research communications
and Hirshfeld surface analysis of the hydrated 2:1 adduct of piperazine-1,4-diium 3,5-dinitro-2-oxidobenzoate and piperazine
aPG and Research Department of Physics, Government Arts College (Autonomous and affiliated to Bharathidasan University, Tiruchirappalli), Thanthonimalai, Karur-639 005, Tamil Nadu, India, bCrystal Growth Laboratory, PG and Research department of Physics, Periyar EVR Government College (Autonomous and affiliated to Bharathidasan University, Tiruchirappalli), Tiruchirappalli-620 023, Tamil Nadu, India, cUnidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa, 72960, Puebla, Mexico, and dDepartment of Chemistry, Srimad Andavan Arts and Science College (Autonomous), Tiruchirappalli-620 005, Tamil Nadu, India
*Correspondence e-mail: seethabala@gmail.com, venkat@andavancollege.ac.in
The 2−) and a protonated piperazine-1,4-diium cation (PIP2+) along with a piperazine molecule. The formula of the title adduct in the is 2C4H12N22+·2C7H2N2O72−·C4H10N2·2H2O with Z = 1. The piperazine ring in the piperazine-1,4-diium cation and in the neutral piperazine molecule adopt chair conformations. All O atoms in the DNSA2− moiety and the water molecule act as hydrogen-bonding acceptors for various intermolecular O—H⋯O, N—H⋯O and C—H⋯O interactions, which stabilize the Various supramolecular architectures formed by the different intermolecular interactions are discussed. The relative contribution of various intermolecular contacts is analysed with the aid of two-dimensional (full and decomposed) fingerprint plots, indicating that H⋯O/O⋯H (50.2%) and H⋯H (36.2%) contacts are the major contributors to the stabilization of the crystal structure.
of the adduct piperazine-1,4-diium 3,5-dinitro-2-oxidobenzoate–piperazine–water (2/1/2) shows the existence of a 3,5-dinitrosalicylate dianion (DNSAKeywords: crystal structure; 3,5-dinitrosalicylate dianion; piperazine-1,4-diium cation; organic proton-transfer salt; Hirshfeld surface analysis.
CCDC reference: 2132861
1. Chemical context
3,5-Dinitrosalicylic acid (DNSA) is one of the most prevalent proton-donor molecules for forming organic salts with different Lewis bases. There are more than 150 examples found in the Cambridge Structural Database (CSD, Version 5.41, update of August 2020; Groom et al., 2016) containing the DNSA moiety. Among them, there are 20 structures containing the neutral DNSA molecule with the rest being proton-transfer salts of the monoanion DNSA− and the dianion DNSA2−. The loss of both acidic protons from the carboxylic acid (–COOH) and phenolic (–OH) groups in the DNSA molecule forms the DNSA2− dianion. In general, the removal of the acidic proton from the –COOH group in DNSA [pKa(COOH) = 2.2] would be expected to occur more readily than the removal of the proton from the phenolic –OH group [pKa(OH) = 6.8]. Consequently, the DNSA molecule easily forms 1:1 proton-transfer salts with aliphatic (Smith et al., 2002), monocyclic, polycyclic aromatic and heteroaromatic (Smith et al., 2003, 2007), substituted primary and secondary anilines and phenylenediamines (Issa et al., 1980, 1981; Hindawey et al., 1980). However, 1:2 proton-transfer salts of DNSA containing the DNSA2− dianion are much fewer in number. Briefly, the structurally characterized 1:2 proton-transfer salts were formed with ethylenediamine (EGUVAD; Smith et al., 2002), cyclohexylamine (ROFLIJ; Gao et al., 2014), piperidine (XEBFAM; Smith et al., 2006) and diethylenetriamine (ZONBIP; Chen et al., 2014). Among the four DNSA2− salts, the of ROFLIJ consists of two cyclohexylaminium cations and a DNSA2− moiety while one dication (diethylenetriaminium dication in ZONBIP or ethylenediaminium dication in EGUVAD), DNSA2− and one water molecule are found in the of ZONBIP or EGUVAD. The dianions (DNSA2−), mono anions (DNSA1−), and partially substituted mono picrate anion along with three piperidinium cations and a water molecule are found in the of XEBFAM. The crystal structures (EGUVAD, ROFLIJ, ZONBIP, and XEBFAM) of these DNSA2− salts are mainly stabilized by N—H⋯O, C—H⋯π and π–π interactions. On the other hand, co-crystals of DNSA were reported with phenazine (Senthil Kumar et al., 2002), urea or substituted ureas (Smith et al., 1997, 2000; Bott et al., 2000) and trans-1,4-dithiane-1,4-dioxide (Senthil Kumar et al., 2002b). In this study, the Hirshfeld surface (HS) analysis, structural features, and various intermolecular interactions that exist in the monohydrated 1:1 adduct of bis(piperazine-1,4-diium) 3,5-dinitro-2-oxidobenzoate and piperazine (I) are reported. The various intermolecular interactions and the relative contribution of various intermolecular contacts are compared with a similar structure (XEBFAM).
2. Structural commentary
The title compound crystallizes in the triclinic P with Z = 1 with the comprising two DNSA2− ions, two protonated piperazine-1,4-diium cations, and a neutral piperazine molecule along with two water molecules and having the formula 2C4H12N22+·2C7H2N2O72−·C4H10N2·2H2O. The atom-numbering scheme and molecular structure of (I) are shown in Fig. 1. The distance between the phenolate oxygen atom, O7, and the carboxylate oxygen atom, O6, in the anion is 2.770 (2) Å and is comparable to that found earlier reported dianionic salts (2.735–2.912 Å). This, together with the absence of a locateable H atom between these oxygen atoms (O6 and O7) is good evidence for the existence of the dianion in this adduct. One of the nitro groups (N1, O1, and O2) and the phenolate oxygen atom, O7 are coplanar with the mean plane of the phenyl ring, while the second nitro group (N2, O3, and O4) and the carboxylate group (C7, O5, and O6) are slightly twisted from the above plane. These twists are measured by the dihedral angles between the mean plane of the phenyl ring and those of the second nitro and carboxylate groups of 19.4 (3) and 24.4 (3)°, respectively, and by the C2—C3—N2—O4 and C6—C5—C7—O6 torsion angles of 161.1 (2)° and 156.6 (2)°, respectively. These slight twists of the nitro and carboxylate groups are due to the differences in the intermolecular hydrogen-bonding patterns in which the N2/O3/O4 and C7/O6/O7 groups participate as compared to the N1/O1/O2 group.
The piperazine rings in the piperazine-1,4-diium cations and the neutral piperazine molecule in (I) adopt chair conformations with puckering parameters (Cremer & Pople, 1975), Q = 0.563 (3) Å, θ = 180.0 (3)°,φ = 0° for the the N3 ring, Q = 0.571 (3) Å, θ = 1.87 (1)°, φ = 0° for the N5 ring and Q = 0.517 (3) Å, θ = 180.0 (3)°, φ = 0° for the N4 ring in the neutral PIP molecule.
Additionally, we carried out a structural overlay study of the DNSA2− units in the di-anionic salts found in (I), EGUVAD (Smith et al., 2002), ROFLIJ (Gao et al., 2014), ZONBIP (Chen et al., 2014) and XEBFAM (Smith et al., 2006) using the six carbon atoms in the phenyl ring in DNSA2− as the basis. The DNSA2− units in all five structures overlay quite well with one another. The maximum r.m.s.d. observed between any molecular pair is 0.0095 Å (for ROFLIJ and ZONBIP). However, the slight rotation of the nitro and carboxylate groups in the DNSA2− unit (Fig. 2) may well be due to the oxygen atoms in these functional groups participating in different intermolecular interactions in their crystal structures as noted above.
In the 2− anion are linked via N3—H3B⋯O7, N3—H3B⋯O4 and N5—H5B⋯O5 hydrogen bonds (Table 1). Furthermore, the second piperazine-1,4-diium cation is linked to a piperazine molecule through a water molecule via N5—H5A⋯O8 and O8—H8C⋯N4 hydrogen bonds.
two piperazine-1,4-diium cations and one DNSA3. Supramolecular features
The O1–O4 oxygen atoms in both nitro groups and the oxygen atoms in the carboxylate (O6 and O7) and the phenolate groups (O8) in the DNSA2− ion act as acceptors for various intermolecular N—H⋯O and C—H⋯O interactions (Table 1). The atoms O1 and O2 in one nitro group form C8—H8A⋯O1 and C9—H9B⋯O2 hydrogen bonds, which link neighbouring DNSA2− and PIP2+ ions with R22(8) motifs. The O6 and O7 atoms (from phenolate and carboxylate groups) form a cyclic bidentate hydrogen bond with the H3A—N3 unit N3—H3A⋯O6 and N3—H3A⋯O7) with an R12(6) motif. This R12(6) motif is a common one in proton-transfer compounds of DNSA and it helps to extend their secondary structures (Smith et al., 2007). These two ring motifs [ R22(8) and R12(6)] link a DNSA2− anion and one of the PIP2+ cations into a molecular chain, which propagates parallel to the c axis (Fig. 3a). Furthermore, N3—H3A⋯O6, N3—H3A⋯O7, N3—H3B⋯O4 and N3—H3B⋯O7 interactions link two neighbouring molecular chains through the PIP2+ cations into a sheet-like architecture containing two R12(6) motifs. Also involved is a weak C9—H9B⋯O2 interaction (Fig. 3 b) which, although quite long, has precedent in recent work (Sosa-Rivadeneyra et al., 2020). The water molecule links the second piperazine-1,4-diium cation and a piperazine molecule, PIP through O8–H8C⋯N4 and N5—H5A⋯O8 hydrogen bonds to form a molecular chain (Fig. 4). Additional O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds produce a three-dimensional framework (Fig. 5).
4. Hirshfeld surface analysis
Crystal Explorer 17.5 (Turner et al., 2017) was used to calculate the Hirshfeld surfaces (HS; McKinnon et al., 1998, 2004) of the title adduct and generate two-dimensional fingerprint plots (full and decomposed, 2D-FP; Spackman & McKinnon, 2002; Spackman & Jayatilaka, 2009). The HS and 2D-FP were used to provide additional information and to quantify the intermolecular interactions using distinct colours and intensities to indicate short and long contacts, as well as the relative contribution of the different interactions in the solid-state (Venkatesan et al., 2015, 2016). The HS is plotted over dnorm in the range −0.7438 to 1.3459 a.u. and two views (front and back) of the HS are shown in Fig. 6. Bright-red spots on the HS confirm the existence of hydrogen-bonding contacts in the The 2D FP plots show that the relative contributions of the various non-covalent contacts (Fig. 7). O⋯H contacts contribute most (50.2%) to the crystal packing while the second significant contact is H⋯H, which contributes 36.2%. The relative contributions of C⋯O, C⋯H, N⋯H, C⋯N and C⋯C contacts are 4.6%, 2.9%, 2.7%, 1.7% and 1.0%, respectively. In the XEBFAM structure, the relative contributions of O⋯H, H⋯H, C⋯O, C⋯H, N⋯H, C⋯N and C⋯C contacts are 49.7%, 37.6%, 3.6%, 2.7%, 1.3%, 0.7%, and 2.1%, respectively. The relative contribution of various interatomic contacts in XEBFAM and the title adduct (I) are similar, even though the compounds have different compositions as discussed earlier.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.41, update of August 2020; Groom et al., 2016) using Conquest (Bruno et al., 2002) for the neutral DNSA molecule found 20 structures of co-crystals, including those with urea (NUHYAQ; Smith et al., 1997), trans-1,4-dithiane-1,4-dioxide (OGAHEJ; Senthil Kumar et al., 2002a), 4-(dimethylamino)benzaldehyde (SUYYIW; Jin et al., 2016) and dioxane (GORXAM, GORXAM01, GORXEQ, GORXEQ01; Senthil Kumar et al., 1999). For monoanions of DNSA, a total of 62 structures containing the carboxylate (COO−) moiety and 70 containing the phenolate anion (O−) were found. As mentioned earlier, the removal of the carboxylic acid proton is expected to be easier than the removal of the proton from the phenolic –OH group in DNSA so it is somewhat surprising that the number of crystal structures containing phenolate ions is larger than those containing carboxylate ions. These seemingly conflicting results may suggest that the formation and stability of the salts with phenolate ions of the DNSA moiety is governed by intermolecular interactions in the crystal. However, it has been pointed out (Fábry, 2018), that since the monoanions generally contain a hydrogen atom bridging between the the carboxylate and phenolate oxygen atoms, how one formulates the anion (carboxylate or phenolate) depends critically on how this hydrogen atom is treated in the so that some of the reported phenolate structures may actually be carboxylates.
As mentioned earlier, there are four structures of the dianionic salt of DNSA, which are formed with ethylenediamine (EGUVAD; Smith et al., 2002), cyclohexylamine (ROFLIJ; Gao et al., 2014), piperidine (XEBFAM; Smith et al., 2006) and diethylenetriamine (ZONBIP; Chen et al., 2014). The cation (ethylenediaminonium or 2,2′-iminodiethanaminium) and dianion (DNSA2−) along with a water molecule are connected via intermolecular O—H⋯O, N—H⋯O and C—H⋯O interactions in the of EGUVAD and ZONBIP. An N—H⋯O hydrogen bond connects the cyclohexylaminonium moiety and the dianion in ROFLIJ, while the piperazine-1,4-diium cations form a mixed salt with the dianion and monoanion of 3,5-dinitrosalicylate along with a picrate anion in XEBFAM. The cation and anions are linked via O—H⋯O, N—H⋯O and C—H⋯O interactions in XEBFAM.
6. Synthesis and crystallization
The title adduct was synthesized from 3,5-dinitrosalicylic acid (1 mmol, 228 mg) and piperazine (5 mmol, 426 mg, 0.5 mL) dissolved in 50 mL of methanol and stirred well for 6 h. The homogeneous solution was filtered and the solution was allowed to evaporate slowly at room temperature. Red block-like crystals suitable for single X-ray diffraction were harvested after a growth period of 10 days.
7. Refinement
Crystal data, data collection and structure . The amino H atoms and O-bound H atoms were refined with DFIX instructions. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.98 Å, O—H = 0.82 Å with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).
details are summarized in Table 2
|
Supporting information
CCDC reference: 2132861
https://doi.org/10.1107/S2056989022000226/mw2181sup1.cif
contains datablocks I, publication_text. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022000226/mw2181Isup3.hkl
Data collection: APEX2 (Bruker, 2012); cell
APEX2 and SAINT (Bruker, 2012); data reduction: SAINT and XPREP (Bruker, 2012); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: PLATON (Spek, 2020).C4H12N22+·C7H2N2O72−·0.5C4H10N2·H2O | Z = 2 |
Mr = 375.35 | F(000) = 396 |
Triclinic, P1 | Dx = 1.487 Mg m−3 |
a = 6.6211 (16) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.891 (3) Å | Cell parameters from 2314 reflections |
c = 12.389 (3) Å | θ = 3.2–20.9° |
α = 116.320 (5)° | µ = 0.12 mm−1 |
β = 98.878 (5)° | T = 296 K |
γ = 98.390 (5)° | BLOCK, orange |
V = 838.1 (3) Å3 | 0.20 × 0.18 × 0.15 mm |
Bruker Kappa APEXII diffractometer | 1835 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.067 |
ω and φ scan | θmax = 25.9°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −8→8 |
Tmin = 0.834, Tmax = 0.942 | k = −14→14 |
15411 measured reflections | l = −15→15 |
3265 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.049 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.133 | w = 1/[σ2(Fo2) + (0.0514P)2 + 0.1429P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
3265 reflections | Δρmax = 0.24 e Å−3 |
264 parameters | Δρmin = −0.21 e Å−3 |
7 restraints | Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: dual | Extinction coefficient: 0.022 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2400 (4) | 0.4979 (2) | 0.4846 (2) | 0.0331 (6) | |
C2 | 0.1716 (4) | 0.5004 (2) | 0.3755 (2) | 0.0376 (6) | |
H2 | 0.097021 | 0.424987 | 0.303896 | 0.045* | |
C3 | 0.2150 (4) | 0.6162 (3) | 0.3737 (2) | 0.0353 (6) | |
C4 | 0.3382 (4) | 0.7355 (2) | 0.4796 (2) | 0.0335 (6) | |
C5 | 0.4064 (4) | 0.7254 (2) | 0.5918 (2) | 0.0303 (6) | |
C6 | 0.3534 (4) | 0.6100 (2) | 0.5917 (2) | 0.0325 (6) | |
H6 | 0.394113 | 0.606279 | 0.665144 | 0.039* | |
C7 | 0.5309 (4) | 0.8402 (2) | 0.7123 (2) | 0.0362 (6) | |
C8 | 0.1947 (4) | 0.0896 (2) | 0.5817 (2) | 0.0388 (7) | |
H8A | 0.166572 | 0.172139 | 0.595530 | 0.047* | |
H8B | 0.336846 | 0.105846 | 0.628741 | 0.047* | |
C9 | −0.0406 (4) | −0.0246 (3) | 0.3735 (2) | 0.0379 (7) | |
H9A | −0.048896 | −0.081723 | 0.286864 | 0.046* | |
H9B | −0.077271 | 0.053723 | 0.379768 | 0.046* | |
C10 | 0.4553 (5) | 0.5527 (3) | −0.0810 (3) | 0.0530 (8) | |
H10A | 0.593339 | 0.595334 | −0.079123 | 0.064* | |
H10B | 0.351574 | 0.562706 | −0.138468 | 0.064* | |
C11 | 0.5558 (5) | 0.5896 (3) | 0.1283 (3) | 0.0519 (8) | |
H11A | 0.517856 | 0.623969 | 0.207334 | 0.062* | |
H11B | 0.699858 | 0.634402 | 0.142542 | 0.062* | |
C12 | 0.9027 (5) | 1.0964 (3) | 0.0763 (3) | 0.0663 (9) | |
H12A | 0.991252 | 1.127416 | 0.158769 | 0.080* | |
H12B | 0.793302 | 1.143558 | 0.084060 | 0.080* | |
C13 | 0.9676 (5) | 0.8797 (3) | 0.0037 (3) | 0.0660 (9) | |
H13A | 0.899018 | 0.788492 | −0.035061 | 0.079* | |
H13B | 1.058073 | 0.903815 | 0.083872 | 0.079* | |
N1 | 0.1911 (3) | 0.3784 (2) | 0.4897 (3) | 0.0448 (6) | |
N2 | 0.1279 (4) | 0.6133 (3) | 0.2575 (2) | 0.0498 (6) | |
N3 | 0.1777 (3) | 0.0079 (2) | 0.4483 (2) | 0.0366 (6) | |
N4 | 0.4177 (4) | 0.6159 (2) | 0.0429 (2) | 0.0492 (6) | |
N5 | 0.8059 (4) | 0.9568 (3) | 0.0213 (2) | 0.0594 (8) | |
O1 | 0.2522 (3) | 0.37951 (19) | 0.5894 (2) | 0.0588 (6) | |
O2 | 0.0900 (3) | 0.28024 (19) | 0.3949 (2) | 0.0618 (6) | |
O3 | 0.0716 (3) | 0.5083 (2) | 0.16184 (19) | 0.0659 (6) | |
O4 | 0.1115 (4) | 0.7148 (2) | 0.25659 (19) | 0.0693 (7) | |
O5 | 0.5161 (3) | 0.83365 (19) | 0.80899 (17) | 0.0578 (6) | |
O6 | 0.6420 (3) | 0.93523 (17) | 0.71300 (16) | 0.0481 (5) | |
O7 | 0.3856 (3) | 0.84047 (17) | 0.47722 (17) | 0.0499 (5) | |
O8 | 0.5428 (4) | 0.8759 (3) | 0.1338 (2) | 0.0634 (7) | |
H8C | 0.489 (6) | 0.796 (4) | 0.102 (3) | 0.089 (13)* | |
H8D | 0.486 (6) | 0.928 (4) | 0.182 (4) | 0.102 (16)* | |
H3A | 0.267 (4) | 0.045 (2) | 0.418 (3) | 0.069 (10)* | |
H3B | 0.224 (4) | −0.0629 (19) | 0.438 (2) | 0.058 (9)* | |
H4 | 0.291 (3) | 0.582 (3) | 0.039 (3) | 0.061 (10)* | |
H5A | 0.726 (4) | 0.943 (3) | 0.069 (2) | 0.086 (12)* | |
H5B | 0.712 (4) | 0.927 (3) | −0.0537 (18) | 0.083 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0281 (14) | 0.0283 (14) | 0.0472 (17) | 0.0077 (11) | 0.0161 (12) | 0.0193 (13) |
C2 | 0.0297 (14) | 0.0347 (15) | 0.0386 (16) | 0.0071 (12) | 0.0120 (12) | 0.0082 (13) |
C3 | 0.0316 (14) | 0.0434 (17) | 0.0343 (15) | 0.0110 (12) | 0.0105 (12) | 0.0202 (14) |
C4 | 0.0272 (14) | 0.0344 (15) | 0.0453 (16) | 0.0096 (12) | 0.0129 (12) | 0.0227 (14) |
C5 | 0.0288 (14) | 0.0316 (14) | 0.0349 (15) | 0.0091 (11) | 0.0129 (11) | 0.0174 (13) |
C6 | 0.0284 (13) | 0.0352 (15) | 0.0404 (16) | 0.0104 (12) | 0.0143 (12) | 0.0209 (14) |
C7 | 0.0346 (15) | 0.0327 (15) | 0.0416 (17) | 0.0087 (12) | 0.0139 (13) | 0.0164 (14) |
C8 | 0.0344 (15) | 0.0385 (16) | 0.0378 (17) | 0.0012 (12) | 0.0044 (12) | 0.0170 (14) |
C9 | 0.0399 (16) | 0.0409 (16) | 0.0346 (15) | 0.0057 (12) | 0.0073 (12) | 0.0212 (14) |
C10 | 0.057 (2) | 0.0492 (19) | 0.057 (2) | 0.0128 (15) | 0.0165 (16) | 0.0281 (17) |
C11 | 0.0501 (18) | 0.0477 (19) | 0.0454 (18) | 0.0058 (15) | 0.0065 (15) | 0.0150 (16) |
C12 | 0.054 (2) | 0.068 (2) | 0.052 (2) | 0.0006 (17) | 0.0126 (17) | 0.0117 (18) |
C13 | 0.053 (2) | 0.071 (2) | 0.067 (2) | −0.0030 (18) | 0.0156 (18) | 0.032 (2) |
N1 | 0.0357 (14) | 0.0330 (15) | 0.0707 (19) | 0.0119 (11) | 0.0243 (13) | 0.0244 (15) |
N2 | 0.0439 (15) | 0.0615 (18) | 0.0459 (17) | 0.0146 (13) | 0.0126 (12) | 0.0261 (16) |
N3 | 0.0358 (13) | 0.0362 (14) | 0.0446 (15) | 0.0078 (11) | 0.0133 (11) | 0.0241 (12) |
N4 | 0.0466 (16) | 0.0431 (15) | 0.0527 (16) | 0.0098 (13) | 0.0149 (13) | 0.0180 (13) |
N5 | 0.0428 (16) | 0.081 (2) | 0.0382 (16) | −0.0074 (15) | 0.0115 (14) | 0.0208 (16) |
O1 | 0.0646 (14) | 0.0533 (14) | 0.0814 (16) | 0.0181 (11) | 0.0241 (12) | 0.0485 (13) |
O2 | 0.0579 (14) | 0.0295 (12) | 0.0816 (16) | 0.0017 (10) | 0.0193 (12) | 0.0146 (12) |
O3 | 0.0694 (15) | 0.0694 (16) | 0.0389 (13) | 0.0079 (12) | 0.0052 (11) | 0.0141 (12) |
O4 | 0.0837 (17) | 0.0753 (17) | 0.0616 (15) | 0.0283 (13) | 0.0092 (12) | 0.0435 (14) |
O5 | 0.0679 (14) | 0.0570 (13) | 0.0370 (12) | −0.0114 (10) | 0.0063 (10) | 0.0226 (11) |
O6 | 0.0558 (12) | 0.0350 (11) | 0.0451 (12) | −0.0015 (9) | 0.0207 (9) | 0.0130 (9) |
O7 | 0.0409 (11) | 0.0458 (12) | 0.0705 (14) | 0.0011 (9) | 0.0020 (10) | 0.0408 (11) |
O8 | 0.0809 (18) | 0.0400 (15) | 0.0751 (18) | 0.0151 (14) | 0.0457 (14) | 0.0240 (14) |
C1—C2 | 1.373 (3) | C10—H10A | 0.9700 |
C1—C6 | 1.390 (3) | C10—H10B | 0.9700 |
C1—N1 | 1.442 (3) | C11—N4 | 1.460 (3) |
C2—C3 | 1.376 (3) | C11—H11A | 0.9700 |
C2—H2 | 0.9300 | C11—H11B | 0.9700 |
C3—C4 | 1.443 (3) | C12—N5 | 1.478 (4) |
C3—N2 | 1.448 (3) | C12—C13iii | 1.497 (4) |
C4—O7 | 1.257 (3) | C12—H12A | 0.9700 |
C4—C5 | 1.455 (3) | C12—H12B | 0.9700 |
C5—C6 | 1.366 (3) | C13—N5 | 1.488 (4) |
C5—C7 | 1.503 (3) | C13—H13A | 0.9700 |
C6—H6 | 0.9300 | C13—H13B | 0.9700 |
C7—O6 | 1.251 (3) | N1—O2 | 1.227 (3) |
C7—O5 | 1.251 (3) | N1—O1 | 1.232 (3) |
C8—N3 | 1.475 (3) | N2—O3 | 1.232 (3) |
C8—C9i | 1.507 (3) | N2—O4 | 1.233 (3) |
C8—H8A | 0.9700 | N3—H3A | 0.903 (16) |
C8—H8B | 0.9700 | N3—H3B | 0.900 (16) |
C9—N3 | 1.484 (3) | N4—H4 | 0.860 (17) |
C9—H9A | 0.9700 | N5—H5A | 0.900 (17) |
C9—H9B | 0.9700 | N5—H5B | 0.918 (17) |
C10—N4 | 1.461 (3) | O8—H8C | 0.84 (4) |
C10—C11ii | 1.510 (4) | O8—H8D | 0.84 (4) |
C2—C1—C6 | 120.9 (2) | N4—C11—H11A | 108.9 |
C2—C1—N1 | 120.0 (2) | C10ii—C11—H11A | 108.9 |
C6—C1—N1 | 119.1 (2) | N4—C11—H11B | 108.9 |
C1—C2—C3 | 119.0 (2) | C10ii—C11—H11B | 108.9 |
C1—C2—H2 | 120.5 | H11A—C11—H11B | 107.7 |
C3—C2—H2 | 120.5 | N5—C12—C13iii | 110.2 (3) |
C2—C3—C4 | 123.4 (2) | N5—C12—H12A | 109.6 |
C2—C3—N2 | 116.1 (2) | C13iii—C12—H12A | 109.6 |
C4—C3—N2 | 120.5 (2) | N5—C12—H12B | 109.6 |
O7—C4—C3 | 123.7 (2) | C13iii—C12—H12B | 109.6 |
O7—C4—C5 | 121.7 (2) | H12A—C12—H12B | 108.1 |
C3—C4—C5 | 114.5 (2) | N5—C13—C12iii | 110.0 (3) |
C6—C5—C4 | 120.6 (2) | N5—C13—H13A | 109.7 |
C6—C5—C7 | 117.2 (2) | C12iii—C13—H13A | 109.7 |
C4—C5—C7 | 122.2 (2) | N5—C13—H13B | 109.7 |
C5—C6—C1 | 121.6 (2) | C12iii—C13—H13B | 109.7 |
C5—C6—H6 | 119.2 | H13A—C13—H13B | 108.2 |
C1—C6—H6 | 119.2 | O2—N1—O1 | 122.8 (2) |
O6—C7—O5 | 123.4 (2) | O2—N1—C1 | 118.6 (3) |
O6—C7—C5 | 120.5 (2) | O1—N1—C1 | 118.5 (2) |
O5—C7—C5 | 116.1 (2) | O3—N2—O4 | 121.8 (2) |
N3—C8—C9i | 110.7 (2) | O3—N2—C3 | 118.6 (2) |
N3—C8—H8A | 109.5 | O4—N2—C3 | 119.7 (3) |
C9i—C8—H8A | 109.5 | C8—N3—C9 | 111.2 (2) |
N3—C8—H8B | 109.5 | C8—N3—H3A | 113.0 (19) |
C9i—C8—H8B | 109.5 | C9—N3—H3A | 109.0 (18) |
H8A—C8—H8B | 108.1 | C8—N3—H3B | 108.8 (17) |
N3—C9—C8i | 110.8 (2) | C9—N3—H3B | 112.4 (18) |
N3—C9—H9A | 109.5 | H3A—N3—H3B | 102.2 (19) |
C8i—C9—H9A | 109.5 | C11—N4—C10 | 110.1 (2) |
N3—C9—H9B | 109.5 | C11—N4—H4 | 106.5 (19) |
C8i—C9—H9B | 109.5 | C10—N4—H4 | 108 (2) |
H9A—C9—H9B | 108.1 | C12—N5—C13 | 111.6 (2) |
N4—C10—C11ii | 113.1 (2) | C12—N5—H5A | 110 (2) |
N4—C10—H10A | 109.0 | C13—N5—H5A | 111 (2) |
C11ii—C10—H10A | 109.0 | C12—N5—H5B | 111 (2) |
N4—C10—H10B | 109.0 | C13—N5—H5B | 109 (2) |
C11ii—C10—H10B | 109.0 | H5A—N5—H5B | 104 (2) |
H10A—C10—H10B | 107.8 | H8C—O8—H8D | 119 (4) |
N4—C11—C10ii | 113.3 (2) | ||
C6—C1—C2—C3 | −0.7 (4) | C4—C5—C7—O6 | −25.2 (4) |
N1—C1—C2—C3 | 178.2 (2) | C6—C5—C7—O5 | −23.2 (3) |
C1—C2—C3—C4 | 3.0 (4) | C4—C5—C7—O5 | 155.0 (2) |
C1—C2—C3—N2 | −176.6 (2) | C2—C1—N1—O2 | 0.7 (3) |
C2—C3—C4—O7 | 177.0 (2) | C6—C1—N1—O2 | 179.6 (2) |
N2—C3—C4—O7 | −3.4 (4) | C2—C1—N1—O1 | −179.0 (2) |
C2—C3—C4—C5 | −2.6 (3) | C6—C1—N1—O1 | −0.1 (3) |
N2—C3—C4—C5 | 177.0 (2) | C2—C3—N2—O3 | −18.7 (3) |
O7—C4—C5—C6 | −179.7 (2) | C4—C3—N2—O3 | 161.7 (2) |
C3—C4—C5—C6 | −0.1 (3) | C2—C3—N2—O4 | 161.1 (2) |
O7—C4—C5—C7 | 2.1 (4) | C4—C3—N2—O4 | −18.5 (4) |
C3—C4—C5—C7 | −178.2 (2) | C9i—C8—N3—C9 | 56.3 (3) |
C4—C5—C6—C1 | 2.3 (3) | C8i—C9—N3—C8 | −56.4 (3) |
C7—C5—C6—C1 | −179.4 (2) | C10ii—C11—N4—C10 | −52.3 (3) |
C2—C1—C6—C5 | −2.0 (4) | C11ii—C10—N4—C11 | 52.1 (3) |
N1—C1—C6—C5 | 179.1 (2) | C13iii—C12—N5—C13 | 57.4 (4) |
C6—C5—C7—O6 | 156.6 (2) | C12iii—C13—N5—C12 | −57.4 (4) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y+1, −z; (iii) −x+2, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H8D···O6iv | 0.84 (4) | 1.98 (4) | 2.807 (3) | 173 (4) |
N3—H3A···O6v | 0.90 (2) | 1.92 (2) | 2.752 (3) | 153 (3) |
N3—H3A···O7v | 0.90 (2) | 2.33 (3) | 2.940 (3) | 125 (2) |
N3—H3B···O4vi | 0.90 (2) | 2.50 (2) | 3.142 (3) | 129 (2) |
N3—H3B···O7vi | 0.90 (2) | 1.84 (2) | 2.696 (3) | 157 (3) |
N4—H4···O3 | 0.860 (17) | 2.59 (2) | 3.304 (3) | 141 (2) |
N5—H5A···O8 | 0.900 (17) | 1.83 (2) | 2.712 (3) | 166 (3) |
N5—H5B···O5vii | 0.918 (17) | 1.74 (2) | 2.637 (3) | 165 (3) |
O8—H8C···N4 | 0.84 (4) | 1.88 (4) | 2.717 (3) | 169 (3) |
C8—H8A···O1 | 0.97 | 2.49 | 3.369 (3) | 151 |
C9—H9B···O2 | 0.97 | 2.67 | 3.482 (3) | 141 |
C12—H12A···O2viii | 0.97 | 2.58 | 3.455 (4) | 151 |
C12—H12B···O5iv | 0.97 | 2.59 | 3.353 (4) | 136 |
Symmetry codes: (iv) −x+1, −y+2, −z+1; (v) −x+1, −y+1, −z+1; (vi) x, y−1, z; (vii) x, y, z−1; (viii) x+1, y+1, z. |
Acknowledgements
PV and MJP would also like to thank VIEP–BUAP for support of project 100184100-VIEP.
References
Bott, R. C., Smith, G., Wermuth, U. D. & Dwyer, N. C. (2000). Aust. J. Chem. 53, 767–777. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chen, B., Jin, S., Lin, Z. & Wang, D. (2014). J. Chem. Crystallogr. 44, 459–465. Web of Science CSD CrossRef CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Fábry, J. (2018). Acta Cryst. E74, 1344–1357. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gao, X., Lin, Z., Jin, S., Chen, G., Huang, T., Ji, Z., Zhou, Y. & Wang, D. (2014). J. Chem. Crystallogr. 44, 210–219. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hindawey, A. M., Nassar, A. M. G., Issa, R. M. & Issa, Y. M. (1980). Ind. J Chem. A, B19, 615–619. Google Scholar
Issa, Y. M., Hindawey, A. M., El-Kholy, A. E. & Issa, R. M. (1981). Gazz. Chim. Ital. 111, 27–33. CAS Google Scholar
Issa, Y. M., Hindawey, A. M., Issa, R. M. & Nassar, A. M. G. (1980). Rev. Roum. Chim. 25, 1535–1541. CAS Google Scholar
Jin, S., Wang, L., Lou, Y., Liu, L., Li, B., Li, L., Feng, C., Liu, H. & Wang, D. (2016). J. Mol. Struct. 1108, 735–747. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Mitchell, A. S. & Spackman, M. A. (1998). Chem. Eur. J. 4, 2136–2141. CrossRef CAS Google Scholar
McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. Web of Science CrossRef CAS IUCr Journals Google Scholar
Senthil Kumar, V. S., Kuduva, S. S. & Desiraju, G. R. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1069–1074. CSD CrossRef Google Scholar
Senthil Kumar, V. S., Kuduva, S. S. & Desiraju, G. R. (2002a). Acta Cryst. E58, o865–o866. Web of Science CSD CrossRef IUCr Journals Google Scholar
Senthil Kumar, V. S., Nangia, A., Katz, A. K. & Carrell, H. L. (2002b). Cryst. Growth Des. 2, 313–318. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, G., Baldry, K. E., Byriel, K. A. & Kennard, C. H. L. (1997). Aust. J. Chem. 50, 727–736. CSD CrossRef CAS Web of Science Google Scholar
Smith, G., Coyne, M. G. & White, J. M. (2000). Aust. J. Chem. 53, 203–208. Web of Science CSD CrossRef CAS Google Scholar
Smith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o610–o613. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G., Wermuth, U. D., Healy, P. C., Bott, R. C. & White, J. M. (2002). Aust. J. Chem. 55, 349–356. Web of Science CSD CrossRef CAS Google Scholar
Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2003). Aust. J. Chem. 56, 707–713. Web of Science CSD CrossRef CAS Google Scholar
Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem. 60, 264–277. Web of Science CSD CrossRef CAS Google Scholar
Sosa-Rivadeneyra, M. V., Venkatesan, P., Flores-Manuel, F., Bernès, S., Höpfl, H., Cerón, M., Thamotharan, S. & Percino, M. J. (2020). CrystEngComm, 22, 6645–6660. CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
Venkatesan, P., Thamotharan, S., Kumar, R. G. & Ilangovan, A. (2015). CrystEngComm, 17, 904–915. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.