research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(Benzyl­amino)­carbon­yl]-1-methyl­pyridinium halogenide salts: X-ray diffraction study and Hirshfeld surface analysis

crossmark logo

aSSI "Institute for Single Crystals", NAS of Ukraine, 60 Nauky ave., Kharkiv, 61001, Ukraine, bV.N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv, 61022, Ukraine, cFarmak JSC, 63 Kyrylivska str., Kyiv, 04080, Ukraine, and dKyiv National Technical University of Ukraine, 37 Pobedy ave., Kyiv, 03056, Ukraine
*Correspondence e-mail: sveta@xray.isc.kharkov.com

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 12 October 2021; accepted 21 December 2021; online 7 January 2022)

Two salts of 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium (Am) with chloride (C14H15N2O+·Cl) and bromide (C14H15N2O+·Br) anions were studied and compared with the iodide salt. AmCl crystallizes in the centrosymmetric space group P21/n while AmBr and AmI form crystals in the Sohncke space group P212121. Crystals of AmBr are isostructural to those of AmI. The cation and anion are bound by an N–H⋯Hal hydrogen bond. Hirshfeld surface analysis was used to compare different types of inter­molecular inter­actions in the three structures under study.

1. Chemical context

Organic salts are of great importance for the pharmaceutical industry (Stahl & Wermuth, 2002[Stahl, P. H. & Wermuth, C. G. (2002). Handbook of Pharmaceutical Salts: Properties, Selection, and Use. Weinheim: Wiley-VCH.]). Many drugs are produced in the form of salts because of their higher solubility as compared to neutral compounds. The pharmacokinetic properties may be modified by the choice of counter-ion (Guerrieri et al., 2010[Guerrieri, P., Jarring, K. & Taylor, L. S. (2010). J. Pharm. Sci. 99, 3719-3730.]; He et al., 2018[He, Y., Orton, E. & Yang, D. (2018). J. Pharm. Sci. 107, 419-425.]). Therefore, the study of the ability of an active pharmaceutical ingredient to form salts with different ions is an actual problem.

4-[(Benzyl­amino)­carbon­yl]-1-methyl­pyridinium iodide is known as a multimodal anti­viral drug (Buhtiarova et al., 2003[Buhtiarova, T. A., Danilenko, V. P., Homenko, V. S., Shatyrkina, T. V. & Yadlovsky, O. E. (2003). Ukrainian Med. J. 33, 72-74.]; Frolov et al., 2004[Frolov, A. F., Frolov, V. M., Buhtiarova, T. A. & Danilenko, V. P. (2004). Ukrainian Med. J. 39, 69-74.]; Boltz et al., 2018[Boltz, D., Peng, X., Muzzio, M., Dash, P., Thomas, P. G. & Margitich, V. (2018). Antivir. Chem. Chemother. pp. 26 https://doi.org/10.1177/2040206618811416]; Cocking et al., 2018[Cocking, D., Cinatl, J., Boltz, D. A., Peng, X., Johnson, W., Muzzio, M., Syarkevych, O., Kostyuk, G., Goy, A., Mueller, L. & Margitich, V. (2018). Acta Virol. 62, 191-195.]). This salt crystallized in the P212121 ortho­rhom­bic space group and was studied by single-crystal X-ray diffraction, powder diffraction, IR spectroscopy and DSC (Drebushchak et al., 2017[Drebushchak, T. N., Kryukov, Y. A., Rogova, A. I. & Boldyreva, E. V. (2017). Acta Cryst. E73, 967-970.]). Screening varying different solvents and crystallization conditions did not reveal the formation of any other polymorphs.

[Scheme 1]

In the present work we studied salts of the 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium cation with chloride and bromide anions and compared their mol­ecular and crystal structures with that of the iodide salt.

2. Structural commentary

Usually organic salts are obtained following hydrogen transfer within an acid–base pair. The equilibrium between the neutral acid–base pair and their cation–anion pair depends on external conditions such as temperature, concentration, nature of solvent, etc (Stahl & Nakano, 2002[Stahl, P. H. & Nakano, M. (2002). In Handbook of Pharmaceutical Salts: Properties, Selection, and Use edited by P. H. Stahl & C. G. Wermuth, pp. 83-116. Weinheim: Wiley-VCH.]). As a result, organic cations formed upon protonation are not stable and can be deprotonated. The quaternization of the pyridine nitro­gen atom also results in cation formation (Wei et al., 2018[Wei, L., Chen, Y., Tan, W., Li, Q., Gu, G., Dong, F. & Guo, Z. (2018). Molecules, 23, 2604-2616.]). However, such a cation is much more stable than its protonated analogue and can form salts with different anions.

The organic cation is formed due to the quaternization of the pyridine moiety in the two salts under study (Fig. 1[link]). The positive charge is located at the pyridine nitro­gen atom. The carbamide group and the pyridine ring are slightly non-coplanar in the chloride salt and coplanar in the bromide salt [the C5—C4—C7—O1 torsion angle is −13.3 (4)° in AmCl and −1.4 (16)° in AmBr]. The intra­molecular contacts H2⋯C3 = 2.57 Å, H2⋯H3 = 2.05 Å in AmCl and H2⋯C3 = 2.65 Å, H2⋯H3 = 2.16 Å in AmBr are shorter than the sums of the corresponding van der Waals radii (H⋯C = 2.87 Å and H⋯H = 2.34 Å; Zefirov, 1997[Zefirov, Yu. V. (1997). Kristallografiya, 42, 936-958.]) and point to a steric repulsion between the carbamide and pyridine fragments in the cations of AmCl and AmBr. The phenyl fragment of the benzyl substituent is positioned orthogonally to the carbamide unit and rotated around the N2—C8 bond [the C7—N2—C8—C9 torsion angle is −88.1 (4)° in AmCl and 93.5 (12)° in AmBr while the N2—C8—C9—C10 torsion angle is −24.3 (4)° in AmCl and 103.8 (12)° in AmBr].

[Figure 1]
Figure 1
Mol­ecular structures of the title 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium halogenide salts. Displacement ellipsoids are shown with 50% probability level.

The AmCl salt crystallizes in the centrosymmetric P21/n space group while the AmBr salt crystallizes in the Sohncke space group P212121, similar to the AmI salt (Drebushchak et al., 2017[Drebushchak, T. N., Kryukov, Y. A., Rogova, A. I. & Boldyreva, E. V. (2017). Acta Cryst. E73, 967-970.]). The cation does not contain an asymmetric atom.

3. Supra­molecular features

Analysis of the inter­molecular inter­actions revealed that an N—H⋯Hal inter­molecular hydrogen bond is present in both of the salts under study (Tables 1[link] and 2[link]). This hydrogen bond is strongest in the AmCl salt as a result of the higher negativity of chloride anions as compared to bromide and iodide counter-ions. In addition, a set of C—H⋯Cl' inter­molecular hydrogen bonds is found in AmCl (Fig. 2[link]) while only two C—H⋯Hal' hydrogen bonds are present in the crystal structure of AmBr (Figs. 3[link] and 4[link]; Tables 1[link] and 2[link]). Generally, the presence of pyridine and benzene rings in a mol­ecule can lead to the formation of ππ stacking inter­actions in the crystalline phase. However, no such stacking inter­actions were found in the AmCl and AmBr crystals.

Table 1
Hydrogen-bond geometry (Å, °) for AmCl[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl1 0.92 (3) 2.26 (3) 3.163 (3) 165 (2)
C1—H1C⋯Cl1i 0.96 2.89 3.513 (3) 124
C1—H1A⋯Cl1ii 0.96 2.72 3.633 (3) 160
C2—H2A⋯Cl1ii 0.93 2.59 3.474 (3) 160
C3—H3⋯Cl1 0.93 2.63 3.531 (3) 165
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [-x+2, -y+2, -z+1].

Table 2
Hydrogen-bond geometry (Å, °) for AmBr[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Br1 0.86 2.68 3.468 (9) 154
C1—H1A⋯Br1i 0.96 3.04 3.913 (13) 152
C1—H1C⋯Br1ii 0.96 3.01 3.901 (13) 154
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x-1, y, z].
[Figure 2]
Figure 2
Crystal structure of 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium chloride. X—H⋯Cl hydrogen bonds are shown as dashed cyan lines.
[Figure 3]
Figure 3
Crystal structure of 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium bromide. X—H⋯Br hydrogen bonds are shown as dashed cyan lines.
[Figure 4]
Figure 4
Hirshfeld surfaces of the cation in the (a) AmCl, (b) AmBr and (c) AmI salts mapped over dnorm.

4. Hirshfeld surface analysis

The formation of inter­molecular inter­actions in the two salts under study and the AmI salt can be compared using Hirshfeld surface analysis and two-dimensional fingerprint plots [Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net]]. The Hirshfeld surfaces were obtained for the cations using a standard high surface resolution, mapped over dnorm. The red spots on the dnorm surfaces correspond to contacts that are shorter than the van der Waals radii sum of the closest atoms (Fig. 4[link]). Such red spots are observed on all the hydrogen atoms participating in the above-mentioned inter­molecular hydrogen bonds (Tables 1[link] and 2[link]). It should be noted that the brightness of the spot on the hydrogen atom decreases with an increase in the radius of the halogen atom, indicating a weakening of the hydrogen bond.

The hydrogen bonds and short contacts of the cations found in the structures of AmCl, AmBr and AmI are shown in the two-dimensional fingerprint plots presented in Fig. 5[link]ac. It should be noted that the fingerprint plots constructed for the cations in structures AmBr and AmI are very similar (Fig. 5[link]b and 5c). The main contribution to the total Hirshfeld surface (49.4% in AmCl, 50.8% in AmBr, 51.0% in AmI) is provided by H⋯H short contacts (Fig. 6[link]). The contribution of C⋯H/H⋯C contacts is much smaller but also significant (23.9% in AmCl, 19.9% in AmBr, 20.2% in AmI). The similar contributions of Hal⋯H/H⋯Hal contacts (10.2% in AmCl, 10.5% in AmBr, 9.9% in AmI) and O⋯H/H⋯O contacts (9.4% in AmCl, 7.6% in AmBr, 7.9% in AmI) are slightly surprising because of the absence of X—H⋯O inter­molecular inter­actions in the structures under study. The presence of two aromatic rings in the cation could result in the formation of stacking inter­actions in the crystal, but the contribution of the C⋯C contacts is the smallest (2.9% in AmCl, 6.7% in AmBr, 6.4% in AmI). The small contribution of the C⋯C contacts agrees with the results of the traditional analysis of inter­molecular inter­actions in a crystal using the shortest distances between atoms belonging to neighbouring mol­ecules (see Supra­molecular features section). It should be noted that the contribution of the C⋯C contacts is more than twice as high in the crystals of AmBr and AmI compared to AmCl. This can be explained by a mutual orientation of the pyridine and benzene rings belonging to neighbouring mol­ecules in the AmBr and AmI crystals. However, there are no effective ππ inter­action between these rings because the distances and angles between the planar π systems are too large.

[Figure 5]
Figure 5
Two-dimensional fingerprint plots for the cation in the three salts under study: (a) AmCl, (b) AmBr and (c) AmI.
[Figure 6]
Figure 6
Contributions of the different types of inter­actions to the total Hirshfeld surface of the cation in three halogenide salts.

5. Database survey

A search of the Cambridge Structural Database (Version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed the structure of the AmI salt (refcode BEBFIA; Drebushchak et al., 2017[Drebushchak, T. N., Kryukov, Y. A., Rogova, A. I. & Boldyreva, E. V. (2017). Acta Cryst. E73, 967-970.]). A comparison with the AmBr and AmI crystal structures showed that they are isostructural.

6. Synthesis and crystallization

The synthesis of salts of 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium halide was carried out according to the reaction scheme below.

Synthesis and crystallization of AmCl.

520 mL of aceto­nitrile was cooled to 273–277 K in a glass flask. Chloro­methane (87.8 g, 1.739 mol) was dissolved at this temperature. Benzyl­amide isonicotinic acid (245.78 g, 1.16 mol) and 600 mL of cooled aceto­nitrile and aceto­nitrile solution saturated with chloro­methane were loaded into an autoclave. The autoclave was closed and heated to 373 K. The mixture was incubated for 3 h at this temperature. After that, the mixture was allowed to cool to room temperature. The reaction mixture was transferred into a glass flask and cooled to 273–275 K. The reaction mixture was filtered and the precipitate was rinsed on the filter with 200 mL of cooled aceto­nitrile. The product was dried at 313 K for 12 h. Yield 226 g of crude 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium chloride (75%); white crystals.

[Scheme 2]

226 g of crude 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyrid­in­ium chloride were dissolved in 265 mL of 90% ethanol and 660 mL of 2-propanol, and 4.25 g activated charcoal were added. The reaction mixture was heated to boiling point, stirred at boiling for 30 min and filtered. The obtained solution was let to spontaneously cool to a temperature of 303 K, then to a temperature of 278–283 K in a cooling water bath, and stirred for 2 h at this temperature. The reaction mixture was filtrated and the precipitate rinsed on the filter with 110 mL of cold 2-propanol. The product was dried at 313 K for 12 h. Yield 180.8 g of 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyrid­in­ium chloride (80%); white crystals; m.p. 474–477 K.

Synthesis and crystallization of AmBr.

4-[(Benzyl­amino)­carbon­yl]-1-methyl­pyridinium iodide (57.7 g, 0.163 mol), silver bromide (33.77 g, 0.180 mol) and 700 mL of water were loaded into a glass flask. The mixture was stirred for 72 h. The sediment was filtered off. The solvent was evaporated under reduced pressure. 300 mL of aceto­nitrile were added to the precipitate and the mixture was refluxed for 2 h. The reaction mixture was allowed to spontaneously cool to a temperature of 303 K. The reaction mixture was filtered and the precipitate was rinsed on the filter with 50 mL of cold aceto­nitrile. The product was dried at 313 K for 12 h. Yield 14 g of 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium bromide (28%); white crystals; m.p. 465–468 K.

The crystals of AmCl and AmBr were grown as very small colourless and yellow parallelepipeds, respectively, in contrast to the well-grown yellow block-shaped crystals of AmI.

7. Spectroscopic characterization

Both salts under consideration were fully characterized by IR, 1H NMR and 13C NMR spectroscopy. IR spectra of solid samples were acquired on a Thermo Fisher Scientific Nicolet iS50 FTIR spectrometer. 1H NMR spectra of samples were measured in DMSO-d6 on a 600 MHz Varian spectrometer. 13C NMR spectra of samples were taken in DMSO-d6 on a 150 MHz Varian spectrometer.

The characteristic vibration frequencies of the main functional groups according to the data of FTIR spectroscopy are shown in Table 3[link]. The full spectroscopic data are presented below and in Figs. 7[link] and 8[link]. As can be seen from Table 3[link], the main difference in IR spectra concerns the valence vibrations of the N—H group and vibrations of C—H bonds in the pyridine ring.

Table 3
Characteristic vibration frequencies according to the FTIR data

Location of bond Vibrations AmCl, wavenumbers AmBr, wavenumbers
Valence vibrations of monosubstituted amides N—H (stretching) 3166 3198
Valence vibrations (aromatic system) C—H (stretching) 3049 3042
Valence vibrations (CH3) C—H (stretching) 2994 3001
Valence vibrations of the carboxyl group in amides C=O (stretching) 1656, 1572 1659, 1571
Vibrations of bonds in the pyridine ring C—H (out-of-plane bending) 727, 659 702, 621
[Figure 7]
Figure 7
IR spectrum of the AmCl salt.
[Figure 8]
Figure 8
IR spectrum of the AmBr salt.

AmCl:

IR spectrum (cm−1) (Fig. 7[link]): 592.40, 631.16, 659.97, 667.17, 702.46, 727.71, 857.87, 890.80, 989.03, 1156.13, 1229.22, 1260.13, 1284.00, 1305.82, 1312.72, 1342.62, 1416.08, 1453.14, 1497.17, 1516.77, 1572.84, 1656.90, 2981.77, 2994.48, 3009.82, 3049.81, 3166.99.

1H NMR (600 MHz, DMSO-d6, p.p.m.): δ = 4.40 (s, 3H, CH3), 4.48–4.49 (d, 2H, CH2), 7.21–7.36 (m, 5H, Ar), 8.59 (d, 2H, Py), 9.21 (d, 2H, Py), 10.47 (s, H, NH).

13C NMR (150 MHz, DMSO-d6, p.p.m.): δ = 43.42 (CH2), 48.37 (CH3), 125.98, 146.94, 147.91 (Py), 127.44, 128.00, 128.75, 139.03 (Ar), 162.12 (C=O).

AmBr:

IR spectrum (cm−1) (Fig. 8[link]): 594.84, 616.74, 620.98, 644.78, 702.12, 759.15, 779.19, 864.09, 962.63, 1079.02, 1149.96, 1188.49, 1219.68, 1244.69, 1287.03, 1305.58, 1330.58, 1416.56, 1451.22, 1493.51, 1504.69, 1544.19, 1571.63, 1643.77, 1658.70, 3001.16, 3041.63, 3198.25.

1H NMR (400 MHz, DMSO-d6, p.p.m.): δ = 4.41 (s, 3H, CH3), 4.51 (d, 2H, CH2), 7.23–7.36 (m, 5H, Ar), 8.48 (d, 2H, Py), 9.21 (d, 2H, Py), 9.92 (s, H, NH).

13C NMR (100 MHz, DMSO-d6, p.p.m.): δ = 43.52 (CH2), 48.50 (CH3), 125.87, 146.99, 147.97 (Py), 127.56, 128.00, 128.84, 138.83 (Ar), 162.31 (C=O).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All of the hydrogen atoms were located in difference-Fourier maps. They were included in calculated positions and treated as riding with C—H = 0.96 Å, Uiso(H) = 1.5Ueq for methyl groups and with Car—H = 0.93 Å, Csp2—H = 0.97 Å, Uiso(H) = 1.2Ueq for all other hydrogen atoms.

Table 4
Experimental details

  AmCl AmBr
Crystal data
Chemical formula C14H15N2O+·Cl C14H15N2O+·Br
Mr 262.73 307.19
Crystal system, space group Monoclinic, P21/n Orthorhombic, P212121
Temperature (K) 293 293
a, b, c (Å) 8.5222 (7), 5.6875 (3), 27.1720 (14) 9.417 (3), 11.099 (5), 14.363 (6)
α, β, γ (°) 90, 91.243 (6), 90 90, 90, 90
V3) 1316.71 (15) 1501.2 (10)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.28 2.73
Crystal size (mm) 0.30 × 0.20 × 0.10 0.30 × 0.30 × 0.06
 
Data collection
Diffractometer Xcalibur, Sapphire3 Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO, Rigaku OD 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO, Rigaku OD 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.624, 1.000 0.068, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5343, 2302, 1529 10683, 2635, 1583
Rint 0.048 0.118
(sin θ/λ)max−1) 0.595 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.119, 1.05 0.063, 0.150, 1.00
No. of reflections 2302 2635
No. of parameters 168 164
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.16 0.34, −0.60
Absolute structure Flack x determined using 407 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.00 (2)
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4-[(Benzylamino)carbonyl]-1-methylpyridinium chloride (AmCl) top
Crystal data top
C14H15N2O+·ClF(000) = 552
Mr = 262.73Dx = 1.325 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.5222 (7) ÅCell parameters from 766 reflections
b = 5.6875 (3) Åθ = 3.2–20.4°
c = 27.1720 (14) ŵ = 0.28 mm1
β = 91.243 (6)°T = 293 K
V = 1316.71 (15) Å3Block, colorless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Xcalibur, Sapphire3
diffractometer
2302 independent reflections
Radiation source: Enhance (Mo) X-ray Source1529 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.048
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlisPro, Rigaku OD 2018)
h = 109
Tmin = 0.624, Tmax = 1.000k = 66
5343 measured reflectionsl = 3126
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.034P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2302 reflectionsΔρmax = 0.18 e Å3
168 parametersΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.00363 (10)0.87872 (14)0.60412 (3)0.0644 (3)
O10.5912 (3)0.1775 (4)0.57992 (7)0.0685 (7)
N10.7393 (3)0.5404 (4)0.42221 (8)0.0507 (6)
N20.7762 (3)0.4394 (5)0.60568 (9)0.0568 (7)
H20.844 (4)0.561 (5)0.5990 (10)0.063 (10)*
C10.7545 (4)0.6081 (6)0.37003 (9)0.0661 (10)
H1A0.8220850.7425220.3678080.099*
H1B0.6528860.6461090.3563330.099*
H1C0.7984990.4795030.3520580.099*
C20.8023 (4)0.6758 (5)0.45742 (10)0.0586 (9)
H2A0.8552090.8126340.4490310.070*
C30.7896 (4)0.6142 (5)0.50613 (10)0.0594 (9)
H30.8337180.7099940.5304600.071*
C40.7124 (3)0.4127 (5)0.51914 (10)0.0469 (7)
C50.6493 (4)0.2765 (5)0.48176 (10)0.0551 (8)
H50.5953460.1393810.4892490.066*
C60.6655 (4)0.3418 (5)0.43357 (11)0.0575 (9)
H60.6246990.2466390.4085890.069*
C70.6881 (4)0.3322 (5)0.57169 (11)0.0535 (8)
C80.7728 (4)0.3762 (5)0.65733 (9)0.0603 (9)
H8A0.8750720.4081180.6721900.072*
H8B0.7540120.2084800.6598810.072*
C90.6503 (4)0.5038 (5)0.68622 (9)0.0492 (8)
C100.5909 (4)0.7194 (5)0.67180 (11)0.0589 (9)
H100.6264550.7893780.6431790.071*
C110.4807 (5)0.8315 (6)0.69903 (12)0.0763 (11)
H110.4415860.9762390.6886100.092*
C120.4267 (5)0.7325 (7)0.74176 (13)0.0789 (11)
H120.3499890.8080530.7597590.095*
C130.4875 (4)0.5203 (7)0.75753 (11)0.0732 (11)
H130.4540560.4537210.7867500.088*
C140.5986 (4)0.4067 (6)0.72969 (10)0.0587 (9)
H140.6389860.2630780.7403360.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0722 (6)0.0577 (5)0.0636 (5)0.0109 (5)0.0095 (4)0.0002 (4)
O10.0690 (16)0.0706 (15)0.0660 (14)0.0208 (14)0.0031 (12)0.0193 (11)
N10.0510 (16)0.0512 (15)0.0500 (14)0.0014 (14)0.0027 (12)0.0026 (12)
N20.0646 (19)0.0573 (17)0.0487 (15)0.0113 (16)0.0033 (14)0.0087 (13)
C10.078 (3)0.075 (2)0.0447 (16)0.012 (2)0.0035 (16)0.0126 (15)
C20.070 (2)0.0507 (19)0.0552 (19)0.0110 (18)0.0021 (17)0.0057 (15)
C30.075 (2)0.0558 (19)0.0472 (17)0.0142 (19)0.0018 (16)0.0038 (14)
C40.0444 (18)0.0435 (17)0.0531 (16)0.0006 (15)0.0054 (14)0.0046 (14)
C50.055 (2)0.0516 (18)0.0588 (18)0.0087 (17)0.0112 (16)0.0044 (15)
C60.062 (2)0.0515 (19)0.0585 (19)0.0118 (18)0.0027 (16)0.0034 (15)
C70.055 (2)0.0516 (19)0.0544 (18)0.0023 (18)0.0086 (17)0.0095 (15)
C80.064 (2)0.068 (2)0.0480 (17)0.0007 (19)0.0025 (16)0.0127 (15)
C90.056 (2)0.0489 (18)0.0422 (15)0.0129 (16)0.0083 (14)0.0022 (13)
C100.078 (3)0.0464 (18)0.0523 (17)0.0067 (19)0.0081 (17)0.0038 (15)
C110.098 (3)0.057 (2)0.073 (2)0.012 (2)0.020 (2)0.0109 (18)
C120.078 (3)0.095 (3)0.064 (2)0.012 (2)0.003 (2)0.027 (2)
C130.077 (3)0.094 (3)0.0485 (18)0.012 (2)0.0034 (19)0.0030 (19)
C140.069 (2)0.062 (2)0.0453 (16)0.0060 (19)0.0047 (16)0.0079 (15)
Geometric parameters (Å, º) top
O1—C71.230 (3)C5—H50.9300
N1—C61.332 (3)C6—H60.9300
N1—C21.332 (4)C8—C91.506 (4)
N1—C11.478 (3)C8—H8A0.9700
N2—C71.326 (4)C8—H8B0.9700
N2—C81.450 (3)C9—C101.380 (4)
N2—H20.92 (3)C9—C141.385 (4)
C1—H1A0.9600C10—C111.366 (4)
C1—H1B0.9600C10—H100.9300
C1—H1C0.9600C11—C121.379 (5)
C2—C31.376 (4)C11—H110.9300
C2—H2A0.9300C12—C131.378 (5)
C3—C41.372 (4)C12—H120.9300
C3—H30.9300C13—C141.385 (4)
C4—C51.377 (4)C13—H130.9300
C4—C71.518 (4)C14—H140.9300
C5—C61.371 (4)
C6—N1—C2120.6 (2)O1—C7—N2125.0 (3)
C6—N1—C1119.7 (3)O1—C7—C4119.5 (3)
C2—N1—C1119.7 (3)N2—C7—C4115.5 (3)
C7—N2—C8122.5 (3)N2—C8—C9114.5 (2)
C7—N2—H2123.7 (17)N2—C8—H8A108.6
C8—N2—H2113.8 (17)C9—C8—H8A108.6
N1—C1—H1A109.5N2—C8—H8B108.6
N1—C1—H1B109.5C9—C8—H8B108.6
H1A—C1—H1B109.5H8A—C8—H8B107.6
N1—C1—H1C109.5C10—C9—C14118.4 (3)
H1A—C1—H1C109.5C10—C9—C8122.3 (3)
H1B—C1—H1C109.5C14—C9—C8119.3 (3)
N1—C2—C3120.3 (3)C11—C10—C9120.9 (3)
N1—C2—H2A119.9C11—C10—H10119.6
C3—C2—H2A119.9C9—C10—H10119.6
C4—C3—C2120.6 (3)C10—C11—C12120.8 (3)
C4—C3—H3119.7C10—C11—H11119.6
C2—C3—H3119.7C12—C11—H11119.6
C3—C4—C5117.5 (3)C13—C12—C11119.3 (3)
C3—C4—C7124.8 (3)C13—C12—H12120.3
C5—C4—C7117.7 (3)C11—C12—H12120.3
C6—C5—C4120.4 (3)C12—C13—C14119.7 (3)
C6—C5—H5119.8C12—C13—H13120.1
C4—C5—H5119.8C14—C13—H13120.1
N1—C6—C5120.6 (3)C13—C14—C9120.9 (3)
N1—C6—H6119.7C13—C14—H14119.5
C5—C6—H6119.7C9—C14—H14119.5
C6—N1—C2—C31.2 (5)C3—C4—C7—N214.7 (4)
C1—N1—C2—C3179.7 (3)C5—C4—C7—N2166.9 (3)
N1—C2—C3—C40.2 (5)C7—N2—C8—C988.1 (4)
C2—C3—C4—C50.1 (5)N2—C8—C9—C1024.3 (4)
C2—C3—C4—C7178.3 (3)N2—C8—C9—C14157.9 (3)
C3—C4—C5—C60.6 (5)C14—C9—C10—C111.7 (5)
C7—C4—C5—C6179.1 (3)C8—C9—C10—C11179.5 (3)
C2—N1—C6—C51.9 (5)C9—C10—C11—C120.4 (5)
C1—N1—C6—C5179.6 (3)C10—C11—C12—C131.4 (6)
C4—C5—C6—N11.6 (5)C11—C12—C13—C141.7 (6)
C8—N2—C7—O13.0 (5)C12—C13—C14—C90.3 (5)
C8—N2—C7—C4177.1 (2)C10—C9—C14—C131.4 (5)
C3—C4—C7—O1165.2 (3)C8—C9—C14—C13179.2 (3)
C5—C4—C7—O113.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl10.92 (3)2.26 (3)3.163 (3)165 (2)
C1—H1C···Cl1i0.962.893.513 (3)124
C1—H1A···Cl1ii0.962.723.633 (3)160
C2—H2A···Cl1ii0.932.593.474 (3)160
C3—H3···Cl10.932.633.531 (3)165
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+2, z+1.
4-[(Benzylamino)carbonyl]-1-methylpyridinium bromide (AmBr) top
Crystal data top
C14H15N2O+·BrDx = 1.359 Mg m3
Mr = 307.19Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 748 reflections
a = 9.417 (3) Åθ = 3.2–24.8°
b = 11.099 (5) ŵ = 2.73 mm1
c = 14.363 (6) ÅT = 293 K
V = 1501.2 (10) Å3Plate, yellow
Z = 40.30 × 0.30 × 0.06 mm
F(000) = 624
Data collection top
Xcalibur, Sapphire3
diffractometer
2635 independent reflections
Radiation source: Enhance (Mo) X-ray Source1583 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.118
ω scansθmax = 25.0°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlisPro, Rigaku OD 2018)
h = 1111
Tmin = 0.068, Tmax = 1.000k = 1313
10683 measured reflectionsl = 1716
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.063 w = 1/[σ2(Fo2) + (0.0446P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.150(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.34 e Å3
2635 reflectionsΔρmin = 0.60 e Å3
164 parametersAbsolute structure: Flack x determined using 407 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.00 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.91899 (12)0.26554 (10)0.17853 (8)0.0849 (5)
O10.5589 (10)0.6049 (7)0.3657 (5)0.091 (3)
N20.7250 (9)0.4630 (7)0.3158 (7)0.073 (2)
H20.7437140.4066100.2766300.088*
N10.3008 (10)0.4355 (9)0.0832 (7)0.073 (2)
C70.5970 (12)0.5238 (9)0.3083 (7)0.070 (3)
C30.5277 (11)0.3994 (10)0.1584 (8)0.071 (3)
H30.6127420.3567840.1595770.085*
C20.4254 (14)0.3763 (9)0.0884 (9)0.078 (3)
H2A0.4450660.3175830.0439840.093*
C50.3663 (13)0.5481 (12)0.2211 (9)0.090 (4)
H50.3434970.6066580.2649080.108*
C40.4986 (13)0.4888 (10)0.2269 (8)0.071 (3)
C60.2692 (14)0.5207 (11)0.1512 (10)0.095 (4)
H60.1819790.5599190.1498500.114*
C90.8166 (12)0.4132 (10)0.4771 (8)0.073 (3)
C80.8319 (12)0.4919 (11)0.3897 (9)0.090 (4)
H8A0.8218810.5758320.4072760.108*
H8B0.9264890.4811690.3642930.108*
C130.6899 (13)0.3640 (12)0.6235 (8)0.085 (4)
H130.6166000.3798510.6650320.102*
C140.7079 (11)0.4343 (11)0.5440 (8)0.073 (3)
H140.6458550.4981730.5342340.088*
C120.7868 (15)0.2666 (12)0.6398 (9)0.098 (4)
H120.7765370.2173900.6918060.118*
C10.1934 (12)0.4075 (14)0.0071 (9)0.106 (5)
H1A0.2271940.3414330.0299420.158*
H1B0.1809380.4770980.0317180.158*
H1C0.1041550.3861830.0349370.158*
C100.9118 (15)0.3165 (10)0.4951 (9)0.096 (4)
H100.9840590.2994410.4530140.115*
C110.8973 (18)0.2467 (12)0.5761 (10)0.122 (5)
H110.9626070.1856740.5877520.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0782 (7)0.0895 (8)0.0868 (8)0.0122 (7)0.0041 (7)0.0018 (7)
O10.106 (6)0.085 (5)0.083 (6)0.013 (5)0.001 (6)0.023 (4)
N20.077 (6)0.074 (6)0.068 (6)0.001 (5)0.002 (6)0.003 (5)
N10.063 (6)0.077 (7)0.080 (7)0.004 (5)0.002 (5)0.000 (5)
C70.084 (7)0.066 (7)0.060 (7)0.000 (6)0.011 (7)0.014 (5)
C30.071 (7)0.072 (7)0.071 (8)0.006 (5)0.005 (6)0.005 (5)
C20.077 (7)0.069 (7)0.087 (8)0.003 (7)0.020 (8)0.004 (5)
C50.086 (8)0.098 (10)0.086 (9)0.027 (7)0.006 (8)0.027 (7)
C40.075 (7)0.071 (8)0.066 (9)0.006 (6)0.005 (7)0.004 (6)
C60.072 (8)0.103 (10)0.111 (12)0.025 (7)0.001 (8)0.007 (8)
C90.078 (8)0.066 (7)0.074 (8)0.000 (6)0.012 (7)0.001 (6)
C80.074 (7)0.102 (10)0.094 (10)0.019 (7)0.005 (7)0.000 (7)
C130.084 (8)0.104 (10)0.065 (8)0.015 (8)0.007 (7)0.008 (7)
C140.064 (7)0.082 (8)0.075 (8)0.004 (6)0.010 (7)0.009 (7)
C120.126 (10)0.095 (10)0.073 (8)0.011 (9)0.024 (8)0.007 (8)
C10.082 (8)0.140 (12)0.095 (10)0.004 (9)0.009 (8)0.014 (9)
C100.095 (9)0.104 (9)0.088 (9)0.032 (9)0.004 (9)0.006 (7)
C110.178 (15)0.099 (10)0.091 (9)0.059 (12)0.027 (11)0.014 (8)
Geometric parameters (Å, º) top
O1—C71.273 (12)C9—C141.423 (14)
N2—C71.386 (12)C9—C81.536 (15)
N2—C81.498 (14)C8—H8A0.9700
N2—H20.8600C8—H8B0.9700
N1—C21.347 (14)C13—C141.392 (15)
N1—C61.392 (14)C13—C121.433 (16)
N1—C11.521 (13)C13—H130.9300
C7—C41.540 (15)C14—H140.9300
C3—C21.416 (15)C12—C111.404 (18)
C3—C41.425 (14)C12—H120.9300
C3—H30.9300C1—H1A0.9600
C2—H2A0.9300C1—H1B0.9600
C5—C61.392 (16)C1—H1C0.9600
C5—C41.412 (14)C10—C111.404 (17)
C5—H50.9300C10—H100.9300
C6—H60.9300C11—H110.9300
C9—C101.422 (15)
C7—N2—C8122.4 (9)N2—C8—C9113.2 (9)
C7—N2—H2118.8N2—C8—H8A108.9
C8—N2—H2118.8C9—C8—H8A108.9
C2—N1—C6118.6 (11)N2—C8—H8B108.9
C2—N1—C1121.3 (10)C9—C8—H8B108.9
C6—N1—C1120.0 (10)H8A—C8—H8B107.7
O1—C7—N2122.6 (11)C14—C13—C12118.6 (11)
O1—C7—C4120.0 (10)C14—C13—H13120.7
N2—C7—C4117.4 (10)C12—C13—H13120.7
C2—C3—C4119.1 (10)C13—C14—C9123.3 (11)
C2—C3—H3120.5C13—C14—H14118.4
C4—C3—H3120.5C9—C14—H14118.4
N1—C2—C3122.9 (10)C11—C12—C13118.9 (12)
N1—C2—H2A118.5C11—C12—H12120.6
C3—C2—H2A118.5C13—C12—H12120.6
C6—C5—C4121.4 (11)N1—C1—H1A109.5
C6—C5—H5119.3N1—C1—H1B109.5
C4—C5—H5119.3H1A—C1—H1B109.5
C5—C4—C3117.0 (11)N1—C1—H1C109.5
C5—C4—C7117.3 (10)H1A—C1—H1C109.5
C3—C4—C7125.7 (11)H1B—C1—H1C109.5
C5—C6—N1121.0 (11)C11—C10—C9120.4 (12)
C5—C6—H6119.5C11—C10—H10119.8
N1—C6—H6119.5C9—C10—H10119.8
C10—C9—C14117.0 (11)C10—C11—C12121.7 (13)
C10—C9—C8121.2 (11)C10—C11—H11119.2
C14—C9—C8121.8 (10)C12—C11—H11119.2
C8—N2—C7—O12.8 (15)C2—N1—C6—C52.6 (18)
C8—N2—C7—C4177.7 (9)C1—N1—C6—C5179.7 (13)
C6—N1—C2—C32.0 (17)C7—N2—C8—C993.5 (12)
C1—N1—C2—C3179.7 (10)C10—C9—C8—N2103.8 (12)
C4—C3—C2—N10.2 (16)C14—C9—C8—N276.9 (13)
C6—C5—C4—C30.3 (19)C12—C13—C14—C91.1 (17)
C6—C5—C4—C7178.7 (11)C10—C9—C14—C131.4 (16)
C2—C3—C4—C50.9 (16)C8—C9—C14—C13179.3 (10)
C2—C3—C4—C7179.1 (10)C14—C13—C12—C110.9 (17)
O1—C7—C4—C51.4 (16)C14—C9—C10—C110.3 (18)
N2—C7—C4—C5178.0 (10)C8—C9—C10—C11179.1 (12)
O1—C7—C4—C3179.6 (10)C9—C10—C11—C122 (2)
N2—C7—C4—C30.2 (15)C13—C12—C11—C103 (2)
C4—C5—C6—N11 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Br10.862.683.468 (9)154
C1—H1A···Br1i0.963.043.913 (13)152
C1—H1C···Br1ii0.963.013.901 (13)154
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1, y, z.
Characteristic vibration frequencies according to the FTIR data top
Location of bondVibrationsAmCl, wavenumbersAmBr, wavenumbers
Valence vibrations of monosubstituted amidesN—H31663198
Valence vibrations (aromatic system)C—H30493042
Valence vibrations (CH3)C—H29943001
Valence vibrations of the carboxyl group in amidesCO1656, 15721659, 1571
Vibrations of bonds in the pyridine ringC—H727, 659702, 621
 

Acknowledgements

The authors are grateful to Farmak JSC for support of this work.

Funding information

Funding for this research was provided by: National Academy of Sciences of Ukraine (grant No. 0120U102660).

References

First citationBoltz, D., Peng, X., Muzzio, M., Dash, P., Thomas, P. G. & Margitich, V. (2018). Antivir. Chem. Chemother. pp. 26 https://doi.org/10.1177/2040206618811416  Google Scholar
First citationBuhtiarova, T. A., Danilenko, V. P., Homenko, V. S., Shatyrkina, T. V. & Yadlovsky, O. E. (2003). Ukrainian Med. J. 33, 72–74.  Google Scholar
First citationCocking, D., Cinatl, J., Boltz, D. A., Peng, X., Johnson, W., Muzzio, M., Syarkevych, O., Kostyuk, G., Goy, A., Mueller, L. & Margitich, V. (2018). Acta Virol. 62, 191–195.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrebushchak, T. N., Kryukov, Y. A., Rogova, A. I. & Boldyreva, E. V. (2017). Acta Cryst. E73, 967–970.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFrolov, A. F., Frolov, V. M., Buhtiarova, T. A. & Danilenko, V. P. (2004). Ukrainian Med. J. 39, 69–74.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuerrieri, P., Jarring, K. & Taylor, L. S. (2010). J. Pharm. Sci. 99, 3719–3730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHe, Y., Orton, E. & Yang, D. (2018). J. Pharm. Sci. 107, 419–425.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStahl, P. H. & Nakano, M. (2002). In Handbook of Pharmaceutical Salts: Properties, Selection, and Use edited by P. H. Stahl & C. G. Wermuth, pp. 83–116. Weinheim: Wiley-VCH.  Google Scholar
First citationStahl, P. H. & Wermuth, C. G. (2002). Handbook of Pharmaceutical Salts: Properties, Selection, and Use. Weinheim: Wiley-VCH.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net  Google Scholar
First citationWei, L., Chen, Y., Tan, W., Li, Q., Gu, G., Dong, F. & Guo, Z. (2018). Molecules, 23, 2604–2616.  Web of Science CrossRef Google Scholar
First citationZefirov, Yu. V. (1997). Kristallografiya, 42, 936–958.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds