research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The layer silicate Cs2SnIVSi6O15

crossmark logo

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at

Edited by S. Parkin, University of Kentucky, USA (Received 7 December 2021; accepted 23 December 2021; online 7 January 2022)

Single crystals of Cs2SnSi6O15, dicaesium tin(IV) hexa­silicate, were serendipitously obtained from a CsCl/NaCl flux at 923 K, starting from mixtures of CaO, SnO and TeO2 in a closed silica ampoule. The crystal structure of Cs2SnSi6O15 is constructed from {Si6O15}6– layers extending parallel to (101), and CsI cations with a coordination number of eleven as well as isolated [SnO6] octa­hedra situated between the silicate layers. Each of the nine different SiO4 tetra­hedra in the silicate layer has a connectedness of Q3 (three bridging and one terminal O atom), which leads to the formation of five- and eight-membered rings. The same type of silicate layer is found in the crystal structure of the mineral zeravshanite. Comparison with other silicates of the type Cs2MIVSi6O15 (MIV = Ti, Zr, Th, U) revealed a klassengleiche group–subgroup relationship of index 2 between Cs2ZrSi6O15 (Z = 6, space group C2/m) and Cs2SnSi6O15 (Z = 12, space group I2/c).

1. Chemical context

Calcium oxotellurate(IV), CaTeO3, is known to exist in various polymorphic forms that can be obtained either through solid-state reactions (Trömel & Ziethen-Reichenach, 1970[Trömel, M. & Ziethen-Reichenach, H. (1970). Z. Anorg. Allg. Chem. 378, 232-237.]; Stöger et al., 2009[Stöger, B., Weil, M., Zobetz, E. & Giester, G. (2009). Acta Cryst. B65, 167-181.]) or under hydro­thermal conditions and subsequent dehydration (Poupon et al., 2015[Poupon, M., Barrier, N., Petit, S., Clevers, S. & Dupray, V. (2015). Inorg. Chem. 54, 5660-5670.]). Some of the CaTeO3 polymorphs have a non-centrosymmetric crystal structure and show ferroelectric behaviour (Rai et al., 2002[Rai, R., Sharma, S. & Choudhary, R. N. P. (2002). J. Mater. Sci. Lett. 21, 297-299.]) or a second harmonic generation (SHG) effect (Poupon et al., 2015[Poupon, M., Barrier, N., Petit, S., Clevers, S. & Dupray, V. (2015). Inorg. Chem. 54, 5660-5670.]). These features are thought to be related to the presence of the 5s2 electron lone pair at the TeIV atom. In a current study it was attempted to incorporate SnII into CaTeO3 under formation of solid solutions (Ca1-xSnx)TeO3 in order to investigate whether the 5s2 electron lone pair at the SnII atom has any influence on the ferroelectric or SHG characteristics. For that purpose, a flux medium consisting of a eutectic CsCl/NaCl mixture with a melting point of 766 K (Żemcżużny & Rambach, 1909[Żemcżużny, S. & Rambach, F. (1909). Z. Anorg. Chem. 65, 403-428.]) was chosen as reaction medium in a closed silica ampoule. In comparison with conventional ceramic routes, this allows the lowering of the reaction temperatures by a simultaneous increase of the diffusion pathways. However, neither the intended (Ca1-xSnx)TeO3 solid solutions nor other calcium oxotellurates with a partial replacement of CaII by SnII could be prepared this way. One of the side products of this reaction was Cs2SnIVSi6O15, which had formed through attack of the silica glass ampoule by the molten salt mixture and concomitant oxidation of SnII to SnIV. Its crystal structure along with a structural comparison with other silicates is given here.

2. Structural commentary

The asymmetric unit of Cs2SnSi6O15 comprises three Cs, two Sn, nine Si and twenty-three O sites. Except for one Sn site (Sn2) and one O site (O23), which are located on Wyckoff positions 4b (site symmetry [\overline{1}]) and 4e (site symmetry 2), respectively, all atoms are on general positions. The crystal structure of Cs2SnSi6O15 can be described as being built up from silicate layers extending parallel to (101). The silicate layers are linked by caesium cations and isolated [SnO6] octa­hedra situated between adjacent silicate layers (Fig. 1[link]).

[Figure 1]
Figure 1
The crystal structure of Cs2SnSi6O15 in a projection along [0[\overline{1}]0]. Cs sites are given in blue, [SnO6] octa­hedra in orange and SiO4 tetra­hedra in red. Displacement parameters are drawn at the 74% probability level. For clarity, the disordered Cs3 site with minor occupancy (Cs3B) is not shown. [Symmetry code: (i) x, y + 1, z + 1.]

Each of the three caesium cations exhibits a coordination number of 11, with Cs—O bond lengths ranging from 2.951 (3) to 3.748 (3) Å. The mean Cs—O bond lengths for the three individual [CsO11] polyhedra (Cs1: 3.312 Å; Cs2: 3.355 Å; Cs3: 3.342 Å) are in very good agreement with the overall mean Cs—O bond length of 3.333 (226) Å calculated from 748 bonds for 11-coordinate Cs (Gagné & Hawthorne, 2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.]). The two SnIV atoms show slight deviations from a regular octa­hedral coordination, with Sn—O bond lengths ranging from 2.031 (3) to 2.058 (3) Å. The overall mean SnIV—O bond length of 2.054 (10) Å calculated from 32 bonds (Gagné & Hawthorne, 2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.]) is somewhat longer than the mean values for Sn1 (2.037 Å) and Sn2 (2.047 Å).

All of the nine SiO4 tetra­hedra in the {Si6O15}6– layer have one terminal O atom and are linked to three other SiO4 tetra­hedra by common bridging O atoms. Thus, the connectedness of the silicate tetra­hedra is Q3 according to the notation of Liebau (1985[Liebau, F. (1985). Structural Chemistry of Silicates: Structure, Bonding and Classification. Springer: Berlin.]). The bond lengths distribution in the SiO4 tetra­hedra reflects the different roles of the O atoms in the silicate layer. The Si—O bonds to terminal O atoms are shorter by about 0.03 Å (mean 1.588 Å) than those to bridging O atoms (1.621 Å). The total mean Si—O bond in Cs2SnSi6O15 has a value of 1.613 Å, which is slightly shorter than the overall mean of 1.625 (24) calculated from 9128 bonds (Gagné & Hawthorne, 2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.]). The connectedness of the SiO4 tetra­hedra leads to the formation of a {Si6O15}6– layer comprising five- and eight-membered rings (Fig. 2[link]). The same type of silicate layer is found in the mineral zeravshanite with composition (Cs3.80Na0.18K0.02)Na2(Zr2.73Ti0.19Sn0.04Fe0.04)(Si18O45)(H2O)2 (Uvarova et al., 2004[Uvarova, Y. A., Sokolova, E., Hawthorne, F. C., Pautov, L. A. & Agakhanov, A. A. (2004). Can. Mineral. 42, 125-134.]).

[Figure 2]
Figure 2
The {Si6O15}6– layer in the crystal structure of Cs2SnSi6O15 shown in a projection along [[\overline{1}]0[\overline{2}]]. Colour code and displacement ellipsoids are as in Fig.1.

Crystal-chemical features of silicates comprising the {Si6O15}6– anion were recently compiled by Wierzbicka-Wieczorek et al. (2015[Wierzbicka-Wieczorek, M., Göckeritz, M., Kolitsch, U., Lenz, C. & Giester, G. (2015). Eur. J. Inorg. Chem. pp. 2426-2436.]). A topological classification of zirconosilicates and their analogues, where the simplest structure units are [MO6] octa­hedra and TO4 tetra­hedra united by vertices, was reported some time ago by Ilyushin & Blatov (2002[Ilyushin, G. D. & Blatov, V. A. (2002). Acta Cryst. B58, 198-218.]). Since the same structure elements are also present in Cs2SnSi6O15 in the form of [SnO6] octa­hedra and SiO4 tetra­hedra, a similar analysis can be made. With respect to the concept of the polyhedral microensemble (PME) introduced by Ilyushin & Blatov (2002[Ilyushin, G. D. & Blatov, V. A. (2002). Acta Cryst. B58, 198-218.]), Cs2SnSi6O15 conforms to the PME type C-1. A comparison of the unit-cell parameters of Cs2SnSi6O15 with those of the other reported Cs2MIVSi6O15 (MIV = Ti, Zr, Th, U) compounds (Table 1[link]) revealed a close relationship between the Sn- and Zr-containing phases. The a and b axes and the β angle in the two structures are very similar, and the c axis of the Sn-containing compound is doubled. Indeed, there is a group–subgroup relationship between the crystal structures of Cs2ZrSi6O15 and Cs2SnSi6O15. The Sn-containing phase crystallizes in a subgroup (I2/c; Z = 12) of the Zr-containing phase (C2/m; Z = 6), defining a klassengleiche relationship of index 2 (Müller, 2013[Müller, U. (2013). Symmetry Relationships between Crystal Structures. Oxford University Press.]).

Table 1
Crystal data (Å, °) of Cs2MIVSi6O15 compounds

M Ti (single-crystal data)a Ti (powder data)b Zrc Th (173 K data)d Th (293 K data)e Uf
Space group C2/c Cc C2/m Pca21 Cmc21 Cmc21
Z 4 4 6 4 4 4
a 13.386 (5) 12.988 (2) 26.610 (10) 16.2920 (10) 7.2813 (15) 7.2717 (3)
b 7.423 (3) 7.5014 (3) 7.506 (2) 7.2154 (6) 16.420 (3) 16.3061 (7)
c 15.134 (5) 15.156 (3) 11.602 (4) 13.6800 (10) 13.591 (3) 13.4983 (6)
β 107.71 (3) 105.80 (3) 107.43 (2) 90 90 90
V 1432.51 1420.83 2210.92 1608.13 1624.92 1600.53
References: (a) Grey et al. (1997[Grey, I. E., Roth, R. S. & Balmer, M. L. (1997). J. Solid State Chem. 131, 38-42.]); (b) Nyman et al. (2000[Nyman, M., Bonhomme, F., Teter, D. M., Maxwell, R. S., Gu, B. X., Wang, L. M., Ewing, R. C. & Nenoff, T. M. (2000). Chem. Mater. 12, 3449-3458.]); (c) Jolicart et al. (1996[Jolicart, G., le Blanc, M., Morel, B., Dehaudt, P. & Dubois, S. (1996). Eur. J. Solid State Inorg. Chem. 33, 647-657.]); (d) Woodward et al. (2005[Woodward, J. D., Almond, P. M. & Albrecht-Schmitt, T. E. (2005). Acta Cryst. E61, i58-i60.]); (e) Mann et al. (2015[Mann, J. M., McMillen, C. D. & Kolis, J. W. (2015). Cryst. Growth Des. 15, 2643-2651.]); (f) Liu & Lii (2011[Liu, H. & Lii, K. (2011). Inorg. Chem. 50, 5870-5872.]).

3. Synthesis and crystallization

1.2 mmol of CaO (0.067 g), 0.13 mmol SnO (0.018 g) and 1.3 mmol of TeO2 (0.207 g) were intimately mixed with 1 g of an NaCl (35 mol%):CsCl (65 mol%) mixture and filled in a silica ampoule that was subsequently evacuated and torch-sealed. The ampoule was then heated at 923 K for 2 d before the power of the furnace was switched off. The silica ampoule showed a severe attack from the halide flux but was still intact. After washing the recrystallized flux with several portions of warm water and drying the remaining solid in air, a few lath-shaped crystals of the title compound could be isolated under a polarizing microscope. Single-crystal diffraction of other selected crystals revealed α-CaTeO3 (Stöger et al., 2009[Stöger, B., Weil, M., Zobetz, E. & Giester, G. (2009). Acta Cryst. B65, 167-181.]), CaTe2O5 (Weil & Stöger, 2008[Weil, M. & Stöger, B. (2008). Acta Cryst. C64, i79-i81.]) and Ca4Te5O14 (Weil, 2004[Weil, M. (2004). Solid State Sci. 6, 29-37.]) as products. Powder X-ray diffraction of the bulk showed the reflections of these phases together with those of SnO2 and also some reflections of non-assignable phase(s).

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. For better comparison of Cs2SnSi6O15 with the crystal structure of Cs2ZrSi6O15, the unconventional setting I2/c of space group type C2/c (No. 15) was chosen, so that unit-cell parameters a, b, c and β of the Sn-containing phase correspond to a, b, 2c and β of the Zr-containing phase (Jolicart et al., 1996[Jolicart, G., le Blanc, M., Morel, B., Dehaudt, P. & Dubois, S. (1996). Eur. J. Solid State Inorg. Chem. 33, 647-657.]; Table 1[link]). The Cs3 atom in Cs2SnSi6O15 was found to be disordered over two sites in a 0.934 (5):0.066 ratio and was refined with common displacement parameters for the two sites (A and B).

Table 2
Experimental details

Crystal data
Chemical formula Cs2SnSi6O15
Mr 793.05
Crystal system, space group Monoclinic, I2/c
Temperature (K) 296
a, b, c (Å) 26.3434 (10), 7.4805 (3), 22.9137 (7)
β (°) 107.4020 (7)
V3) 4308.7 (3)
Z 12
Radiation type Mo Kα
μ (mm−1) 7.36
Crystal size (mm) 0.12 × 0.03 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]).
Tmin, Tmax 0.539, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 51032, 8282, 5013
Rint 0.077
(sin θ/λ)max−1) 0.772
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.082, 1.00
No. of reflections 8282
No. of parameters 331
Δρmax, Δρmin (e Å−3) 1.84, −1.48
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ATOMS (Dowty, 2006[Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Dicaesium tin(IV) hexasilicate top
Crystal data top
Cs2SnSi6O15F(000) = 4368
Mr = 793.05Dx = 3.668 Mg m3
Monoclinic, I2/cMo Kα radiation, λ = 0.71073 Å
a = 26.3434 (10) ÅCell parameters from 4399 reflections
b = 7.4805 (3) Åθ = 2.8–32.4°
c = 22.9137 (7) ŵ = 7.36 mm1
β = 107.4020 (7)°T = 296 K
V = 4308.7 (3) Å3Lath, colourless
Z = 120.12 × 0.03 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
5013 reflections with I > 2σ(I)
ω– and φ–scansRint = 0.077
Absorption correction: multi-scan
(SADABS; Krause et al., 2015).
θmax = 33.3°, θmin = 2.8°
Tmin = 0.539, Tmax = 0.747h = 4040
51032 measured reflectionsk = 1111
8282 independent reflectionsl = 3535
Refinement top
Refinement on F2331 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0259P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max = 0.002
S = 1.00Δρmax = 1.84 e Å3
8282 reflectionsΔρmin = 1.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cs10.39755 (2)0.01953 (4)0.18693 (2)0.01982 (7)
Cs20.57484 (2)0.51580 (4)0.00767 (2)0.02128 (7)
Cs3A0.74609 (2)0.98408 (7)0.32160 (8)0.02213 (18)0.934 (5)
Cs3B0.7514 (3)0.9776 (11)0.3439 (8)0.02213 (18)0.066 (5)
Sn10.67822 (2)0.49735 (4)0.17784 (2)0.00700 (6)
Sn20.5000000.0000000.0000000.00681 (7)
Si10.62500 (5)0.70216 (15)0.18853 (6)0.0075 (2)
Si20.63425 (5)0.30679 (15)0.18719 (6)0.0091 (2)
Si30.69676 (5)0.70648 (15)0.04744 (6)0.0077 (2)
Si40.63589 (4)0.99872 (15)0.00070 (5)0.0067 (2)
Si50.81053 (5)0.81223 (15)0.04445 (6)0.0086 (2)
Si60.68624 (4)0.99635 (15)0.13636 (5)0.0078 (2)
Si70.50782 (5)0.80838 (15)0.13301 (6)0.0080 (2)
Si80.51736 (5)0.20099 (15)0.13222 (6)0.0081 (2)
Si90.45804 (4)0.50114 (15)0.18261 (5)0.0066 (2)
O10.65897 (13)0.7024 (4)0.25901 (15)0.0129 (7)
O20.56382 (13)0.7463 (4)0.18108 (15)0.0167 (7)
O30.64737 (13)0.8469 (4)0.15066 (16)0.0199 (8)
O40.62794 (13)0.5077 (4)0.15681 (13)0.0140 (6)
O50.66980 (12)0.3096 (4)0.25683 (15)0.0115 (6)
O60.66307 (13)0.1918 (4)0.14653 (15)0.0162 (7)
O70.57564 (13)0.2302 (4)0.18125 (15)0.0170 (7)
O80.70020 (13)0.6982 (4)0.11572 (15)0.0119 (7)
O90.75309 (13)0.7544 (5)0.00067 (17)0.0187 (7)
O100.65155 (12)0.8509 (4)0.04422 (15)0.0134 (7)
O110.67790 (13)0.5157 (4)0.02671 (14)0.0144 (6)
O120.57747 (12)0.9680 (4)0.00220 (15)0.0144 (7)
O130.68113 (12)0.9797 (4)0.06475 (13)0.0123 (6)
O140.85664 (13)0.6934 (4)0.02893 (16)0.0147 (7)
O150.81334 (13)0.7987 (4)0.11477 (14)0.0125 (7)
O160.74525 (12)0.9636 (4)0.17887 (14)0.0136 (7)
O170.50824 (13)0.7996 (4)0.06370 (15)0.0127 (7)
O180.46185 (12)0.6903 (4)0.14849 (15)0.0129 (7)
O190.49642 (12)0.0117 (4)0.15154 (14)0.0119 (6)
O200.51978 (13)0.1991 (4)0.06375 (15)0.0121 (7)
O210.47656 (13)0.3514 (4)0.14152 (16)0.0171 (7)
O220.39930 (12)0.4614 (4)0.18260 (15)0.0149 (7)
O230.5000000.5021 (6)0.2500000.0193 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.01741 (15)0.02075 (15)0.02457 (17)0.00118 (12)0.01126 (13)0.00080 (13)
Cs20.01832 (15)0.02304 (15)0.02465 (17)0.00150 (14)0.00974 (13)0.00107 (14)
Cs3A0.01454 (17)0.02048 (16)0.0320 (5)0.00139 (14)0.0080 (2)0.0013 (2)
Cs3B0.01454 (17)0.02048 (16)0.0320 (5)0.00139 (14)0.0080 (2)0.0013 (2)
Sn10.00705 (12)0.00726 (12)0.00620 (13)0.00027 (11)0.00124 (10)0.00007 (12)
Sn20.00707 (17)0.00700 (17)0.00653 (18)0.00038 (16)0.00229 (14)0.00016 (17)
Si10.0074 (6)0.0074 (5)0.0069 (6)0.0006 (4)0.0011 (5)0.0018 (4)
Si20.0098 (6)0.0086 (5)0.0082 (7)0.0011 (4)0.0013 (5)0.0012 (4)
Si30.0086 (6)0.0076 (5)0.0064 (7)0.0007 (4)0.0016 (5)0.0012 (4)
Si40.0063 (5)0.0065 (5)0.0079 (5)0.0005 (4)0.0031 (4)0.0001 (5)
Si50.0093 (6)0.0071 (5)0.0091 (7)0.0004 (4)0.0021 (5)0.0010 (4)
Si60.0077 (5)0.0091 (5)0.0065 (5)0.0003 (5)0.0020 (4)0.0002 (5)
Si70.0086 (6)0.0063 (5)0.0091 (7)0.0002 (4)0.0025 (5)0.0012 (4)
Si80.0089 (6)0.0072 (5)0.0086 (7)0.0011 (4)0.0031 (5)0.0020 (4)
Si90.0068 (5)0.0064 (5)0.0071 (5)0.0012 (5)0.0029 (4)0.0004 (5)
O10.0160 (17)0.0111 (15)0.0096 (18)0.0011 (12)0.0008 (14)0.0006 (12)
O20.0086 (16)0.0259 (18)0.0147 (19)0.0032 (13)0.0020 (14)0.0048 (14)
O30.0168 (18)0.0198 (17)0.022 (2)0.0065 (14)0.0036 (16)0.0121 (14)
O40.0229 (17)0.0077 (13)0.0097 (15)0.0037 (13)0.0026 (13)0.0007 (12)
O50.0119 (16)0.0099 (14)0.0110 (18)0.0009 (12)0.0011 (14)0.0037 (12)
O60.0219 (19)0.0129 (15)0.0154 (19)0.0034 (13)0.0079 (16)0.0028 (13)
O70.0102 (17)0.0242 (18)0.0131 (19)0.0048 (13)0.0019 (14)0.0041 (14)
O80.0164 (17)0.0092 (14)0.0105 (18)0.0016 (12)0.0049 (14)0.0024 (12)
O90.0121 (16)0.0264 (17)0.0146 (17)0.0030 (13)0.0005 (13)0.0072 (13)
O100.0129 (17)0.0145 (15)0.0105 (17)0.0063 (12)0.0001 (14)0.0045 (12)
O110.0209 (17)0.0096 (14)0.0175 (17)0.0002 (13)0.0131 (14)0.0014 (13)
O120.0071 (15)0.0177 (15)0.0203 (18)0.0010 (12)0.0068 (13)0.0010 (13)
O130.0134 (15)0.0193 (16)0.0030 (14)0.0020 (13)0.0006 (12)0.0005 (12)
O140.0124 (17)0.0131 (15)0.018 (2)0.0025 (12)0.0042 (15)0.0036 (13)
O150.0196 (18)0.0097 (14)0.0070 (17)0.0016 (12)0.0022 (14)0.0007 (12)
O160.0083 (15)0.0237 (17)0.0081 (16)0.0012 (12)0.0013 (12)0.0024 (13)
O170.0195 (18)0.0111 (14)0.0072 (18)0.0012 (13)0.0036 (14)0.0039 (12)
O180.0117 (16)0.0096 (14)0.0178 (19)0.0030 (12)0.0052 (14)0.0048 (12)
O190.0146 (15)0.0106 (14)0.0132 (15)0.0011 (13)0.0084 (13)0.0002 (13)
O200.0162 (17)0.0106 (14)0.0107 (18)0.0033 (12)0.0060 (14)0.0009 (12)
O210.0201 (19)0.0143 (16)0.017 (2)0.0077 (13)0.0064 (16)0.0061 (13)
O220.0081 (15)0.0155 (15)0.0211 (18)0.0013 (12)0.0042 (14)0.0025 (13)
O230.020 (2)0.025 (2)0.011 (2)0.0000.0024 (19)0.000
Geometric parameters (Å, º) top
Cs1—O192.951 (3)Sn1—O22iii2.036 (3)
Cs1—O1i3.237 (3)Sn1—O1x2.036 (3)
Cs1—O18ii3.256 (3)Sn1—O15vi2.038 (3)
Cs1—O10iii3.282 (3)Sn1—O16vi2.039 (3)
Cs1—O7iv3.291 (3)Sn1—O5x2.044 (3)
Cs1—O5iv3.299 (3)Sn2—O12iii2.040 (3)
Cs1—O223.308 (3)Sn2—O12ii2.040 (3)
Cs1—O15v3.336 (3)Sn2—O202.042 (3)
Cs1—O8iii3.352 (3)Sn2—O20xi2.042 (3)
Cs1—O2i3.538 (3)Sn2—O17iii2.058 (3)
Cs1—O213.588 (3)Sn2—O17ii2.058 (3)
Cs1—Cs3Ai3.7396 (5)Si1—O11.595 (4)
Cs2—O113.045 (3)Si1—O21.604 (3)
Cs2—O203.238 (3)Si1—O31.606 (3)
Cs2—O173.253 (3)Si1—O41.638 (3)
Cs2—O14vi3.268 (3)Si2—O51.590 (3)
Cs2—O43.283 (3)Si2—O71.614 (3)
Cs2—O17iii3.300 (3)Si2—O61.615 (3)
Cs2—O20iii3.316 (3)Si2—O41.644 (3)
Cs2—O123.387 (3)Si3—O81.595 (3)
Cs2—O21iii3.426 (4)Si3—O91.602 (4)
Cs2—O103.636 (3)Si3—O101.626 (3)
Cs2—O18iii3.748 (3)Si3—O111.628 (3)
Cs2—Cs2iii3.8598 (6)Si4—O121.577 (3)
Cs3A—O13.129 (3)Si4—O131.619 (3)
Cs3A—O8vii3.195 (3)Si4—O101.623 (3)
Cs3A—O4viii3.206 (3)Si4—O14xii1.629 (3)
Cs3A—O5ix3.223 (3)Si5—O151.594 (3)
Cs3A—O15viii3.227 (3)Si5—O91.605 (4)
Cs3A—O163.268 (3)Si5—O11xii1.628 (3)
Cs3A—O6viii3.331 (3)Si5—O141.628 (3)
Cs3A—O16viii3.357 (3)Si6—O161.587 (3)
Cs3A—Si2viii3.5783 (13)Si6—O131.611 (3)
Cs3A—O5viii3.592 (3)Si6—O31.615 (3)
Cs3A—O3viii3.653 (3)Si6—O6ix1.628 (3)
Cs3B—O15viii3.007 (10)Si7—O171.593 (3)
Cs3B—O8vii3.050 (9)Si7—O181.622 (3)
Cs3B—O4viii3.186 (8)Si7—O21.623 (4)
Cs3B—O6viii3.308 (8)Si7—O19ix1.631 (3)
Cs3B—O13.334 (12)Si8—O201.589 (3)
Cs3B—O16viii3.347 (9)Si8—O211.614 (3)
Cs3B—O5ix3.494 (13)Si8—O71.623 (4)
Cs3B—O3viii3.580 (8)Si8—O191.629 (3)
Cs3B—Si2viii3.670 (8)Si9—O221.576 (3)
Cs3B—O163.738 (18)Si9—O231.6078 (12)
Cs3B—Si1viii3.796 (8)Si9—O211.629 (3)
Sn1—O82.031 (3)Si9—O181.634 (3)
O19—Cs1—O1i129.44 (8)O1—Si1—Cs3Aviii79.54 (12)
O19—Cs1—O18ii48.50 (7)O2—Si1—Cs3Aviii166.44 (14)
O1i—Cs1—O18ii83.41 (7)O3—Si1—Cs3Aviii74.38 (13)
O19—Cs1—O10iii81.34 (8)O4—Si1—Cs3Aviii58.51 (12)
O1i—Cs1—O10iii120.55 (8)O1—Si1—Cs3Bviii86.8 (3)
O18ii—Cs1—O10iii92.05 (8)O2—Si1—Cs3Bviii161.0 (3)
O19—Cs1—O7iv107.28 (8)O3—Si1—Cs3Bviii70.0 (2)
O1i—Cs1—O7iv89.80 (8)O4—Si1—Cs3Bviii56.05 (18)
O18ii—Cs1—O7iv128.63 (8)Cs3Aviii—Si1—Cs3Bviii7.4 (2)
O10iii—Cs1—O7iv133.27 (8)O1—Si1—Cs1xiii54.50 (11)
O19—Cs1—O5iv137.94 (8)O2—Si1—Cs1xiii65.38 (13)
O1i—Cs1—O5iv88.26 (7)O3—Si1—Cs1xiii98.41 (13)
O18ii—Cs1—O5iv170.79 (7)O4—Si1—Cs1xiii154.79 (12)
O10iii—Cs1—O5iv95.58 (7)Cs3Aviii—Si1—Cs1xiii127.81 (4)
O7iv—Cs1—O5iv47.11 (8)Cs3Bviii—Si1—Cs1xiii133.4 (2)
O19—Cs1—O2289.45 (8)O1—Si1—Cs2156.41 (12)
O1i—Cs1—O22139.09 (7)O2—Si1—Cs287.35 (13)
O18ii—Cs1—O22137.29 (7)O3—Si1—Cs275.41 (14)
O10iii—Cs1—O2271.33 (8)O4—Si1—Cs246.31 (11)
O7iv—Cs1—O2263.12 (8)Cs3Aviii—Si1—Cs280.71 (3)
O5iv—Cs1—O2250.83 (7)Cs3Bviii—Si1—Cs274.0 (3)
O19—Cs1—O15v111.12 (8)Cs1xiii—Si1—Cs2148.79 (3)
O1i—Cs1—O15v49.69 (8)O1—Si1—Cs3A36.91 (11)
O18ii—Cs1—O15v69.44 (7)O2—Si1—Cs3A119.24 (13)
O10iii—Cs1—O15v73.23 (8)O3—Si1—Cs3A74.66 (14)
O7iv—Cs1—O15v136.47 (7)O4—Si1—Cs3A129.29 (12)
O5iv—Cs1—O15v107.90 (7)Cs3Aviii—Si1—Cs3A74.28 (3)
O22—Cs1—O15v135.35 (8)Cs3Bviii—Si1—Cs3A79.2 (2)
O19—Cs1—O8iii119.44 (8)Cs1xiii—Si1—Cs3A54.428 (19)
O1i—Cs1—O8iii105.87 (7)Cs2—Si1—Cs3A145.09 (3)
O18ii—Cs1—O8iii136.95 (8)O5—Si2—O7110.53 (17)
O10iii—Cs1—O8iii46.58 (7)O5—Si2—O6110.39 (18)
O7iv—Cs1—O8iii93.90 (8)O7—Si2—O6111.42 (18)
O5iv—Cs1—O8iii49.56 (8)O5—Si2—O4111.56 (16)
O22—Cs1—O8iii51.07 (7)O7—Si2—O4108.41 (18)
O15v—Cs1—O8iii84.72 (7)O6—Si2—O4104.37 (16)
O19—Cs1—O2i99.87 (8)O5—Si2—Cs3Aviii77.67 (12)
O1i—Cs1—O2i45.36 (8)O7—Si2—Cs3Aviii170.77 (14)
O18ii—Cs1—O2i75.78 (8)O6—Si2—Cs3Aviii68.05 (12)
O10iii—Cs1—O2i161.62 (7)O4—Si2—Cs3Aviii63.62 (12)
O7iv—Cs1—O2i64.15 (7)O5—Si2—Cs3Bviii85.3 (3)
O5iv—Cs1—O2i95.55 (7)O7—Si2—Cs3Bviii163.7 (3)
O22—Cs1—O2i126.86 (8)O6—Si2—Cs3Bviii64.3 (2)
O15v—Cs1—O2i89.43 (7)O4—Si2—Cs3Bviii60.1 (2)
O8iii—Cs1—O2i139.69 (7)Cs3Aviii—Si2—Cs3Bviii7.6 (3)
O19—Cs1—O2145.41 (7)O5—Si2—Cs1iv56.99 (11)
O1i—Cs1—O21172.30 (8)O7—Si2—Cs1iv56.83 (13)
O18ii—Cs1—O2192.93 (7)O6—Si2—Cs1iv112.15 (12)
O10iii—Cs1—O2166.22 (8)O4—Si2—Cs1iv143.45 (12)
O7iv—Cs1—O2187.19 (8)Cs3Aviii—Si2—Cs1iv132.30 (5)
O5iv—Cs1—O2194.85 (7)Cs3Bviii—Si2—Cs1iv139.4 (3)
O22—Cs1—O2144.39 (7)O5—Si2—Cs2154.76 (12)
O15v—Cs1—O21135.03 (8)O7—Si2—Cs289.01 (13)
O8iii—Cs1—O2181.42 (7)O6—Si2—Cs274.77 (13)
O2i—Cs1—O21127.16 (8)O4—Si2—Cs244.80 (11)
O19—Cs1—Cs3Ai161.21 (7)Cs3Aviii—Si2—Cs281.95 (4)
O1i—Cs1—Cs3Ai52.70 (6)Cs3Bviii—Si2—Cs274.7 (3)
O18ii—Cs1—Cs3Ai122.16 (5)Cs1iv—Si2—Cs2145.67 (4)
O10iii—Cs1—Cs3Ai82.98 (6)O5—Si2—Cs3Aii38.62 (11)
O7iv—Cs1—Cs3Ai91.03 (6)O7—Si2—Cs3Aii107.08 (13)
O5iv—Cs1—Cs3Ai54.06 (6)O6—Si2—Cs3Aii77.00 (13)
O22—Cs1—Cs3Ai95.29 (5)O4—Si2—Cs3Aii140.89 (12)
O15v—Cs1—Cs3Ai53.91 (5)Cs3Aviii—Si2—Cs3Aii81.93 (4)
O8iii—Cs1—Cs3Ai53.22 (5)Cs3Bviii—Si2—Cs3Aii87.7 (2)
O2i—Cs1—Cs3Ai91.81 (5)Cs1iv—Si2—Cs3Aii54.01 (2)
O21—Cs1—Cs3Ai134.39 (5)Cs2—Si2—Cs3Aii151.10 (3)
O11—Cs2—O20129.98 (8)O8—Si3—O9111.77 (18)
O11—Cs2—O17136.90 (8)O8—Si3—O10109.12 (18)
O20—Cs2—O1787.84 (7)O9—Si3—O10111.11 (18)
O11—Cs2—O14vi47.93 (7)O8—Si3—O11111.35 (16)
O20—Cs2—O14vi84.79 (7)O9—Si3—O11107.22 (19)
O17—Cs2—O14vi170.85 (8)O10—Si3—O11106.12 (16)
O11—Cs2—O497.70 (8)O8—Si3—Cs1iii55.75 (12)
O20—Cs2—O471.06 (8)O9—Si3—Cs1iii131.64 (14)
O17—Cs2—O473.34 (8)O10—Si3—Cs1iii53.45 (12)
O14vi—Cs2—O499.06 (8)O11—Si3—Cs1iii120.94 (13)
O11—Cs2—O17iii112.47 (8)O8—Si3—Cs3Bxiv43.6 (2)
O20—Cs2—O17iii50.51 (7)O9—Si3—Cs3Bxiv82.2 (2)
O17—Cs2—O17iii107.82 (6)O10—Si3—Cs3Bxiv92.32 (16)
O14vi—Cs2—O17iii71.38 (8)O11—Si3—Cs3Bxiv153.9 (2)
O4—Cs2—O17iii121.04 (7)Cs1iii—Si3—Cs3Bxiv56.65 (16)
O11—Cs2—O20iii117.98 (7)O8—Si3—Cs2125.15 (13)
O20—Cs2—O20iii107.85 (6)O9—Si3—Cs2121.49 (14)
O17—Cs2—O20iii50.25 (7)O10—Si3—Cs263.86 (12)
O14vi—Cs2—O20iii137.65 (8)O11—Si3—Cs242.26 (11)
O4—Cs2—O20iii123.29 (7)Cs1iii—Si3—Cs293.96 (3)
O17iii—Cs2—O20iii85.76 (7)Cs3Bxiv—Si3—Cs2150.41 (15)
O11—Cs2—O1287.76 (7)O8—Si3—Cs3Axiv38.41 (11)
O20—Cs2—O12139.65 (7)O9—Si3—Cs3Axiv87.05 (14)
O17—Cs2—O1251.84 (7)O10—Si3—Cs3Axiv93.01 (12)
O14vi—Cs2—O12135.12 (7)O11—Si3—Cs3Axiv149.35 (12)
O4—Cs2—O1292.86 (8)Cs1iii—Si3—Cs3Axiv53.629 (19)
O17iii—Cs2—O12135.53 (8)Cs3Bxiv—Si3—Cs3Axiv5.5 (2)
O20iii—Cs2—O1250.21 (7)Cs2—Si3—Cs3Axiv147.54 (4)
O11—Cs2—O21iii81.88 (8)O12—Si4—O13113.92 (17)
O20—Cs2—O21iii121.19 (8)O12—Si4—O10110.94 (17)
O17—Cs2—O21iii96.07 (7)O13—Si4—O10104.91 (17)
O14vi—Cs2—O21iii92.39 (8)O12—Si4—O14xii112.47 (17)
O4—Cs2—O21iii164.18 (7)O13—Si4—O14xii107.67 (17)
O17iii—Cs2—O21iii72.97 (8)O10—Si4—O14xii106.39 (17)
O20iii—Cs2—O21iii46.12 (7)O12—Si4—Cs256.81 (11)
O12—Cs2—O21iii71.33 (8)O13—Si4—Cs294.11 (11)
O11—Cs2—O1044.74 (7)O10—Si4—Cs265.92 (11)
O20—Cs2—O10173.27 (8)O14xii—Si4—Cs2158.21 (14)
O17—Cs2—O1095.59 (7)O12—Si4—Cs1iii97.51 (13)
O14vi—Cs2—O1091.21 (7)O13—Si4—Cs1iii146.31 (11)
O4—Cs2—O10104.34 (7)O10—Si4—Cs1iii49.59 (12)
O17iii—Cs2—O10133.00 (7)O14xii—Si4—Cs1iii68.28 (12)
O20iii—Cs2—O1078.73 (7)Cs2—Si4—Cs1iii93.20 (2)
O12—Cs2—O1043.92 (6)O12—Si4—Cs2ix75.01 (11)
O21iii—Cs2—O1064.29 (8)O13—Si4—Cs2ix102.93 (11)
O11—Cs2—O18iii75.42 (8)O10—Si4—Cs2ix145.47 (12)
O20—Cs2—O18iii93.42 (7)O14xii—Si4—Cs2ix44.83 (11)
O17—Cs2—O18iii129.03 (8)Cs2—Si4—Cs2ix131.69 (3)
O14vi—Cs2—O18iii57.05 (8)Cs1iii—Si4—Cs2ix96.43 (2)
O4—Cs2—O18iii153.40 (7)O15—Si5—O9111.40 (18)
O17iii—Cs2—O18iii44.71 (7)O15—Si5—O11xii110.88 (16)
O20iii—Cs2—O18iii81.50 (7)O9—Si5—O11xii107.93 (19)
O12—Cs2—O18iii112.20 (7)O15—Si5—O14111.96 (18)
O21iii—Cs2—O18iii41.79 (7)O9—Si5—O14110.00 (18)
O10—Cs2—O18iii88.92 (6)O11xii—Si5—O14104.38 (16)
O11—Cs2—Cs2iii160.41 (6)O15—Si5—Cs2xii122.11 (13)
O20—Cs2—Cs2iii54.87 (6)O9—Si5—Cs2xii126.10 (14)
O17—Cs2—Cs2iii54.48 (6)O11xii—Si5—Cs2xii48.26 (11)
O14vi—Cs2—Cs2iii123.98 (6)O14—Si5—Cs2xii56.37 (11)
O4—Cs2—Cs2iii101.49 (5)O15—Si5—Cs3Bviii39.9 (2)
O17iii—Cs2—Cs2iii53.35 (5)O9—Si5—Cs3Bviii76.6 (2)
O20iii—Cs2—Cs2iii52.98 (5)O11xii—Si5—Cs3Bviii143.06 (18)
O12—Cs2—Cs2iii95.13 (5)O14—Si5—Cs3Bviii108.28 (16)
O21iii—Cs2—Cs2iii80.72 (5)Cs2xii—Si5—Cs3Bviii154.58 (17)
O10—Cs2—Cs2iii131.69 (5)O15—Si5—Cs1xv47.65 (11)
O18iii—Cs2—Cs2iii85.59 (5)O9—Si5—Cs1xv121.39 (14)
O1—Cs3A—O8vii112.49 (8)O11xii—Si5—Cs1xv130.40 (13)
O1—Cs3A—O4viii131.83 (8)O14—Si5—Cs1xv64.99 (13)
O8vii—Cs3A—O4viii115.45 (8)Cs2xii—Si5—Cs1xv100.22 (3)
O1—Cs3A—O5ix91.53 (8)Cs3Bviii—Si5—Cs1xv54.65 (16)
O8vii—Cs3A—O5ix51.50 (8)O16—Si6—O13112.41 (16)
O4viii—Cs3A—O5ix122.05 (8)O16—Si6—O3109.44 (18)
O1—Cs3A—O15viii51.50 (8)O13—Si6—O3106.76 (18)
O8vii—Cs3A—O15viii89.11 (8)O16—Si6—O6ix113.01 (18)
O4viii—Cs3A—O15viii124.22 (9)O13—Si6—O6ix107.14 (17)
O5ix—Cs3A—O15viii112.54 (8)O3—Si6—O6ix107.78 (18)
O1—Cs3A—O1674.06 (8)O16—Si6—Cs3Bviii59.0 (2)
O8vii—Cs3A—O16126.48 (9)O13—Si6—Cs3Bviii87.2 (3)
O4viii—Cs3A—O1681.50 (8)O3—Si6—Cs3Bviii67.37 (17)
O5ix—Cs3A—O1675.98 (8)O6ix—Si6—Cs3Bviii165.6 (3)
O15viii—Cs3A—O16124.23 (8)O16—Si6—Cs3Aviii55.21 (12)
O1—Cs3A—O6viii166.14 (10)O13—Si6—Cs3Aviii94.08 (11)
O8vii—Cs3A—O6viii72.76 (8)O3—Si6—Cs3Aviii65.97 (13)
O4viii—Cs3A—O6viii46.33 (7)O6ix—Si6—Cs3Aviii158.73 (13)
O5ix—Cs3A—O6viii81.91 (8)Cs3Bviii—Si6—Cs3Aviii6.9 (2)
O15viii—Cs3A—O6viii142.36 (10)O16—Si6—Cs3A49.66 (11)
O16—Cs3A—O6viii92.45 (8)O13—Si6—Cs3A161.93 (12)
O1—Cs3A—O16viii50.82 (8)O3—Si6—Cs3A81.01 (14)
O8vii—Cs3A—O16viii141.13 (8)O6ix—Si6—Cs3A85.16 (13)
O4viii—Cs3A—O16viii87.21 (7)Cs3Bviii—Si6—Cs3A80.7 (3)
O5ix—Cs3A—O16viii141.80 (8)Cs3Aviii—Si6—Cs3A73.88 (3)
O15viii—Cs3A—O16viii52.43 (7)O16—Si6—Cs3Bxvi78.5 (2)
O16—Cs3A—O16viii86.00 (8)O13—Si6—Cs3Bxvi95.3 (3)
O6viii—Cs3A—O16viii132.99 (8)O3—Si6—Cs3Bxvi150.6 (2)
O1—Cs3A—Si2viii143.72 (7)O6ix—Si6—Cs3Bxvi45.60 (15)
O8vii—Cs3A—Si2viii99.10 (6)Cs3Bviii—Si6—Cs3Bxvi134.4 (2)
O4viii—Cs3A—Si2viii27.34 (5)Cs3Aviii—Si6—Cs3Bxvi132.72 (14)
O5ix—Cs3A—Si2viii94.72 (6)Cs3A—Si6—Cs3Bxvi83.8 (2)
O15viii—Cs3A—Si2viii150.05 (8)O16—Si6—Cs3Axvi74.65 (12)
O16—Cs3A—Si2viii72.93 (6)O13—Si6—Cs3Axvi101.69 (12)
O6viii—Cs3A—Si2viii26.72 (5)O3—Si6—Cs3Axvi146.41 (14)
O16viii—Cs3A—Si2viii111.97 (5)O6ix—Si6—Cs3Axvi45.44 (12)
O1—Cs3A—O5viii122.52 (9)Cs3Bviii—Si6—Cs3Axvi132.32 (15)
O8vii—Cs3A—O5viii106.15 (7)Cs3Aviii—Si6—Cs3Axvi129.68 (4)
O4viii—Cs3A—O5viii45.90 (7)Cs3A—Si6—Cs3Axvi77.24 (3)
O5ix—Cs3A—O5viii80.67 (8)Cs3Bxvi—Si6—Cs3Axvi6.6 (2)
O15viii—Cs3A—O5viii164.32 (7)O17—Si7—O18115.08 (18)
O16—Cs3A—O5viii48.69 (8)O17—Si7—O2112.90 (17)
O6viii—Cs3A—O5viii44.49 (7)O18—Si7—O2106.40 (17)
O16viii—Cs3A—O5viii111.99 (7)O17—Si7—O19ix110.79 (16)
Si2viii—Cs3A—O5viii25.63 (6)O18—Si7—O19ix104.08 (15)
O1—Cs3A—O3viii92.49 (8)O2—Si7—O19ix106.91 (18)
O8vii—Cs3A—O3viii143.14 (10)O17—Si7—Cs1ix124.89 (13)
O4viii—Cs3A—O3viii43.96 (7)O18—Si7—Cs1ix57.65 (11)
O5ix—Cs3A—O3viii158.91 (8)O2—Si7—Cs1ix121.55 (13)
O15viii—Cs3A—O3viii85.90 (7)O19ix—Si7—Cs1ix46.64 (10)
O16—Cs3A—O3viii85.25 (8)O17—Si7—Cs2iii49.62 (12)
O6viii—Cs3A—O3viii89.48 (7)O18—Si7—Cs2iii66.05 (12)
O16viii—Cs3A—O3viii43.53 (7)O2—Si7—Cs2iii121.72 (13)
Si2viii—Cs3A—O3viii70.25 (5)O19ix—Si7—Cs2iii131.32 (13)
O5viii—Cs3A—O3viii79.71 (7)Cs1ix—Si7—Cs2iii102.84 (3)
O1—Cs3A—Cs1xiii55.38 (6)O20—Si8—O21111.19 (18)
O8vii—Cs3A—Cs1xiii57.17 (6)O20—Si8—O7112.06 (18)
O4viii—Cs3A—Cs1xiii172.38 (6)O21—Si8—O7110.13 (18)
O5ix—Cs3A—Cs1xiii55.98 (5)O20—Si8—O19112.18 (16)
O15viii—Cs3A—Cs1xiii56.64 (6)O21—Si8—O19106.10 (17)
O16—Cs3A—Cs1xiii104.31 (6)O7—Si8—O19104.83 (18)
O6viii—Cs3A—Cs1xiii127.54 (5)O20—Si8—Cs1125.41 (13)
O16viii—Cs3A—Cs1xiii98.01 (5)O21—Si8—Cs164.70 (12)
Si2viii—Cs3A—Cs1xiii149.39 (3)O7—Si8—Cs1120.29 (13)
O5viii—Cs3A—Cs1xiii135.18 (6)O19—Si8—Cs141.45 (10)
O3viii—Cs3A—Cs1xiii140.35 (5)O20—Si8—Cs2iii53.68 (12)
O15viii—Cs3B—O8vii96.1 (3)O21—Si8—Cs2iii57.85 (13)
O15viii—Cs3B—O4viii133.3 (4)O7—Si8—Cs2iii134.84 (13)
O8vii—Cs3B—O4viii120.4 (3)O19—Si8—Cs2iii120.30 (13)
O15viii—Cs3B—O6viii158.8 (6)Cs1—Si8—Cs2iii94.85 (3)
O8vii—Cs3B—O6viii74.9 (2)O20—Si8—Cs1iv141.77 (13)
O4viii—Cs3B—O6viii46.66 (13)O21—Si8—Cs1iv105.59 (14)
O15viii—Cs3B—O151.35 (16)O7—Si8—Cs1iv42.51 (12)
O8vii—Cs3B—O1110.8 (3)O19—Si8—Cs1iv65.46 (12)
O4viii—Cs3B—O1125.0 (4)Cs1—Si8—Cs1iv79.75 (2)
O6viii—Cs3B—O1149.8 (6)Cs2iii—Si8—Cs1iv162.95 (3)
O15viii—Cs3B—O16viii54.21 (15)O20—Si8—Cs239.22 (11)
O8vii—Cs3B—O16viii150.0 (3)O21—Si8—Cs294.95 (13)
O4viii—Cs3B—O16viii87.7 (2)O7—Si8—Cs286.44 (12)
O6viii—Cs3B—O16viii134.3 (3)O19—Si8—Cs2150.46 (11)
O1—Cs3B—O16viii49.38 (16)Cs1—Si8—Cs2150.06 (4)
O15viii—Cs3B—O5ix111.0 (2)Cs2iii—Si8—Cs255.205 (18)
O8vii—Cs3B—O5ix49.88 (16)Cs1iv—Si8—Cs2128.74 (3)
O4viii—Cs3B—O5ix114.6 (4)O22—Si9—O23113.21 (14)
O6viii—Cs3B—O5ix78.3 (2)O22—Si9—O21109.52 (18)
O1—Cs3B—O5ix83.6 (3)O23—Si9—O21108.63 (19)
O16viii—Cs3B—O5ix130.7 (5)O22—Si9—O18111.34 (17)
O15viii—Cs3B—O3viii90.6 (2)O23—Si9—O18109.4 (2)
O8vii—Cs3B—O3viii157.1 (5)O21—Si9—O18104.29 (17)
O4viii—Cs3B—O3viii44.73 (12)O22—Si9—Cs154.89 (11)
O6viii—Cs3B—O3viii91.09 (19)O23—Si9—Cs198.43 (16)
O1—Cs3B—O3viii90.5 (2)O21—Si9—Cs165.20 (12)
O16viii—Cs3B—O3viii44.18 (12)O18—Si9—Cs1152.14 (13)
O5ix—Cs3B—O3viii145.7 (5)O22—Si9—Cs2iii95.56 (13)
O15viii—Cs3B—Si2viii159.9 (3)O23—Si9—Cs2iii150.37 (5)
O8vii—Cs3B—Si2viii99.9 (2)O21—Si9—Cs2iii51.79 (13)
O4viii—Cs3B—Si2viii26.56 (9)O18—Si9—Cs2iii63.31 (12)
O6viii—Cs3B—Si2viii26.10 (8)Cs1—Si9—Cs2iii92.24 (2)
O1—Cs3B—Si2viii131.0 (5)O22—Si9—Cs1ix78.16 (11)
O16viii—Cs3B—Si2viii110.0 (2)O23—Si9—Cs1ix97.46 (16)
O5ix—Cs3B—Si2viii88.7 (3)O21—Si9—Cs1ix145.97 (13)
O3viii—Cs3B—Si2viii70.04 (14)O18—Si9—Cs1ix44.82 (11)
O15viii—Cs3B—O16116.2 (4)Cs1—Si9—Cs1ix132.96 (3)
O8vii—Cs3B—O16116.1 (4)Cs2iii—Si9—Cs1ix95.20 (2)
O4viii—Cs3B—O1674.8 (3)Si1—O1—Sn1xvii131.57 (17)
O6viii—Cs3B—O1684.9 (3)Si1—O1—Cs3A125.27 (15)
O1—Cs3B—O1665.8 (3)Sn1xvii—O1—Cs3A100.12 (12)
O16viii—Cs3B—O1679.0 (3)Si1—O1—Cs1xiii101.85 (14)
O5ix—Cs3B—O1667.0 (3)Sn1xvii—O1—Cs1xiii108.13 (12)
O3viii—Cs3B—O1679.8 (3)Cs3A—O1—Cs1xiii71.91 (6)
Si2viii—Cs3B—O1666.8 (2)Si1—O1—Cs3B133.0 (3)
O15viii—Cs3B—Cs1xiii57.45 (14)Sn1xvii—O1—Cs3B93.2 (3)
O8vii—Cs3B—Cs1xiii57.53 (14)Cs3A—O1—Cs3B7.9 (2)
O4viii—Cs3B—Cs1xiii167.5 (5)Cs1xiii—O1—Cs3B70.34 (15)
O6viii—Cs3B—Cs1xiii126.7 (3)Si1—O1—Cs3Aviii76.02 (12)
O1—Cs3B—Cs1xiii53.63 (14)Sn1xvii—O1—Cs3Aviii90.90 (10)
O16viii—Cs3B—Cs1xiii97.3 (2)Cs3A—O1—Cs3Aviii88.33 (8)
O5ix—Cs3B—Cs1xiii53.71 (15)Cs1xiii—O1—Cs3Aviii154.40 (9)
O3viii—Cs3B—Cs1xiii141.5 (3)Cs3B—O1—Cs3Aviii92.2 (2)
Si2viii—Cs3B—Cs1xiii142.4 (4)Si1—O2—Si7144.3 (2)
O16—Cs3B—Cs1xiii94.8 (4)Si1—O2—Cs1xiii90.29 (14)
O15viii—Cs3B—Si1viii114.8 (2)Si7—O2—Cs1xiii112.69 (15)
O8vii—Cs3B—Si1viii145.5 (3)Si1—O3—Si6159.1 (3)
O4viii—Cs3B—Si1viii25.25 (8)Si1—O3—Cs3Bviii85.1 (2)
O6viii—Cs3B—Si1viii70.77 (15)Si6—O3—Cs3Bviii88.02 (19)
O1—Cs3B—Si1viii100.8 (3)Si1—O3—Cs3Aviii80.57 (13)
O16viii—Cs3B—Si1viii63.64 (15)Si6—O3—Cs3Aviii90.22 (14)
O5ix—Cs3B—Si1viii123.9 (4)Cs3Bviii—O3—Cs3Aviii7.7 (3)
O3viii—Cs3B—Si1viii24.92 (7)Si1—O4—Si2129.51 (19)
Si2viii—Cs3B—Si1viii46.82 (10)Si1—O4—Cs3Bviii98.7 (2)
O16—Cs3B—Si1viii64.7 (2)Si2—O4—Cs3Bviii93.4 (2)
Cs1xiii—Cs3B—Si1viii153.4 (4)Si1—O4—Cs3Aviii95.66 (14)
O8—Sn1—O22iii89.80 (12)Si2—O4—Cs3Aviii89.04 (13)
O8—Sn1—O1x177.68 (12)Cs3Bviii—O4—Cs3Aviii8.8 (3)
O22iii—Sn1—O1x92.32 (13)Si1—O4—Cs2112.55 (14)
O8—Sn1—O15vi95.43 (12)Si2—O4—Cs2114.54 (14)
O22iii—Sn1—O15vi92.48 (12)Cs3Bviii—O4—Cs296.3 (3)
O1x—Sn1—O15vi85.41 (12)Cs3Aviii—O4—Cs2105.03 (9)
O8—Sn1—O16vi91.37 (12)Si2—O5—Sn1xvii130.27 (17)
O22iii—Sn1—O16vi176.09 (13)Si2—O5—Cs3Aii123.44 (14)
O1x—Sn1—O16vi86.45 (12)Sn1xvii—O5—Cs3Aii106.29 (13)
O15vi—Sn1—O16vi91.12 (12)Si2—O5—Cs1iv99.16 (13)
O8—Sn1—O5x86.35 (12)Sn1xvii—O5—Cs1iv97.58 (10)
O22iii—Sn1—O5x88.07 (12)Cs3Aii—O5—Cs1iv69.96 (6)
O1x—Sn1—O5x92.80 (12)Si2—O5—Cs3Bii129.9 (3)
O15vi—Sn1—O5x178.14 (12)Sn1xvii—O5—Cs3Bii99.8 (3)
O16vi—Sn1—O5x88.28 (12)Cs3Aii—O5—Cs3Bii7.0 (2)
O8—Sn1—Cs3Bx122.9 (3)Cs1iv—O5—Cs3Bii67.68 (14)
O22iii—Sn1—Cs3Bx125.41 (13)Si2—O5—Cs3Aviii76.70 (12)
O1x—Sn1—Cs3Bx56.3 (3)Sn1xvii—O5—Cs3Aviii96.58 (10)
O15vi—Sn1—Cs3Bx47.0 (2)Cs3Aii—O5—Cs3Aviii99.33 (8)
O16vi—Sn1—Cs3Bx56.66 (14)Cs1iv—O5—Cs3Aviii164.22 (9)
O5x—Sn1—Cs3Bx131.4 (2)Cs3Bii—O5—Cs3Aviii103.00 (19)
O8—Sn1—Cs3Ax129.10 (9)Si2—O6—Si6ii145.3 (2)
O22iii—Sn1—Cs3Ax125.11 (8)Si2—O6—Cs3Bviii89.6 (2)
O1x—Sn1—Cs3Ax49.99 (9)Si6ii—O6—Cs3Bviii113.8 (2)
O15vi—Sn1—Cs3Ax52.78 (8)Si2—O6—Cs3Aviii85.23 (13)
O16vi—Sn1—Cs3Ax56.45 (9)Si6ii—O6—Cs3Aviii114.18 (15)
O5x—Sn1—Cs3Ax125.54 (8)Cs3Bviii—O6—Cs3Aviii8.5 (3)
Cs3Bx—Sn1—Cs3Ax7.0 (2)Si2—O7—Si8142.1 (2)
O8—Sn1—Cs1iii54.30 (9)Si2—O7—Cs1iv98.93 (15)
O22iii—Sn1—Cs1iii53.05 (8)Si8—O7—Cs1iv118.02 (15)
O1x—Sn1—Cs1iii126.61 (9)Si3—O8—Sn1128.90 (17)
O15vi—Sn1—Cs1iii128.78 (8)Si3—O8—Cs3Bxiv115.3 (3)
O16vi—Sn1—Cs1iii125.17 (9)Sn1—O8—Cs3Bxiv115.8 (3)
O5x—Sn1—Cs1iii52.84 (8)Si3—O8—Cs3Axiv123.52 (15)
Cs3Bx—Sn1—Cs1iii175.7 (2)Sn1—O8—Cs3Axiv107.58 (12)
Cs3Ax—Sn1—Cs1iii176.60 (2)Cs3Bxiv—O8—Cs3Axiv8.6 (3)
O8—Sn1—Cs3Axiv45.47 (8)Si3—O8—Cs1iii101.09 (13)
O22iii—Sn1—Cs3Axiv106.03 (8)Sn1—O8—Cs1iii96.22 (12)
O1x—Sn1—Cs3Axiv132.83 (9)Cs3Bxiv—O8—Cs1iii72.34 (19)
O15vi—Sn1—Cs3Axiv135.00 (9)Cs3Axiv—O8—Cs1iii69.61 (6)
O16vi—Sn1—Cs3Axiv72.31 (9)Si3—O9—Si5175.2 (3)
O5x—Sn1—Cs3Axiv46.38 (9)Si4—O10—Si3143.6 (2)
Cs3Bx—Sn1—Cs3Axiv128.32 (11)Si4—O10—Cs1iii108.30 (14)
Cs3Ax—Sn1—Cs3Axiv128.760 (13)Si3—O10—Cs1iii103.11 (14)
Cs1iii—Sn1—Cs3Axiv52.982 (8)Si4—O10—Cs290.03 (13)
O8—Sn1—Cs1xi136.49 (8)Si3—O10—Cs292.47 (13)
O22iii—Sn1—Cs1xi72.06 (8)Cs1iii—O10—Cs2115.94 (9)
O1x—Sn1—Cs1xi45.31 (8)Si5vi—O11—Si3130.59 (18)
O15vi—Sn1—Cs1xi48.21 (9)Si5vi—O11—Cs2108.23 (14)
O16vi—Sn1—Cs1xi109.41 (9)Si3—O11—Cs2116.67 (14)
O5x—Sn1—Cs1xi130.44 (9)Si4—O12—Sn2ix164.45 (19)
Cs3Bx—Sn1—Cs1xi53.90 (11)Si4—O12—Cs2100.26 (13)
Cs3Ax—Sn1—Cs1xi53.058 (9)Sn2ix—O12—Cs294.97 (10)
Cs1iii—Sn1—Cs1xi125.031 (10)Si6—O13—Si4138.7 (2)
Cs3Axiv—Sn1—Cs1xi176.69 (2)Si5—O14—Si4vi139.6 (2)
O8—Sn1—Cs3Avi116.76 (8)Si5—O14—Cs2xii99.13 (13)
O22iii—Sn1—Cs3Avi130.18 (9)Si4vi—O14—Cs2xii114.59 (14)
O1x—Sn1—Cs3Avi61.07 (9)Si5—O14—Cs1xv92.19 (14)
O15vi—Sn1—Cs3Avi123.03 (8)Si4vi—O14—Cs1xv88.28 (13)
O16vi—Sn1—Cs3Avi46.12 (9)Cs2xii—O14—Cs1xv122.15 (10)
O5x—Sn1—Cs3Avi55.46 (8)Si5—O15—Sn1xii129.25 (17)
Cs3Bx—Sn1—Cs3Avi76.1 (2)Si5—O15—Cs3Bviii120.2 (4)
Cs3Ax—Sn1—Cs3Avi70.79 (2)Sn1xii—O15—Cs3Bviii103.3 (3)
Cs1iii—Sn1—Cs3Avi108.007 (10)Si5—O15—Cs3Aviii128.03 (16)
Cs3Axiv—Sn1—Cs3Avi74.36 (3)Sn1xii—O15—Cs3Aviii97.02 (10)
Cs1xi—Sn1—Cs3Avi104.687 (12)Cs3Bviii—O15—Cs3Aviii8.1 (3)
O12iii—Sn2—O12ii180.00 (18)Si5—O15—Cs1xv111.68 (14)
O12iii—Sn2—O2088.36 (12)Sn1xii—O15—Cs1xv104.69 (12)
O12ii—Sn2—O2091.64 (12)Cs3Bviii—O15—Cs1xv73.1 (2)
O12iii—Sn2—O20xi91.64 (12)Cs3Aviii—O15—Cs1xv69.45 (6)
O12ii—Sn2—O20xi88.36 (12)Si6—O16—Sn1xii139.84 (18)
O20—Sn2—O20xi180.0Si6—O16—Cs3A108.61 (13)
O12iii—Sn2—O17iii90.26 (12)Sn1xii—O16—Cs3A107.16 (12)
O12ii—Sn2—O17iii89.74 (12)Si6—O16—Cs3Bviii97.1 (3)
O20—Sn2—O17iii85.77 (12)Sn1xii—O16—Cs3Bviii92.74 (16)
O20xi—Sn2—O17iii94.23 (12)Cs3A—O16—Cs3Bviii102.1 (3)
O12iii—Sn2—O17ii89.74 (12)Si6—O16—Cs3Aviii101.94 (14)
O12ii—Sn2—O17ii90.26 (12)Sn1xii—O16—Cs3Aviii93.15 (10)
O20—Sn2—O17ii94.23 (12)Cs3A—O16—Cs3Aviii94.00 (8)
O20xi—Sn2—O17ii85.77 (12)Cs3Bviii—O16—Cs3Aviii8.4 (3)
O17iii—Sn2—O17ii180.00 (18)Si6—O16—Cs3B110.77 (18)
O12iii—Sn2—Cs2iii55.33 (8)Sn1xii—O16—Cs3B105.33 (17)
O12ii—Sn2—Cs2iii124.67 (8)Cs3A—O16—Cs3B2.28 (13)
O20—Sn2—Cs2iii53.35 (9)Cs3Bviii—O16—Cs3B101.0 (3)
O20xi—Sn2—Cs2iii126.65 (9)Cs3Aviii—O16—Cs3B92.79 (14)
O17iii—Sn2—Cs2iii51.61 (8)Si7—O17—Sn2ix130.26 (17)
O17ii—Sn2—Cs2iii128.39 (8)Si7—O17—Cs2125.86 (15)
O12iii—Sn2—Cs2ii124.67 (8)Sn2ix—O17—Cs298.65 (10)
O12ii—Sn2—Cs2ii55.33 (8)Si7—O17—Cs2iii108.81 (14)
O20—Sn2—Cs2ii126.65 (9)Sn2ix—O17—Cs2iii104.82 (12)
O20xi—Sn2—Cs2ii53.35 (9)Cs2—O17—Cs2iii72.17 (6)
O17iii—Sn2—Cs2ii128.39 (8)Si7—O18—Si9137.1 (2)
O17ii—Sn2—Cs2ii51.61 (8)Si7—O18—Cs1ix97.47 (13)
Cs2iii—Sn2—Cs2ii180.0Si9—O18—Cs1ix114.47 (14)
O12iii—Sn2—Cs2109.74 (8)Si7—O18—Cs2iii90.66 (13)
O12ii—Sn2—Cs270.26 (8)Si9—O18—Cs2iii93.76 (13)
O20—Sn2—Cs245.77 (8)Cs1ix—O18—Cs2iii124.26 (10)
O20xi—Sn2—Cs2134.23 (8)Si8—O19—Si7ii129.52 (18)
O17iii—Sn2—Cs247.71 (9)Si8—O19—Cs1117.12 (14)
O17ii—Sn2—Cs2132.29 (9)Si7ii—O19—Cs1109.67 (13)
Cs2iii—Sn2—Cs254.535 (8)Si8—O20—Sn2129.48 (17)
Cs2ii—Sn2—Cs2125.465 (8)Si8—O20—Cs2122.70 (15)
O12iii—Sn2—Cs2xi70.26 (8)Sn2—O20—Cs2107.37 (11)
O12ii—Sn2—Cs2xi109.74 (8)Si8—O20—Cs2iii103.61 (14)
O20—Sn2—Cs2xi134.23 (8)Sn2—O20—Cs2iii97.05 (12)
O20xi—Sn2—Cs2xi45.77 (8)Cs2—O20—Cs2iii72.15 (6)
O17iii—Sn2—Cs2xi132.29 (9)Si8—O21—Si9151.9 (3)
O17ii—Sn2—Cs2xi47.71 (9)Si8—O21—Cs2iii98.65 (14)
Cs2iii—Sn2—Cs2xi125.466 (8)Si9—O21—Cs2iii106.27 (15)
Cs2ii—Sn2—Cs2xi54.534 (8)Si8—O21—Cs191.31 (13)
Cs2—Sn2—Cs2xi180.0Si9—O21—Cs190.47 (13)
O1—Si1—O2110.44 (18)Cs2iii—O21—Cs1113.55 (10)
O1—Si1—O3111.15 (18)Si9—O22—Sn1iii160.20 (19)
O2—Si1—O3108.86 (18)Si9—O22—Cs1102.17 (14)
O1—Si1—O4111.33 (16)Sn1iii—O22—Cs197.49 (10)
O2—Si1—O4108.37 (18)Si9iv—O23—Si9179.5 (3)
O3—Si1—O4106.57 (18)
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x, y+1, z; (iii) x+1, y1, z; (iv) x+1, y, z+1/2; (v) x1/2, y1/2, z; (vi) x+3/2, y+1/2, z; (vii) x, y2, z+1/2; (viii) x+3/2, y3/2, z+1/2; (ix) x, y1, z; (x) x, y1, z1/2; (xi) x+1, y, z; (xii) x+3/2, y1/2, z; (xiii) x+1, y1, z+1/2; (xiv) x, y2, z1/2; (xv) x+1/2, y1/2, z; (xvi) x+3/2, y5/2, z+1/2; (xvii) x, y1, z+1/2.
Crystal data (Å, °) of Cs2MIVSi6O15 compounds top
MTi (single-crystal data)aTi (powder data)bZrcTh (173 K data)dTh (293 K data)eUf
Space groupC2/cCcC2/mPca21Cmc21Cmc21
Z446444
a13.386 (5)12.988 (2)26.610 (10)16.2920 (10)7.2813 (15)7.2717 (3)
b7.423 (3)7.5014 (3)7.506 (2)7.2154 (6)16.420 (3)16.3061 (7)
c15.134 (5)15.156 (3)11.602 (4)13.6800 (10)13.591 (3)13.4983 (6)
β107.71 (3)105.80 (3)107.43 (2)909090
V1432.511420.832210.921608.131624.921600.53
References: (a) Grey et al. (1997); (b) Nyman et al. (2000); (c) Jolicart et al. (1996); (d) Woodward et al. (2005); (e) Mann et al. (2015); (f) Liu & Lii (2011).
 

Acknowledgements

The X-ray centre of the Vienna University of Technology is acknowledged for financial support and for providing access to the single-crystal and powder diffractometers.

References

First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationDowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63–78.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrey, I. E., Roth, R. S. & Balmer, M. L. (1997). J. Solid State Chem. 131, 38–42.  CrossRef ICSD CAS Web of Science Google Scholar
First citationIlyushin, G. D. & Blatov, V. A. (2002). Acta Cryst. B58, 198–218.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJolicart, G., le Blanc, M., Morel, B., Dehaudt, P. & Dubois, S. (1996). Eur. J. Solid State Inorg. Chem. 33, 647–657.  CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiebau, F. (1985). Structural Chemistry of Silicates: Structure, Bonding and Classification. Springer: Berlin.  Google Scholar
First citationLiu, H. & Lii, K. (2011). Inorg. Chem. 50, 5870–5872.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationMann, J. M., McMillen, C. D. & Kolis, J. W. (2015). Cryst. Growth Des. 15, 2643–2651.  Web of Science CrossRef ICSD CAS Google Scholar
First citationMüller, U. (2013). Symmetry Relationships between Crystal Structures. Oxford University Press.  Google Scholar
First citationNyman, M., Bonhomme, F., Teter, D. M., Maxwell, R. S., Gu, B. X., Wang, L. M., Ewing, R. C. & Nenoff, T. M. (2000). Chem. Mater. 12, 3449–3458.  Web of Science CrossRef ICSD CAS Google Scholar
First citationPoupon, M., Barrier, N., Petit, S., Clevers, S. & Dupray, V. (2015). Inorg. Chem. 54, 5660–5670.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationRai, R., Sharma, S. & Choudhary, R. N. P. (2002). J. Mater. Sci. Lett. 21, 297–299.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStöger, B., Weil, M., Zobetz, E. & Giester, G. (2009). Acta Cryst. B65, 167–181.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationTrömel, M. & Ziethen-Reichenach, H. (1970). Z. Anorg. Allg. Chem. 378, 232–237.  Google Scholar
First citationUvarova, Y. A., Sokolova, E., Hawthorne, F. C., Pautov, L. A. & Agakhanov, A. A. (2004). Can. Mineral. 42, 125–134.  Web of Science CrossRef ICSD CAS Google Scholar
First citationWeil, M. (2004). Solid State Sci. 6, 29–37.  Web of Science CrossRef ICSD CAS Google Scholar
First citationWeil, M. & Stöger, B. (2008). Acta Cryst. C64, i79–i81.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWierzbicka-Wieczorek, M., Göckeritz, M., Kolitsch, U., Lenz, C. & Giester, G. (2015). Eur. J. Inorg. Chem. pp. 2426–2436.  Google Scholar
First citationWoodward, J. D., Almond, P. M. & Albrecht-Schmitt, T. E. (2005). Acta Cryst. E61, i58–i60.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationŻemcżużny, S. & Rambach, F. (1909). Z. Anorg. Chem. 65, 403–428.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds