research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of 1-ferrocenylundecane-1,11-diol

crossmark logo

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: john.mcadam@otago.ac.nz

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 December 2021; accepted 23 December 2021; online 7 January 2022)

The racemic title compound, [Fe(C5H5)(C16H27O2)], comprises an α,ω-diol-substituted undecyl chain with a ferrocenyl substituent at at one terminus. The alkane chain is inclined to the substituted ring of the ferrocene grouping by 84.22 (13)°. The ferrocene rings are almost eclipsed and parallel. The crystal structure features O—H⋯O and C—H⋯O hydrogen bonds and C—H⋯π contacts that stack the mol­ecules along the c-axis direction. A Hirshfeld surface analysis reveals that H⋯H inter­actions (83.2%) dominate the surface contacts.

1. Chemical context

The title compound, 1, is a rare example of a ferrocene mol­ecule substituted with an extended, in this instance 11-membered, alkane chain. It was synthesized to provide a ferrocenyl-substituted diol for the preparation of polyesters with regular pendant electroactive groups. Similar ferrocenyl neo-pentyl diol-derived terephthalate polymers have been shown to display inter­esting electrochemical properties (McAdam et al., 2008a[McAdam, C. J., Moratti, S. C., Robinson, B. H. & Simpson, J. (2008a). J. Organomet. Chem. 693, 2715-2722.],b[McAdam, C. J., Nafady, A., Bond, A. M., Moratti, S. C. & Simpson, J. (2008b). J. Inorg. Organomet. Polym. 18, 485-490.]). Friedel–Crafts methodology (Saji et al., 1991[Saji, T., Hoshino, K., Ishii, Y. & Goto, M. (1991). J. Am. Chem. Soc. 113, 450-456.]) provided the 1-ferrocenyl-undec-10-en-1-one precursor. This was reduced to the racemic alcohol 1-ferrocenyl-undec-10-en-1-ol (2) using LiAlH4. Enanti­omeric selection of the individual chiral forms should be possible using more complex synthetic methodology (Ursini et al., 2006[Ursini, C. V., Mazzeo, F. & Rodrigues, J. A. R. (2006). Tetrahedron Asymmetry, 17, 3335-3340.]; Schwink et al., 1998[Schwink, L., Knochel, P., Eberle, T. & Okuda, J. (1998). Organometallics, 17, 7-9.]), but was deemed unnecessary for our purposes. Hydro­boration of ferrocenylalkenes has been previously reported (Lo Sterzo et al., 1984[Lo Sterzo, C. & Ortaggi, G. (1984). J. Chem. Soc. Perkin Trans. 2, pp. 345-348.]) using borane generated in situ from NaBH4/BF3·OEt2. Predictably, this method was unsuitable as a means of preparing 1 from 2, the ferrocenyl­methanol moiety being susceptible to attack by BF3, and the resultant loss of OH abetted by the formation of the stable α-ferrocenyl carbenium ion. This prediction was borne out by experiment, the Lewis acid attack resulting in synthesis of 1-ferrocenyl-undec-10-ene and 1-ferrocenyl-undec-11-ol. Instead, a successful synthesis of 1 was achieved using hydro­boration of 2 with 9-BBN.

[Scheme 1]

2. Structural commentary

The title compound, [Fe(C5H5)(C16H27O2)], comprises a ferrocene unit that carries a well-ordered undecane chain (atoms C11–C21) with hydroxyl substituents at the 1 and 11 positions along the chain (Fig. 1[link]). The C13—C12—C11—O11 and C19—C20—C21—O21 torsion angles are 60.9 (3) and 173.9 (2)°, respectively. Atom C11 is a stereogenic centre: in the arbitrarily chosen asymmetric mol­ecule it has an R configuration, but crystal symmetry generates a racemic mixture. The alkane chain is almost planar with the r.m.s. deviation from the best fit plane through all 11 C atoms being 0.129 Å. This plane is nearly orthogonal to the substituted ferrocene ring with an angle of 84.22 (13)° between them. The C11 undecyl chain in 1 is conformationally extended with the typical anti­periplanar (Kane & Hersh, 2000[Kane, S. & Hersh, W. (2000). J. Chem. Educ. 77, 1366.]) arrangement for Cn–Cn+3 groupings and a C11⋯C21 separation of 12.627 (4) Å. The C1–C5 and C6–C10 cyclo­penta­dienyl rings of the ferrocenyl group are approximately 3° from being eclipsed and are almost coplanar with a dihedral angle of 1.7 (2)° between them; the separation of the ring centroids is is 3.298 (2) Å.

[Figure 1]
Figure 1
The mol­ecular structure of 1 with ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal of 1, inversion dimers form in the ab plane through pairwise classical O21—H21⋯O11 hydrogen bonds (Table 1[link]), which generate R22(28) ring motifs (Fig. 2[link]). Additional classical O11—H11⋯O21 hydrogen bonds, supported by weaker non-classical C6—H6⋯O21 contacts, form alternating chains of mol­ecules along the b-axis direction and O21 acts as a double acceptor (Fig. 3[link]). A weak C7—H7⋯Cg2 (H⋯π = 2.89 Å, C—H⋯π = 164°) contact involving the unsubstituted ring of the ferrocene unit forms double chains of mol­ecules propagating along the c-axis direction (Fig. 4[link]) where Cg2 is the centroid of the C6–C10 cyclo­penta­dienyl ring. Overall these various contacts combine to stack the mol­ecules of 1 along the c-axis direction in two discrete, parallel and well-separated columns (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O21i 0.76 2.06 2.755 (3) 152
O21—H21⋯O11ii 0.83 1.90 2.726 (3) 175
C6—H6⋯O21i 0.95 2.60 3.380 (4) 140
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2].
[Figure 2]
Figure 2
Inversion dimers of 1 in the ab plane with O—H⋯O hydrogen bonds shown as blue lines.
[Figure 3]
Figure 3
Chains of mol­ecules of 1 propagating along b with O—H⋯O and C—H⋯O hydrogen bonds shown as blue lines.
[Figure 4]
Figure 4
Double chains of mol­ecules of 1 along c. Cg2 is the centroid of the C6–C10 cyclo­penta­dienyl ring, shown here as red spheres, with the C—H⋯π contacts drawn as dashed red lines.
[Figure 5]
Figure 5
Overall packing of 1 viewed along the c-axis direction.

4. Hirshfeld surface analysis

Further details of the inter­molecular inter­actions in 1 were obtained using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) with Hirshfeld surfaces and two-dimensional fingerprint plots generated with Crystal Explorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; https://hirshfeldsurface.net.]). Hirshfeld surfaces for opposite faces of 1 are shown in Fig. 6[link](a) and (b). Bold red areas on the Hirshfeld surfaces correspond to the classical O—H⋯O hydrogen bonds while the weaker C—H⋯O and C—H⋯π contacts appear as faint red circles. Fingerprint plots (Fig. 7[link]) reveal that H⋯H inter­actions dominate the surface contacts, as would be expected for a mol­ecule with such a predominance of H atoms, with H⋯C/C⋯H and H⋯O/O⋯H contacts also making significant contributions to the surface (Table 2[link]).

Table 2
Percentage contributions to the Hirshfeld surface of 1

Contents Included surface area
H⋯H 83.2
H⋯C/C⋯H 9.4
H⋯O/O⋯H 7.3
[Figure 6]
Figure 6
Hirshfeld surfaces for opposite faces of 1 mapped over dnorm in the range −0.67 to 1.35 a.u.
[Figure 7]
Figure 7
A full two-dimensional fingerprint plot for 1, (a), together with (b)–(d) separate principal contact types for the mol­ecule: H⋯H, H⋯C/C⋯H and H⋯O/O⋯H, respectively.

5. Database survey

Ferrocene derivatives with pendant Cn alkyl chains (n ≥ 11) are uncommon and the majority of such structures that appear in the Cambridge Structural Database (version 5.41 Nov 2019 with updates to March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) are bis-ferrocenyl complexes. These include 1,12-bis-ferrocenyldo­decane (refcodes FOHHAM and FOHHAM01; Bequeath et al., 2005[Bequeath, D. M., Porter, R. L., Lufaso, M. W., Wagner, T. R., Kusnic, R. L., Zeller, M. & Curtin, L. S. (2005). Acta Cryst. E61, m1070-m1072.], Wedeking et al., 2006a[Wedeking, K., Mu, Z., Kehr, G., Sierra, J. C., Lichtenfeld, C. M., Grimme, S., Erker, G., Fröhlich, R., Chi, L., Wang, W., Zhong, D. & Fuchs, H. (2006a). Chem. Eur. J. 12, 1618-1628.]) and the tetra­decane, octa­decane and docosane derivatives (VEFXIO, VEFXOU, VEFXUA; Wedeking et al., 2006a[Wedeking, K., Mu, Z., Kehr, G., Sierra, J. C., Lichtenfeld, C. M., Grimme, S., Erker, G., Fröhlich, R., Chi, L., Wang, W., Zhong, D. & Fuchs, H. (2006a). Chem. Eur. J. 12, 1618-1628.]). n-Tetra­decyl­ferrocene (MEFRUL; Wedeking et al., 2006b[Wedeking, K., Mu, Z., Kehr, G., Fröhlich, R., Erker, G., Chi, L. & Fuchs, H. (2006b). Langmuir, 22, 3161-3165.]) is the only mono-ferrocene with an unsubstituted alkane chain, while our earlier report of the structure of 11-bromo-1-ferrocenylundecan-1-one (LICNIV; McAdam et al., 2007[McAdam, C. J., Robinson, B. H. & Simpson, J. (2007). Acta Cryst. E63, m1362.]) is the sole example of such a structure with substitution on the alkane chain. Inter­estingly, the structure of the related 1,11-undeca­nediol (HIYHAY; Nakamura et al., 1999[Nakamura, N., Setodoi, S. & Ikeya, T. (1999). Acta Cryst. C55, 789-791.]) has also been reported. However, α,ω-di­hydroxy­alkane (Cn, n ≥ 10) structures are uncommon and often crystallize as co-crystals, see, for example, KEXZOD and KEXZUJ (Loehlin et al., 2007[Loehlin, J. H. & Okasako, E. L. N. (2007). Acta Cryst. B63, 132-141.]) OTIZEX, OTIZIB, OTIZOH and OTIZUN (Martí-Rujas et al., 2011[Martí-Rujas, J., Kariuki, B. M., Hughes, C. E., Morte-Ródenas, A., Guo, F., Glavcheva-Laleva, Z., Taştemür, K., Ooi, L., Yeo, L. & Harris, K. D. M. (2011). New J. Chem. 35, 1515-1521.]).

6. Synthesis and crystallization

The title compound 1 was prepared in two steps from 1-ferrocenyl-undec-10-en-1-one (Evans et al., 2008[Evans, L. A., Apreutesei, D., Mehl, G. H. & Wadhawan, J. D. (2008). Electrochem. Commun. 10, 1720-1723.]) via a lithium aluminium hydride reduction followed by hydro­boration with 9-borabi­cyclo­[3.3.1]nonane (9-BBN) (Aristoff et al., 1985[Aristoff, P. A., Johnson, P. D. & Harrison, A. W. (1985). J. Am. Chem. Soc. 107, 7967-7974.]), Fig. 8[link]. LiAlH4 (0.10 g, 2.6 mmol) was added to 1-ferrocenyl-undec-10-en-1-one (0.615 g, 1.75 mmol) in Et2O (10 mL) at 273 K and stirred for 1 h before quenching with a few drops of water. The ether fraction was rinsed with saturated NaCl solution and dried over MgSO4. The solvent was removed under vacuum to give 0.61 g (99%) of the yellow oil 1-ferrocenyl-undec-10-en-1-ol. To this oil, without further purification, in THF (10 ml) was added a solution of 9-BBN (0.5 M in hexane, 3.5 mmol), the mixture stirred at room temperature for 18 h before quenching with a few drops of water. The pH was raised to 8.5 with NaOH, then hydrogen peroxide (30% in H2O, 7 ml) was added and the mixture allowed to stir for another 2 h. The organic layer was rinsed with saturated NaCl solution and dried over MgSO4. Column chromatography on SiO2 with CH2Cl2 eluted a trace of the unreacted alcohol. Further elution with EtOAc/CH2Cl2 gave the title compound 1 as a yellow solid (0.60 g, 94%). X-ray quality crystals were grown from the mixed solvents of CH2Cl2 layered with hexane. Analysis calculated for C21H32O2Fe: C, 67.74; H, 8.66. Found: C, 67.94; H, 8.92%. 1H NMR (CDCl3): 4.30 (m, 1H, –CHOH–), 4.24 (m, 1H, C5H4), 4.20 (s, 5H, Cp), 4.17 (m, 3H, C5H4), 3.64 (m, 2H, –CH2—OH), 1.92 [d (J = 4 Hz), 1H, Fc-CHOH], 1.7–1.3 [m, 18H, –(CH2)9–]. 13C NMR (CDCl3): 94.7 (Fc ipso), 69.7 (–CHOH–), 68.3 (Cp), 67.9, 67.7, 67.3, 65.2 (Fc—Cα & β), 63.2 (–CH2OH), 38.3, 32.9, 29.6, 29.6, 29.5, 29.5, 26.1, 25.8 (–CH2–). UV–vis (CH2Cl2): 325 (90), 440 (110) nm (ɛ).

[Figure 8]
Figure 8
Preparation scheme for 1; (i) LiAlH4, Et2O; (ii) 9-BBN, THF.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The O-bound H atoms were located in a difference-Fourier map and their coordinates refined with Uiso(H) = 1.5 Ueq(O). All H-atoms bound to C were refined using a riding model with C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C). Despite repeated attempts to grow crystals of better quality, the crystals obtained were weakly diffracting and the extent of diffraction observed is poor with sin (θmax)/λ = 0.544 (2θmax = 44.5°). Despite this, the structure solved and refined adequately.

Table 3
Experimental details

Crystal data
Chemical formula [Fe(C5H5)(C16H27O2]
Mr 372.31
Crystal system, space group Monoclinic, C2/c
Temperature (K) 92
a, b, c (Å) 47.641 (3), 10.1522 (7), 7.8747 (6)
β (°) 97.091 (4)
V3) 3779.6 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.81
Crystal size (mm) 0.32 × 0.14 × 0.04
 
Data collection
Diffractometer CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.784, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16666, 2527, 2150
Rint 0.049
θmax (°) 22.7
(sin θ/λ)max−1) 0.544
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 1.06
No. of reflections 2527
No. of parameters 221
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.64, −0.31
Computer programs: APEX2 and SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), TITAN (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: APEX2 (Bruker, 2011) and SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b) and TITAN (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/1 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2020), publCIF (Westrip 2010) and WinGX (Farrugia 2012).

1-Ferrocenylundecane-1,11-diol top
Crystal data top
[Fe(C5H5)(C16H27O2]F(000) = 1600
Mr = 372.31Dx = 1.309 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 47.641 (3) ÅCell parameters from 4218 reflections
b = 10.1522 (7) Åθ = 2.4–22.4°
c = 7.8747 (6) ŵ = 0.81 mm1
β = 97.091 (4)°T = 92 K
V = 3779.6 (5) Å3Plate, yellow
Z = 80.32 × 0.14 × 0.04 mm
Data collection top
CCD area detector
diffractometer
2527 independent reflections
Radiation source: sealed tube2150 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
phi and ω scansθmax = 22.7°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 5151
Tmin = 0.784, Tmax = 1.000k = 1111
16666 measured reflectionsl = 87
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0649P)2 + 3.6265P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2527 reflectionsΔρmax = 0.64 e Å3
221 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A reflection effected by the beamstop and two reflections with Fo >>> Fc were omitted from the final refinement cycles.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.08497 (6)0.8323 (3)0.3254 (4)0.0242 (7)
C20.06289 (6)0.7864 (3)0.4173 (4)0.0249 (7)
H20.0646640.7193970.5021250.030*
C30.03794 (7)0.8572 (3)0.3612 (4)0.0281 (7)
H30.0200490.8457620.4007510.034*
C40.04438 (6)0.9489 (3)0.2348 (4)0.0263 (7)
H40.0315231.0096450.1756420.032*
C50.07318 (6)0.9340 (3)0.2122 (4)0.0253 (7)
H50.0830090.9828620.1353010.030*
Fe10.05212 (2)0.76105 (4)0.16036 (5)0.02107 (19)
C60.06708 (7)0.6085 (3)0.0268 (4)0.0304 (8)
H60.0857480.5739370.0422140.036*
C70.04426 (7)0.5650 (3)0.1116 (4)0.0302 (8)
H70.0449130.4968500.1946810.036*
C80.02022 (7)0.6416 (3)0.0500 (4)0.0331 (8)
H80.0018330.6331570.0836820.040*
C90.02838 (7)0.7320 (3)0.0694 (4)0.0336 (8)
H90.0164080.7957240.1296270.040*
C100.05726 (7)0.7129 (3)0.0855 (4)0.0321 (8)
H100.0681190.7608220.1578820.039*
C110.11527 (6)0.7882 (3)0.3455 (4)0.0274 (7)
H11A0.1220550.7863160.2303140.033*
O110.11807 (5)0.65849 (18)0.4193 (3)0.0298 (5)
H110.1142 (7)0.607 (2)0.350 (3)0.045*
C120.13452 (6)0.8767 (3)0.4624 (4)0.0298 (7)
H12A0.1283230.8755600.5778790.036*
H12B0.1326890.9681420.4188900.036*
C130.16570 (6)0.8354 (3)0.4768 (4)0.0313 (8)
H13A0.1669770.7396400.5003830.038*
H13B0.1726520.8507030.3650450.038*
C140.18500 (6)0.9069 (3)0.6140 (4)0.0293 (7)
H14A0.1767680.9024150.7233120.035*
H14B0.1861691.0007960.5819140.035*
C150.21465 (6)0.8487 (3)0.6398 (4)0.0286 (7)
H15A0.2132020.7537620.6659540.034*
H15B0.2229580.8563020.5310200.034*
C160.23466 (6)0.9126 (3)0.7808 (4)0.0283 (7)
H16A0.2260580.9086460.8888570.034*
H16B0.2369411.0066430.7521460.034*
C170.26376 (6)0.8485 (3)0.8092 (4)0.0277 (7)
H17A0.2614280.7542130.8364260.033*
H17B0.2724040.8532280.7013140.033*
C180.28391 (6)0.9108 (3)0.9514 (4)0.0283 (7)
H18A0.2862651.0050480.9243930.034*
H18B0.2753310.9058001.0594850.034*
C190.31288 (6)0.8462 (3)0.9785 (4)0.0286 (7)
H19A0.3105780.7523711.0078050.034*
H19B0.3213230.8496410.8697880.034*
C200.33312 (6)0.9104 (3)1.1183 (4)0.0275 (7)
H20A0.3341161.0059771.0947370.033*
H20B0.3256150.8994981.2291800.033*
C210.36243 (6)0.8533 (3)1.1321 (4)0.0307 (8)
H21A0.3616430.7599591.1677030.037*
H21B0.3690240.8552081.0177650.037*
O210.38252 (4)0.9210 (2)1.2505 (3)0.0337 (6)
H210.3814 (5)0.894 (3)1.349 (4)0.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0313 (17)0.0143 (15)0.0256 (17)0.0044 (12)0.0020 (13)0.0012 (13)
C20.0363 (18)0.0187 (15)0.0187 (16)0.0042 (13)0.0007 (13)0.0049 (13)
C30.0297 (17)0.0256 (17)0.0296 (17)0.0016 (13)0.0061 (14)0.0079 (14)
C40.0295 (17)0.0178 (16)0.0300 (17)0.0025 (12)0.0024 (13)0.0033 (13)
C50.0306 (17)0.0154 (15)0.0290 (17)0.0028 (12)0.0000 (13)0.0001 (13)
Fe10.0263 (3)0.0149 (3)0.0213 (3)0.00056 (17)0.00010 (19)0.00066 (17)
C60.0358 (19)0.0259 (17)0.0280 (18)0.0068 (14)0.0018 (14)0.0080 (14)
C70.048 (2)0.0149 (15)0.0263 (17)0.0020 (14)0.0010 (15)0.0038 (13)
C80.0325 (18)0.0266 (17)0.039 (2)0.0059 (14)0.0010 (15)0.0088 (15)
C90.042 (2)0.0236 (17)0.0314 (19)0.0036 (14)0.0105 (15)0.0024 (14)
C100.047 (2)0.0248 (17)0.0244 (18)0.0047 (15)0.0044 (15)0.0020 (14)
C110.0305 (17)0.0197 (16)0.0306 (18)0.0005 (13)0.0014 (14)0.0052 (14)
O110.0372 (13)0.0157 (11)0.0339 (13)0.0004 (9)0.0064 (10)0.0017 (9)
C120.0339 (18)0.0202 (16)0.0345 (19)0.0016 (13)0.0017 (14)0.0006 (14)
C130.0307 (18)0.0221 (17)0.041 (2)0.0001 (13)0.0043 (15)0.0014 (14)
C140.0302 (18)0.0221 (16)0.0361 (19)0.0037 (13)0.0059 (14)0.0018 (14)
C150.0317 (18)0.0193 (16)0.0355 (19)0.0017 (13)0.0063 (14)0.0031 (13)
C160.0351 (18)0.0187 (16)0.0325 (18)0.0032 (13)0.0092 (14)0.0017 (13)
C170.0324 (18)0.0211 (16)0.0304 (18)0.0026 (13)0.0071 (14)0.0017 (13)
C180.0337 (18)0.0216 (16)0.0307 (18)0.0056 (13)0.0078 (14)0.0019 (14)
C190.0339 (18)0.0199 (16)0.0326 (18)0.0067 (13)0.0061 (14)0.0001 (13)
C200.0356 (18)0.0214 (16)0.0261 (17)0.0065 (13)0.0060 (14)0.0011 (13)
C210.0349 (19)0.0244 (17)0.0321 (18)0.0067 (13)0.0018 (15)0.0015 (14)
O210.0407 (13)0.0284 (12)0.0299 (12)0.0113 (10)0.0041 (10)0.0033 (10)
Geometric parameters (Å, º) top
C1—C21.427 (4)O11—H110.76 (4)
C1—C51.432 (4)C12—C131.534 (4)
C1—C111.501 (4)C12—H12A0.9900
C1—Fe12.040 (3)C12—H12B0.9900
C2—C31.413 (4)C13—C141.515 (4)
C2—Fe12.041 (3)C13—H13A0.9900
C2—H20.9500C13—H13B0.9900
C3—C41.423 (4)C14—C151.521 (4)
C3—Fe12.043 (3)C14—H14A0.9900
C3—H30.9500C14—H14B0.9900
C4—C51.413 (4)C15—C161.517 (4)
C4—Fe12.042 (3)C15—H15A0.9900
C4—H40.9500C15—H15B0.9900
C5—Fe12.038 (3)C16—C171.523 (4)
C5—H50.9500C16—H16A0.9900
Fe1—C92.033 (3)C16—H16B0.9900
Fe1—C102.041 (3)C17—C181.520 (4)
Fe1—C62.049 (3)C17—H17A0.9900
Fe1—C82.052 (3)C17—H17B0.9900
Fe1—C72.053 (3)C18—C191.519 (4)
C6—C71.415 (4)C18—H18A0.9900
C6—C101.422 (4)C18—H18B0.9900
C6—H60.9500C19—C201.518 (4)
C7—C81.420 (4)C19—H19A0.9900
C7—H70.9500C19—H19B0.9900
C8—C91.402 (5)C20—C211.504 (4)
C8—H80.9500C20—H20A0.9900
C9—C101.410 (5)C20—H20B0.9900
C9—H90.9500C21—O211.427 (3)
C10—H100.9500C21—H21A0.9900
C11—O111.439 (3)C21—H21B0.9900
C11—C121.512 (4)O21—H210.83 (4)
C11—H11A1.0000
C2—C1—C5107.1 (3)C9—C8—H8126.0
C2—C1—C11127.5 (3)C7—C8—H8126.0
C5—C1—C11125.4 (3)Fe1—C8—H8126.5
C2—C1—Fe169.60 (16)C8—C9—C10108.9 (3)
C5—C1—Fe169.37 (16)C8—C9—Fe170.63 (18)
C11—C1—Fe1127.9 (2)C10—C9—Fe170.03 (18)
C3—C2—C1108.7 (3)C8—C9—H9125.5
C3—C2—Fe169.85 (17)C10—C9—H9125.5
C1—C2—Fe169.47 (16)Fe1—C9—H9125.4
C3—C2—H2125.7C9—C10—C6107.2 (3)
C1—C2—H2125.7C9—C10—Fe169.47 (18)
Fe1—C2—H2126.6C6—C10—Fe169.96 (17)
C2—C3—C4107.8 (3)C9—C10—H10126.4
C2—C3—Fe169.69 (17)C6—C10—H10126.4
C4—C3—Fe169.54 (16)Fe1—C10—H10125.8
C2—C3—H3126.1O11—C11—C1110.8 (2)
C4—C3—H3126.1O11—C11—C12106.2 (2)
Fe1—C3—H3126.2C1—C11—C12113.0 (2)
C5—C4—C3108.3 (3)O11—C11—C2179.36 (14)
C5—C4—Fe169.60 (16)C1—C11—C21149.62 (17)
C3—C4—Fe169.67 (16)O11—C11—H11A108.9
C5—C4—H4125.8C1—C11—H11A108.9
C3—C4—H4125.8C12—C11—H11A108.9
Fe1—C4—H4126.5C21—C11—H11A93.4
C4—C5—C1108.1 (3)C11—O11—H11109.5
C4—C5—Fe169.87 (16)C11—C12—C13113.0 (3)
C1—C5—Fe169.49 (16)C11—C12—H12A109.0
C4—C5—H5125.9C13—C12—H12A109.0
C1—C5—H5125.9C11—C12—H12B109.0
Fe1—C5—H5126.3C13—C12—H12B109.0
C9—Fe1—C5120.61 (12)H12A—C12—H12B107.8
C9—Fe1—C1156.53 (13)C14—C13—C12114.8 (3)
C5—Fe1—C141.13 (11)C14—C13—H13A108.6
C9—Fe1—C1040.51 (13)C12—C13—H13A108.6
C5—Fe1—C10106.43 (12)C14—C13—H13B108.6
C1—Fe1—C10121.14 (13)C12—C13—H13B108.6
C9—Fe1—C2160.79 (14)H13A—C13—H13B107.6
C5—Fe1—C268.63 (12)C13—C14—C15112.4 (2)
C1—Fe1—C240.93 (11)C13—C14—H14A109.1
C10—Fe1—C2157.79 (13)C15—C14—H14A109.1
C9—Fe1—C4106.89 (12)C13—C14—H14B109.1
C5—Fe1—C440.53 (11)C15—C14—H14B109.1
C1—Fe1—C468.75 (11)H14A—C14—H14B107.9
C10—Fe1—C4122.90 (12)C16—C15—C14114.9 (2)
C2—Fe1—C468.28 (12)C16—C15—H15A108.5
C9—Fe1—C3123.86 (13)C14—C15—H15A108.5
C5—Fe1—C368.59 (12)C16—C15—H15B108.5
C1—Fe1—C368.80 (12)C14—C15—H15B108.5
C10—Fe1—C3159.82 (13)H15A—C15—H15B107.5
C2—Fe1—C340.46 (12)C15—C16—C17113.8 (2)
C4—Fe1—C340.79 (12)C15—C16—H16A108.8
C9—Fe1—C667.91 (12)C17—C16—H16A108.8
C5—Fe1—C6124.07 (12)C15—C16—H16B108.8
C1—Fe1—C6107.89 (12)C17—C16—H16B108.8
C10—Fe1—C640.69 (12)H16A—C16—H16B107.7
C2—Fe1—C6122.93 (12)C18—C17—C16114.3 (2)
C4—Fe1—C6160.03 (13)C18—C17—H17A108.7
C3—Fe1—C6158.10 (12)C16—C17—H17A108.7
C9—Fe1—C840.16 (13)C18—C17—H17B108.7
C5—Fe1—C8156.13 (12)C16—C17—H17B108.7
C1—Fe1—C8161.73 (12)H17A—C17—H17B107.6
C10—Fe1—C868.02 (13)C19—C18—C17113.9 (2)
C2—Fe1—C8125.22 (13)C19—C18—H18A108.8
C4—Fe1—C8121.53 (12)C17—C18—H18A108.8
C3—Fe1—C8108.17 (13)C19—C18—H18B108.8
C6—Fe1—C867.80 (13)C17—C18—H18B108.8
C9—Fe1—C767.93 (12)H18A—C18—H18B107.7
C5—Fe1—C7161.19 (12)C20—C19—C18113.7 (2)
C1—Fe1—C7124.82 (12)C20—C19—H19A108.8
C10—Fe1—C768.32 (12)C18—C19—H19A108.8
C2—Fe1—C7109.00 (12)C20—C19—H19B108.8
C4—Fe1—C7157.52 (13)C18—C19—H19B108.8
C3—Fe1—C7122.55 (12)H19A—C19—H19B107.7
C6—Fe1—C740.36 (12)C21—C20—C19112.8 (2)
C8—Fe1—C740.47 (12)C21—C20—H20A109.0
C7—C6—C10108.3 (3)C19—C20—H20A109.0
C7—C6—Fe169.98 (16)C21—C20—H20B109.0
C10—C6—Fe169.35 (17)C19—C20—H20B109.0
C7—C6—H6125.9H20A—C20—H20B107.8
C10—C6—H6125.9O21—C21—C20113.8 (2)
Fe1—C6—H6126.4O21—C21—C11148.76 (17)
C6—C7—C8107.6 (3)O21—C21—H21A108.8
C6—C7—Fe169.66 (17)C20—C21—H21A108.8
C8—C7—Fe169.73 (17)C11—C21—H21A91.3
C6—C7—H7126.2O21—C21—H21B108.8
C8—C7—H7126.2C20—C21—H21B108.8
Fe1—C7—H7126.0C11—C21—H21B86.3
C9—C8—C7108.0 (3)H21A—C21—H21B107.7
C9—C8—Fe169.21 (18)C21—O21—H21109.5
C7—C8—Fe169.81 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O21i0.762.062.755 (3)152
O21—H21···O11ii0.831.902.726 (3)175
C6—H6···O21i0.952.603.380 (4)140
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+3/2, z+2.
Percentage contributions to the Hirshfeld surface of 1 top
ContentsIncluded surface area
H···H83.2
H···C/C···H9.4
H···O/O···H7.3
 

Acknowledgements

We thank the New Zealand Ministry of Business, Innovation and Employment Science Investment Fund (grant No. UOO-X1206) for support of this work and the University of Otago for the purchase of the diffractometer. JS also thanks the Department of Chemistry, University of Otago for support of his work.

Funding information

Funding for this research was provided by: Ministry for Business Innovation and Employment (grant No. UOO-X1206).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAristoff, P. A., Johnson, P. D. & Harrison, A. W. (1985). J. Am. Chem. Soc. 107, 7967–7974.  CrossRef CAS Web of Science Google Scholar
First citationBequeath, D. M., Porter, R. L., Lufaso, M. W., Wagner, T. R., Kusnic, R. L., Zeller, M. & Curtin, L. S. (2005). Acta Cryst. E61, m1070–m1072.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, L. A., Apreutesei, D., Mehl, G. H. & Wadhawan, J. D. (2008). Electrochem. Commun. 10, 1720–1723.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationKane, S. & Hersh, W. (2000). J. Chem. Educ. 77, 1366.  Web of Science CrossRef Google Scholar
First citationLoehlin, J. H. & Okasako, E. L. N. (2007). Acta Cryst. B63, 132–141.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLo Sterzo, C. & Ortaggi, G. (1984). J. Chem. Soc. Perkin Trans. 2, pp. 345–348.  CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartí-Rujas, J., Kariuki, B. M., Hughes, C. E., Morte-Ródenas, A., Guo, F., Glavcheva-Laleva, Z., Taştemür, K., Ooi, L., Yeo, L. & Harris, K. D. M. (2011). New J. Chem. 35, 1515–1521.  Google Scholar
First citationMcAdam, C. J., Moratti, S. C., Robinson, B. H. & Simpson, J. (2008a). J. Organomet. Chem. 693, 2715–2722.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcAdam, C. J., Nafady, A., Bond, A. M., Moratti, S. C. & Simpson, J. (2008b). J. Inorg. Organomet. Polym. 18, 485–490.  Web of Science CrossRef CAS Google Scholar
First citationMcAdam, C. J., Robinson, B. H. & Simpson, J. (2007). Acta Cryst. E63, m1362.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakamura, N., Setodoi, S. & Ikeya, T. (1999). Acta Cryst. C55, 789–791.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSaji, T., Hoshino, K., Ishii, Y. & Goto, M. (1991). J. Am. Chem. Soc. 113, 450–456.  CrossRef CAS Web of Science Google Scholar
First citationSchwink, L., Knochel, P., Eberle, T. & Okuda, J. (1998). Organometallics, 17, 7–9.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; https://hirshfeldsurface.net.  Google Scholar
First citationUrsini, C. V., Mazzeo, F. & Rodrigues, J. A. R. (2006). Tetrahedron Asymmetry, 17, 3335–3340.  Web of Science CrossRef CAS Google Scholar
First citationWedeking, K., Mu, Z., Kehr, G., Sierra, J. C., Lichtenfeld, C. M., Grimme, S., Erker, G., Fröhlich, R., Chi, L., Wang, W., Zhong, D. & Fuchs, H. (2006a). Chem. Eur. J. 12, 1618–1628.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWedeking, K., Mu, Z., Kehr, G., Fröhlich, R., Erker, G., Chi, L. & Fuchs, H. (2006b). Langmuir, 22, 3161–3165.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds