research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, DFT and Hirshfeld surface analysis of N-acetyl-t-3-methyl-r-2,c-6-di­phenyl­piperidine

crossmark logo

aDepartment of Physics, Kandaswami Kandar's College, Velur, Namakkal 638 182, India, and bPG and Research` Department of Chemistry, Government Arts College (Autonomous), Coimbatore–641018., Tamil Nadu, India
*Correspondence e-mail: kravichandran05@gmail.com

Edited by J. Reibenspies, Texas A & M University, USA (Received 19 November 2021; accepted 7 January 2022; online 14 January 2022)

In the title compound [systematic name: 1-(3-methyl-2,6-diphenylpiperidin-1-yl)ethanone], C20H23NO, the piperidine ring adopts a distorted boat conformation, while the phenyl rings subtend a dihedral angle 65.1 (2)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into chains extending along the b-axis direction. The DFT/B3LYP/6–311 G(d,p) method was used to determine the HOMO–LUMO energy levels. A Hirshfeld surface analysis was conducted to verify the contributions of the different inter­molecular inter­actions, indicating that the important contributions to the crystal packing are from H⋯H (73.2%), C⋯H (18.4%) and O⋯H (8.4%) inter­actions.

1. Chemical context

The structures of a wide array of heterocyclic derivatives have been analysed for their pharma-potentiality over the past three decades (Katritzky, 2010[Katritzky, A. (2010). Adv. Heterocycl. Chem. pp. 42-89.]). Among these, derivatives of the six-membered heterocyclic base piperidine have proven to be successful pharmacophores. 2,6-Substituted piperidine derivatives have been found to be useful as tranquilizers and possess a wide range of biological activities such as anti-tumor (Vinaya et al., 2009[Vinaya, K., Kavitha, R., Ananda Kumar, C. S., Benaka Prasad, S. B., Chandrappa, S., Deepak, S. A., NanjundaSwamy, S., Umesha, S. & Rangappa, K. S. (2009). Arch. Pharm. Res. 32, 1, 33-41.]), anti­viral, anti­malarial, anti­bacterial and anti­fungal activities (Aridoss et al., 2009[Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577-592.]; Mobio et al., 1989[Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sargeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. & &Andreeva, E. I. (1989). Khim. Farm. Zh. 23, 421-427.]). These have spurred considerable awareness of the synthetic arena based on their structure, reactivity, synthesis and biological properties. We report herein the crystal structure, Hirshfeld surface analysis and DFT computational calculations of the title compound.

[Scheme 1]

2. Structural commentary

The methyl-substituted piperidine title compound crystallizes in the monoclinic space group P21. A perspective view of the mol­ecule is shown in Fig. 1[link]. The bond lengths and angles are well within the expected limits (Roques et al., 1981[Roques, R., Declercq, J. P., Germain, G., Graffin, P., Kamenka, J. M. & Geneste, P. (1981). Acta Cryst. B37, 712-714.]), and agree with values observed in related structures (Sekar et al., 1990[Sekar, K., Parthasarathy, S. & Radhakrishnan, T. R. (1990). Acta Cryst. C46, 1338-1340.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at the 30% probability level.

The piperidine ring adopts a distorted boat conformation with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) and asymmetry parameters (Nardelli, 1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]): q2 = 0.720 (2) Å, q3 = −0.004 (3) Å, Φ(2) = 108.5 (2)°, ΔCs(C3) and ΔCs(C6) = 14.5 (2)°, and with maximum deviations of 0.406 (3) and 0.409 (2) Å, respectively, for atoms C3 and C6 from the best plane of the piperidine ring. The title mol­ecule contains three chiral centres viz., C2, C5 and C6. The absolute configuration of the chiral centres is assigned as C2 (R), C5 (S) and C6 (S). The parent mol­ecule itself is chiral and the configuration cannot be changed during the substitution of acetyl group at the nitro­gen.

The sum of the bond angles (358.2°) at atom N1 of the piperidine ring is in accordance with the sp2 hybridization state (Beddoes et al., 1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]). The phenyl rings at the 2 and 6-positions of the piperidine ring occupy equatorial and axial orientations. The corresponding torsion angles are C4—C3—C2—C13 = −178.8 (2)° and C4—C5—C6—C7 = −74.5 (3)°.

The piperidine ring [N1/C2–C6] makes dihedral angles of 82.0 (1) and 58.4 (1)°, respectively, with the C13–C18 and C7–C12 phenyl rings, and confirms the fact that the moieties are in axial and equatorial orientations. It is to be noted that there is a possibility of resonance between atoms N1, C19 and O1 as a result of the delocalization of the hetero π electrons of the carbonyl group, which is also confirmed by the torsion angles C2—N1—C19—O1 = 177.7 (2)° and C6—N1—C19—O1 = 13.0 (3)°.

The methyl group substituted at the 5-position of the piperidine ring is axially oriented, as confirmed by the torsion angles N1—C6—C5—C21 = −68.0 (3)° and C3—C4—C5—C21 = 112.4 (3)°, whereas the methyl group substituted at C19 is oriented equatorially with torsion angle C20—C19—N1—C6 = −166.3 (2)° and C20—C19—N1—C2 = −1.7 (3)°.

3. Supra­molecular features

The crystal packing features C—H⋯O inter­actions (Table 1[link]). Atom C20 of the mol­ecule at (x, y, z) donates a proton to atom O1 of the mol­ecule at (−x + 1, y + [{1\over 2}], −z + 1), forming a C4 zigzag chain (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) running along the b-axis direction as shown in Fig. 2[link]. The overall packing is shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20B⋯O1i 0.96 2.44 3.292 (3) 148
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
A partial view along the b axis of the crystal packing of the title compound, showing the formation of a mol­ecular chain by C—H⋯O inter­actions (dotted lines).
[Figure 3]
Figure 3
The overall crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines, and only the H atoms involved in hydrogen bonding have been included.

4. Density functional theory (DFT) study

The optimized mol­ecular structure and frontier mol­ecular orbitals (FMOs) (Figs. 4[link] and 5[link], respectively) were calculated using the DFT/B3LYP/6-311G(d,p) basis set implemented in the GAUSSIAN09 program package (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The highest occupied mol­ecular orbital (HOMO) and the lowest unoccupied mol­ecular orbital (LUMO) are called frontier mol­ecular orbitals (FMOs) as they lie at the outermost boundaries of the electrons of the mol­ecule. The electron distribution (ED) of the HOMO−1, HOMO, LUMO and LUMO+1 energy levels and the energy values are shown in Fig. 5[link]. The positive and negative phases are represented in green and red, respectively.

[Figure 4]
Figure 4
The optimized mol­ecular structure of the title compound.
[Figure 5]
Figure 5
The frontier mol­ecular orbitals (FMOs) of the title compound.

The HOMO of the title mol­ecule is localized on one aromatic ring and the C=O group, while the LUMO is located over the whole mol­ecule with the exception of the CH3 group and some carbon and hydrogen atoms in the piperidine ring. Thus the HOMO/LUMO implies an ED transfer to the C=O group from the ring. The energy band gap (ΔE = EHOMO − ELUMO) of the mol­ecule is 3.165 eV and the calculated frontier mol­ecular orbital energies, EHOMO and ELUMO, are −5.212 and −2.047 eV, respectively. The title compound has a small frontier orbital gap, hence the mol­ecule has high chemical reactivity and low kinetic stability. The electron affinity (A) and ionization potential (I) of the mol­ecule were calculated using the DFT/B3LYP/6- 311++G(d,p) basis set. The values of the hardness (η), softness (σ), electronegativity (χ) and electrophilicity index (ω) for the title compound are given in Table 2[link].

