research communications
Synthesis, a]pyrazole-1,2-dicarboxylate
and Hirshfeld surface analysis of dimethyl 3-(3-bromophenyl)-6-methyl-7-oxo-3,5,6,7-tetrahydropyrazolo[1,2-aLaboratory of Molecular Chemistry, Materials and Catalysis, Faculty of Sciences and Technics, Sultan Moulay Slimane University, Béni-Mellal, BP 523, Morocco, bDépartement de Chimie, Faculté des Sciences Appliquées Ait Melloul, Université IBN ZOHR, N10. BP 6146 Cité Azrou, Ait Melloul, 86150 Agadir, Morocco, cHigher School of Technology, Sultan Moulay Slimane University, BP 336, Fkih Ben Salah, Morocco, and dLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Science, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: r_elajlaoui@yahoo.com
The title compound, C17H17BrN2O5, resulted from the 1,3-dipolar cycloaddition reaction between dimethyl acetylenedicarboxylate and (3-bromobenzylidene)-4-methyl-5-oxopyrazolidin-2-ium-1-ide in CHCl3. The dihedral angle between the pyrazole rings (all atoms) is 32.91 (10)°; the oxo-pyrazole ring displays an whereas the other pyrazole ring adopts a twisted conformation. The bromophenyl ring subtends a dihedral angle of 88.95 (9)° with the mean plane of its attached pyrazole ring. In the crystal, the molecules are linked by C—H⋯O hydrogen bonds and aromatic π–π interactions with an inter-centroid distance of 3.8369 (10) Å. The Hirshfeld surface analysis and fingerprint plots reveal that the molecular packing is governed by H⋯H (37.1%), O⋯H/H⋯O (31.3%), Br⋯H/H⋯Br (13.5%) and C⋯H/H⋯C (10.6%) contacts. The energy framework indicates that dispersion energy is the major contributor to the molecular packing.
Keywords: crystal structure; tetrahydropyrazolo[1,2-a]pyrazolone; pyrazole-1,2-dicarboxylate; Hirshfeld surface analysis; hydrogen bonds.
CCDC reference: 2131209
1. Chemical context
Tetrahydropyrazolo[1,2-a] pyrazolones have been studied for about forty years as analogues of penicillin and cephalosporin antibiotics (Jungheim & Sigmund, 1987; Jungheim et al., 1987; Ternansky et al., 1993; Konaklieva & Plotkin, 2003; Hanessian et al., 1997) and have been developed as herbicides and pesticides (Kosower et al., 1995), as antitumor agents and as potent drugs for the treatment of cognitive dysfunctions such as Alzhheimer's disease. Among a variety of reported synthetic approaches to these compounds (Khidre et al., 2013; Li & Zhao, 2014; Svete, 2006), 1,3-dipolar cycloaddition has been shown to be effective (Stanley & Sibi, 2008; Kissane & Maguire, 2010; Pellissier, 2012). Until now, several 1,3-dipoles, such as (El Ajlaoui et al., 2015), nitrones (Jen et al., 2000; Kano et al., 2005; Suga et al., 2005) and (Suga et al., 2007; Nambu et al., 2009; Padwa 2011), have been studied. Among them, N,N′-cyclic azomethine (Stanovnik et al., 1998; Qiu et al., 2014; Nájera et al., 2015; Xu & Doyle, 2014), have been increasingly employed in cycloadditions for the synthesis of pyrazolones and the related dinitrogen-fused heterocyclic derivatives with significant biological activities (Ternansky et al., 1993; Boyd, 1993; Muehlebach, et al., 2009).
As part of our studies in this area, the title compound was synthesized and its molecular and
and Hirshfeld surface analysis are reported herein.2. Structural commentary
The molecular structure of the the title compound is shown in Fig. 1. There are two stereogenic centres at C2 and C5: in the arbitrarily chosen asymmetric molecule, they have configurations of S and R, respectively, but a in the crystal is generated in the centrosymmetric P The structure is characterized by a disorder of the Br atom over two adjacent sites [Br⋯Br = 0.32 (2) Å]. The dihedral angle between the fused pyrazole rings (all atoms) is 32.91 (10)°. The C1–C3/N1/N2 oxo-pyrazole ring displays an on C3 whereas the C5–C7/N1/N2 pyrazole ring is twisted on N2—C5, as indicated by the following respective puckering parameters: Q(2) = 0.2339 (19) Å, φ(2) = 257.9 (4)° and Q(2) = 0.2127 (16) Å, φ(2) = 50.5 (4)°. Moreover, the mean plane passing through the oxo-pyrazole ring subtends a dihedral angle of 61.15 (10)° with the C12–C17 bromophenyl ring, which is practically perpendicular to the other pyrazole ring as indicated by the dihedral angle of 88.95 (9)°. The non-H atoms of the ester groups are virtually coplanar, the maximum deviations from the mean planes being 0.017 (2) Å at C10 for the O2/O3/C10/C11 grouping and 0.013 (1) Å at O5 for the O4/O5/C8/C9 grouping. The dihedral angle between these two planes is 62.15 (12)°.
3. Supramolecular features
In the crystal, the molecules are linked by C—H⋯O hydrogen bonds: O1 accepts two such bonds and O2 and O3 accept one each (Table 1 and Fig. 2). The bromophenyl rings of adjacent molecules are linked by an aromatic stacking π–π interaction with an inter-centroid distance of 3.8369 (10) Å.
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.42, update of May 2021; Groom et al., 2016) for the pyrazole-1,2-dicarboxylate unit revealed only one hit, namely refcode RICFUF: dimethyl 3-(tert-butylamino)-7-phenyl-5-oxo-1H,5H-pyrazolo[1,2-a]pyrazole-1,2-dicarboxylate (Abbasi et al., 2007). The conformations of the fused pyrazole rings present in this compound and those of the title compound are different. Furthermore, the values of the dihedral angles between the planes passing through the rings are also very different, except for the angles between the fused pyrazole rings, the difference of which does not exceed one degree, i.e. 34.13° in RICFUF and 32.91 (10)° in the title compound. It may be noted that the phenyl substituent is linked to the oxo-pyrazole ring and the two carboxylate groups to the other pyrazole ring in RICFUF, while in the title compound the phenyl and both carboxylate groups are linked to the same pyrazole ring.
5. Computational chemistry
Hirshfeld surface analysis
The Hirshfeld surface (HS) analyses (Spackman & Jayatilaka, 2009) and two-dimensional fingerprint plots (McKinnon et al., 2007) generated using CrystalExplorer17.5 (Turner et al., 2017) show the various intermolecular interactions in the The three-dimensional dnorm surface of the title compound using a standard surface resolution with a fixed colour scale of −0.21 to 1.38 a.u is shown in Fig. 3a,b. The intense red spots on the surface are due to the C—H⋯O hydrogen bonds and C—H⋯Br contacts. The bright-red spots in Fig. 3c indicate atoms with the potential to be hydrogen-bond acceptors (negative electrostatic potential), while blue regions indicate atoms with positive electrostatic potential (hydrogen-bond donors) (Spackman et al., 2008).
Two-dimensional fingerprint plots for the H⋯H, H⋯O/O⋯H, H⋯Br/Br⋯H and H⋯C/C⋯H contacts are presented in Fig. 4. The most important interaction is H⋯H (de = di = 1.15 Å) (Fig. 4b), contributing 37.6% to the overall crystal packing, which is reflected as widely scattered points of high density due to the large hydrogen content of the molecule. The contribution from the O⋯H/H⋯O contacts (31.4%), corresponding to C—H⋯O interactions, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bond interaction (di + de = 2.40 Å, Fig. 4c). The reciprocal H⋯Br/Br⋯H interactions (12.8%) are present as two symmetrical broad wings with di + de = 3.10 Å (Fig. 4d). The C⋯H/H⋯C contacts contribute 10.8% to the Hirshfeld surface, featuring a wide region with di + de = 2.95 Å (Fig. 4e). The smaller percentage contributions of other types of contact are listed in Table 2.
|
Interaction energy calculations
The intermolecular interaction energies between molecules in the title compound computed using a B3LYP/6–31G (d, p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017), where a cluster of molecules was generated within a radius of 3.8 Å by default. The total intermolecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis), and exchange-repulsion (Erep) energies. The energy frameworks, which provide a view of the supramolecular architecture of crystals, are represented by cylinders joining the centroids of molecular pairs using red, green and, blue colour codes for the Eele, Edis, and Etot energy components, respectively, with a cut-off value of 5 kJ mol−1 and a scale factor of 80 to all energy components (Fig. 5). The benchmarked energies Eele, Epol, Edis and Erep were scaled as 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). The nature and strength of the energies for the key identified intermolecular interactions are summarized in Table 3. The computed interaction energies for electrostatic, polarization, dispersion and exchange repulsion are −107.7 kJ mol−1, −33.9 kJ mol−1, −299.7 kJ mol−1 and 185.2 kJ mol−1, respectively. These data reveal that the dispersive component makes the major contribution to the intermolecular interactions in the crystal. The calculations showed that the C3—H3B⋯O2 hydrogen bond has the greatest energy among all close contacts present in the crystal with its energy (–52.1 kJ mol−1) having a major electrostatic contribution (–21.9 kJ mol−1). The next most significant contribution, with a total energy of −34.9 kJ mol−1, arises from the C11—H11B⋯O2 hydrogen bond. Lower energies, compared to the above interactions, are calculated for the Br1A⋯O4, C9—H9A⋯O1 and C14—H14⋯O1 contacts.
|
Frontier molecular orbital (FMO) calculations
The optimized structure of the title compound was established in the gas phase using density functional theory (DFT) using the B3LYP exchange correlation functional and basis-set calculations (Becke, 1993) as implanted in GAUSSIAN 09 (Frisch et al., 2009). The differences between calculated and experimental bond lengths and angles are within a few Ångstroms and degrees, respectively, when compared to the experimental parameters, which indicate that our calculations are acceptable (see supplementary Tables 1 and 2). The HOMO–LUMO gap of the molecule is calculated to be about 4.16 eV.
6. Synthesis and crystallization
To a solution of DMAD (dimethyl acetylenedicarboxylate; 0.2 mmol, 2 equiv.) in 10 ml of CHCl3 containing a catalytic amount of DABCO (0.02 mmol, 0.2 equiv.), (3-bromobenzylidene)-4-methyl-5-oxopyrazolidin-2-ium-1-ide (0.10 mmol, 1 equiv.) was added (Fig. 6). The mixture was stirred at 318 K until the consumption of the azomethine imine was complete (monitored by TLC with 3:7 hexane/ethyl acetate v:v). After completion of the reaction, the residue was concentrated in vacuo. The crude product was purified by on silica gel using hexane:ethyl acetate (2/8 v:v) as The title compound was recrystallized from ethanol solution in the form of colourless blocks (yield 68%, m.p. 383 K).
7. Refinement
Crystal data, data collection and structure . Four reflections affected by the beamstop were omitted from the All H atoms were placed geometrically (C—H = 0.93–0.98 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The Br atom was modelled as disordered over adjacent sites in a 0.5862:0.4138 ratio.
details are summarized in Table 4Supporting information
CCDC reference: 2131209
https://doi.org/10.1107/S2056989021013621/hb8006sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021013621/hb8006Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021013621/hb8006Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: WinGX and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).C17H17BrN2O5 | Z = 2 |
Mr = 409.23 | F(000) = 416 |
Triclinic, P1 | Dx = 1.541 Mg m−3 |
a = 8.8579 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.5336 (6) Å | Cell parameters from 3884 reflections |
c = 11.0893 (6) Å | θ = 2.2–27.1° |
α = 62.282 (2)° | µ = 2.36 mm−1 |
β = 75.437 (2)° | T = 296 K |
γ = 88.241 (2)° | Block, colourless |
V = 882.03 (9) Å3 | 0.32 × 0.28 × 0.19 mm |
Bruker D8 VENTURE Super DUO diffractometer | 3884 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 3257 reflections with I > 2σ(I) |
HELIOS mirror optics monochromator | Rint = 0.027 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 27.1°, θmin = 2.2° |
φ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −13→13 |
Tmin = 0.617, Tmax = 0.746 | l = −14→14 |
27467 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0411P)2 + 0.1854P] where P = (Fo2 + 2Fc2)/3 |
3882 reflections | (Δ/σ)max < 0.001 |
235 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.59723 (18) | 0.82071 (16) | 0.63241 (16) | 0.0400 (3) | |
C2 | 0.73763 (18) | 0.89402 (17) | 0.50667 (16) | 0.0426 (3) | |
H2 | 0.747329 | 0.997326 | 0.477490 | 0.051* | |
C3 | 0.69585 (19) | 0.8717 (2) | 0.39196 (17) | 0.0543 (4) | |
H3A | 0.734473 | 0.955697 | 0.300247 | 0.065* | |
H3B | 0.741502 | 0.788389 | 0.387941 | 0.065* | |
C4 | 0.8868 (2) | 0.8311 (3) | 0.5424 (2) | 0.0678 (5) | |
H4A | 0.974476 | 0.879267 | 0.461016 | 0.102* | |
H4B | 0.902100 | 0.844121 | 0.618805 | 0.102* | |
H4C | 0.877991 | 0.730075 | 0.570107 | 0.102* | |
C5 | 0.45427 (17) | 0.73166 (15) | 0.41577 (15) | 0.0372 (3) | |
H5 | 0.533031 | 0.664725 | 0.413900 | 0.045* | |
C6 | 0.32540 (17) | 0.65778 (15) | 0.55378 (15) | 0.0377 (3) | |
C7 | 0.35203 (17) | 0.69677 (15) | 0.64608 (15) | 0.0374 (3) | |
C8 | 0.27063 (18) | 0.64773 (17) | 0.79956 (16) | 0.0418 (3) | |
C9 | 0.2384 (3) | 0.4599 (2) | 1.03001 (19) | 0.0738 (6) | |
H9A | 0.270856 | 0.365515 | 1.078206 | 0.111* | |
H9B | 0.273764 | 0.521748 | 1.061323 | 0.111* | |
H9C | 0.126110 | 0.453518 | 1.050550 | 0.111* | |
C10 | 0.21152 (18) | 0.54235 (16) | 0.58279 (16) | 0.0423 (3) | |
C11 | −0.0089 (2) | 0.3797 (2) | 0.7483 (2) | 0.0690 (5) | |
H11A | −0.084012 | 0.361710 | 0.835157 | 0.103* | |
H11B | −0.062337 | 0.398430 | 0.677267 | 0.103* | |
H11C | 0.047778 | 0.296859 | 0.763103 | 0.103* | |
C12 | 0.40315 (17) | 0.79230 (15) | 0.28093 (14) | 0.0367 (3) | |
C13 | 0.4618 (2) | 0.7461 (2) | 0.18122 (18) | 0.0517 (4) | |
H13 | 0.533604 | 0.677727 | 0.196652 | 0.062* | |
C14 | 0.4127 (3) | 0.8027 (2) | 0.05800 (19) | 0.0644 (6) | |
H14 | 0.453637 | 0.772789 | −0.009399 | 0.077* | |
C15 | 0.3053 (2) | 0.9015 (2) | 0.03454 (17) | 0.0610 (5) | |
H15 | 0.271768 | 0.937716 | −0.047350 | 0.073* | |
C16 | 0.2476 (2) | 0.94653 (18) | 0.13404 (16) | 0.0484 (4) | |
C17 | 0.29670 (17) | 0.89409 (16) | 0.25580 (15) | 0.0394 (3) | |
H17 | 0.258100 | 0.927269 | 0.320979 | 0.047* | |
N1 | 0.47794 (14) | 0.80099 (13) | 0.58181 (12) | 0.0385 (3) | |
N2 | 0.52250 (15) | 0.84889 (13) | 0.43155 (12) | 0.0392 (3) | |
O1 | 0.58506 (15) | 0.78306 (15) | 0.75542 (12) | 0.0574 (3) | |
O2 | 0.22293 (17) | 0.48679 (14) | 0.50806 (14) | 0.0631 (4) | |
O3 | 0.09960 (14) | 0.50348 (13) | 0.70232 (13) | 0.0560 (3) | |
O4 | 0.18874 (17) | 0.72005 (15) | 0.83908 (14) | 0.0664 (4) | |
O5 | 0.30539 (15) | 0.51832 (13) | 0.87923 (11) | 0.0537 (3) | |
Br1A | 0.08949 (17) | 1.08438 (13) | 0.11124 (14) | 0.05769 (15) | 0.5862 |
Br1B | 0.1173 (3) | 1.0792 (3) | 0.0900 (3) | 0.1081 (10) | 0.4138 |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0449 (8) | 0.0403 (8) | 0.0409 (8) | 0.0084 (6) | −0.0182 (6) | −0.0210 (6) |
C2 | 0.0429 (8) | 0.0422 (8) | 0.0438 (8) | 0.0011 (6) | −0.0158 (6) | −0.0188 (7) |
C3 | 0.0417 (8) | 0.0765 (12) | 0.0409 (8) | −0.0126 (8) | −0.0039 (7) | −0.0272 (8) |
C4 | 0.0453 (10) | 0.0867 (15) | 0.0733 (13) | 0.0103 (9) | −0.0232 (9) | −0.0359 (11) |
C5 | 0.0362 (7) | 0.0378 (7) | 0.0373 (7) | 0.0047 (5) | −0.0116 (6) | −0.0168 (6) |
C6 | 0.0399 (7) | 0.0346 (7) | 0.0349 (7) | 0.0042 (6) | −0.0137 (6) | −0.0117 (6) |
C7 | 0.0356 (7) | 0.0366 (7) | 0.0359 (7) | 0.0069 (5) | −0.0108 (6) | −0.0134 (6) |
C8 | 0.0396 (8) | 0.0439 (8) | 0.0382 (8) | 0.0050 (6) | −0.0104 (6) | −0.0167 (7) |
C9 | 0.0947 (16) | 0.0698 (13) | 0.0363 (9) | 0.0047 (11) | −0.0136 (9) | −0.0103 (9) |
C10 | 0.0438 (8) | 0.0374 (7) | 0.0412 (8) | 0.0031 (6) | −0.0168 (7) | −0.0121 (6) |
C11 | 0.0573 (11) | 0.0614 (12) | 0.0733 (13) | −0.0196 (9) | −0.0058 (10) | −0.0241 (10) |
C12 | 0.0371 (7) | 0.0409 (7) | 0.0307 (7) | −0.0047 (6) | −0.0057 (6) | −0.0171 (6) |
C13 | 0.0526 (10) | 0.0586 (10) | 0.0471 (9) | −0.0028 (8) | −0.0030 (7) | −0.0322 (8) |
C14 | 0.0738 (13) | 0.0832 (14) | 0.0400 (9) | −0.0215 (11) | 0.0041 (9) | −0.0400 (10) |
C15 | 0.0740 (13) | 0.0699 (12) | 0.0313 (8) | −0.0236 (10) | −0.0151 (8) | −0.0154 (8) |
C16 | 0.0523 (9) | 0.0460 (8) | 0.0394 (8) | −0.0105 (7) | −0.0199 (7) | −0.0095 (7) |
C17 | 0.0414 (8) | 0.0450 (8) | 0.0320 (7) | −0.0012 (6) | −0.0116 (6) | −0.0173 (6) |
N1 | 0.0387 (6) | 0.0437 (7) | 0.0328 (6) | 0.0016 (5) | −0.0103 (5) | −0.0173 (5) |
N2 | 0.0428 (7) | 0.0424 (6) | 0.0310 (6) | −0.0011 (5) | −0.0130 (5) | −0.0144 (5) |
O1 | 0.0644 (8) | 0.0741 (8) | 0.0392 (6) | 0.0039 (6) | −0.0209 (5) | −0.0274 (6) |
O2 | 0.0767 (9) | 0.0566 (7) | 0.0574 (7) | −0.0117 (6) | −0.0126 (6) | −0.0297 (6) |
O3 | 0.0482 (7) | 0.0557 (7) | 0.0564 (7) | −0.0121 (5) | −0.0033 (6) | −0.0245 (6) |
O4 | 0.0697 (9) | 0.0660 (8) | 0.0554 (7) | 0.0218 (7) | −0.0032 (6) | −0.0297 (7) |
O5 | 0.0660 (8) | 0.0486 (6) | 0.0363 (6) | 0.0124 (5) | −0.0126 (5) | −0.0128 (5) |
Br1A | 0.0563 (3) | 0.0541 (3) | 0.0611 (2) | 0.0139 (2) | −0.0361 (2) | −0.0164 (2) |
Br1B | 0.1041 (15) | 0.0955 (10) | 0.1272 (17) | 0.0249 (8) | −0.0824 (13) | −0.0302 (9) |
C1—O1 | 1.2062 (18) | C9—H9A | 0.9600 |
C1—N1 | 1.3765 (19) | C9—H9B | 0.9600 |
C1—C2 | 1.507 (2) | C9—H9C | 0.9600 |
C2—C4 | 1.519 (2) | C10—O2 | 1.202 (2) |
C2—C3 | 1.527 (2) | C10—O3 | 1.329 (2) |
C2—H2 | 0.9800 | C11—O3 | 1.447 (2) |
C3—N2 | 1.481 (2) | C11—H11A | 0.9600 |
C3—H3A | 0.9700 | C11—H11B | 0.9600 |
C3—H3B | 0.9700 | C11—H11C | 0.9600 |
C4—H4A | 0.9600 | C12—C17 | 1.381 (2) |
C4—H4B | 0.9600 | C12—C13 | 1.387 (2) |
C4—H4C | 0.9600 | C13—C14 | 1.392 (3) |
C5—N2 | 1.4903 (19) | C13—H13 | 0.9300 |
C5—C12 | 1.5110 (19) | C14—C15 | 1.367 (3) |
C5—C6 | 1.523 (2) | C14—H14 | 0.9300 |
C5—H5 | 0.9800 | C15—C16 | 1.375 (3) |
C6—C7 | 1.338 (2) | C15—H15 | 0.9300 |
C6—C10 | 1.466 (2) | C16—C17 | 1.380 (2) |
C7—N1 | 1.3801 (19) | C16—Br1B | 1.754 (3) |
C7—C8 | 1.507 (2) | C16—Br1A | 1.961 (2) |
C8—O4 | 1.190 (2) | C17—H17 | 0.9300 |
C8—O5 | 1.3131 (19) | N1—N2 | 1.4444 (16) |
C9—O5 | 1.447 (2) | ||
O1—C1—N1 | 124.11 (15) | H9A—C9—H9C | 109.5 |
O1—C1—C2 | 129.17 (14) | H9B—C9—H9C | 109.5 |
N1—C1—C2 | 106.72 (12) | O2—C10—O3 | 124.51 (15) |
C1—C2—C4 | 110.91 (14) | O2—C10—C6 | 122.90 (15) |
C1—C2—C3 | 103.61 (12) | O3—C10—C6 | 112.54 (14) |
C4—C2—C3 | 114.19 (15) | O3—C11—H11A | 109.5 |
C1—C2—H2 | 109.3 | O3—C11—H11B | 109.5 |
C4—C2—H2 | 109.3 | H11A—C11—H11B | 109.5 |
C3—C2—H2 | 109.3 | O3—C11—H11C | 109.5 |
N2—C3—C2 | 106.03 (12) | H11A—C11—H11C | 109.5 |
N2—C3—H3A | 110.5 | H11B—C11—H11C | 109.5 |
C2—C3—H3A | 110.5 | C17—C12—C13 | 119.18 (14) |
N2—C3—H3B | 110.5 | C17—C12—C5 | 120.30 (12) |
C2—C3—H3B | 110.5 | C13—C12—C5 | 120.52 (15) |
H3A—C3—H3B | 108.7 | C12—C13—C14 | 119.69 (18) |
C2—C4—H4A | 109.5 | C12—C13—H13 | 120.2 |
C2—C4—H4B | 109.5 | C14—C13—H13 | 120.2 |
H4A—C4—H4B | 109.5 | C15—C14—C13 | 121.00 (16) |
C2—C4—H4C | 109.5 | C15—C14—H14 | 119.5 |
H4A—C4—H4C | 109.5 | C13—C14—H14 | 119.5 |
H4B—C4—H4C | 109.5 | C14—C15—C16 | 118.90 (16) |
N2—C5—C12 | 110.97 (11) | C14—C15—H15 | 120.5 |
N2—C5—C6 | 101.25 (11) | C16—C15—H15 | 120.5 |
C12—C5—C6 | 116.58 (12) | C15—C16—C17 | 121.17 (17) |
N2—C5—H5 | 109.2 | C15—C16—Br1B | 115.19 (16) |
C12—C5—H5 | 109.2 | C17—C16—Br1B | 123.57 (16) |
C6—C5—H5 | 109.2 | C15—C16—Br1A | 121.65 (14) |
C7—C6—C10 | 127.27 (14) | C17—C16—Br1A | 117.17 (13) |
C7—C6—C5 | 109.39 (13) | Br1B—C16—Br1A | 7.44 (12) |
C10—C6—C5 | 122.35 (13) | C16—C17—C12 | 120.03 (14) |
C6—C7—N1 | 110.20 (12) | C16—C17—H17 | 120.0 |
C6—C7—C8 | 131.71 (14) | C12—C17—H17 | 120.0 |
N1—C7—C8 | 118.09 (13) | C1—N1—C7 | 130.55 (13) |
O4—C8—O5 | 126.49 (15) | C1—N1—N2 | 114.06 (11) |
O4—C8—C7 | 123.05 (14) | C7—N1—N2 | 109.22 (11) |
O5—C8—C7 | 110.44 (13) | N1—N2—C3 | 103.78 (11) |
O5—C9—H9A | 109.5 | N1—N2—C5 | 105.01 (10) |
O5—C9—H9B | 109.5 | C3—N2—C5 | 116.32 (13) |
H9A—C9—H9B | 109.5 | C10—O3—C11 | 116.75 (14) |
O5—C9—H9C | 109.5 | C8—O5—C9 | 116.16 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9A···O1i | 0.96 | 2.42 | 3.258 (3) | 146 |
C14—H14···O1ii | 0.93 | 2.53 | 3.418 (2) | 161 |
C11—H11B···O2iii | 0.96 | 2.60 | 3.533 (3) | 164 |
C3—H3B···O2iv | 0.97 | 2.62 | 3.514 (3) | 154 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, y, z−1; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1. |
Contact | Percentage contribution |
H···H | 37.1 |
O···H/H···O | 31.3 |
Br···H/H···Br | 13.5 |
C···H/H···C | 10.6 |
N···H/H···N | 2.1 |
O···Br/Br···O | 1.9 |
C···C | 1.9 |
C···N/N···C | 0.7 |
O···N/N···O | 0.3 |
Br···Br | 0.3 |
N···N | 0.2 |
Contact | R (Å) | Eele | Epot | Edis | Erep | Etot | Symmetry code |
C11—H11B···O2 | 7.99 | -15.9 | -3.6 | -36.5 | 26.5 | -34.9 | -x, -y, -z |
C3—H3B···O2 | 6.38 | -21.9 | -6.9 | -54.4 | 38.0 | -52.1 | -x, -y, -z |
C14—H14···O1 | 11.09 | -9.3 | -2.6 | -11.7 | 9.8 | -15.9 | x, y, z |
C9—H9A···O1 | 11.96 | -17.2 | -4.4 | -16.6 | 21.4 | -22.6 | -x, -y, -z |
Br1A···O4 | 10.81 | -14.3 | -4.0 | -22.4 | 15.9 | -27.7 | -x, -y, -z |
Bond lengths | X-ray | DFT |
O1—C1 | 1.206 (2) | 1.209 |
C1—N1 | 1.377 (2) | 1.384 |
N1—N2 | 1.444 (2) | 1.438 |
N1—C7 | 1.380 (2) | 1.374 |
C3—N2 | 1.481 (2) | 1.470 |
C5—N2 | 1.490 (2) | 1.484 |
C8—O4 | 1.190 (2) | 1.199 |
C8—O5 | 1.313 (2) | 1.334 |
C10—O2 | 1.202 (2) | 1.212 |
C10—O3 | 1.329 (2) | 1.351 |
O3—C11 | 1.447 (2) | 1.438 |
O5—C9 | 1.447 (2) | 1.443 |
C16—Br1A/Br1B | 1.961 (2)/1.754 (3) | 1.922 |
Angles | ||
O1—C1—N1 | 124.1 (2) | 125.7 |
O1—C1—C2 | 129.2 (2) | 129.2 |
N1—C1—C2 | 106.7 (2) | 105.1 |
C1—N1—C7 | 130.6 (2) | 133.8 |
C1—N1—N2 | 114.1 (2) | 113.1 |
C3—N2—C5 | 116.3 (2) | 119.8 |
C7—C8—O4 | 123.1 (2) | 122.9 |
C7—C8—O5 | 110.4 (2) | 110.8 |
O4—C8—O5 | 126.5 (2) | 126.3 |
C6—C10—O2 | 122.9 (2) | 123.9 |
C6—C10—O3 | 112.5 (2) | 112.4 |
O2—C10—O3 | 124.5 (2) | 123.6 |
C10—O3—C11 | 116.8 (2) | 115.7 |
C8—O5—C9 | 116.2 (2) | 115.2 |
C15—C16—Br1A/Br1B | 121.7 (2)/115.2 (2) | 119.2 |
C17—C16—Br1A/Br1B | 117.2 (2)/123.6 (2) | 119.1 |
ET(eV) | 101131.745 |
EHOMO (eV) | –6.026 |
ELUMO (eV) | –1.868 |
DE(LUMO–HOMO) (eV) | 4.158 |
Chemical hardness (η) | 2.079 |
Chemical Softness (ξ) | 0.241 |
Chemical potential (µ) | 3.947 |
Electrophilicity (ψ) | 3.754 |
Electronegativity (χ) | –3.947 |
Dipole moment (D) | 3.847 |
η = 1/2[ELUMO-EHOMO], ξ = 1/2η, µ = [1/2(ELUMO+EHOMO)], ψ = µ2/2η, χ = –µ |
Acknowledgements
The authors thank the Faculty of Science, Mohammed V University in Rabat, Morocco, for the X-ray measurements.
References
Abbasi, A., Adib, M. & Eriksson, L. (2007). Acta Cryst. E63, o2115–o2116. Web of Science CSD CrossRef IUCr Journals Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Boyd, D. B. (1993). J. Med. Chem. 36, 1443–1449. CrossRef CAS PubMed Web of Science Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
El Ajlaoui, R., Ouafa, A., Mojahidi, S., El Ammari, L., Saadi, M. & El Mostapha, R. (2015). Synth. Commun. 45, 2035–2042. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hanessian, S., McNaughton-Smith, G., Lombart, H. G. & Lubell, W. D. (1997). Tetrahedron, 53, 12789–12854. CrossRef CAS Web of Science Google Scholar
Jen, W. S., Wiener, J. J. M. & MacMillan, D. W. C. (2000). J. Am. Chem. Soc. 122, 9874–9875. Web of Science CrossRef CAS Google Scholar
Jungheim, L. N. & Sigmund, S. K. (1987). J. Org. Chem. 52, 4007–4013. CSD CrossRef CAS Web of Science Google Scholar
Jungheim, L. N., Sigmund, S. K. & Fisher, J. W. (1987). Tetrahedron Lett. 28, 285–288. CrossRef CAS Web of Science Google Scholar
Kano, T., Hashimoto, T. & Maruoka, K. (2005). J. Am. Chem. Soc. 127, 11926–11927. Web of Science CrossRef PubMed CAS Google Scholar
Khidre, R., Mohamed, H. A. & Abdel-Wahab, B. F. (2013). Turk. J. Chem. 37, 1–35. Web of Science CrossRef CAS Google Scholar
Kissane, M. & Maguire, A. R. (2010). Chem. Soc. Rev. 39, 845–883. Web of Science CrossRef CAS PubMed Google Scholar
Konaklieva, M. I. & Plotkin, B. J. (2003). Current Medicinal Chemistry - Anti-Infective Agents 2; 287–302. Google Scholar
Kosower, E. M., Radkowsky, A. E., Fairlamb, A. H., Croft, S. L. & Neal, R. (1995). Eur. J. Med. Chem. 30, 659–671. CrossRef CAS Web of Science Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Li, M. & Zhao, B. X. (2014). Eur. J. Med. Chem. 85, 311–340. Web of Science CrossRef CAS PubMed Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814. Google Scholar
Muehlebach, M., Boeger, M., Cederbaum, F., Cornes, D., Friedmann, A. A., Glock, J., Niderman, T., Stoller, A. & Wagner, T. (2009). Bioorg. Med. Chem. 17, 4241–4256. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nájera, C., Sansano, J. M. & Yus, M. (2015). Org. Biomol. Chem. 13, 8596–8636. Web of Science PubMed Google Scholar
Nambu, H., Hikime, M., Krishnamurthi, J., Kamiya, M., Shimada, N. & Hashimoto, S. (2009). Tetrahedron Lett. 50, 3675–3678. Web of Science CrossRef CAS Google Scholar
Padwa, A. (2011). Tetrahedron, 67, 8057–8072. Web of Science CrossRef CAS Google Scholar
Pellissier, H. (2012). Tetrahedron, 68, 2197–2232. Web of Science CrossRef CAS Google Scholar
Qiu, G., Kuang, Y. & Wu, J. (2014). Adv. Synth. Catal. 356, 3483–3504. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Stanley, L. M. & Sibi, M. P. (2008). Chem. Rev. 108, 2887–2902. Web of Science CrossRef PubMed CAS Google Scholar
Stanovnik, B., Jelen, B., Turk, C., Žličar, M. & Svete, J. (1998). J. Heterocycl. Chem. 35, 1187–1204. Web of Science CrossRef CAS Google Scholar
Suga, H., Ishimoto, D., Higuchi, S., Ohtsuka, M., Arikawa, T., Tsuchida, T., Kakehi, A. & Baba, T. (2007). Org. Lett. 9, 4359–4362. Web of Science CrossRef PubMed CAS Google Scholar
Suga, H., Nakajima, T., Itoh, K. & Kakehi, A. (2005). Org. Lett. 7, 1431–1434. Web of Science CrossRef PubMed CAS Google Scholar
Svete, J. (2006). Arkivoc,VII, 35–56. Google Scholar
Ternansky, R. J., Draheim, S. E., Pike, A. J., Counter, F. T., Eudaly, J. A. & Kasher, J. S. (1993). J. Med. Chem. 36, 3224–3229. CrossRef CAS PubMed Web of Science Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth, Australia. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, X. & Doyle, M. P. (2014). Acc. Chem. Res. 47, 1396–1405. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.