Si2i89.06 (3)Na1—B3—Na1xxxii66.97 (5)
Si2ix—Na1—Si2i90.94 (3)B3xxviii—B4—B1xxxiii59.41 (12)
B2i—Na1—Si2ii76.29 (5)B3xxviii—B4—B1xxxiv59.41 (12)
B2ii—Na1—Si2ii103.71 (5)B1xxxiii—B4—B1xxxiv107.0 (2)
B2iii—Na1—Si2ii78.17 (5)B3xxviii—B4—B2xxxv106.60 (19)
B2iv—Na1—Si2ii101.83 (5)B1xxxiii—B4—B2xxxv59.22 (12)
B1v—Na1—Si2ii42.21 (5)B1xxxiv—B4—B2xxxv107.49 (19)
B1vi—Na1—Si2ii73.20 (5)B3xxviii—B4—B2xv106.60 (19)
B1vii—Na1—Si2ii106.80 (5)B1xxxiii—B4—B2xv107.49 (19)
B1—Na1—Si2ii137.79 (5)B1xxxiv—B4—B2xv59.22 (12)
Si2viii—Na1—Si2ii90.94 (3)B2xxxv—B4—B2xv60.69 (17)
Si2ix—Na1—Si2ii89.06 (3)B3xxviii—B4—Si2116.8 (2)
Si2i—Na1—Si2ii180.00 (3)B1xxxiii—B4—Si2120.31 (12)
B2i—Na1—B4viii109.24 (8)B1xxxiv—B4—Si2120.31 (12)
B2ii—Na1—B4viii70.76 (8)B2xxxv—B4—Si2126.71 (16)
B2iii—Na1—B4viii36.82 (8)B2xv—B4—Si2126.71 (16)
B2iv—Na1—B4viii143.18 (8)B3xxviii—B4—Mg1xv165.7 (2)
B1v—Na1—B4viii36.55 (7)B1xxxiii—B4—Mg1xv114.65 (14)
B1vi—Na1—B4viii72.94 (8)B1xxxiv—B4—Mg1xv114.65 (14)
B1vii—Na1—B4viii107.06 (8)B2xxxv—B4—Mg1xv61.46 (13)
B1—Na1—B4viii143.45 (7)B2xv—B4—Mg1xv61.46 (13)
Si2viii—Na1—B4viii41.86 (6)Si2—B4—Mg1xv77.46 (13)
Si2ix—Na1—B4viii138.14 (6)B3xxviii—B4—Na1xxiv117.95 (7)
Si2i—Na1—B4viii107.63 (6)B1xxxiii—B4—Na1xxiv173.12 (16)
Si2ii—Na1—B4viii72.37 (6)B1xxxiv—B4—Na1xxiv67.24 (8)
B2i—Na1—B4ix70.76 (8)B2xxxv—B4—Na1xxiv118.03 (15)
B2ii—Na1—B4ix109.24 (8)B2xv—B4—Na1xxiv66.59 (8)
B2iii—Na1—B4ix143.18 (8)Si2—B4—Na1xxiv66.54 (6)
B2iv—Na1—B4ix36.82 (8)Mg1xv—B4—Na1xxiv66.25 (7)
B1v—Na1—B4ix143.45 (7)B3xxviii—B4—Na1xxxiii117.95 (7)
B1vi—Na1—B4ix107.06 (8)B1xxxiii—B4—Na1xxxiii67.24 (8)
B1vii—Na1—B4ix72.94 (8)B1xxxiv—B4—Na1xxxiii173.12 (16)
B1—Na1—B4ix36.55 (7)B2xxxv—B4—Na1xxxiii66.59 (8)
Si2viii—Na1—B4ix138.14 (6)B2xv—B4—Na1xxxiii118.03 (15)
Si2ix—Na1—B4ix41.86 (6)Si2—B4—Na1xxxiii66.54 (6)
Si2i—Na1—B4ix72.37 (6)Mg1xv—B4—Na1xxxiii66.25 (7)
Si2ii—Na1—B4ix107.63 (6)Na1xxiv—B4—Na1xxxiii118.24 (11)
B4viii—Na1—B4ix180.00 (18)B3xxviii—B4—B5xxx17.4 (4)
B2i—Na1—B4i143.17 (8)B1xxxiii—B4—B5xxx66.8 (2)
B2ii—Na1—B4i36.83 (8)B1xxxiv—B4—B5xxx66.8 (2)
B2iii—Na1—B4i70.76 (8)B2xxxv—B4—B5xxx121.1 (3)
B2iv—Na1—B4i109.24 (8)B2xv—B4—B5xxx121.1 (3)
B1v—Na1—B4i107.06 (8)Si2—B4—B5xxx99.4 (4)
B1vi—Na1—B4i143.45 (7)Mg1xv—B4—B5xxx176.9 (4)
B1vii—Na1—B4i36.55 (7)Na1xxiv—B4—B5xxx112.64 (15)
B1—Na1—B4i72.94 (8)Na1xxxiii—B4—B5xxx112.64 (15)
Si2viii—Na1—B4i107.63 (6)B3xxviii—B4—B5i55.0 (3)
Si2ix—Na1—B4i72.37 (6)B1xxxiii—B4—B5i87.8 (2)
Si2i—Na1—B4i41.85 (6)B1xxxiv—B4—B5i87.8 (2)
Si2ii—Na1—B4i138.15 (6)B2xxxv—B4—B5i146.20 (15)
B4viii—Na1—B4i96.65 (12)B2xv—B4—B5i146.20 (15)
B4ix—Na1—B4i83.35 (12)Si2—B4—B5i61.8 (3)
B2i—Na1—B4ii36.83 (8)Mg1xv—B4—B5i139.3 (3)
B2ii—Na1—B4ii143.17 (8)Na1xxiv—B4—B5i95.59 (14)
B2iii—Na1—B4ii109.24 (8)Na1xxxiii—B4—B5i95.59 (14)
B2iv—Na1—B4ii70.76 (8)B5xxx—B4—B5i37.6 (6)
B1v—Na1—B4ii72.94 (8)B3xxviii—B4—B5xv108.0 (2)
B1vi—Na1—B4ii36.55 (7)B1xxxiii—B4—B5xv82.20 (16)
B1vii—Na1—B4ii143.45 (7)B1xxxiv—B4—B5xv82.20 (16)
B1—Na1—B4ii107.06 (8)B2xxxv—B4—B5xv30.37 (9)
Si2viii—Na1—B4ii72.37 (6)B2xv—B4—B5xv30.37 (9)
Si2ix—Na1—B4ii107.63 (6)Si2—B4—B5xv135.2 (2)
Si2i—Na1—B4ii138.15 (6)Mg1xv—B4—B5xv57.7 (2)
Si2ii—Na1—B4ii41.85 (6)Na1xxiv—B4—B5xv93.09 (12)
B4viii—Na1—B4ii83.35 (12)Na1xxxiii—B4—B5xv93.09 (12)
B4ix—Na1—B4ii96.65 (12)B5xxx—B4—B5xv125.4 (2)
B4i—Na1—B4ii180.00 (13)B5i—B4—B5xv163.0 (4)
B2i—Na1—Mg1i46.93 (7)Si1—B5—B3xviii105.6 (7)
B2ii—Na1—Mg1i133.07 (7)Si1—B5—B3xxxvi105.6 (7)
B2iii—Na1—Mg1i133.07 (7)B3xviii—B5—B3xxxvi113.0 (6)
B2iv—Na1—Mg1i46.93 (7)Si1—B5—B3i105.6 (7)
B1v—Na1—Mg1i101.34 (6)B3xviii—B5—B3i113.0 (6)
B1vi—Na1—Mg1i78.66 (6)B3xxxvi—B5—B3i113.0 (6)
B1vii—Na1—Mg1i101.34 (6)Si1—B5—Si1xxi0.0
B1—Na1—Mg1i78.65 (6)B3xviii—B5—Si1xxi105.6 (7)
Si2viii—Na1—Mg1i120.47 (4)B3xxxvi—B5—Si1xxi105.6 (7)
Si2ix—Na1—Mg1i59.53 (4)B3i—B5—Si1xxi105.6 (7)
Si2i—Na1—Mg1i120.47 (4)Si1—B5—B5xxi0.000 (1)
Si2ii—Na1—Mg1i59.53 (4)B3xviii—B5—B5xxi105.6 (7)
B4viii—Na1—Mg1i129.34 (6)B3xxxvi—B5—B5xxi105.6 (7)
B4ix—Na1—Mg1i50.66 (6)B3i—B5—B5xxi105.6 (7)
B4i—Na1—Mg1i129.34 (6)Si1xxi—B5—B5xxi0.0
B4ii—Na1—Mg1i50.66 (6)Si1—B5—B2138.2 (3)
B2i—Na1—Mg1ii133.07 (7)B3xviii—B5—B277.9 (5)
B2ii—Na1—Mg1ii46.93 (7)B3xxxvi—B5—B2111.0 (9)
B2iii—Na1—Mg1ii46.93 (7)B3i—B5—B241.2 (4)
B2iv—Na1—Mg1ii133.07 (7)Si1xxi—B5—B2138.2 (3)
B1v—Na1—Mg1ii78.66 (6)B5xxi—B5—B2138.2 (3)
B1vi—Na1—Mg1ii101.34 (6)Si1—B5—B2xiii138.2 (3)
B1vii—Na1—Mg1ii78.66 (6)B3xviii—B5—B2xiii41.2 (4)
B1—Na1—Mg1ii101.35 (6)B3xxxvi—B5—B2xiii111.1 (9)
Si2viii—Na1—Mg1ii59.53 (4)B3i—B5—B2xiii77.9 (5)
Si2ix—Na1—Mg1ii120.47 (4)Si1xxi—B5—B2xiii138.2 (3)
Si2i—Na1—Mg1ii59.53 (4)B5xxi—B5—B2xiii138.2 (3)
Si2ii—Na1—Mg1ii120.47 (4)B2—B5—B2xiii38.0 (2)
B4viii—Na1—Mg1ii50.66 (6)Si1—B5—B2xiv138.2 (3)
B4ix—Na1—Mg1ii129.34 (6)B3xviii—B5—B2xiv41.2 (4)
B4i—Na1—Mg1ii50.66 (6)B3xxxvi—B5—B2xiv77.9 (5)
B4ii—Na1—Mg1ii129.34 (6)B3i—B5—B2xiv111.1 (9)
Mg1i—Na1—Mg1ii180.00 (13)Si1xxi—B5—B2xiv138.2 (3)
B2x—Mg1—B2xi44.34 (12)B5xxi—B5—B2xiv138.2 (3)
B2x—Mg1—B2xii46.53 (12)B2—B5—B2xiv70.5 (5)
B2xi—Mg1—B2xii83.96 (13)B2xiii—B5—B2xiv39.8 (3)
B2x—Mg1—B2xiii101.12 (17)Si1—B5—B2xi138.2 (3)
B2xi—Mg1—B2xiii83.96 (13)B3xviii—B5—B2xi111.0 (9)
B2xii—Mg1—B2xiii83.96 (13)B3xxxvi—B5—B2xi77.9 (5)
B2x—Mg1—B2xiv83.96 (13)B3i—B5—B2xi41.2 (4)
B2xi—Mg1—B2xiv101.12 (17)Si1xxi—B5—B2xi138.2 (3)
B2xii—Mg1—B2xiv44.34 (12)B5xxi—B5—B2xi138.2 (3)
B2xiii—Mg1—B2xiv46.53 (12)B2—B5—B2xi39.8 (3)
B2x—Mg1—B283.96 (13)B2xiii—B5—B2xi70.5 (5)
B2xi—Mg1—B246.52 (12)B2xiv—B5—B2xi83.5 (6)
B2xii—Mg1—B2101.12 (17)Si1—B5—B2xii138.2 (3)
B2xiii—Mg1—B244.34 (12)B3xviii—B5—B2xii77.9 (5)
B2xiv—Mg1—B283.96 (13)B3xxxvi—B5—B2xii41.2 (4)
B2x—Mg1—Si3129.43 (9)B3i—B5—B2xii111.1 (9)
B2xi—Mg1—Si3129.43 (9)Si1xxi—B5—B2xii138.2 (3)
B2xii—Mg1—Si3129.43 (9)B5xxi—B5—B2xii138.2 (3)
B2xiii—Mg1—Si3129.43 (9)B2—B5—B2xii83.5 (6)
B2xiv—Mg1—Si3129.43 (9)B2xiii—B5—B2xii70.5 (5)
B2—Mg1—Si3129.43 (9)B2xiv—B5—B2xii38.0 (2)
B2x—Mg1—B4xv85.59 (9)B2xi—B5—B2xii70.5 (5)
B2xi—Mg1—B4xv43.37 (9)Si1—B5—B2x138.2 (3)
B2xii—Mg1—B4xv127.11 (15)B3xviii—B5—B2x111.1 (9)
B2xiii—Mg1—B4xv85.59 (9)B3xxxvi—B5—B2x41.2 (4)
B2xiv—Mg1—B4xv127.11 (15)B3i—B5—B2x77.9 (5)
B2—Mg1—B4xv43.37 (9)Si1xxi—B5—B2x138.2 (3)
Si3—Mg1—B4xv96.04 (11)B5xxi—B5—B2x138.2 (3)
B2x—Mg1—B4xvi43.37 (9)B2—B5—B2x70.5 (5)
B2xi—Mg1—B4xvi85.59 (9)B2xiii—B5—B2x83.5 (6)
B2xii—Mg1—B4xvi43.37 (9)B2xiv—B5—B2x70.5 (5)
B2xiii—Mg1—B4xvi127.11 (15)B2xi—B5—B2x38.0 (2)
B2xiv—Mg1—B4xvi85.59 (9)B2xii—B5—B2x39.8 (3)
B2—Mg1—B4xvi127.11 (15)B5—Si1—Si1xxi180.0
Si3—Mg1—B4xvi96.04 (11)B5—Si1—B3xviii59.53 (17)
B4xv—Mg1—B4xvi118.91 (4)Si1xxi—Si1—B3xviii120.47 (17)
B2x—Mg1—B4xvii127.11 (15)B5—Si1—B3xxxvi59.53 (17)
B2xi—Mg1—B4xvii127.11 (15)Si1xxi—Si1—B3xxxvi120.47 (17)
B2xii—Mg1—B4xvii85.59 (9)B3xviii—Si1—B3xxxvi96.6 (2)
B2xiii—Mg1—B4xvii43.37 (9)B5—Si1—B3i59.53 (17)
B2xiv—Mg1—B4xvii43.37 (9)Si1xxi—Si1—B3i120.47 (17)
B2—Mg1—B4xvii85.59 (9)B3xviii—Si1—B3i96.6 (2)
Si3—Mg1—B4xvii96.04 (11)B3xxxvi—Si1—B3i96.6 (2)
B4xv—Mg1—B4xvii118.91 (4)B5—Si1—B5xxi180.0
B4xvi—Mg1—B4xvii118.91 (4)Si1xxi—Si1—B5xxi0.0
B2x—Mg1—Si2xv112.42 (6)B3xviii—Si1—B5xxi120.47 (17)
B2xi—Mg1—Si2xv82.24 (6)B3xxxvi—Si1—B5xxi120.47 (17)
B2xii—Mg1—Si2xv157.19 (6)B3i—Si1—B5xxi120.47 (17)
B2xiii—Mg1—Si2xv112.42 (6)B5—Si1—Na1xiv98.18 (5)
B2xiv—Mg1—Si2xv157.19 (6)Si1xxi—Si1—Na1xiv81.82 (5)
B2—Mg1—Si2xv82.24 (6)B3xviii—Si1—Na1xiv144.19 (12)
Si3—Mg1—Si2xv52.19 (6)B3xxxvi—Si1—Na1xiv48.18 (10)
B4xv—Mg1—Si2xv43.85 (8)B3i—Si1—Na1xiv94.136 (18)
B4xvi—Mg1—Si2xv117.22 (8)B5xxi—Si1—Na1xiv81.82 (5)
B4xvii—Mg1—Si2xv117.22 (8)B5—Si1—Na1xxii98.18 (5)
B2x—Mg1—Si2xvii157.19 (6)Si1xxi—Si1—Na1xxii81.82 (5)
B2xi—Mg1—Si2xvii157.19 (6)B3xviii—Si1—Na1xxii48.18 (10)
B2xii—Mg1—Si2xvii112.42 (6)B3xxxvi—Si1—Na1xxii144.19 (12)
B2xiii—Mg1—Si2xvii82.24 (6)B3i—Si1—Na1xxii94.136 (18)
B2xiv—Mg1—Si2xvii82.24 (6)B5xxi—Si1—Na1xxii81.82 (5)
B2—Mg1—Si2xvii112.42 (6)Na1xiv—Si1—Na1xxii163.65 (11)
Si3—Mg1—Si2xvii52.19 (6)B5—Si1—Na1xxxvii98.18 (5)
B4xv—Mg1—Si2xvii117.22 (8)Si1xxi—Si1—Na1xxxvii81.82 (5)
B4xvi—Mg1—Si2xvii117.21 (8)B3xviii—Si1—Na1xxxvii144.19 (12)
B4xvii—Mg1—Si2xvii43.85 (8)B3xxxvi—Si1—Na1xxxvii94.135 (18)
Si2xv—Mg1—Si2xvii86.35 (8)B3i—Si1—Na1xxxvii48.18 (10)
B3xviii—B1—B2iv108.06 (16)B5xxi—Si1—Na1xxxvii81.82 (5)
B3xviii—B1—B1xix107.43 (15)Na1xiv—Si1—Na1xxxvii59.328 (9)
B2iv—B1—B1xix60.40 (13)Na1xxii—Si1—Na1xxxvii118.01 (3)
B3xviii—B1—B2xiv60.52 (15)B5—Si1—Na1xxxviii98.18 (5)
B2iv—B1—B2xiv108.83 (15)Si1xxi—Si1—Na1xxxviii81.82 (5)
B1xix—B1—B2xiv59.60 (13)B3xviii—Si1—Na1xxxviii94.137 (18)
B3xviii—B1—B4ix59.85 (16)B3xxxvi—Si1—Na1xxxviii48.19 (10)
B2iv—B1—B4ix60.63 (15)B3i—Si1—Na1xxxviii144.19 (12)
B1xix—B1—B4ix108.74 (15)B5xxi—Si1—Na1xxxviii81.82 (5)
B2xiv—B1—B4ix109.26 (16)Na1xiv—Si1—Na1xxxviii59.328 (9)
B3xviii—B1—Si2i110.42 (15)Na1xxii—Si1—Na1xxxviii118.01 (3)
B2iv—B1—Si2i136.22 (14)Na1xxxvii—Si1—Na1xxxviii118.01 (3)
B1xix—B1—Si2i123.70 (8)B5—Si1—Na198.18 (5)
B2xiv—B1—Si2i107.77 (13)Si1xxi—Si1—Na181.82 (5)
B4ix—B1—Si2i125.94 (15)B3xviii—Si1—Na148.19 (10)
B3xviii—B1—Na1125.76 (15)B3xxxvi—Si1—Na194.137 (18)
B2iv—B1—Na170.74 (10)B3i—Si1—Na1144.19 (12)
B1xix—B1—Na1116.13 (15)B5xxi—Si1—Na181.82 (5)
B2xiv—B1—Na1173.69 (13)Na1xiv—Si1—Na1118.01 (3)
B4ix—B1—Na176.20 (11)Na1xxii—Si1—Na159.328 (9)
Si2i—B1—Na170.23 (6)Na1xxxvii—Si1—Na1163.65 (11)
B3xviii—B1—B526.44 (12)Na1xxxviii—Si1—Na159.329 (9)
B2iv—B1—B5134.42 (13)B5—Si1—Na1x98.18 (5)
B1xix—B1—B5118.8 (4)Si1xxi—Si1—Na1x81.82 (5)
B2xiv—B1—B560.4 (4)B3xviii—Si1—Na1x94.135 (18)
B4ix—B1—B580.5 (2)B3xxxvi—Si1—Na1x144.19 (12)
Si2i—B1—B585.06 (18)B3i—Si1—Na1x48.18 (10)
Na1—B1—B5124.6 (4)B5xxi—Si1—Na1x81.82 (5)
B3xviii—B1—Na1xx99.62 (14)Na1xiv—Si1—Na1x118.01 (3)
B2iv—B1—Na1xx99.93 (10)Na1xxii—Si1—Na1x59.328 (9)
B1xix—B1—Na1xx39.67 (11)Na1xxxvii—Si1—Na1x59.328 (9)
B2xiv—B1—Na1xx39.15 (8)Na1xxxviii—Si1—Na1x163.65 (11)
B4ix—B1—Na1xx139.11 (13)Na1—Si1—Na1x118.01 (3)
Si2i—B1—Na1xx93.52 (7)B1i—Si2—B1xxix99.44 (13)
Na1—B1—Na1xx134.55 (7)B1i—Si2—B4112.65 (8)
B5—B1—Na1xx94.3 (3)B1xxix—Si2—B4112.65 (8)
B3xviii—B1—B5i102.63 (12)B1i—Si2—Si3xv110.23 (7)
B2iv—B1—B5i23.0 (2)B1xxix—Si2—Si3xv110.23 (7)
B1xix—B1—B5i39.4 (2)B4—Si2—Si3xv111.12 (10)
B2xiv—B1—B5i86.6 (2)B1i—Si2—Na1xxxiii166.61 (7)
B4ix—B1—B5i72.9 (2)B1xxix—Si2—Na1xxxiii67.56 (6)
Si2i—B1—B5i146.89 (9)B4—Si2—Na1xxxiii71.60 (4)
Na1—B1—B5i92.17 (19)Si3xv—Si2—Na1xxxiii78.52 (2)
B5—B1—B5i127.32 (17)B1i—Si2—Na1xxiv67.56 (6)
Na1xx—B1—B5i78.9 (2)B1xxix—Si2—Na1xxiv166.61 (7)
B3xviii—B1—B5xxi45.13 (19)B4—Si2—Na1xxiv71.60 (4)
B2iv—B1—B5xxi127.76 (14)Si3xv—Si2—Na1xxiv78.52 (2)
B1xix—B1—B5xxi151.4 (2)Na1xxxiii—Si2—Na1xxiv125.18 (3)
B2xiv—B1—B5xxi93.9 (2)B1i—Si2—Mg1xv130.08 (7)
B4ix—B1—B5xxi67.63 (14)B1xxix—Si2—Mg1xv130.08 (6)
Si2i—B1—B5xxi71.88 (9)B4—Si2—Mg1xv58.69 (11)
Na1—B1—B5xxi91.1 (2)Si3xv—Si2—Mg1xv52.42 (7)
B5—B1—B5xxi33.5 (6)Na1xxxiii—Si2—Mg1xv63.235 (15)
Na1xx—B1—B5xxi124.81 (18)Na1xxiv—Si2—Mg1xv63.235 (15)
B5i—B1—B5xxi138.30 (13)B1i—Si2—B5i60.03 (17)
B3xviii—B1—Na1xxii58.43 (12)B1xxix—Si2—B5i60.03 (17)
B2iv—B1—Na1xxii59.13 (9)B4—Si2—B5i87.2 (3)
B1xix—B1—Na1xxii105.05 (8)Si3xv—Si2—B5i161.7 (3)
B2xiv—B1—Na1xxii105.67 (11)Na1xxxiii—Si2—B5i108.61 (12)
B4ix—B1—Na1xxii4.27 (10)Na1xxiv—Si2—B5i108.61 (12)
Si2i—B1—Na1xxii130.03 (8)Mg1xv—Si2—B5i145.8 (3)
Na1—B1—Na1xxii79.66 (5)B1i—Si2—B5xxx80.55 (17)
B5—B1—Na1xxii80.33 (15)B1xxix—Si2—B5xxx80.55 (17)
Na1xx—B1—Na1xxii134.85 (5)B4—Si2—B5xxx51.3 (3)
B5i—B1—Na1xxii70.00 (18)Si3xv—Si2—B5xxx162.4 (2)
B5xxi—B1—Na1xxii69.77 (5)Na1xxxiii—Si2—B5xxx93.66 (11)
B2xiii—B2—B1xxiii131.14 (10)Na1xxiv—Si2—B5xxx93.66 (11)
B2xiii—B2—B1x111.97 (10)Mg1xv—Si2—B5xxx110.0 (2)
B1xxiii—B2—B1x60.00 (14)B5i—Si2—B5xxx35.9 (6)
B2xiii—B2—B3i106.92 (13)B1i—Si2—Na1xxii59.92 (6)
B1xxiii—B2—B3i106.68 (18)B1xxix—Si2—Na1xxii59.92 (6)
B1x—B2—B3i59.15 (14)B4—Si2—Na1xxii165.73 (10)
B2xiii—B2—B4xv136.84 (12)Si3xv—Si2—Na1xxii83.15 (4)
B1xxiii—B2—B4xv60.14 (13)Na1xxxiii—Si2—Na1xxii112.858 (15)
B1x—B2—B4xv108.04 (17)Na1xxiv—Si2—Na1xxii112.858 (15)
B3i—B2—B4xv106.97 (16)Mg1xv—Si2—Na1xxii135.57 (6)
B2xiii—B2—B2xi120.000 (1)B5i—Si2—Na1xxii78.6 (3)
B1xxiii—B2—B2xi107.39 (10)B5xxx—Si2—Na1xxii114.5 (2)
B1x—B2—B2xi107.25 (10)B1i—Si2—Na1xxxix123.16 (7)
B3i—B2—B2xi59.51 (9)B1xxix—Si2—Na1xxxix123.16 (7)
B4xv—B2—B2xi59.65 (9)B4—Si2—Na1xxxix85.66 (9)
B2xiii—B2—Mg167.83 (6)Si3xv—Si2—Na1xxxix25.46 (4)
B1xxiii—B2—Mg1127.40 (14)Na1xxxiii—Si2—Na1xxxix69.017 (15)
B1x—B2—Mg1171.03 (15)Na1xxiv—Si2—Na1xxxix69.017 (15)
B3i—B2—Mg1112.01 (15)Mg1xv—Si2—Na1xxxix26.96 (6)
B4xv—B2—Mg175.16 (13)B5i—Si2—Na1xxxix172.8 (3)
B2xi—B2—Mg166.74 (6)B5xxx—Si2—Na1xxxix136.9 (2)
B2xiii—B2—B571.01 (12)Na1xxii—Si2—Na1xxxix108.610 (15)
B1xxiii—B2—B5142.0 (3)Si3xl—Si3—Si2xv104.62 (4)
B1x—B2—B583.9 (3)Si3xl—Si3—Si2xvi104.61 (4)
B3i—B2—B537.8 (2)Si2xv—Si3—Si2xvi113.86 (3)
B4xv—B2—B5129.70 (16)Si3xl—Si3—Si2xvii104.61 (4)
B2xi—B2—B570.08 (13)Si2xv—Si3—Si2xvii113.86 (3)
Mg1—B2—B587.7 (3)Si2xvi—Si3—Si2xvii113.86 (3)
B2xiii—B2—Na1xxiv71.62 (5)Si3xl—Si3—Mg1180.0
B1xxiii—B2—Na1xxiv71.82 (10)Si2xv—Si3—Mg175.38 (4)
B1x—B2—Na1xxiv116.66 (12)Si2xvi—Si3—Mg175.39 (4)
B3i—B2—Na1xxiv175.02 (13)Si2xvii—Si3—Mg175.39 (4)
B4xv—B2—Na1xxiv76.58 (10)Si3xl—Si3—Na1xx118.76 (3)
B2xi—B2—Na1xxiv125.43 (5)Si2xv—Si3—Na1xx136.62 (7)
Mg1—B2—Na1xxiv72.08 (8)Si2xvi—Si3—Na1xx56.938 (18)
B5—B2—Na1xxiv142.00 (18)Si2xvii—Si3—Na1xx56.938 (18)
B2xiii—B2—Na1xxv113.62 (3)Mg1—Si3—Na1xx61.24 (3)
B1xxiii—B2—Na1xxv98.99 (11)Si3xl—Si3—Na1xxv118.76 (3)
B1x—B2—Na1xxv131.77 (12)Si2xv—Si3—Na1xxv56.938 (18)
B3i—B2—Na1xxv92.82 (10)Si2xvi—Si3—Na1xxv56.940 (18)
B4xv—B2—Na1xxv39.10 (9)Si2xvii—Si3—Na1xxv136.62 (7)
B2xi—B2—Na1xxv33.32 (3)Mg1—Si3—Na1xxv61.24 (3)
Mg1—B2—Na1xxv46.23 (4)Na1xx—Si3—Na1xxv98.79 (3)
B5—B2—Na1xxv96.5 (2)Si3xl—Si3—Na1xxiv118.76 (3)
Na1xxiv—B2—Na1xxv92.11 (5)Si2xv—Si3—Na1xxiv56.938 (18)
B2xiii—B2—B5xxvi157.80 (15)Si2xvi—Si3—Na1xxiv136.62 (7)
B1xxiii—B2—B5xxvi29.13 (9)Si2xvii—Si3—Na1xxiv56.940 (18)
B1x—B2—B5xxvi69.9 (2)Mg1—Si3—Na1xxiv61.24 (3)
B3i—B2—B5xxvi93.1 (3)Na1xx—Si3—Na1xxiv98.79 (3)
B4xv—B2—B5xxvi38.8 (2)Na1xxv—Si3—Na1xxiv98.78 (3)
B2xi—B2—B5xxvi78.28 (3)Si3xl—Si3—Na1xli36.851 (12)
Mg1—B2—B5xxvi113.9 (2)Si2xv—Si3—Na1xli67.76 (3)
B5—B2—B5xxvi130.32 (9)Si2xvi—Si3—Na1xli119.48 (4)
Na1xxiv—B2—B5xxvi87.6 (2)Si2xvii—Si3—Na1xli119.48 (4)
Na1xxv—B2—B5xxvi73.92 (14)Mg1—Si3—Na1xli143.149 (12)
B2xiii—B2—Na1x111.07 (3)Na1xx—Si3—Na1xli155.61 (4)
B1xxiii—B2—Na1x57.51 (9)Na1xxv—Si3—Na1xli97.015 (14)
B1x—B2—Na1x3.84 (8)Na1xxiv—Si3—Na1xli97.015 (14)
B3i—B2—Na1x62.97 (11)Si3xl—Si3—Na1xlii36.852 (12)
B4xv—B2—Na1x107.75 (13)Si2xv—Si3—Na1xlii119.48 (4)
B2xi—B2—Na1x110.53 (3)Si2xvi—Si3—Na1xlii119.48 (4)
Mg1—B2—Na1x174.62 (10)Si2xvii—Si3—Na1xlii67.76 (3)
B5—B2—Na1x87.0 (3)Mg1—Si3—Na1xlii143.148 (12)
Na1xxiv—B2—Na1x112.83 (6)Na1xx—Si3—Na1xlii97.015 (14)
Na1xxv—B2—Na1x133.76 (6)Na1xxv—Si3—Na1xlii155.61 (4)
B5xxvi—B2—Na1x69.2 (2)Na1xxiv—Si3—Na1xlii97.016 (14)
B5i—B3—B1xxvii125.38 (12)Na1xli—Si3—Na1xlii62.58 (2)
B5i—B3—B1iv125.38 (12)Si3xl—Si3—Na1xliii36.852 (12)
B1xxvii—B3—B1iv109.1 (2)Si2xv—Si3—Na1xliii119.48 (4)
B5i—B3—B4xxviii144.1 (7)Si2xvi—Si3—Na1xliii67.76 (3)
B1xxvii—B3—B4xxviii60.74 (14)Si2xvii—Si3—Na1xliii119.48 (4)
B1iv—B3—B4xxviii60.74 (14)Mg1—Si3—Na1xliii143.148 (12)
B5i—B3—B2i101.0 (6)Na1xx—Si3—Na1xliii97.015 (14)
B1xxvii—B3—B2i60.33 (12)Na1xxv—Si3—Na1xliii97.016 (14)
B1iv—B3—B2i109.4 (2)Na1xxiv—Si3—Na1xliii155.61 (4)
B4xxviii—B3—B2i109.8 (2)Na1xli—Si3—Na1xliii62.58 (2)
B5i—B3—B2xxix101.0 (6)Na1xlii—Si3—Na1xliii62.58 (2)
B1xxvii—B3—B2xxix109.4 (2)
Symmetry codes: (i) x+2/3, y+1/3, z+1/3; (ii) x+1/3, y1/3, z1/3; (iii) x+y+1/3, y1/3, z1/3; (iv) xy+2/3, y+1/3, z+1/3; (v) x+1, y, z; (vi) x+y+1, y, z; (vii) xy, y, z; (viii) xy+2/3, x2/3, z+1/3; (ix) x+y+1/3, x+2/3, z1/3; (x) y, xy, z; (xi) y, x, z; (xii) x, xy, z; (xiii) x+y, y, z; (xiv) x+y, x, z; (xv) x+1/3, y+2/3, z+2/3; (xvi) y2/3, x+y1/3, z+2/3; (xvii) xy+1/3, x1/3, z+2/3; (xviii) xy1/3, x2/3, z+1/3; (xix) x+2/3, x+y+1/3, z+1/3; (xx) x+y+2/3, x+1/3, z+1/3; (xxi) x, y, z; (xxii) x+y+1, x+1, z; (xxiii) xy1/3, y+1/3, z+1/3; (xxiv) x1/3, y+1/3, z+1/3; (xxv) y1/3, xy2/3, z+1/3; (xxvi) x1/3, y+1/3, z+1/3; (xxvii) y+2/3, x+y+1/3, z+1/3; (xxviii) x+4/3, y+2/3, z+2/3; (xxix) y+2/3, x+1/3, z+1/3; (xxx) x+2/3, y+1/3, z+1/3; (xxxi) y+2/3, xy2/3, z+1/3; (xxxii) y+1, xy, z; (xxxiii) y+2/3, xy+1/3, z+1/3; (xxxiv) x+y+2/3, y+1/3, z+1/3; (xxxv) y+1/3, x+2/3, z+2/3; (xxxvi) y1/3, x+y+1/3, z+1/3; (xxxvii) x1, y, z; (xxxviii) y, xy1, z; (xxxix) x+y+2/3, x+4/3, z+1/3; (xl) x, y, z+1; (xli) x+y+1/3, x+2/3, z+2/3; (xlii) y+1/3, xy1/3, z+2/3; (xliii) x2/3, y1/3, z+2/3.
Cell parameters (Å), cell volumes (Å3) and selected bond lengths (Å) of Na3MgB37Si9, Dy2.1B37Si9a and Mg3B36Si9C top
Na3MgB37Si9Dy2.1B37Si9Mg3B36Si9C
a10.1630 (3)10.07810.079
c16.5742 (6)16.46516.372
V1482.54 (10)1448.31440.4
B—Bav of B12 icosahedron1.8111.8051.798
B2—B21.761 (5)1.7381.738
Si1—B31.887 (4)1.8771.851
Si1—B5/C1.96 (2)1.841.88
Si2—B12.043 (2)2.0322.035
Si2—B42.082 (3)2.0532.038
Si3—Si22.3951 (9)2.3662.362
Si3—Si32.304 (3)2.3432.341
Na1—B12.811 (2)2.7942.792
Na1—B22.793 (2)2.7512.729
Na1—B42.9604 (16)2.9342.934
Na1—Si22.8620 (4)2.8352.832
Mg1—B22.333 (3)
Mg1—B42.568 (3)
Mg1—Si32.403 (4)
Notes: (a) Zhang et al. (2003); (b) Ludwig et al. (2013).
 

Acknowledgements

We thank T. Kamaya for his help with the EPMA analysis.

Funding information

Funding for this research was provided by: the Japan Science and Technology Agency (JST) CREST (grant No. JPMJCR19J1).

References

First citationBruker (2018). APEX3, SAINT and SADABS. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationCahill, D. G., Fischer, H. E., Watson, S. K., Pohl, R. O. & Slack, G. A. (1989). Phys. Rev. B, 40, 3254–3260.  CrossRef CAS Google Scholar
First citationLudwig, T. & Hillebrecht, H. (2006). J. Solid State Chem. 179, 1623–1629.  CrossRef ICSD CAS Google Scholar
First citationLudwig, T., Pediaditakis, A., Sagawe, V. & Hillebrecht, H. (2013). J. Solid State Chem. 204, 113–122.  CrossRef ICSD CAS Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorito, H., Eck, B., Dronskowski, R. & Yamane, H. (2010). Dalton Trans. 39, 10197–10202.  CrossRef ICSD CAS PubMed Google Scholar
First citationMorito, H., Momma, K. & Yamane, H. (2015). J. Alloys Compd. 623, 473–479.  CrossRef ICSD CAS Google Scholar
First citationNaslain, R. & Kasper, J. S. (1970). J. Solid State Chem. 1, 150–151.  CrossRef ICSD CAS Google Scholar
First citationSalvador, J. R., Bilc, D., Mahanti, S. D. & Kanatzidis, M. G. (2003). Angew. Chem. Int. Ed. 42, 1929–1932.  CrossRef ICSD CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTerauchi, M., Morito, H., Yamane, H., Koshiya, S. & Kimoto, K. (2018). Microscopy, 67, i72–i77.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, T., Ishiyama, R. & Yamane, H. (2015). Jpn. J. Appl. Phys. 54, 07J, C04.  Google Scholar
First citationZhang, F. X., Xu, F. F., Mori, T., Liu, Q. L. & Tanaka, T. (2003). J. Solid State Chem. 170, 75–81.  CrossRef ICSD CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds