research communications
Synthesis,
and Hirshfeld surface analysis of 1-ferrocenylundecane-1,11-diolaDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: john.mcadam@otago.ac.nz
The racemic title compound, [Fe(C5H5)(C16H27O2)], comprises an α,ω-diol-substituted undecyl chain with a ferrocenyl substituent at at one terminus. The alkane chain is inclined to the substituted ring of the ferrocene grouping by 84.22 (13)°. The ferrocene rings are almost eclipsed and parallel. The features O—H⋯O and C—H⋯O hydrogen bonds and C—H⋯π contacts that stack the molecules along the c-axis direction. A Hirshfeld surface analysis reveals that H⋯H interactions (83.2%) dominate the surface contacts.
Keywords: crystal structure; ferrocene; undecane-1,11-diol; hydrogen bonds; C—H⋯π contact; Hirshfeld surface analysis.
CCDC reference: 2130725
1. Chemical context
The title compound, 1, is a rare example of a ferrocene molecule substituted with an extended, in this instance 11-membered, alkane chain. It was synthesized to provide a ferrocenyl-substituted diol for the preparation of polyesters with regular pendant electroactive groups. Similar ferrocenyl neo-pentyl diol-derived terephthalate polymers have been shown to display interesting electrochemical properties (McAdam et al., 2008a,b). Friedel–Crafts methodology (Saji et al., 1991) provided the 1-ferrocenyl-undec-10-en-1-one precursor. This was reduced to the racemic alcohol 1-ferrocenyl-undec-10-en-1-ol (2) using LiAlH4. Enantiomeric selection of the individual chiral forms should be possible using more complex synthetic methodology (Ursini et al., 2006; Schwink et al., 1998), but was deemed unnecessary for our purposes. Hydroboration of ferrocenylalkenes has been previously reported (Lo Sterzo et al., 1984) using borane generated in situ from NaBH4/BF3·OEt2. Predictably, this method was unsuitable as a means of preparing 1 from 2, the ferrocenylmethanol moiety being susceptible to attack by BF3, and the resultant loss of OH− abetted by the formation of the stable α-ferrocenyl This prediction was borne out by experiment, the attack resulting in synthesis of 1-ferrocenyl-undec-10-ene and 1-ferrocenyl-undec-11-ol. Instead, a successful synthesis of 1 was achieved using hydroboration of 2 with 9-BBN.
2. Structural commentary
The title compound, [Fe(C5H5)(C16H27O2)], comprises a ferrocene unit that carries a well-ordered undecane chain (atoms C11–C21) with hydroxyl substituents at the 1 and 11 positions along the chain (Fig. 1). The C13—C12—C11—O11 and C19—C20—C21—O21 torsion angles are 60.9 (3) and 173.9 (2)°, respectively. Atom C11 is a stereogenic centre: in the arbitrarily chosen asymmetric molecule it has an R configuration, but crystal symmetry generates a The alkane chain is almost planar with the r.m.s. deviation from the best fit plane through all 11 C atoms being 0.129 Å. This plane is nearly orthogonal to the substituted ferrocene ring with an angle of 84.22 (13)° between them. The C11 undecyl chain in 1 is conformationally extended with the typical antiperiplanar (Kane & Hersh, 2000) arrangement for Cn–Cn+3 groupings and a C11⋯C21 separation of 12.627 (4) Å. The C1–C5 and C6–C10 cyclopentadienyl rings of the ferrocenyl group are approximately 3° from being eclipsed and are almost coplanar with a dihedral angle of 1.7 (2)° between them; the separation of the ring centroids is is 3.298 (2) Å.
3. Supramolecular features
In the crystal of 1, inversion dimers form in the ab plane through pairwise classical O21—H21⋯O11 hydrogen bonds (Table 1), which generate R22(28) ring motifs (Fig. 2). Additional classical O11—H11⋯O21 hydrogen bonds, supported by weaker non-classical C6—H6⋯O21 contacts, form alternating chains of molecules along the b-axis direction and O21 acts as a double acceptor (Fig. 3). A weak C7—H7⋯Cg2 (H⋯π = 2.89 Å, C—H⋯π = 164°) contact involving the unsubstituted ring of the ferrocene unit forms double chains of molecules propagating along the c-axis direction (Fig. 4) where Cg2 is the centroid of the C6–C10 cyclopentadienyl ring. Overall these various contacts combine to stack the molecules of 1 along the c-axis direction in two discrete, parallel and well-separated columns (Fig. 5).
4. Hirshfeld surface analysis
Further details of the intermolecular interactions in 1 were obtained using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) with Hirshfeld surfaces and two-dimensional fingerprint plots generated with Crystal Explorer (Turner et al., 2017). Hirshfeld surfaces for opposite faces of 1 are shown in Fig. 6(a) and (b). Bold red areas on the Hirshfeld surfaces correspond to the classical O—H⋯O hydrogen bonds while the weaker C—H⋯O and C—H⋯π contacts appear as faint red circles. Fingerprint plots (Fig. 7) reveal that H⋯H interactions dominate the surface contacts, as would be expected for a molecule with such a predominance of H atoms, with H⋯C/C⋯H and H⋯O/O⋯H contacts also making significant contributions to the surface (Table 2).
|
5. Database survey
Ferrocene derivatives with pendant Cn alkyl chains (n ≥ 11) are uncommon and the majority of such structures that appear in the Cambridge Structural Database (version 5.41 Nov 2019 with updates to March 2020; Groom et al., 2016) are bis-ferrocenyl complexes. These include 1,12-bis-ferrocenyldodecane (refcodes FOHHAM and FOHHAM01; Bequeath et al., 2005, Wedeking et al., 2006a) and the tetradecane, octadecane and docosane derivatives (VEFXIO, VEFXOU, VEFXUA; Wedeking et al., 2006a). n-Tetradecylferrocene (MEFRUL; Wedeking et al., 2006b) is the only mono-ferrocene with an unsubstituted alkane chain, while our earlier report of the structure of 11-bromo-1-ferrocenylundecan-1-one (LICNIV; McAdam et al., 2007) is the sole example of such a structure with substitution on the alkane chain. Interestingly, the structure of the related 1,11-undecanediol (HIYHAY; Nakamura et al., 1999) has also been reported. However, α,ω-dihydroxyalkane (Cn, n ≥ 10) structures are uncommon and often crystallize as co-crystals, see, for example, KEXZOD and KEXZUJ (Loehlin et al., 2007) OTIZEX, OTIZIB, OTIZOH and OTIZUN (Martí-Rujas et al., 2011).
6. Synthesis and crystallization
The title compound 1 was prepared in two steps from 1-ferrocenyl-undec-10-en-1-one (Evans et al., 2008) via a lithium aluminium hydride reduction followed by hydroboration with 9-borabicyclo[3.3.1]nonane (9-BBN) (Aristoff et al., 1985), Fig. 8. LiAlH4 (0.10 g, 2.6 mmol) was added to 1-ferrocenyl-undec-10-en-1-one (0.615 g, 1.75 mmol) in Et2O (10 mL) at 273 K and stirred for 1 h before quenching with a few drops of water. The ether fraction was rinsed with saturated NaCl solution and dried over MgSO4. The solvent was removed under vacuum to give 0.61 g (99%) of the yellow oil 1-ferrocenyl-undec-10-en-1-ol. To this oil, without further purification, in THF (10 ml) was added a solution of 9-BBN (0.5 M in hexane, 3.5 mmol), the mixture stirred at room temperature for 18 h before quenching with a few drops of water. The pH was raised to 8.5 with NaOH, then hydrogen peroxide (30% in H2O, 7 ml) was added and the mixture allowed to stir for another 2 h. The organic layer was rinsed with saturated NaCl solution and dried over MgSO4. on SiO2 with CH2Cl2 eluted a trace of the unreacted alcohol. Further elution with EtOAc/CH2Cl2 gave the title compound 1 as a yellow solid (0.60 g, 94%). X-ray quality crystals were grown from the mixed solvents of CH2Cl2 layered with hexane. Analysis calculated for C21H32O2Fe: C, 67.74; H, 8.66. Found: C, 67.94; H, 8.92%. 1H NMR (CDCl3): 4.30 (m, 1H, –CHOH–), 4.24 (m, 1H, C5H4), 4.20 (s, 5H, Cp), 4.17 (m, 3H, C5H4), 3.64 (m, 2H, –CH2—OH), 1.92 [d (J = 4 Hz), 1H, Fc-CHOH], 1.7–1.3 [m, 18H, –(CH2)9–]. 13C NMR (CDCl3): 94.7 (Fc ipso), 69.7 (–CHOH–), 68.3 (Cp), 67.9, 67.7, 67.3, 65.2 (Fc—Cα & β), 63.2 (–CH2OH), 38.3, 32.9, 29.6, 29.6, 29.5, 29.5, 26.1, 25.8 (–CH2–). UV–vis (CH2Cl2): 325 (90), 440 (110) nm (ɛ).
7. Refinement
Crystal data, data collection and structure . The O-bound H atoms were located in a difference-Fourier map and their coordinates refined with Uiso(H) = 1.5 Ueq(O). All H-atoms bound to C were refined using a riding model with C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C). Despite repeated attempts to grow crystals of better quality, the crystals obtained were weakly diffracting and the extent of diffraction observed is poor with sin (θmax)/λ = 0.544 (2θmax = 44.5°). Despite this, the structure solved and refined adequately.
details are summarized in Table 3Supporting information
CCDC reference: 2130725
https://doi.org/10.1107/S205698902101358X/hb8007sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902101358X/hb8007Isup2.hkl
Data collection: APEX2 (Bruker, 2011); cell
APEX2 (Bruker, 2011) and SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b) and TITAN (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/1 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2020), publCIF (Westrip 2010) and WinGX (Farrugia 2012).[Fe(C5H5)(C16H27O2] | F(000) = 1600 |
Mr = 372.31 | Dx = 1.309 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 47.641 (3) Å | Cell parameters from 4218 reflections |
b = 10.1522 (7) Å | θ = 2.4–22.4° |
c = 7.8747 (6) Å | µ = 0.81 mm−1 |
β = 97.091 (4)° | T = 92 K |
V = 3779.6 (5) Å3 | Plate, yellow |
Z = 8 | 0.32 × 0.14 × 0.04 mm |
CCD area detector diffractometer | 2527 independent reflections |
Radiation source: sealed tube | 2150 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
phi and ω scans | θmax = 22.7°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2011) | h = −51→51 |
Tmin = 0.784, Tmax = 1.000 | k = −11→11 |
16666 measured reflections | l = −8→7 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0649P)2 + 3.6265P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
2527 reflections | Δρmax = 0.64 e Å−3 |
221 parameters | Δρmin = −0.31 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. A reflection effected by the beamstop and two reflections with Fo >>> Fc were omitted from the final refinement cycles. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.08497 (6) | 0.8323 (3) | 0.3254 (4) | 0.0242 (7) | |
C2 | 0.06289 (6) | 0.7864 (3) | 0.4173 (4) | 0.0249 (7) | |
H2 | 0.064664 | 0.719397 | 0.502125 | 0.030* | |
C3 | 0.03794 (7) | 0.8572 (3) | 0.3612 (4) | 0.0281 (7) | |
H3 | 0.020049 | 0.845762 | 0.400751 | 0.034* | |
C4 | 0.04438 (6) | 0.9489 (3) | 0.2348 (4) | 0.0263 (7) | |
H4 | 0.031523 | 1.009645 | 0.175642 | 0.032* | |
C5 | 0.07318 (6) | 0.9340 (3) | 0.2122 (4) | 0.0253 (7) | |
H5 | 0.083009 | 0.982862 | 0.135301 | 0.030* | |
Fe1 | 0.05212 (2) | 0.76105 (4) | 0.16036 (5) | 0.02107 (19) | |
C6 | 0.06708 (7) | 0.6085 (3) | 0.0268 (4) | 0.0304 (8) | |
H6 | 0.085748 | 0.573937 | 0.042214 | 0.036* | |
C7 | 0.04426 (7) | 0.5650 (3) | 0.1116 (4) | 0.0302 (8) | |
H7 | 0.044913 | 0.496850 | 0.194681 | 0.036* | |
C8 | 0.02022 (7) | 0.6416 (3) | 0.0500 (4) | 0.0331 (8) | |
H8 | 0.001833 | 0.633157 | 0.083682 | 0.040* | |
C9 | 0.02838 (7) | 0.7320 (3) | −0.0694 (4) | 0.0336 (8) | |
H9 | 0.016408 | 0.795724 | −0.129627 | 0.040* | |
C10 | 0.05726 (7) | 0.7129 (3) | −0.0855 (4) | 0.0321 (8) | |
H10 | 0.068119 | 0.760822 | −0.157882 | 0.039* | |
C11 | 0.11527 (6) | 0.7882 (3) | 0.3455 (4) | 0.0274 (7) | |
H11A | 0.122055 | 0.786316 | 0.230314 | 0.033* | |
O11 | 0.11807 (5) | 0.65849 (18) | 0.4193 (3) | 0.0298 (5) | |
H11 | 0.1142 (7) | 0.607 (2) | 0.350 (3) | 0.045* | |
C12 | 0.13452 (6) | 0.8767 (3) | 0.4624 (4) | 0.0298 (7) | |
H12A | 0.128323 | 0.875560 | 0.577879 | 0.036* | |
H12B | 0.132689 | 0.968142 | 0.418890 | 0.036* | |
C13 | 0.16570 (6) | 0.8354 (3) | 0.4768 (4) | 0.0313 (8) | |
H13A | 0.166977 | 0.739640 | 0.500383 | 0.038* | |
H13B | 0.172652 | 0.850703 | 0.365045 | 0.038* | |
C14 | 0.18500 (6) | 0.9069 (3) | 0.6140 (4) | 0.0293 (7) | |
H14A | 0.176768 | 0.902415 | 0.723312 | 0.035* | |
H14B | 0.186169 | 1.000796 | 0.581914 | 0.035* | |
C15 | 0.21465 (6) | 0.8487 (3) | 0.6398 (4) | 0.0286 (7) | |
H15A | 0.213202 | 0.753762 | 0.665954 | 0.034* | |
H15B | 0.222958 | 0.856302 | 0.531020 | 0.034* | |
C16 | 0.23466 (6) | 0.9126 (3) | 0.7808 (4) | 0.0283 (7) | |
H16A | 0.226058 | 0.908646 | 0.888857 | 0.034* | |
H16B | 0.236941 | 1.006643 | 0.752146 | 0.034* | |
C17 | 0.26376 (6) | 0.8485 (3) | 0.8092 (4) | 0.0277 (7) | |
H17A | 0.261428 | 0.754213 | 0.836426 | 0.033* | |
H17B | 0.272404 | 0.853228 | 0.701314 | 0.033* | |
C18 | 0.28391 (6) | 0.9108 (3) | 0.9514 (4) | 0.0283 (7) | |
H18A | 0.286265 | 1.005048 | 0.924393 | 0.034* | |
H18B | 0.275331 | 0.905800 | 1.059485 | 0.034* | |
C19 | 0.31288 (6) | 0.8462 (3) | 0.9785 (4) | 0.0286 (7) | |
H19A | 0.310578 | 0.752371 | 1.007805 | 0.034* | |
H19B | 0.321323 | 0.849641 | 0.869788 | 0.034* | |
C20 | 0.33312 (6) | 0.9104 (3) | 1.1183 (4) | 0.0275 (7) | |
H20A | 0.334116 | 1.005977 | 1.094737 | 0.033* | |
H20B | 0.325615 | 0.899498 | 1.229180 | 0.033* | |
C21 | 0.36243 (6) | 0.8533 (3) | 1.1321 (4) | 0.0307 (8) | |
H21A | 0.361643 | 0.759959 | 1.167703 | 0.037* | |
H21B | 0.369024 | 0.855208 | 1.017765 | 0.037* | |
O21 | 0.38252 (4) | 0.9210 (2) | 1.2505 (3) | 0.0337 (6) | |
H21 | 0.3814 (5) | 0.894 (3) | 1.349 (4) | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0313 (17) | 0.0143 (15) | 0.0256 (17) | −0.0044 (12) | −0.0020 (13) | −0.0012 (13) |
C2 | 0.0363 (18) | 0.0187 (15) | 0.0187 (16) | −0.0042 (13) | −0.0007 (13) | −0.0049 (13) |
C3 | 0.0297 (17) | 0.0256 (17) | 0.0296 (17) | −0.0016 (13) | 0.0061 (14) | −0.0079 (14) |
C4 | 0.0295 (17) | 0.0178 (16) | 0.0300 (17) | 0.0025 (12) | −0.0024 (13) | −0.0033 (13) |
C5 | 0.0306 (17) | 0.0154 (15) | 0.0290 (17) | −0.0028 (12) | 0.0000 (13) | 0.0001 (13) |
Fe1 | 0.0263 (3) | 0.0149 (3) | 0.0213 (3) | −0.00056 (17) | −0.00010 (19) | −0.00066 (17) |
C6 | 0.0358 (19) | 0.0259 (17) | 0.0280 (18) | 0.0068 (14) | −0.0018 (14) | −0.0080 (14) |
C7 | 0.048 (2) | 0.0149 (15) | 0.0263 (17) | −0.0020 (14) | 0.0010 (15) | −0.0038 (13) |
C8 | 0.0325 (18) | 0.0266 (17) | 0.039 (2) | −0.0059 (14) | −0.0010 (15) | −0.0088 (15) |
C9 | 0.042 (2) | 0.0236 (17) | 0.0314 (19) | 0.0036 (14) | −0.0105 (15) | −0.0024 (14) |
C10 | 0.047 (2) | 0.0248 (17) | 0.0244 (18) | −0.0047 (15) | 0.0044 (15) | −0.0020 (14) |
C11 | 0.0305 (17) | 0.0197 (16) | 0.0306 (18) | −0.0005 (13) | −0.0014 (14) | 0.0052 (14) |
O11 | 0.0372 (13) | 0.0157 (11) | 0.0339 (13) | 0.0004 (9) | −0.0064 (10) | −0.0017 (9) |
C12 | 0.0339 (18) | 0.0202 (16) | 0.0345 (19) | −0.0016 (13) | 0.0017 (14) | −0.0006 (14) |
C13 | 0.0307 (18) | 0.0221 (17) | 0.041 (2) | 0.0001 (13) | 0.0043 (15) | 0.0014 (14) |
C14 | 0.0302 (18) | 0.0221 (16) | 0.0361 (19) | −0.0037 (13) | 0.0059 (14) | 0.0018 (14) |
C15 | 0.0317 (18) | 0.0193 (16) | 0.0355 (19) | −0.0017 (13) | 0.0063 (14) | 0.0031 (13) |
C16 | 0.0351 (18) | 0.0187 (16) | 0.0325 (18) | −0.0032 (13) | 0.0092 (14) | 0.0017 (13) |
C17 | 0.0324 (18) | 0.0211 (16) | 0.0304 (18) | −0.0026 (13) | 0.0071 (14) | 0.0017 (13) |
C18 | 0.0337 (18) | 0.0216 (16) | 0.0307 (18) | −0.0056 (13) | 0.0078 (14) | −0.0019 (14) |
C19 | 0.0339 (18) | 0.0199 (16) | 0.0326 (18) | −0.0067 (13) | 0.0061 (14) | 0.0001 (13) |
C20 | 0.0356 (18) | 0.0214 (16) | 0.0261 (17) | −0.0065 (13) | 0.0060 (14) | −0.0011 (13) |
C21 | 0.0349 (19) | 0.0244 (17) | 0.0321 (18) | −0.0067 (13) | 0.0018 (15) | −0.0015 (14) |
O21 | 0.0407 (13) | 0.0284 (12) | 0.0299 (12) | −0.0113 (10) | −0.0041 (10) | 0.0033 (10) |
C1—C2 | 1.427 (4) | O11—H11 | 0.76 (4) |
C1—C5 | 1.432 (4) | C12—C13 | 1.534 (4) |
C1—C11 | 1.501 (4) | C12—H12A | 0.9900 |
C1—Fe1 | 2.040 (3) | C12—H12B | 0.9900 |
C2—C3 | 1.413 (4) | C13—C14 | 1.515 (4) |
C2—Fe1 | 2.041 (3) | C13—H13A | 0.9900 |
C2—H2 | 0.9500 | C13—H13B | 0.9900 |
C3—C4 | 1.423 (4) | C14—C15 | 1.521 (4) |
C3—Fe1 | 2.043 (3) | C14—H14A | 0.9900 |
C3—H3 | 0.9500 | C14—H14B | 0.9900 |
C4—C5 | 1.413 (4) | C15—C16 | 1.517 (4) |
C4—Fe1 | 2.042 (3) | C15—H15A | 0.9900 |
C4—H4 | 0.9500 | C15—H15B | 0.9900 |
C5—Fe1 | 2.038 (3) | C16—C17 | 1.523 (4) |
C5—H5 | 0.9500 | C16—H16A | 0.9900 |
Fe1—C9 | 2.033 (3) | C16—H16B | 0.9900 |
Fe1—C10 | 2.041 (3) | C17—C18 | 1.520 (4) |
Fe1—C6 | 2.049 (3) | C17—H17A | 0.9900 |
Fe1—C8 | 2.052 (3) | C17—H17B | 0.9900 |
Fe1—C7 | 2.053 (3) | C18—C19 | 1.519 (4) |
C6—C7 | 1.415 (4) | C18—H18A | 0.9900 |
C6—C10 | 1.422 (4) | C18—H18B | 0.9900 |
C6—H6 | 0.9500 | C19—C20 | 1.518 (4) |
C7—C8 | 1.420 (4) | C19—H19A | 0.9900 |
C7—H7 | 0.9500 | C19—H19B | 0.9900 |
C8—C9 | 1.402 (5) | C20—C21 | 1.504 (4) |
C8—H8 | 0.9500 | C20—H20A | 0.9900 |
C9—C10 | 1.410 (5) | C20—H20B | 0.9900 |
C9—H9 | 0.9500 | C21—O21 | 1.427 (3) |
C10—H10 | 0.9500 | C21—H21A | 0.9900 |
C11—O11 | 1.439 (3) | C21—H21B | 0.9900 |
C11—C12 | 1.512 (4) | O21—H21 | 0.83 (4) |
C11—H11A | 1.0000 | ||
C2—C1—C5 | 107.1 (3) | C9—C8—H8 | 126.0 |
C2—C1—C11 | 127.5 (3) | C7—C8—H8 | 126.0 |
C5—C1—C11 | 125.4 (3) | Fe1—C8—H8 | 126.5 |
C2—C1—Fe1 | 69.60 (16) | C8—C9—C10 | 108.9 (3) |
C5—C1—Fe1 | 69.37 (16) | C8—C9—Fe1 | 70.63 (18) |
C11—C1—Fe1 | 127.9 (2) | C10—C9—Fe1 | 70.03 (18) |
C3—C2—C1 | 108.7 (3) | C8—C9—H9 | 125.5 |
C3—C2—Fe1 | 69.85 (17) | C10—C9—H9 | 125.5 |
C1—C2—Fe1 | 69.47 (16) | Fe1—C9—H9 | 125.4 |
C3—C2—H2 | 125.7 | C9—C10—C6 | 107.2 (3) |
C1—C2—H2 | 125.7 | C9—C10—Fe1 | 69.47 (18) |
Fe1—C2—H2 | 126.6 | C6—C10—Fe1 | 69.96 (17) |
C2—C3—C4 | 107.8 (3) | C9—C10—H10 | 126.4 |
C2—C3—Fe1 | 69.69 (17) | C6—C10—H10 | 126.4 |
C4—C3—Fe1 | 69.54 (16) | Fe1—C10—H10 | 125.8 |
C2—C3—H3 | 126.1 | O11—C11—C1 | 110.8 (2) |
C4—C3—H3 | 126.1 | O11—C11—C12 | 106.2 (2) |
Fe1—C3—H3 | 126.2 | C1—C11—C12 | 113.0 (2) |
C5—C4—C3 | 108.3 (3) | O11—C11—C21 | 79.36 (14) |
C5—C4—Fe1 | 69.60 (16) | C1—C11—C21 | 149.62 (17) |
C3—C4—Fe1 | 69.67 (16) | O11—C11—H11A | 108.9 |
C5—C4—H4 | 125.8 | C1—C11—H11A | 108.9 |
C3—C4—H4 | 125.8 | C12—C11—H11A | 108.9 |
Fe1—C4—H4 | 126.5 | C21—C11—H11A | 93.4 |
C4—C5—C1 | 108.1 (3) | C11—O11—H11 | 109.5 |
C4—C5—Fe1 | 69.87 (16) | C11—C12—C13 | 113.0 (3) |
C1—C5—Fe1 | 69.49 (16) | C11—C12—H12A | 109.0 |
C4—C5—H5 | 125.9 | C13—C12—H12A | 109.0 |
C1—C5—H5 | 125.9 | C11—C12—H12B | 109.0 |
Fe1—C5—H5 | 126.3 | C13—C12—H12B | 109.0 |
C9—Fe1—C5 | 120.61 (12) | H12A—C12—H12B | 107.8 |
C9—Fe1—C1 | 156.53 (13) | C14—C13—C12 | 114.8 (3) |
C5—Fe1—C1 | 41.13 (11) | C14—C13—H13A | 108.6 |
C9—Fe1—C10 | 40.51 (13) | C12—C13—H13A | 108.6 |
C5—Fe1—C10 | 106.43 (12) | C14—C13—H13B | 108.6 |
C1—Fe1—C10 | 121.14 (13) | C12—C13—H13B | 108.6 |
C9—Fe1—C2 | 160.79 (14) | H13A—C13—H13B | 107.6 |
C5—Fe1—C2 | 68.63 (12) | C13—C14—C15 | 112.4 (2) |
C1—Fe1—C2 | 40.93 (11) | C13—C14—H14A | 109.1 |
C10—Fe1—C2 | 157.79 (13) | C15—C14—H14A | 109.1 |
C9—Fe1—C4 | 106.89 (12) | C13—C14—H14B | 109.1 |
C5—Fe1—C4 | 40.53 (11) | C15—C14—H14B | 109.1 |
C1—Fe1—C4 | 68.75 (11) | H14A—C14—H14B | 107.9 |
C10—Fe1—C4 | 122.90 (12) | C16—C15—C14 | 114.9 (2) |
C2—Fe1—C4 | 68.28 (12) | C16—C15—H15A | 108.5 |
C9—Fe1—C3 | 123.86 (13) | C14—C15—H15A | 108.5 |
C5—Fe1—C3 | 68.59 (12) | C16—C15—H15B | 108.5 |
C1—Fe1—C3 | 68.80 (12) | C14—C15—H15B | 108.5 |
C10—Fe1—C3 | 159.82 (13) | H15A—C15—H15B | 107.5 |
C2—Fe1—C3 | 40.46 (12) | C15—C16—C17 | 113.8 (2) |
C4—Fe1—C3 | 40.79 (12) | C15—C16—H16A | 108.8 |
C9—Fe1—C6 | 67.91 (12) | C17—C16—H16A | 108.8 |
C5—Fe1—C6 | 124.07 (12) | C15—C16—H16B | 108.8 |
C1—Fe1—C6 | 107.89 (12) | C17—C16—H16B | 108.8 |
C10—Fe1—C6 | 40.69 (12) | H16A—C16—H16B | 107.7 |
C2—Fe1—C6 | 122.93 (12) | C18—C17—C16 | 114.3 (2) |
C4—Fe1—C6 | 160.03 (13) | C18—C17—H17A | 108.7 |
C3—Fe1—C6 | 158.10 (12) | C16—C17—H17A | 108.7 |
C9—Fe1—C8 | 40.16 (13) | C18—C17—H17B | 108.7 |
C5—Fe1—C8 | 156.13 (12) | C16—C17—H17B | 108.7 |
C1—Fe1—C8 | 161.73 (12) | H17A—C17—H17B | 107.6 |
C10—Fe1—C8 | 68.02 (13) | C19—C18—C17 | 113.9 (2) |
C2—Fe1—C8 | 125.22 (13) | C19—C18—H18A | 108.8 |
C4—Fe1—C8 | 121.53 (12) | C17—C18—H18A | 108.8 |
C3—Fe1—C8 | 108.17 (13) | C19—C18—H18B | 108.8 |
C6—Fe1—C8 | 67.80 (13) | C17—C18—H18B | 108.8 |
C9—Fe1—C7 | 67.93 (12) | H18A—C18—H18B | 107.7 |
C5—Fe1—C7 | 161.19 (12) | C20—C19—C18 | 113.7 (2) |
C1—Fe1—C7 | 124.82 (12) | C20—C19—H19A | 108.8 |
C10—Fe1—C7 | 68.32 (12) | C18—C19—H19A | 108.8 |
C2—Fe1—C7 | 109.00 (12) | C20—C19—H19B | 108.8 |
C4—Fe1—C7 | 157.52 (13) | C18—C19—H19B | 108.8 |
C3—Fe1—C7 | 122.55 (12) | H19A—C19—H19B | 107.7 |
C6—Fe1—C7 | 40.36 (12) | C21—C20—C19 | 112.8 (2) |
C8—Fe1—C7 | 40.47 (12) | C21—C20—H20A | 109.0 |
C7—C6—C10 | 108.3 (3) | C19—C20—H20A | 109.0 |
C7—C6—Fe1 | 69.98 (16) | C21—C20—H20B | 109.0 |
C10—C6—Fe1 | 69.35 (17) | C19—C20—H20B | 109.0 |
C7—C6—H6 | 125.9 | H20A—C20—H20B | 107.8 |
C10—C6—H6 | 125.9 | O21—C21—C20 | 113.8 (2) |
Fe1—C6—H6 | 126.4 | O21—C21—C11 | 148.76 (17) |
C6—C7—C8 | 107.6 (3) | O21—C21—H21A | 108.8 |
C6—C7—Fe1 | 69.66 (17) | C20—C21—H21A | 108.8 |
C8—C7—Fe1 | 69.73 (17) | C11—C21—H21A | 91.3 |
C6—C7—H7 | 126.2 | O21—C21—H21B | 108.8 |
C8—C7—H7 | 126.2 | C20—C21—H21B | 108.8 |
Fe1—C7—H7 | 126.0 | C11—C21—H21B | 86.3 |
C9—C8—C7 | 108.0 (3) | H21A—C21—H21B | 107.7 |
C9—C8—Fe1 | 69.21 (18) | C21—O21—H21 | 109.5 |
C7—C8—Fe1 | 69.81 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H11···O21i | 0.76 | 2.06 | 2.755 (3) | 152 |
O21—H21···O11ii | 0.83 | 1.90 | 2.726 (3) | 175 |
C6—H6···O21i | 0.95 | 2.60 | 3.380 (4) | 140 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+1/2, −y+3/2, −z+2. |
Contents | Included surface area |
H···H | 83.2 |
H···C/C···H | 9.4 |
H···O/O···H | 7.3 |
Acknowledgements
We thank the New Zealand Ministry of Business, Innovation and Employment Science Investment Fund (grant No. UOO-X1206) for support of this work and the University of Otago for the purchase of the diffractometer. JS also thanks the Department of Chemistry, University of Otago for support of his work.
Funding information
Funding for this research was provided by: Ministry for Business Innovation and Employment (grant No. UOO-X1206).
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Aristoff, P. A., Johnson, P. D. & Harrison, A. W. (1985). J. Am. Chem. Soc. 107, 7967–7974. CrossRef CAS Web of Science Google Scholar
Bequeath, D. M., Porter, R. L., Lufaso, M. W., Wagner, T. R., Kusnic, R. L., Zeller, M. & Curtin, L. S. (2005). Acta Cryst. E61, m1070–m1072. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Evans, L. A., Apreutesei, D., Mehl, G. H. & Wadhawan, J. D. (2008). Electrochem. Commun. 10, 1720–1723. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand. Google Scholar
Kane, S. & Hersh, W. (2000). J. Chem. Educ. 77, 1366. Web of Science CrossRef Google Scholar
Loehlin, J. H. & Okasako, E. L. N. (2007). Acta Cryst. B63, 132–141. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lo Sterzo, C. & Ortaggi, G. (1984). J. Chem. Soc. Perkin Trans. 2, pp. 345–348. CrossRef Web of Science Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Martí-Rujas, J., Kariuki, B. M., Hughes, C. E., Morte-Ródenas, A., Guo, F., Glavcheva-Laleva, Z., Taştemür, K., Ooi, L., Yeo, L. & Harris, K. D. M. (2011). New J. Chem. 35, 1515–1521. Google Scholar
McAdam, C. J., Moratti, S. C., Robinson, B. H. & Simpson, J. (2008a). J. Organomet. Chem. 693, 2715–2722. Web of Science CSD CrossRef CAS Google Scholar
McAdam, C. J., Nafady, A., Bond, A. M., Moratti, S. C. & Simpson, J. (2008b). J. Inorg. Organomet. Polym. 18, 485–490. Web of Science CrossRef CAS Google Scholar
McAdam, C. J., Robinson, B. H. & Simpson, J. (2007). Acta Cryst. E63, m1362. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nakamura, N., Setodoi, S. & Ikeya, T. (1999). Acta Cryst. C55, 789–791. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Saji, T., Hoshino, K., Ishii, Y. & Goto, M. (1991). J. Am. Chem. Soc. 113, 450–456. CrossRef CAS Web of Science Google Scholar
Schwink, L., Knochel, P., Eberle, T. & Okuda, J. (1998). Organometallics, 17, 7–9. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; https://hirshfeldsurface.net. Google Scholar
Ursini, C. V., Mazzeo, F. & Rodrigues, J. A. R. (2006). Tetrahedron Asymmetry, 17, 3335–3340. Web of Science CrossRef CAS Google Scholar
Wedeking, K., Mu, Z., Kehr, G., Sierra, J. C., Lichtenfeld, C. M., Grimme, S., Erker, G., Fröhlich, R., Chi, L., Wang, W., Zhong, D. & Fuchs, H. (2006a). Chem. Eur. J. 12, 1618–1628. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wedeking, K., Mu, Z., Kehr, G., Fröhlich, R., Erker, G., Chi, L. & Fuchs, H. (2006b). Langmuir, 22, 3161–3165. Web of Science CSD CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.