Table 2
Physico-chemical properties

Parameter Value
EHOMO (eV) −5.212
ELUMO (eV) −2.047
EHOMO − ELUMO energy gap (eV) 3.165
EHOMO−1 (eV) −5.851
ELUMO+1 (eV) −2.248
EHOMO−1 − ELUMO+1 energy gap (eV) 3.603
Ionization potential I (eV) 5.212
Electron affinity (A) 2.047
Electrophilicity Index (ω) 4.163
Chemical Potential (μ) 3.629
Electro negativity (χ) −3.630
Hardness (η) 1.583
Softness (σ) 0.316

5. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were generated using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia.]). The Hirshfeld surface mapped over dnorm using a standard surface resolution with a fixed colour scale of −0.2 (red) to 1.3 (blue) a.u. is shown in Fig. 6[link]a. The shorter and longer contacts are indicated as red and blue spots, respectively, on the Hirshfeld surfaces, and contacts with distances approximately equal to the sum of the van der Waals radii are represented as white spots. The most important red spots on the dnorm surface represent C—H⋯O inter­actions.

[Figure 6]
Figure 6
Hirshfeld surfaces mapped over (a) dnorm, (b) shape-index, (c) curvedness and (d) fragment patches.

The HS mapped over curvedness and shape-index, introduced by Koendrink (Koenderink, 1990[Koenderink, J. J. (1990). Solid Shape. Cambridge MA: MIT Press.]; Koenderink & van Doorn, 1992[Koenderink, J. J. & van Doorn, A. J. (1992). Image Vis. Comput. 10, 557-564.]), give further chemical insight into mol­ecular packing. A surface with low curvedness designates a flat region and may be indicative of ππ stacking in the crystal. A surface with high curvedness is highlighted as dark blue edges, and is indicative of the absence of ππ stacking (Fig. 6[link]). The nearest neighbour coordination environment of a mol­ecule is identified from the colour patches on the Hirshfeld surface, depending on their closeness to adjacent mol­ecules (Mohamooda Sumaya et al., 2017[Mohamooda Sumaya, U., Reuben Jonathan, D., Era, D. T., Gomathi, S. & Usha, G. (2017). IUCrData, 2, x170813.]).

The two-dimensional fingerprint plots of (di, de) points of all the contacts contributing to the Hirshfeld surface analysis in normal mode for all the atoms are shown in Fig. 7[link]. The most important inter­molecular inter­actions are H⋯H contacts, contributing 73.2% to the overall crystal packing. Other inter­actions and their respective contributions are C⋯H/H⋯C (18.4%) and O⋯H/H⋯O (8.4%), respectively.

[Figure 7]
Figure 7
Two-dimensional fingerprint plot for the title compound showing the contributions of individual types of inter­actions (all inter­molecular contacts, H⋯H contacts, C⋯H/H⋯C contacts and O⋯H/H⋯O contacts).

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and C⋯H/H⋯C inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

6. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39, update August 2018[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; Groom et al., 2016) for the 3-methyl-2,6-di­phenyl­piperidine skeleton yielded two hits, methyl 4-oxo-r-2,c-6-di­phenyl­piperidine-3-carboxyl­ate (BIHZEY; Sampath et al., 2004[Sampath, N., Aravindhan, S., Ponnuswamy, M. N. & Nethaji, M. (2004). Acta Cryst. E60, o2105-o2106.]) and r-2,c-6-di­phenyl­piperidine (NIKYEN; Maheshwaran et al., 2013[Maheshwaran, V., Abdul Basheer, S., Akila, A., Ponnuswamy, S. & Ponnuswamy, M. N. (2013). Acta Cryst. E69, o1371.]). The piperidine ring has a boat-shaped conformation in both compounds, as in the title compound. The benzene ring and the mean plane of the piperidine ring are inclined to each other by dihedral angles ranging from 19.95 to 29.16°, compared to 22.05 (6)° in the title compound.

7. Synthesis and crystallization

The compound t-3-methyl-r-2,c-6-di­phenyl­piperidin-4-one was reduced to the corresponding piperidine using the Wolf–Kishner reduction (Ravindran & Jeyaraman, 1992[Ravindran, T. & Jeyaraman, R. (1992). Indian J. Chem. B31, 677-682.]). The piperidine-4-one (10 mmol) was treated with di­ethyl­ene glycol (40 ml), hydrazine hydrate (10 mmol) and KOH pellets (10 mmol) to give t-3-methyl-r-2,c-6-di­phenyl­piperidine. N-Acetyl piperidine was synthesized by the acetyl­ation of the above piperidine. To t-3-methyl-r-2,c-6-di­phenyl­piperidine (5 mmol) dissolved in benzene (50 ml) were added tri­ethyl­amine (20 mmol) and acetyl chloride (20 mmol) to give N-acetyl-t-3-methyl-r-2,c-6-di­phenyl­piperidine, which was crystallized by slow evaporation from a benzene and petroleum ether solution.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geometrically (N—H = 0.88–0.90 Å and C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C20H23NO
Mr 293.39
Crystal system, space group Monoclinic, P21
Temperature (K) 296
a, b, c (Å) 8.3063 (4), 7.5842 (4), 13.8410 (7)
β (°) 104.174 (2)
V3) 845.39 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.30 × 0.25 × 0.25
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.697, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 15383, 3447, 2821
Rint 0.024
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.03
No. of reflections 3447
No. of parameters 201
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.13
Absolute structure Flack x determined using 1136 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.0 (5)
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL-2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2020).

1-(3-Methyl-2,6-diphenylpiperidin-1-yl)ethanone top
Crystal data top
C20H23NOF(000) = 316
Mr = 293.39Dx = 1.153 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.3063 (4) ÅCell parameters from 2821 reflections
b = 7.5842 (4) Åθ = 2.6–26.4°
c = 13.8410 (7) ŵ = 0.07 mm1
β = 104.174 (2)°T = 296 K
V = 845.39 (7) Å3Block, white
Z = 20.30 × 0.25 × 0.25 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2821 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
ω and φ scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 109
Tmin = 0.697, Tmax = 0.745k = 99
15383 measured reflectionsl = 1717
3447 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.0626P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.101(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.22 e Å3
3447 reflectionsΔρmin = 0.13 e Å3
201 parametersAbsolute structure: Flack x determined using 1136 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.0 (5)
Primary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.3371 (3)0.2057 (3)0.31568 (16)0.0457 (5)
H20.3772200.2707370.3781510.055*
C30.1580 (3)0.2626 (4)0.2699 (2)0.0565 (6)
H3A0.1553660.3885790.2575040.068*
H3B0.1179510.2035470.2063580.068*
C40.0435 (3)0.2199 (4)0.3367 (2)0.0679 (7)
H4A0.0707120.2314570.2986380.081*
H4B0.0616800.3049920.3906570.081*
C50.0700 (3)0.0344 (4)0.38074 (17)0.0567 (6)
H50.0386210.0235530.3684980.068*
C60.1821 (3)0.0774 (3)0.33117 (17)0.0481 (5)
H60.2097510.1827360.3729300.058*
C70.1060 (3)0.1457 (3)0.22655 (17)0.0502 (5)
C80.0600 (3)0.1247 (4)0.1781 (2)0.0659 (7)
H80.1290320.0580090.2075680.079*
C90.1240 (5)0.2032 (5)0.0855 (2)0.0812 (10)
H90.2354120.1883060.0534770.097*
C100.0235 (6)0.3020 (5)0.0415 (2)0.0890 (11)
H100.0669470.3545000.0200680.107*
C110.1404 (5)0.3236 (4)0.0881 (2)0.0824 (10)
H110.2084560.3906050.0581330.099*
C120.2053 (4)0.2460 (4)0.1796 (2)0.0637 (7)
H120.3171580.2609740.2104980.076*
C130.4446 (3)0.2557 (3)0.24606 (16)0.0471 (5)
C140.4544 (3)0.1539 (4)0.16487 (19)0.0584 (6)
H140.3956910.0484620.1528790.070*
C150.5502 (4)0.2063 (5)0.1012 (2)0.0715 (8)
H150.5553220.1361010.0470060.086*
C160.6372 (4)0.3607 (5)0.1175 (2)0.0783 (9)
H160.7018650.3954660.0747010.094*
C170.6289 (4)0.4638 (4)0.1971 (3)0.0775 (9)
H170.6881010.5689700.2083680.093*
C180.5326 (3)0.4126 (4)0.2611 (2)0.0632 (7)
H180.5269740.4843860.3146550.076*
C190.4825 (3)0.0674 (3)0.39016 (16)0.0476 (5)
C200.6396 (3)0.0380 (4)0.41982 (19)0.0617 (7)
H20A0.7241970.0313940.4629800.093*
H20B0.6198110.1426710.4541410.093*
H20C0.6754560.0701310.3613220.093*
C210.1416 (4)0.0413 (5)0.4921 (2)0.0733 (8)
H21A0.1553700.0763980.5183010.110*
H21B0.0674880.1052970.5227520.110*
H21C0.2473960.0995690.5060510.110*
N10.3411 (2)0.0152 (2)0.33954 (13)0.0433 (4)
O10.4827 (2)0.2245 (3)0.41220 (16)0.0707 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0422 (11)0.0485 (13)0.0457 (11)0.0023 (10)0.0097 (9)0.0057 (10)
C30.0478 (13)0.0552 (14)0.0642 (14)0.0106 (11)0.0097 (11)0.0003 (12)
C40.0484 (14)0.0814 (19)0.0771 (17)0.0154 (14)0.0216 (13)0.0054 (15)
C50.0388 (12)0.0813 (18)0.0536 (13)0.0051 (12)0.0180 (10)0.0059 (13)
C60.0379 (11)0.0585 (13)0.0484 (11)0.0038 (10)0.0117 (9)0.0029 (11)
C70.0493 (13)0.0504 (12)0.0509 (12)0.0083 (11)0.0123 (10)0.0014 (11)
C80.0556 (15)0.0738 (19)0.0623 (15)0.0092 (14)0.0029 (12)0.0028 (14)
C90.080 (2)0.085 (2)0.0654 (17)0.0241 (17)0.0076 (16)0.0078 (16)
C100.122 (3)0.086 (2)0.0541 (16)0.035 (2)0.0132 (19)0.0097 (16)
C110.109 (3)0.071 (2)0.0726 (19)0.0196 (18)0.0327 (19)0.0186 (16)
C120.0700 (17)0.0594 (15)0.0644 (15)0.0064 (13)0.0217 (13)0.0078 (13)
C130.0420 (12)0.0468 (12)0.0502 (12)0.0015 (10)0.0068 (9)0.0034 (10)
C140.0599 (14)0.0624 (15)0.0547 (14)0.0057 (12)0.0173 (12)0.0007 (11)
C150.0708 (17)0.088 (2)0.0616 (15)0.0017 (16)0.0277 (14)0.0080 (15)
C160.0658 (18)0.092 (2)0.083 (2)0.0003 (17)0.0287 (15)0.0310 (19)
C170.0677 (17)0.0639 (18)0.102 (2)0.0122 (14)0.0221 (17)0.0219 (17)
C180.0586 (15)0.0526 (14)0.0755 (16)0.0018 (12)0.0110 (13)0.0047 (13)
C190.0417 (12)0.0580 (14)0.0444 (11)0.0082 (11)0.0129 (9)0.0067 (10)
C200.0361 (11)0.0821 (18)0.0650 (14)0.0069 (12)0.0085 (10)0.0051 (14)
C210.0709 (18)0.091 (2)0.0638 (15)0.0030 (16)0.0278 (13)0.0006 (16)
N10.0335 (9)0.0520 (10)0.0445 (9)0.0014 (8)0.0100 (7)0.0023 (8)
O10.0595 (12)0.0657 (12)0.0843 (13)0.0117 (9)0.0125 (10)0.0206 (10)
Geometric parameters (Å, º) top
C2—N11.481 (3)C11—C121.381 (4)
C2—C131.513 (3)C11—H110.9300
C2—C31.530 (3)C12—H120.9300
C2—H20.9800C13—C141.382 (4)
C3—C41.515 (4)C13—C181.386 (4)
C3—H3A0.9700C14—C151.382 (4)
C3—H3B0.9700C14—H140.9300
C4—C51.528 (4)C15—C161.366 (5)
C4—H4A0.9700C15—H150.9300
C4—H4B0.9700C16—C171.366 (5)
C5—C211.511 (4)C16—H160.9300
C5—C61.539 (3)C17—C181.386 (4)
C5—H50.9800C17—H170.9300
C6—N11.475 (3)C18—H180.9300
C6—C71.522 (3)C19—O11.230 (3)
C6—H60.9800C19—N11.364 (3)
C7—C81.387 (3)C19—C201.499 (4)
C7—C121.394 (4)C20—H20A0.9600
C8—C91.395 (4)C20—H20B0.9600
C8—H80.9300C20—H20C0.9600
C9—C101.371 (6)C21—H21A0.9600
C9—H90.9300C21—H21B0.9600
C10—C111.366 (5)C21—H21C0.9600
C10—H100.9300
N1—C2—C13113.69 (18)C10—C11—C12120.1 (3)
N1—C2—C3109.49 (19)C10—C11—H11119.9
C13—C2—C3109.34 (19)C12—C11—H11119.9
N1—C2—H2108.1C11—C12—C7121.2 (3)
C13—C2—H2108.1C11—C12—H12119.4
C3—C2—H2108.1C7—C12—H12119.4
C4—C3—C2112.3 (2)C14—C13—C18117.9 (2)
C4—C3—H3A109.2C14—C13—C2122.6 (2)
C2—C3—H3A109.2C18—C13—C2119.4 (2)
C4—C3—H3B109.2C15—C14—C13121.0 (3)
C2—C3—H3B109.2C15—C14—H14119.5
H3A—C3—H3B107.9C13—C14—H14119.5
C3—C4—C5112.9 (2)C16—C15—C14120.4 (3)
C3—C4—H4A109.0C16—C15—H15119.8
C5—C4—H4A109.0C14—C15—H15119.8
C3—C4—H4B109.0C17—C16—C15119.6 (3)
C5—C4—H4B109.0C17—C16—H16120.2
H4A—C4—H4B107.8C15—C16—H16120.2
C21—C5—C4110.9 (2)C16—C17—C18120.4 (3)
C21—C5—C6110.1 (2)C16—C17—H17119.8
C4—C5—C6111.90 (19)C18—C17—H17119.8
C21—C5—H5107.9C13—C18—C17120.7 (3)
C4—C5—H5107.9C13—C18—H18119.7
C6—C5—H5107.9C17—C18—H18119.7
N1—C6—C7113.10 (17)O1—C19—N1121.4 (2)
N1—C6—C5109.31 (19)O1—C19—C20120.0 (2)
C7—C6—C5117.12 (19)N1—C19—C20118.5 (2)
N1—C6—H6105.4C19—C20—H20A109.5
C7—C6—H6105.4C19—C20—H20B109.5
C5—C6—H6105.4H20A—C20—H20B109.5
C8—C7—C12118.0 (2)C19—C20—H20C109.5
C8—C7—C6123.5 (2)H20A—C20—H20C109.5
C12—C7—C6118.3 (2)H20B—C20—H20C109.5
C7—C8—C9120.3 (3)C5—C21—H21A109.5
C7—C8—H8119.8C5—C21—H21B109.5
C9—C8—H8119.8H21A—C21—H21B109.5
C10—C9—C8120.3 (3)C5—C21—H21C109.5
C10—C9—H9119.8H21A—C21—H21C109.5
C8—C9—H9119.8H21B—C21—H21C109.5
C11—C10—C9120.1 (3)C19—N1—C6117.61 (18)
C11—C10—H10120.0C19—N1—C2122.16 (19)
C9—C10—H10120.0C6—N1—C2118.46 (17)
N1—C2—C3—C456.0 (3)N1—C2—C13—C18141.6 (2)
C13—C2—C3—C4178.8 (2)C3—C2—C13—C1895.7 (3)
C2—C3—C4—C545.0 (3)C18—C13—C14—C150.6 (4)
C3—C4—C5—C21112.4 (3)C2—C13—C14—C15178.1 (2)
C3—C4—C5—C611.0 (3)C13—C14—C15—C160.0 (5)
C21—C5—C6—N168.0 (3)C14—C15—C16—C170.2 (5)
C4—C5—C6—N155.8 (3)C15—C16—C17—C180.0 (5)
C21—C5—C6—C7161.7 (2)C14—C13—C18—C170.8 (4)
C4—C5—C6—C774.5 (3)C2—C13—C18—C17178.4 (2)
N1—C6—C7—C8133.9 (2)C16—C17—C18—C130.6 (4)
C5—C6—C7—C85.4 (4)O1—C19—N1—C613.1 (3)
N1—C6—C7—C1251.0 (3)C20—C19—N1—C6166.3 (2)
C5—C6—C7—C12179.5 (2)O1—C19—N1—C2177.7 (2)
C12—C7—C8—C90.3 (4)C20—C19—N1—C21.7 (3)
C6—C7—C8—C9174.8 (3)C7—C6—N1—C19108.2 (2)
C7—C8—C9—C100.1 (5)C5—C6—N1—C19119.4 (2)
C8—C9—C10—C110.3 (5)C7—C6—N1—C286.6 (2)
C9—C10—C11—C120.1 (5)C5—C6—N1—C245.8 (2)
C10—C11—C12—C70.4 (5)C13—C2—N1—C1964.0 (3)
C8—C7—C12—C110.6 (4)C3—C2—N1—C19173.40 (18)
C6—C7—C12—C11174.8 (2)C13—C2—N1—C6131.6 (2)
N1—C2—C13—C1440.9 (3)C3—C2—N1—C68.9 (3)
C3—C2—C13—C1481.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20B···O1i0.962.443.292 (3)148
Symmetry code: (i) x+1, y+1/2, z+1.
Physico-chemical properties top
ParameterValue
EHOMO (eV)-5.212
ELUMO (eV)-2.047
EHOMO - ELUMO energy gap (eV)3.165
EHOMO-1 (eV)-5.851
ELUMO+1 (eV)-2.248
EHOMO-1 - ELUMO+1 energy gap (eV)3.603
Ionization potential I (eV)5.212
Electron affinity (A)2.047
Electrophilicity Index (ω)4.163
Chemical Potential (µ)3.629
Electro negativity (χ)-3.630
Hardness (η)1.583
Softness (σ)0.316
 

Acknowledgements

The authors thank the SAIF, IIT Madras, India, for the data collection.

Funding information

KR thanks the UGC, New Delhi, for financial assistance in the form of a Minor Research Project.

References

First citationAridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577–592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationKatritzky, A. (2010). Adv. Heterocycl. Chem. pp. 42–89.  Google Scholar
First citationKoenderink, J. J. (1990). Solid Shape. Cambridge MA: MIT Press.  Google Scholar
First citationKoenderink, J. J. & van Doorn, A. J. (1992). Image Vis. Comput. 10, 557–564.  CrossRef Web of Science Google Scholar
First citationMaheshwaran, V., Abdul Basheer, S., Akila, A., Ponnuswamy, S. & Ponnuswamy, M. N. (2013). Acta Cryst. E69, o1371.  CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sargeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. & &Andreeva, E. I. (1989). Khim. Farm. Zh. 23, 421–427.  CAS Google Scholar
First citationMohamooda Sumaya, U., Reuben Jonathan, D., Era, D. T., Gomathi, S. & Usha, G. (2017). IUCrData, 2, x170813.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRavindran, T. & Jeyaraman, R. (1992). Indian J. Chem. B31, 677–682.  Google Scholar
First citationRoques, R., Declercq, J. P., Germain, G., Graffin, P., Kamenka, J. M. & Geneste, P. (1981). Acta Cryst. B37, 712–714.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSampath, N., Aravindhan, S., Ponnuswamy, M. N. & Nethaji, M. (2004). Acta Cryst. E60, o2105–o2106.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSekar, K., Parthasarathy, S. & Radhakrishnan, T. R. (1990). Acta Cryst. C46, 1338–1340.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia.  Google Scholar
First citationVinaya, K., Kavitha, R., Ananda Kumar, C. S., Benaka Prasad, S. B., Chandrappa, S., Deepak, S. A., NanjundaSwamy, S., Umesha, S. & Rangappa, K. S. (2009). Arch. Pharm. Res. 32, 1, 33–41.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds