research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three N,N,N′-tris­­ubstituted thio­ureas for reactivity-controlled nanocrystal synthesis

crossmark logo

aSCRiPTS group, Sol-gel Centre for Research on Inorganic Powders and Thin films Synthesis, Department of Chemistry, Ghent University, Krijgslaan 281-S3, B-9000 Ghent, Belgium, and bXStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, B-9000 Ghent, Belgium
*Correspondence e-mail: Kristof.VanHecke@UGent.be

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 13 December 2021; accepted 5 January 2022; online 14 January 2022)

The synthesis and single-crystal X-ray structures of three N,N,N′-tris­ubstituted thio­ureas are reported, namely N,N,N′-tri­benzyl­thio­urea, C22H22N2S (1), N-methyl-N,N′-di­phenyl­thio­urea, C14H14N2S (2), and N,N-di-n-butyl-N′-phenylthio­urea, C15H24N2S (3). The influence of the different substituents on the thio­ureas is clear from the delocalization of the thio­urea C—N and C=S bonds, while the crystal structures show infinite chains of N,N,N′-tri­benzyl­thio­urea (1), hydrogen-bonded pairs of N-methyl-N,N′-di­phenyl­thio­urea (2) and hexa­mer ring assemblies of N,N-di-n-butyl-N′-phenylthio­urea (3) mol­ecules. The above-mentioned compounds were synthesized via a mild, general procedure, readily accessible precursors and with a high yield, providing straightforward access to a whole library of thio­ureas.

1. Chemical context

To control the size of colloidal nanocrystals, many traditional methods terminate the synthesis during the nanocrystal growth at the desired size. However, this leads to a lower yield, higher size dispersity, and it is difficult to get a good reproducibility (Owen et al., 2010[Owen, J. S., Chan, E. M., Liu, H. & Alivisatos, A. P. (2010). J. Am. Chem. Soc. 132, 18206-18213.]; Abe et al., 2012[Abe, S., Čapek, R. K., De Geyter, B. & Hens, Z. (2012). ACS Nano, 6, 42-53.], 2013[Abe, S., Čapek, R. K., De Geyter, B. & Hens, Z. (2013). ACS Nano, 7, 943-949.]). Therefore, Owen et al. suggest a new method that uses a library of substituted thio­ureas, whose substitution pattern tunes their conversion reactivity (Hendricks et al., 2015[Hendricks, M. P., Campos, M. P., Cleveland, G. T., Jen-La Plante, I. & Owen, J. S. (2015). Science, 348, 1226-1230.]; Hamachi et al., 2017[Hamachi, L. S., Jen-La Plante, I., Coryell, A. C., De Roo, J. & Owen, J. S. (2017). Chem. Mater. 29, 8711-8719.]). By this, the nanocrystal concentration can be adjusted and the desired nanocrystal size can be obtained at full conversion, with a high degree of consistency. This control is obtained by varying the substitution pattern of the thio­urea, and thus the conversion reactivity (Hens, 2015[Hens, Z. (2015). Science, 348, 1211-1212.]). This can be understood from the fact that the conversion reactivity is influenced by the number of substituents, and their electronic and steric properties. The conversion rate, i.e. reactivity, decreases as the number of substituents increases, or by replacing electron-withdrawing with electron-donating groups (e.g. substituting aryl for alkyl substituents). These thio­ureas are synthesized via a one-step click reaction between iso­thio­cyanates and primary or secondary amines (Hendricks et al., 2015[Hendricks, M. P., Campos, M. P., Cleveland, G. T., Jen-La Plante, I. & Owen, J. S. (2015). Science, 348, 1226-1230.]). In addition, they have a long shelf-life and are air-stable after synthesis (Hendricks et al., 2015[Hendricks, M. P., Campos, M. P., Cleveland, G. T., Jen-La Plante, I. & Owen, J. S. (2015). Science, 348, 1226-1230.]). An additional advantage of these precursors is that the starting reagents are relatively cheap and widely commercially available, in large qu­anti­ties. When added to a hot solution of metal oleate, such as lead, cadmium, zinc, etc., this results in the formation of highly reproducible, monodisperse, homogeneously capped metal sulfide nanocrystals at a full yield (Hendricks et al., 2015[Hendricks, M. P., Campos, M. P., Cleveland, G. T., Jen-La Plante, I. & Owen, J. S. (2015). Science, 348, 1226-1230.]; Hamachi et al., 2017[Hamachi, L. S., Jen-La Plante, I., Coryell, A. C., De Roo, J. & Owen, J. S. (2017). Chem. Mater. 29, 8711-8719.]; Dhaene et al., 2019[Dhaene, E., Billet, J., Bennett, E., Van Driessche, I. & De Roo, J. (2019). Nano Lett. 19, 7411-7417.]).

[Scheme 1]

Herein, we report the single-crystal X-ray structural analysis of the following tris­ubstituted thio­ureas: N,N,N′-tri­benzyl­thio­urea (1), N-methyl-N,N′-di­phenyl­thio­urea (2), and N-phenyl-N′,N′-di-n-butyl­thio­urea (3), prepared via a simple, straightforward synthesis method making use of readily commercially available compounds, to a high purity (> 99%) and with a high yield (> 75%).

2. Structural commentary

Compound 1 crystallizes in the centrosymmetric monoclinic space group P21/c, with the asymmetric unit consisting of one N,N,N′-tri­benzyl­thio­urea mol­ecule. On the one hand, the secondary amine benzyl ring (C3–C8) is found to be almost completely parallel to one of the tertiary amine benzyl rings (C17–C22), subtending a dihedral angle of 8.92 (8)° between the best planes through the two benzene rings. On the other hand, the two tertiary amine benzyl rings (C10–C15 and C17–C22) are highly twisted to each other, with a dihedral angle of 76.96 (7)° between the best planes through the two benzene rings (Fig. 1[link]a). The N1—C1 and C1—N2 bond distances are 1.3419 (18) and 1.3569 (18) Å, respectively, while the C1=S1 (double) bond distance is 1.6905 (14) Å.

[Figure 1]
Figure 1
Mol­ecular structures of (a) 1, (b) 2 and (c) 3, showing thermal displacement ellipsoids drawn at the 50% probability level and the atom-labelling scheme for the non-hydrogen atoms. For 2, both mol­ecules of the asymmetric unit are shown.

Compound 2 crystallizes in the centrosymmetric triclinic space group P[\overline{1}], with two N-methyl-N,N′-di­phenyl­thio­urea mol­ecules in the asymmetric unit. The secondary and tertiary amine phenyl rings (C2–C7, C9–C14 and C22–C27, C29–C34, for the first and second mol­ecules, respectively) subtend a dihedral angle of 69.39 (9) and 75.70 (10)°, respectively, between the best planes through the two phenyl rings (Fig. 1[link]b). The N1—C1 and C1—N2 bond distances are 1.359 (2) and 1.352 (3) Å, for mol­ecule 1, while the respective N21—C21 and C21—N22 bond distances are 1.367 (2) and 1.345 (3) Å, for mol­ecule 2. The C1=S1 and C21=S22 (double) bond distances are 1.6835 (17) and 1.6798 (19) Å, for mol­ecule 1 and 2, respectively.

The influence of the two phenyl substituents on the delocalization of the N1—C1, C1—N2 and C1=S1 bonds is clear, in comparison with the structure of 1, i.e. the lone electron pair on N1/N21 is more delocalized towards the secondary amine phenyl ring substituent in 2, leading to an increased N1—C1/N21—C22 distance of 1.359 (2)/1.367 (2) Å, which is even more pronounced for the second mol­ecule in the asymmetric unit, because of higher planarity of the phenyl ring with the N—C(=S)—N plane (Fig. 2[link]). However, the delocalization of N2/N22 is less pronounced towards the tertiary amine phenyl ring, with a C1—N2/C21—N22 distance of 1.352 (3)/1.345 (3) Å, because of the latter phenyl ring being almost perpendicular to the central N—C(=S)—N plane. As a consequence of the improved delocalization of N1/N21 in 2, the C1=S1/C21=S21 bond length decreases slightly – although less significantly in the case of C1=S1 – to 1.6835 (17)/1.6798 (19) Å in comparison with 1.

[Figure 2]
Figure 2
Fit of the first (grey) and second (light blue) mol­ecule in the asymmetric unit of 2, showing an r.m.s.d. of 1.174 Å.

The structure of 3 has very recently been deposited with the Cambridge Structural Database (CSD) (refcode OYOSIH; Rahman et al., 2021[Rahman, F. U., Bibi, M., Khan, E., Shah, A. B., Muhammad, M., Tahir, M. N., Shahzad, A., Ullah, F., Zahoor, M., Alamery, S. & Batiha, G. E.-S. (2021). Molecules, 26, 4506.]); however, the mentioned structure was determined at room temperature and showed disorder of both butyl substituents, as well as the presence of unknown solvent, which was treated by the SQUEEZE procedure in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Here, our reported structure was determined at 100 K and shows no signs of any kind of (solvent) disorder. The unknown solvate structure of Rahman et al. (2021[Rahman, F. U., Bibi, M., Khan, E., Shah, A. B., Muhammad, M., Tahir, M. N., Shahzad, A., Ullah, F., Zahoor, M., Alamery, S. & Batiha, G. E.-S. (2021). Molecules, 26, 4506.]) might be caused by the use of acetone as solvent and recrystallization by slow evaporation from EtOH, whereas we used toluene as solvent and recrystallized from a hot hexa­ne:EtOH (10:1) mixture by slowly cooling down. Compound 3 crystallizes in the trigonal space group R[\overline{3}], with one N-phenyl-N′,N′-di-n-butyl­thio­urea mol­ecule in the asymmetric unit. The phenyl substituent on the secondary amine is twisted with respect to the central N—C—S—N plane, with a C1—N1—C2—C7 torsion angle of 55.54 (16)°, while the two butyl substituents are found completely staggered (Fig. 1[link]c). The N1—C1 and C1—N2 bond distances are 1.3594 (15) and 1.3432 (15) Å, respectively, while the C1=S2 (double) bond distance is 1.7004 (11) Å. The delocalization of N1 towards the secondary amine phenyl substituent is also noticed here, comparable to 2, while there is minimal delocalization of N2 towards the butyl substituents, consequently showing the shortest C1—N2 and the longest C1=S1 distances.

3. Supra­molecular features

Despite the presence of three benzyl moieties in the mol­ecular structure of 1, only weak ππ inter­actions are present in the crystal packing, with rather large centroid–centroid distances ranging from 4.4279 (11) to 5.9248 (9) Å. However, clear inter­molecular hydrogen bonds are found between the secondary amine N1—H1 hydrogen atoms and the thio­urea S1 atoms [N1—H1⋯S1 = 2.47 (3) Å; Table 1[link]], linking the N,N,N′-tri­benzyl­thio­urea mol­ecules into infinite chains along the [001] direction, and forming columnar arrangements through alternating orientations of the mol­ecules (Fig. 3[link]). Non-classical intra­molecular hydrogen bonds can be noticed between methyl C—H atoms of two benzyl groups and S1 atoms [C2—H2A⋯S1 = 2.70 Å; C9—H9A⋯S1 = 2.60 Å], as well as between benzene ring C—H atoms and tertiary amine N2 atoms [C15—H15⋯N2 = 2.51 Å; C22—H22⋯N2 = 2.58 Å]. Furthermore, several C—H⋯π contacts are observed in the range of 3.5419 (17)–3.8507 (19) Å, complementing the crystal packing.

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.86 (3) 2.47 (3) 3.2044 (13) 145 (3)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Packing in the structure of 1, (a) viewed down the a axis, showing the N1—H1⋯S1 hydrogen bonds, linking the N,N,N′-tri­benzyl­thio­urea mol­ecules into infinite chains along the [001] direction, and (b) viewed down the c axis, showing the columnar arrangement through alternating orientations of the mol­ecules. A chain of four hydrogen-bonded mol­ecules is highlighted (green). Hydrogen atoms (except involved in hydrogen bonds) are omitted for clarity.

Analogous to 1, the presence of two phenyl substituents in the mol­ecular structure of 2, only leads to weak ππ inter­actions present in the crystal packing, with rather large centroid–centroid distances ranging from 4.8431 (13) to 5.9503 (12) Å. However, in this case, inter­molecular hydrogen bonds are formed between the two distinct mol­ecules in the asymmetric unit, i.e. between the secondary amine N1—H1 hydrogen atom of the first mol­ecule and the thio­urea S21 atom of the second mol­ecule [N1—H1⋯S21 = 2.58 (3) Å; Table 2[link]], assembling the N-methyl-N,N′-di­phenyl­thio­urea mol­ecules into hydrogen-bonded pairs (Fig. 4[link]). Non-classical intra­molecular hydrogen bonds can be noticed between the two methyl group C—H atoms, as well as phenyl ring C—H atoms, and S1/S21 atoms [C8—H8B⋯S1 = 2.65 Å; C28—H28B⋯S21 = 2.58 Å; C27—H27⋯S21 = 2.67 Å]. Additionally, an intra­molecular C=S⋯π contact is observed [C21=S21⋯Cg2 = 3.7115 (11) Å; Cg2 is the centroid of the C9–C14 ring]. Furthermore, several C—H⋯π contacts are observed in the range of 3.518 (2)–3.800 (2) Å, complementing the crystal packing.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S21 0.86 (3) 2.58 (3) 3.3360 (16) 148 (3)
[Figure 4]
Figure 4
Packing in the structure of 2, viewed down the a axis, showing the assembly of hydrogen-bonded pairs of mol­ecules, with one pair highlighted (green). Hydrogen atoms (except involved in hydrogen bonds) are omitted for clarity.

Analogous to 1 and 2, for 3, only one type of weak ππ inter­action is present in the crystal packing, i.e. between symmetry-equivalent phenyl substituents, with a centroid–centroid distance of 4.9098 (10) Å. Inter­molecular hydrogen bonds are formed between the secondary amine N1—H1 hydrogen atoms and the thio­urea S1 atoms [N1—H1⋯S1 = 3.4656 (11) Å; Table 3[link]], leading to a hexa­mer ring assembly of mol­ecules, around the threefold rotoinversion axes (Fig. 5[link]). Non-classical intra- and inter­molecular hydrogen bonds can be noticed between two butyl CH2 groups and S1 [C8—H8B⋯S1 = 2.58 Å; C12—H12A⋯S1i; symmetry code: (i) −[{1\over 3}] + y, [{1\over 3}] − x + y, 4/3 − z]. Only one C—H⋯π contact is observed [C4—H4⋯Cg1 = 3.6996 (17) Å; Cg1 is the centroid of the C2–C7 ring].

Table 3
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.86 (2) 2.62 (2) 3.4656 (11) 167 (2)
C12—H12A⋯S1i 0.99 2.67 3.6588 (13) 174
Symmetry code: (i) [y-{\script{1\over 3}}, -x+y+{\script{1\over 3}}, -z+{\script{4\over 3}}].
[Figure 5]
Figure 5
Packing in the structure of 3, (a) viewed down the c axis, showing the hexa­mer ring assembly of mol­ecules, around the threefold rotoinversion axes, with one hexa­mer highlighted (green). (b) Detail of one hydrogen-bonded hexa­mer ring assembly. Hydrogen atoms (except involved in hydrogen bonds) are omitted for clarity.

4. Database survey

A survey of compounds, closely related to 1, 2 and 3, deposited with the Cambridge Structural Database (CSD 2021.1, version 5.42, updates of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) resulted in ten other thio­urea compounds, containing (substituted) benz­yl/phenyl rings on the secondary amine and (substituted) benz­yl/phenyl rings or alkyl groups on the tertiary amine, with refcodes HIFTIZ, HIFTOF, KUFQOS, KUFQOS01, KUFQOS02, POFJUR, QEMZOA, RAPNAA, RAQRAF and OYOSIH.

The structures with refcodes HIFTIX and HIFTOF are two unsymmetrical thio­urea derivatives, 1,1-dimethyl-3-o-tolyl­thio­urea and 1,1-diethyl-3-o-tolyl­thio­urea (Ramnathan et al., 1996[Ramnathan, A., Sivakumar, K., Janarthanan, N., Meerarani, D., Ramadas, K. & Fun, H.-K. (1996). Acta Cryst. C52, 411-414.]), containing o-tolyl groups as secondary amine substituents, while KUFQOS (Zhao et al., 2008[Zhao, P. S., Qin, Y. Q., Zhang, J. & Jian, F. F. (2008). Pol. J. Chem. 82, 2153-2165.]), KUFQOS01 (Panda et al., 2017[Panda, T. K., Bhattacharjee, J., Das, S. & Kottalanka, R. (2017). CSD Private Communication.]) and KUFQOS02 (Bhide et al., 2021[Bhide, M. A., Mears, K. L., Carmalt, C. J. & Knapp, C. E. (2021). Chem. Sci. 12, 8822-8831.]) represent the same structure of 1,1-dimethyl-3-phenyl­thio­urea. Halogen-substituted phenyl rings as secondary amine substituents are found for refcodes POFJUR and QEMZOA, which represent isomorphic structures of 3-(2-bromo-4-chloro­phen­yl)-1,1-di­methyl­thio­urea (El-Hiti et al., 2014[El-Hiti, G. A., Smith, K., Hegazy, A. S., Alotaibi, M. H. & Kariuki, B. M. (2014). Acta Cryst. E70, o704.]) and N′-(2-bromo-4-methyl­phen­yl)-N,N-di­methyl­thio­urea (El-Hiti et al., 2018[El-Hiti, G. A., Smith, K., Hegazy, A. S., Alshammari, M. B. & Kariuki, B. M. (2018). IUCrData, 3, x180045.]), respectively, while RAPNAA and RAQRAF represent structures of 3-(2-bromo­phen­yl)-1,1-di­methyl­thio­urea (El-Hiti et al., 2017a[El-Hiti, G. A., Smith, K., Hegazy, A. S., Alotaibi, M. H. & Kariuki, B. M. (2017a). Z. Kristallogr. New Cryst. Struct. 232, 31-32.]) and 3-(4-chloro­phen­yl)-1,1-di­methyl­thio­urea (El-Hiti et al., 2017b[El-Hiti, G. A., Smith, K., Alshammari, M. B., Hegazy, A. S. & Kariuki, B. M. (2017b). Z. Kristallogr. New Cryst. Struct. 232, 105-107.]), respectively.

In all the above-mentioned structures, N—H⋯S hydrogen bonds link the mol­ecules into infinite chains, similar to 1. This makes the reported structures of 2 and 3 unique in the sense that they show assemblies of hydrogen-bonded pairs and hexa­mer rings of mol­ecules, respectively.

As previously mentioned, OYOSIH (Rahman et al., 2021[Rahman, F. U., Bibi, M., Khan, E., Shah, A. B., Muhammad, M., Tahir, M. N., Shahzad, A., Ullah, F., Zahoor, M., Alamery, S. & Batiha, G. E.-S. (2021). Molecules, 26, 4506.]) represents the same structure as 3, although determined at room temperature and showed disorder of both butyl subs­tit­uents, as well as the presence of unknown solvent, which was treated by the SQUEEZE procedure in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.])

5. Synthesis and crystallization

General considerations All manipulations were performed in air. All chemicals were used as received. Phenyl iso­thio­cyanate (97.0%) was purchased from Alfa Aesar. Chloro­form-d1 (stabilized with Ag, 99.8%D) was purchased from Carl Roth. Toluene (99.0%), aceto­nitrile (99.9%), n-hexane (99.0%), and abs. ethanol (99.8%) were purchased from Chem-Lab. Benzyl iso­thio­cyanate (98.0%), di­benzyl­amine (97.0%), N-methyl­aniline (98.0%), and di-n-butyl­amine (99.5%) were purchased from Sigma-Aldrich. Di­chloro­methane-d2 (99.8%D) was purchased from VWR. The thio­ureas were synthesized according to the procedure by Hendricks and Co-workers on a 30 mmol scale with the addition of a recrystallization step to purify the thio­urea (Hendricks et al., 2015[Hendricks, M. P., Campos, M. P., Cleveland, G. T., Jen-La Plante, I. & Owen, J. S. (2015). Science, 348, 1226-1230.]; Hamachi et al., 2017[Hamachi, L. S., Jen-La Plante, I., Coryell, A. C., De Roo, J. & Owen, J. S. (2017). Chem. Mater. 29, 8711-8719.]).

Synthesis of N,N,N'-tri­benzyl­thio­urea (1): A 40 mL vial was loaded with benzyl iso­thio­cyanate (4476.6 mg, 3.800 mL, 30 mmol, 1.0 eq.) in toluene (5 mL). To this, a solution of di­benzyl­amine (5918.4 mg, 5.800 mL, 30 mmol, 1.0 eq.) in toluene (5 mL) was added dropwise. The mixture was left to stir for 1 h at room temperature. Afterwards, the solvent was removed under reduced pressure, and the residual solid was recrystallized from hot aceto­nitrile which was cooled slowly (> 2 h) to room temperature and then to refrigerator temperature (275–281 K; > 2 h). The formed crystals were filtered off and extensively dried under dynamic vacuum to obtain white needle-like crystals (7.8 g, 75%), suitable for single-crystal X-ray diffraction analysis. 1H NMR (400 MHz, CD2Cl2): δ 7.45–7.15 (m, 13H), δ 7.10–6.95 (m, 2H), δ 5.80 (t, J = 4.5 Hz, 1H), δ 5.00 (s, 4H), 4.80 (d, J = 2.6 Hz, 2H). 13C NMR (100 MHz, CDCl3): δ 183.16, 137.78, 136.06, 129.17, 128.75, 128.03, 127.62, 127.19, 54.37, 50.79. LC–MS (API–ES) calculated for C22H23N2S [M+H]+ 347.16, found 347.1.

Synthesis of N-methyl-N,N'-di­phenyl­thio­urea (2): A 40 mL vial was loaded with phenyl iso­thio­cyanate (4055.7 mg, 3.585 mL, 30 mmol, 1.0 eq.) in toluene (5 mL). To this, a solution of N-methyl­aniline (3214.5 mg, 3.250 mL, 30 mmol, 1.0 eq.) in toluene (5 mL) was added dropwise. The mixture was left to stir for 6 h at 323 K, since the reaction with aniline derivatives elapses more sluggishly. Afterwards, the solvent was removed under reduced pressure, and the residual solid was recrystallized from a hot hexa­ne:ethanol (10:1) mixture which was cooled slowly (> 2 h) to room temperature and then to refrigerator temperature (275-281 K; > 2 h). The formed crystals were filtered off and extensively dried under dynamic vacuum to obtain white needle-like crystals (5.5 g, 76%), suitable for single-crystal X-ray diffraction analysis. 1H NMR (400 MHz, CD2Cl2): δ 7.55–7.50 (m, 2H), δ 7.45–7.35 (m, 3H), δ 7.32–7.27 (m, 4H), δ 7.20–7.12 (m, 1H), δ 7.00 (s, 1H), δ 3.70 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 181.92, 143.52, 140.04, 131.05, 129.03, 128.76, 127.44, 126.21, 126.12, 43.73. LC–MS (API–ES) calculated for C14H15N2S [M+H]+ 243.10, found 243.1.

Synthesis of N,N-di-n-butyl-N′-phenylthio­urea (3): A 40 mL vial was loaded with phenyl iso­thio­cyanate (4055.7 mg, 3.585 mL, 30 mmol, 1.0 eq.) in toluene (5 mL). To this, a solution of di-n-butyl­amine (3877.2 mg, 5.055 mL, 30 mmol, 1.0 eq.) in toluene (5 mL) was added dropwise. The mixture was left to stir for 1 h at room temperature. Afterwards, the solvent was removed under reduced pressure, and the residual solid was recrystallized from a hot hexa­ne:ethanol (10:1) mixture which was cooled slowly (> 2 h) to room temperature and then to refrigerator temperature (275-281 K; > 2 h). The formed crystals were filtered off and extensively dried under dynamic vacuum to obtain white needle-like crystals (6.9 g, 87%), suitable for single-crystal X-ray diffraction analysis. 1H NMR (400 MHz, CD2Cl2): δ 7.40–7.28 (m, 4H), δ 7.23–7.15 (m, 1H), δ 7.00 (s, 1H), δ 3.67 (t, J = 7.9 Hz, 4H), δ 1.71 (quin, J = 7.7 Hz, 4H), δ 1.38 (six, J = 7.9 Hz, 4H), δ 0.97 (t, J = 7.5 Hz, 6H). 13C NMR (100 MHz, CDCl3): δ 181.56, 140.65, 128.85, 126.21, 125.84, 51.85, 29.95, 20.69, 14.06. LC–MS (API–ES) calc for C15H25N2S [M+H]+ 265.17, found 265.2.

NMR spectroscopy. Nuclear Magnetic Resonance (NMR) spectra of the synthesized organics were recorded on a Bruker 400 MHz. Chemical shifts (δ) are given in ppm and the residual solvent peak was used as an inter­nal standard (CDCl3: δH = 7.24 ppm, δC = 77.06 ppm, CD2Cl2: δH = 5.32 ppm, δC = 53.84 ppm). The signal multiplicity is denoted as follows: s (singlet), d (doublet), t (triplet), quad (quadruplet), quin (quintet), six (sextet), m (multiplet). Coupling constants are reported in Hertz (Hz). All resonances were corrected prior to integration by subtracting a background from the measured intensity. 1H, and 13C spectra were acquired using the standard pulse sequences from the Bruker library; zg30, and jmod (Attached Proton Test = APT), respectively.

Mass spectroscopy. Mass spectra (MS) were measured with an Agilent ESI single quadrupole detector type VL and an Agilent APCI single quadrupole detector type VL.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. For all structures, the amine N–H hydrogen atoms could be located from a difference-Fourier electron-density map, and were further refined with isotropic temperature factors fixed at 1.2 times Ueq of the parent atoms. All other hydrogen atoms were refined in the riding mode with isotropic temperature factors fixed at 1.2 times Ueq of the parent atoms (1.5 times for methyl groups).

Table 4
Experimental details

  1 2 3
Crystal data
Chemical formula C22H22N2S C14H14N2S C15H24N2S
Mr 346.48 242.33 264.42
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}] Trigonal, R[\overline{3}]
Temperature (K) 100 100 100
a, b, c (Å) 11.2378 (4), 14.7792 (5), 11.3165 (5) 9.8379 (6), 10.8014 (6), 13.2328 (6) 25.5231 (3), 25.5231 (3), 12.6225 (2)
α, β, γ (°) 90, 102.042 (3), 90 65.913 (5), 87.752 (4), 84.059 (5) 90, 90, 120
V3) 1838.15 (12) 1276.82 (13) 7121.0 (2)
Z 4 4 18
Radiation type Cu Kα Cu Kα Cu Kα
μ (mm−1) 1.59 2.06 1.69
Crystal size (mm) 0.24 × 0.19 × 0.06 0.26 × 0.17 × 0.13 0.42 × 0.26 × 0.18
 
Data collection
Diffractometer SuperNova, Dual, Cu at home/near, Atlas SuperNova, Dual, Cu at home/near, Atlas SuperNova, Dual, Cu at home/near, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Oxford, England.]) Gaussian (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Oxford, England.]) Gaussian (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Oxford, England.])
Tmin, Tmax 0.750, 1.000 0.687, 1.000 0.479, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16515, 3589, 3256 12208, 4818, 4298 14921, 3151, 3004
Rint 0.060 0.028 0.021
(sin θ/λ)max−1) 0.624 0.623 0.622
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.06 0.049, 0.142, 1.06 0.032, 0.087, 1.06
No. of reflections 3589 4818 3151
No. of parameters 229 315 168
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.31 0.58, −0.25 0.25, −0.18
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Oxford, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a\); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b\); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: Mercury (Macrae et al., 2020).

N,N,N'-Tribenzylthiourea (1) top
Crystal data top
C22H22N2SF(000) = 736
Mr = 346.48Dx = 1.252 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 11.2378 (4) ÅCell parameters from 8187 reflections
b = 14.7792 (5) Åθ = 4.0–74.0°
c = 11.3165 (5) ŵ = 1.59 mm1
β = 102.042 (3)°T = 100 K
V = 1838.15 (12) Å3Plate, clear colourless
Z = 40.24 × 0.19 × 0.06 mm
Data collection top
SuperNova, Dual, Cu at home/near, Atlas
diffractometer
3589 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source3256 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.060
Detector resolution: 10.4839 pixels mm-1θmax = 74.2°, θmin = 4.0°
ω scansh = 1313
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2019)
k = 1818
Tmin = 0.750, Tmax = 1.000l = 1113
16515 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0753P)2 + 0.4416P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3589 reflectionsΔρmax = 0.30 e Å3
229 parametersΔρmin = 0.31 e Å3
0 restraintsAbsolute structure: -
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10482 (3)0.29165 (3)0.32245 (3)0.02217 (14)
N10.12474 (11)0.23113 (8)0.54565 (11)0.0198 (3)
N20.25536 (10)0.34685 (8)0.52442 (11)0.0191 (3)
C10.16633 (12)0.28879 (9)0.47205 (13)0.0177 (3)
C20.04085 (13)0.15697 (10)0.50233 (13)0.0209 (3)
H2A0.0242310.1792230.4358030.025*
H2B0.0022130.1365460.5687170.025*
C30.10428 (12)0.07750 (10)0.45767 (14)0.0215 (3)
C40.20059 (15)0.03591 (12)0.53478 (18)0.0358 (4)
H40.2261810.0573280.6152270.043*
C50.25996 (16)0.03682 (13)0.4954 (2)0.0519 (6)
H50.3267380.0646160.5482280.062*
H10.154 (3)0.2304 (18)0.622 (3)0.062*
C60.22149 (18)0.06872 (13)0.3786 (2)0.0494 (6)
H60.2623810.1182150.3511430.059*
C70.1240 (2)0.02889 (12)0.30214 (19)0.0433 (5)
H70.0969280.0516380.2225460.052*
C80.06532 (16)0.04457 (11)0.34141 (15)0.0299 (4)
H80.0015530.0721970.2884760.036*
C90.31744 (12)0.40391 (10)0.45137 (13)0.0202 (3)
H9A0.3139440.3740340.3724250.024*
H9B0.4041700.4088580.4920680.024*
C100.26494 (12)0.49838 (10)0.42917 (13)0.0190 (3)
C110.31752 (13)0.55802 (10)0.35960 (14)0.0242 (3)
H110.3848440.5388450.3272350.029*
C120.27248 (15)0.64526 (11)0.33705 (15)0.0281 (4)
H120.3083100.6851340.2885710.034*
C130.17537 (14)0.67414 (11)0.38522 (15)0.0276 (4)
H130.1445080.7338100.3700340.033*
C140.12353 (13)0.61561 (10)0.45559 (15)0.0249 (3)
H140.0576920.6355360.4897170.030*
C150.16720 (12)0.52792 (10)0.47662 (13)0.0211 (3)
H150.1300220.4878520.5237390.025*
C160.29405 (13)0.35662 (10)0.65564 (13)0.0209 (3)
H16A0.2224240.3475220.6925030.025*
H16B0.3231090.4193340.6738300.025*
C170.39376 (12)0.29173 (10)0.71478 (14)0.0195 (3)
C180.45690 (13)0.31034 (11)0.83213 (14)0.0230 (3)
H180.4384300.3634930.8719620.028*
C190.54635 (13)0.25185 (11)0.89097 (14)0.0264 (3)
H190.5894050.2653890.9704970.032*
C200.57320 (13)0.17348 (11)0.83395 (15)0.0263 (3)
H200.6344930.1333500.8741700.032*
C210.50997 (13)0.15434 (11)0.71817 (15)0.0244 (3)
H210.5272820.1004290.6792350.029*
C220.42111 (13)0.21354 (10)0.65824 (14)0.0221 (3)
H220.3790570.2002650.5782600.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0224 (2)0.0317 (2)0.0112 (2)0.00067 (12)0.00060 (14)0.00133 (12)
N10.0220 (6)0.0250 (6)0.0118 (6)0.0008 (5)0.0020 (5)0.0003 (5)
N20.0202 (6)0.0220 (6)0.0136 (6)0.0015 (4)0.0006 (4)0.0009 (4)
C10.0162 (6)0.0215 (7)0.0153 (7)0.0052 (5)0.0028 (5)0.0009 (5)
C20.0195 (7)0.0251 (7)0.0181 (7)0.0015 (5)0.0041 (5)0.0017 (6)
C30.0189 (7)0.0240 (7)0.0222 (8)0.0037 (5)0.0057 (5)0.0002 (6)
C40.0274 (8)0.0291 (8)0.0444 (11)0.0016 (6)0.0073 (7)0.0044 (7)
C50.0243 (8)0.0301 (10)0.0956 (18)0.0028 (7)0.0003 (9)0.0106 (10)
C60.0427 (11)0.0253 (9)0.0929 (18)0.0065 (7)0.0434 (11)0.0113 (10)
C70.0719 (14)0.0292 (9)0.0394 (11)0.0185 (9)0.0362 (10)0.0078 (8)
C80.0434 (9)0.0277 (8)0.0196 (8)0.0080 (7)0.0090 (6)0.0008 (6)
C90.0175 (6)0.0251 (7)0.0184 (7)0.0009 (5)0.0044 (5)0.0013 (6)
C100.0178 (6)0.0236 (7)0.0141 (7)0.0007 (5)0.0002 (5)0.0016 (5)
C110.0242 (7)0.0289 (8)0.0194 (8)0.0031 (6)0.0048 (5)0.0010 (6)
C120.0333 (8)0.0272 (8)0.0226 (9)0.0079 (6)0.0029 (6)0.0032 (6)
C130.0277 (8)0.0216 (7)0.0286 (9)0.0007 (6)0.0054 (6)0.0010 (6)
C140.0190 (7)0.0253 (8)0.0283 (8)0.0023 (5)0.0001 (6)0.0020 (6)
C150.0180 (6)0.0245 (7)0.0196 (7)0.0009 (5)0.0012 (5)0.0006 (6)
C160.0215 (7)0.0251 (7)0.0142 (8)0.0027 (5)0.0003 (5)0.0012 (5)
C170.0166 (7)0.0261 (7)0.0156 (7)0.0013 (5)0.0027 (5)0.0031 (5)
C180.0226 (7)0.0285 (7)0.0167 (8)0.0028 (6)0.0010 (5)0.0004 (6)
C190.0218 (7)0.0373 (9)0.0173 (8)0.0031 (6)0.0020 (5)0.0038 (6)
C200.0169 (6)0.0340 (8)0.0264 (8)0.0020 (6)0.0012 (6)0.0118 (7)
C210.0200 (7)0.0279 (8)0.0261 (9)0.0030 (5)0.0064 (6)0.0027 (6)
C220.0192 (7)0.0296 (8)0.0167 (7)0.0010 (5)0.0019 (5)0.0007 (6)
Geometric parameters (Å, º) top
S1—C11.6905 (14)C10—C151.390 (2)
N1—C11.3419 (19)C11—H110.9500
N1—C21.4621 (18)C11—C121.389 (2)
N1—H10.85 (3)C12—H120.9500
N2—C11.3569 (18)C12—C131.385 (3)
N2—C91.4566 (19)C13—H130.9500
N2—C161.4648 (19)C13—C141.384 (2)
C2—H2A0.9900C14—H140.9500
C2—H2B0.9900C14—C151.389 (2)
C2—C31.514 (2)C15—H150.9500
C3—C41.384 (2)C16—H16A0.9900
C3—C81.385 (2)C16—H16B0.9900
C4—H40.9500C16—C171.5199 (19)
C4—C51.387 (3)C17—C181.396 (2)
C5—H50.9500C17—C221.386 (2)
C5—C61.384 (3)C18—H180.9500
C6—H60.9500C18—C191.386 (2)
C6—C71.378 (3)C19—H190.9500
C7—H70.9500C19—C201.389 (2)
C7—C81.391 (3)C20—H200.9500
C8—H80.9500C20—C211.383 (2)
C9—H9A0.9900C21—H210.9500
C9—H9B0.9900C21—C221.393 (2)
C9—C101.5162 (19)C22—H220.9500
C10—C111.393 (2)
C1—N1—C2123.48 (12)C15—C10—C11118.84 (14)
C1—N1—H1121.3 (18)C10—C11—H11119.7
C2—N1—H1114.6 (18)C12—C11—C10120.66 (15)
C1—N2—C9121.00 (12)C12—C11—H11119.7
C1—N2—C16122.75 (13)C11—C12—H12120.0
C9—N2—C16116.25 (11)C13—C12—C11120.03 (15)
N1—C1—S1120.99 (11)C13—C12—H12120.0
N1—C1—N2116.81 (13)C12—C13—H13120.2
N2—C1—S1122.13 (11)C14—C13—C12119.64 (14)
N1—C2—H2A109.2C14—C13—H13120.2
N1—C2—H2B109.2C13—C14—H14119.8
N1—C2—C3112.20 (11)C13—C14—C15120.39 (15)
H2A—C2—H2B107.9C15—C14—H14119.8
C3—C2—H2A109.2C10—C15—H15119.8
C3—C2—H2B109.2C14—C15—C10120.43 (14)
C4—C3—C2119.63 (14)C14—C15—H15119.8
C4—C3—C8119.56 (15)N2—C16—H16A108.6
C8—C3—C2120.79 (14)N2—C16—H16B108.6
C3—C4—H4119.8N2—C16—C17114.82 (12)
C3—C4—C5120.44 (18)H16A—C16—H16B107.5
C5—C4—H4119.8C17—C16—H16A108.6
C4—C5—H5120.1C17—C16—H16B108.6
C6—C5—C4119.70 (19)C18—C17—C16118.44 (13)
C6—C5—H5120.1C22—C17—C16122.47 (13)
C5—C6—H6119.9C22—C17—C18119.05 (14)
C7—C6—C5120.19 (17)C17—C18—H18119.7
C7—C6—H6119.9C19—C18—C17120.51 (15)
C6—C7—H7120.0C19—C18—H18119.7
C6—C7—C8120.03 (18)C18—C19—H19119.9
C8—C7—H7120.0C18—C19—C20120.19 (14)
C3—C8—C7120.05 (17)C20—C19—H19119.9
C3—C8—H8120.0C19—C20—H20120.3
C7—C8—H8120.0C21—C20—C19119.47 (14)
N2—C9—H9A108.7C21—C20—H20120.3
N2—C9—H9B108.7C20—C21—H21119.8
N2—C9—C10114.29 (12)C20—C21—C22120.48 (15)
H9A—C9—H9B107.6C22—C21—H21119.8
C10—C9—H9A108.7C17—C22—C21120.29 (14)
C10—C9—H9B108.7C17—C22—H22119.9
C11—C10—C9118.69 (13)C21—C22—H22119.9
C15—C10—C9122.46 (13)
N1—C2—C3—C457.70 (19)C9—N2—C16—C1792.33 (15)
N1—C2—C3—C8123.79 (15)C9—C10—C11—C12179.93 (13)
N2—C9—C10—C11179.60 (12)C9—C10—C15—C14178.87 (13)
N2—C9—C10—C151.06 (19)C10—C11—C12—C130.9 (2)
N2—C16—C17—C18164.26 (13)C11—C10—C15—C140.5 (2)
N2—C16—C17—C2218.1 (2)C11—C12—C13—C140.1 (2)
C1—N1—C2—C377.11 (17)C12—C13—C14—C150.9 (2)
C1—N2—C9—C1095.30 (15)C13—C14—C15—C101.2 (2)
C1—N2—C16—C1788.11 (17)C15—C10—C11—C120.6 (2)
C2—N1—C1—S111.18 (19)C16—N2—C1—S1168.53 (10)
C2—N1—C1—N2171.82 (12)C16—N2—C1—N18.43 (19)
C2—C3—C4—C5179.84 (17)C16—N2—C9—C1084.26 (14)
C2—C3—C8—C7179.52 (15)C16—C17—C18—C19178.27 (14)
C3—C4—C5—C60.9 (3)C16—C17—C22—C21177.37 (14)
C4—C3—C8—C71.0 (2)C17—C18—C19—C200.6 (2)
C4—C5—C6—C70.5 (3)C18—C17—C22—C210.3 (2)
C5—C6—C7—C81.1 (3)C18—C19—C20—C210.0 (2)
C6—C7—C8—C30.4 (3)C19—C20—C21—C220.8 (2)
C8—C3—C4—C51.6 (3)C20—C21—C22—C171.0 (2)
C9—N2—C1—S111.01 (18)C22—C17—C18—C190.5 (2)
C9—N2—C1—N1172.03 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.86 (3)2.47 (3)3.2044 (13)145 (3)
Symmetry code: (i) x, y+1/2, z+1/2.
N-methyl-N,N'-Diphenylthiourea (2) top
Crystal data top
C14H14N2SZ = 4
Mr = 242.33F(000) = 512
Triclinic, P1Dx = 1.261 Mg m3
a = 9.8379 (6) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.8014 (6) ÅCell parameters from 5889 reflections
c = 13.2328 (6) Åθ = 3.6–73.7°
α = 65.913 (5)°µ = 2.06 mm1
β = 87.752 (4)°T = 100 K
γ = 84.059 (5)°Block, clear colourless
V = 1276.82 (13) Å30.26 × 0.17 × 0.13 mm
Data collection top
SuperNova, Dual, Cu at home/near, Atlas
diffractometer
4818 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source4298 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.4839 pixels mm-1θmax = 73.9°, θmin = 3.7°
ω scansh = 1111
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2019)
k = 1312
Tmin = 0.687, Tmax = 1.000l = 1616
12208 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0963P)2 + 0.1879P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4818 reflectionsΔρmax = 0.58 e Å3
315 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.87530 (5)0.36219 (4)0.10166 (3)0.03871 (15)
N10.74118 (16)0.27410 (15)0.09073 (12)0.0352 (3)
N20.78346 (16)0.49902 (15)0.01836 (12)0.0385 (3)
C10.79648 (17)0.37896 (17)0.00793 (13)0.0344 (4)
C20.74183 (18)0.13995 (17)0.09466 (12)0.0339 (4)
C30.61818 (19)0.08717 (18)0.09855 (13)0.0370 (4)
H30.5348080.1412700.0960500.044*
C40.6160 (2)0.04473 (19)0.10612 (14)0.0415 (4)
H40.5313430.0815170.1102310.050*
C50.7377 (2)0.12244 (19)0.10765 (14)0.0431 (4)
H50.7363630.2119410.1111910.052*
C60.8613 (2)0.06994 (19)0.10404 (14)0.0419 (4)
H60.9445500.1234120.1049090.050*
C70.86365 (19)0.06084 (18)0.09914 (13)0.0383 (4)
H70.9484110.0958700.0988600.046*
C80.8263 (2)0.62333 (19)0.06957 (16)0.0466 (4)
H8A0.7555270.6619940.1270690.070*
H8B0.9120300.6017350.1018720.070*
H8C0.8401490.6895820.0387110.070*
C90.71401 (18)0.51678 (17)0.11024 (14)0.0357 (4)
C100.78585 (18)0.49184 (18)0.20553 (15)0.0379 (4)
H100.8794370.4573380.2126570.045*
C110.7198 (2)0.51775 (19)0.29091 (15)0.0429 (4)
H110.7686230.5012300.3563920.052*
C120.5839 (2)0.5672 (2)0.28090 (17)0.0461 (4)
H120.5392560.5841860.3395600.055*
C130.5120 (2)0.5923 (2)0.18474 (19)0.0470 (4)
H130.4183490.6265210.1777380.056*
C140.5773 (2)0.56728 (19)0.09959 (17)0.0420 (4)
H140.5285990.5846190.0338400.050*
S210.52714 (5)0.19752 (5)0.30490 (4)0.04442 (16)
N210.47106 (17)0.1816 (2)0.50962 (13)0.0464 (4)
N220.69539 (17)0.14244 (18)0.47379 (14)0.0456 (4)
C210.5669 (2)0.17492 (19)0.43396 (15)0.0408 (4)
C220.33316 (19)0.23455 (19)0.49771 (14)0.0380 (4)
C230.2535 (2)0.1894 (2)0.59315 (14)0.0438 (4)
H230.2926880.1229010.6602650.053*
C240.1187 (2)0.2401 (2)0.59142 (16)0.0491 (5)
H240.0653650.2080410.6568960.059*
C250.0610 (2)0.3379 (2)0.49387 (18)0.0520 (5)
H250.0318330.3733370.4921020.062*
C260.1397 (2)0.3832 (2)0.39947 (17)0.0503 (5)
H260.0998830.4497520.3326190.060*
C270.2752 (2)0.3338 (2)0.39998 (15)0.0431 (4)
H270.3282990.3670670.3344630.052*
C280.8129 (2)0.1216 (2)0.4083 (2)0.0526 (5)
H28A0.8623590.2033000.3792160.079*
H28B0.7805150.1042450.3466340.079*
H28C0.8741880.0433520.4554570.079*
C290.72661 (18)0.1336 (2)0.58213 (15)0.0418 (4)
C300.7548 (2)0.0084 (2)0.6690 (2)0.0541 (5)
H300.7565570.0729960.6573980.065*
C310.7807 (3)0.0024 (2)0.7737 (2)0.0621 (6)
H310.7982090.0837400.8339000.074*
H10.688 (3)0.290 (3)0.138 (3)0.074*
H210.494 (3)0.135 (3)0.580 (3)0.074*
C320.7813 (2)0.1195 (2)0.79115 (17)0.0497 (5)
H320.7986120.1142410.8629950.060*
C330.7567 (2)0.2446 (2)0.70368 (16)0.0438 (4)
H330.7596550.3257170.7148380.053*
C340.72752 (19)0.2523 (2)0.59942 (15)0.0430 (4)
H340.7081810.3386010.5398110.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0441 (3)0.0393 (3)0.0306 (2)0.00590 (17)0.00684 (17)0.01224 (18)
N10.0400 (8)0.0323 (7)0.0335 (7)0.0053 (5)0.0067 (6)0.0139 (6)
N20.0462 (8)0.0326 (7)0.0349 (7)0.0076 (6)0.0072 (6)0.0116 (6)
C10.0316 (8)0.0362 (9)0.0331 (7)0.0041 (6)0.0001 (6)0.0117 (6)
C20.0425 (9)0.0322 (8)0.0262 (7)0.0054 (6)0.0031 (6)0.0109 (6)
C30.0413 (9)0.0372 (9)0.0303 (7)0.0037 (7)0.0002 (6)0.0115 (6)
C40.0521 (11)0.0398 (9)0.0326 (8)0.0118 (8)0.0010 (7)0.0128 (7)
C50.0642 (12)0.0328 (9)0.0318 (8)0.0049 (8)0.0016 (8)0.0128 (7)
C60.0506 (11)0.0384 (9)0.0323 (8)0.0028 (7)0.0058 (7)0.0118 (7)
C70.0419 (9)0.0381 (9)0.0314 (8)0.0045 (7)0.0036 (7)0.0108 (7)
C80.0623 (12)0.0345 (9)0.0402 (9)0.0127 (8)0.0105 (8)0.0116 (7)
C90.0397 (9)0.0299 (8)0.0378 (8)0.0068 (6)0.0046 (7)0.0138 (7)
C100.0365 (9)0.0344 (9)0.0385 (8)0.0038 (6)0.0026 (7)0.0108 (7)
C110.0516 (11)0.0408 (10)0.0353 (8)0.0099 (8)0.0040 (7)0.0133 (7)
C120.0507 (11)0.0430 (10)0.0485 (10)0.0098 (8)0.0144 (8)0.0225 (8)
C130.0361 (10)0.0461 (11)0.0633 (12)0.0038 (7)0.0051 (8)0.0273 (9)
C140.0402 (10)0.0383 (9)0.0501 (10)0.0039 (7)0.0037 (8)0.0203 (8)
S210.0442 (3)0.0584 (3)0.0376 (2)0.0158 (2)0.00781 (19)0.0247 (2)
N210.0393 (9)0.0629 (11)0.0288 (7)0.0000 (7)0.0020 (6)0.0115 (7)
N220.0390 (9)0.0546 (10)0.0426 (8)0.0017 (7)0.0057 (6)0.0203 (7)
C210.0415 (10)0.0406 (9)0.0395 (9)0.0068 (7)0.0062 (7)0.0154 (7)
C220.0373 (9)0.0443 (9)0.0324 (8)0.0068 (7)0.0013 (7)0.0150 (7)
C230.0438 (10)0.0516 (11)0.0301 (8)0.0021 (8)0.0011 (7)0.0112 (7)
C240.0422 (10)0.0597 (12)0.0366 (9)0.0036 (8)0.0076 (7)0.0116 (8)
C250.0364 (10)0.0549 (12)0.0515 (11)0.0008 (8)0.0011 (8)0.0092 (9)
C260.0444 (11)0.0491 (11)0.0417 (9)0.0040 (8)0.0022 (8)0.0025 (8)
C270.0417 (10)0.0465 (10)0.0340 (8)0.0088 (7)0.0034 (7)0.0084 (7)
C280.0433 (11)0.0587 (12)0.0612 (12)0.0032 (9)0.0114 (9)0.0312 (10)
C290.0321 (9)0.0482 (10)0.0412 (9)0.0036 (7)0.0010 (7)0.0143 (8)
C300.0559 (13)0.0411 (11)0.0601 (12)0.0092 (9)0.0146 (10)0.0131 (9)
C310.0719 (15)0.0467 (12)0.0534 (12)0.0157 (10)0.0225 (11)0.0017 (9)
C320.0472 (11)0.0539 (12)0.0407 (9)0.0128 (8)0.0050 (8)0.0094 (8)
C330.0395 (10)0.0489 (11)0.0407 (9)0.0052 (7)0.0061 (7)0.0161 (8)
C340.0399 (9)0.0457 (10)0.0356 (8)0.0006 (7)0.0055 (7)0.0101 (7)
Geometric parameters (Å, º) top
S1—C11.6835 (17)S21—C211.6798 (19)
N1—C11.359 (2)N21—C211.367 (2)
N1—C21.428 (2)N21—C221.405 (2)
N1—H10.86 (4)N21—H210.88 (3)
N2—C11.352 (2)N22—C211.345 (3)
N2—C81.462 (2)N22—C281.472 (2)
N2—C91.442 (2)N22—C291.441 (3)
C2—C31.386 (3)C22—C231.395 (3)
C2—C71.386 (2)C22—C271.395 (3)
C3—H30.9500C23—H230.9500
C3—C41.389 (3)C23—C241.379 (3)
C4—H40.9500C24—H240.9500
C4—C51.385 (3)C24—C251.387 (3)
C5—H50.9500C25—H250.9500
C5—C61.385 (3)C25—C261.379 (3)
C6—H60.9500C26—H260.9500
C6—C71.390 (3)C26—C271.383 (3)
C7—H70.9500C27—H270.9500
C8—H8A0.9800C28—H28A0.9800
C8—H8B0.9800C28—H28B0.9800
C8—H8C0.9800C28—H28C0.9800
C9—C101.384 (3)C29—C301.381 (3)
C9—C141.388 (3)C29—C341.392 (3)
C10—H100.9500C30—H300.9500
C10—C111.393 (3)C30—C311.393 (4)
C11—H110.9500C31—H310.9500
C11—C121.377 (3)C31—C321.376 (4)
C12—H120.9500C32—H320.9500
C12—C131.394 (3)C32—C331.379 (3)
C13—H130.9500C33—H330.9500
C13—C141.382 (3)C33—C341.387 (3)
C14—H140.9500C34—H340.9500
C1—N1—C2124.62 (14)C21—N21—C22131.73 (16)
C1—N1—H1120 (2)C21—N21—H21116 (2)
C2—N1—H1114 (2)C22—N21—H21112 (2)
C1—N2—C8121.52 (15)C21—N22—C28122.70 (17)
C1—N2—C9122.74 (14)C21—N22—C29121.26 (16)
C9—N2—C8115.42 (14)C29—N22—C28115.95 (17)
N1—C1—S1122.60 (13)N21—C21—S21123.08 (15)
N2—C1—S1121.65 (13)N22—C21—S21122.99 (14)
N2—C1—N1115.75 (15)N22—C21—N21113.87 (17)
C3—C2—N1118.94 (15)C23—C22—N21116.39 (16)
C3—C2—C7120.07 (17)C23—C22—C27119.09 (17)
C7—C2—N1120.94 (16)C27—C22—N21124.39 (17)
C2—C3—H3120.0C22—C23—H23119.5
C2—C3—C4120.09 (17)C24—C23—C22120.92 (17)
C4—C3—H3120.0C24—C23—H23119.5
C3—C4—H4120.1C23—C24—H24120.1
C5—C4—C3119.83 (19)C23—C24—C25119.87 (18)
C5—C4—H4120.1C25—C24—H24120.1
C4—C5—H5119.9C24—C25—H25120.3
C4—C5—C6120.12 (18)C26—C25—C24119.35 (19)
C6—C5—H5119.9C26—C25—H25120.3
C5—C6—H6119.9C25—C26—H26119.3
C5—C6—C7120.13 (17)C25—C26—C27121.47 (18)
C7—C6—H6119.9C27—C26—H26119.3
C2—C7—C6119.73 (18)C22—C27—H27120.3
C2—C7—H7120.1C26—C27—C22119.30 (17)
C6—C7—H7120.1C26—C27—H27120.3
N2—C8—H8A109.5N22—C28—H28A109.5
N2—C8—H8B109.5N22—C28—H28B109.5
N2—C8—H8C109.5N22—C28—H28C109.5
H8A—C8—H8B109.5H28A—C28—H28B109.5
H8A—C8—H8C109.5H28A—C28—H28C109.5
H8B—C8—H8C109.5H28B—C28—H28C109.5
C10—C9—N2119.96 (16)C30—C29—N22120.46 (19)
C10—C9—C14120.40 (16)C30—C29—C34119.83 (19)
C14—C9—N2119.52 (16)C34—C29—N22119.71 (17)
C9—C10—H10120.3C29—C30—H30120.3
C9—C10—C11119.43 (17)C29—C30—C31119.4 (2)
C11—C10—H10120.3C31—C30—H30120.3
C10—C11—H11119.8C30—C31—H31119.5
C12—C11—C10120.35 (18)C32—C31—C30120.9 (2)
C12—C11—H11119.8C32—C31—H31119.5
C11—C12—H12120.0C31—C32—H32120.2
C11—C12—C13120.04 (17)C31—C32—C33119.6 (2)
C13—C12—H12120.0C33—C32—H32120.2
C12—C13—H13120.1C32—C33—H33119.9
C14—C13—C12119.84 (18)C32—C33—C34120.2 (2)
C14—C13—H13120.1C34—C33—H33119.9
C9—C14—H14120.0C29—C34—H34120.0
C13—C14—C9119.94 (18)C33—C34—C29120.03 (18)
C13—C14—H14120.0C33—C34—H34120.0
N1—C2—C3—C4177.86 (15)N21—C22—C23—C24176.9 (2)
N1—C2—C7—C6179.34 (15)N21—C22—C27—C26176.8 (2)
N2—C9—C10—C11175.88 (16)N22—C29—C30—C31178.1 (2)
N2—C9—C14—C13176.16 (17)N22—C29—C34—C33179.60 (17)
C1—N1—C2—C3120.49 (18)C21—N21—C22—C23161.2 (2)
C1—N1—C2—C762.2 (2)C21—N21—C22—C2723.1 (4)
C1—N2—C9—C1089.0 (2)C21—N22—C29—C30105.4 (2)
C1—N2—C9—C1495.1 (2)C21—N22—C29—C3474.2 (3)
C2—N1—C1—S10.6 (2)C22—N21—C21—S2116.0 (3)
C2—N1—C1—N2178.92 (16)C22—N21—C21—N22166.9 (2)
C2—C3—C4—C51.2 (3)C22—C23—C24—C250.4 (3)
C3—C2—C7—C62.0 (2)C23—C22—C27—C261.2 (3)
C3—C4—C5—C61.4 (3)C23—C24—C25—C260.1 (4)
C4—C5—C6—C70.2 (3)C24—C25—C26—C270.4 (4)
C5—C6—C7—C21.9 (3)C25—C26—C27—C220.9 (3)
C7—C2—C3—C40.5 (2)C27—C22—C23—C241.0 (3)
C8—N2—C1—S15.5 (2)C28—N22—C21—S211.0 (3)
C8—N2—C1—N1174.01 (17)C28—N22—C21—N21176.15 (19)
C8—N2—C9—C1097.4 (2)C28—N22—C29—C3078.0 (3)
C8—N2—C9—C1478.5 (2)C28—N22—C29—C34102.4 (2)
C9—N2—C1—S1178.71 (13)C29—N22—C21—S21175.44 (15)
C9—N2—C1—N10.8 (2)C29—N22—C21—N217.4 (3)
C9—C10—C11—C120.3 (3)C29—C30—C31—C321.4 (4)
C10—C9—C14—C130.3 (3)C30—C29—C34—C330.0 (3)
C10—C11—C12—C130.4 (3)C30—C31—C32—C330.3 (4)
C11—C12—C13—C140.1 (3)C31—C32—C33—C341.9 (3)
C12—C13—C14—C90.2 (3)C32—C33—C34—C291.7 (3)
C14—C9—C10—C110.0 (3)C34—C29—C30—C311.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S210.86 (3)2.58 (3)3.3360 (16)148 (3)
N,N-Di-n-butyl-N'-phenylthiourea (3) top
Crystal data top
C15H24N2SDx = 1.110 Mg m3
Mr = 264.42Cu Kα radiation, λ = 1.54184 Å
Trigonal, R3Cell parameters from 8527 reflections
a = 25.5231 (3) Åθ = 3.4–73.3°
c = 12.6225 (2) ŵ = 1.69 mm1
V = 7121.0 (2) Å3T = 100 K
Z = 18Block, clear colourless
F(000) = 25920.42 × 0.26 × 0.18 mm
Data collection top
SuperNova, Dual, Cu at home/near, Atlas
diffractometer
3151 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source3004 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.4839 pixels mm-1θmax = 73.7°, θmin = 3.5°
ω scansh = 3131
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2019)
k = 2828
Tmin = 0.479, Tmax = 1.000l = 1515
14921 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0479P)2 + 4.6459P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3151 reflectionsΔρmax = 0.25 e Å3
168 parametersΔρmin = 0.18 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.52061 (2)0.89087 (2)0.56407 (2)0.03089 (10)
N10.54435 (4)0.80126 (4)0.59489 (8)0.0307 (2)
N20.60326 (4)0.88769 (4)0.69020 (7)0.0277 (2)
C10.55829 (5)0.85861 (5)0.61987 (8)0.0269 (2)
C20.50126 (5)0.76273 (5)0.51835 (9)0.0300 (2)
C30.45844 (5)0.70441 (6)0.54908 (10)0.0346 (3)
H30.4563570.6922960.6208430.041*
C40.41868 (6)0.66385 (6)0.47470 (12)0.0409 (3)
H40.3897780.6238280.4954240.049*
C50.42119 (6)0.68178 (6)0.37040 (11)0.0415 (3)
H50.3938360.6541620.3196560.050*
C60.46357 (6)0.73993 (7)0.34018 (10)0.0404 (3)
H60.4649500.7522270.2687040.049*
C70.50412 (5)0.78049 (6)0.41355 (10)0.0350 (3)
H70.5336310.8201480.3921500.042*
C80.61573 (5)0.94484 (5)0.73935 (9)0.0319 (2)
H8A0.6029280.9668110.6907740.038*
H8B0.6597780.9704590.7515150.038*
C90.58233 (5)0.93370 (5)0.84445 (9)0.0333 (3)
H9A0.5382550.9092610.8313850.040*
H9B0.5938360.9100120.8913790.040*
C100.59590 (7)0.99172 (6)0.90032 (10)0.0426 (3)
H10A0.5822721.0143820.8552690.051*
H10B0.6401701.0172030.9101180.051*
C110.56494 (7)0.97991 (7)1.00770 (12)0.0493 (3)
H11A0.5209920.9560050.9981600.074*
H11B0.5755021.0185451.0414290.074*
H11C0.5783670.9575721.0526850.074*
H10.5540 (9)0.7814 (9)0.6385 (15)0.059*
C120.64531 (5)0.86653 (5)0.71978 (9)0.0288 (2)
H12A0.6226370.8219850.7278470.035*
H12B0.6643110.8844320.7887460.035*
C130.69452 (5)0.88425 (6)0.63577 (9)0.0342 (3)
H13A0.6752060.8693990.5657890.041*
H13B0.7191210.9289100.6320740.041*
C140.73574 (6)0.85867 (6)0.65902 (10)0.0359 (3)
H14A0.7113090.8139670.6616020.043*
H14B0.7547110.8730620.7293730.043*
C150.78511 (6)0.87735 (7)0.57560 (12)0.0477 (3)
H15A0.7665200.8639340.5056100.071*
H15B0.8096520.8586610.5917750.071*
H15C0.8109090.9214800.5757710.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03175 (16)0.03319 (16)0.03491 (17)0.02161 (12)0.00062 (10)0.00343 (10)
N10.0290 (5)0.0276 (5)0.0384 (5)0.0163 (4)0.0062 (4)0.0022 (4)
N20.0267 (4)0.0242 (4)0.0329 (5)0.0133 (4)0.0008 (4)0.0005 (4)
C10.0244 (5)0.0266 (5)0.0307 (5)0.0136 (4)0.0036 (4)0.0030 (4)
C20.0241 (5)0.0301 (6)0.0394 (6)0.0164 (5)0.0024 (4)0.0056 (4)
C30.0294 (6)0.0314 (6)0.0453 (6)0.0170 (5)0.0027 (5)0.0012 (5)
C40.0296 (6)0.0315 (6)0.0594 (8)0.0137 (5)0.0045 (5)0.0067 (5)
C50.0308 (6)0.0444 (7)0.0491 (7)0.0186 (6)0.0067 (5)0.0172 (6)
C60.0331 (6)0.0525 (8)0.0360 (6)0.0217 (6)0.0004 (5)0.0085 (5)
C70.0270 (5)0.0380 (6)0.0384 (6)0.0150 (5)0.0030 (4)0.0026 (5)
C80.0339 (6)0.0232 (5)0.0374 (6)0.0134 (5)0.0031 (5)0.0009 (4)
C90.0316 (6)0.0290 (6)0.0391 (6)0.0151 (5)0.0025 (5)0.0028 (5)
C100.0620 (9)0.0358 (7)0.0368 (6)0.0294 (6)0.0076 (6)0.0041 (5)
C110.0566 (9)0.0548 (8)0.0453 (7)0.0344 (7)0.0024 (6)0.0111 (6)
C120.0263 (5)0.0261 (5)0.0338 (5)0.0130 (4)0.0032 (4)0.0016 (4)
C130.0315 (6)0.0361 (6)0.0365 (6)0.0180 (5)0.0006 (5)0.0029 (5)
C140.0347 (6)0.0396 (6)0.0372 (6)0.0214 (5)0.0042 (5)0.0046 (5)
C150.0337 (7)0.0558 (8)0.0531 (8)0.0220 (6)0.0010 (6)0.0082 (6)
Geometric parameters (Å, º) top
S1—C11.7004 (11)C9—H9A0.9900
N1—C11.3594 (15)C9—H9B0.9900
N1—C21.4241 (15)C9—C101.5157 (17)
N1—H10.86 (2)C10—H10A0.9900
N2—C11.3432 (15)C10—H10B0.9900
N2—C81.4663 (14)C10—C111.521 (2)
N2—C121.4705 (14)C11—H11A0.9800
C2—C31.3907 (17)C11—H11B0.9800
C2—C71.3885 (17)C11—H11C0.9800
C3—H30.9500C12—H12A0.9900
C3—C41.3901 (18)C12—H12B0.9900
C4—H40.9500C12—C131.5293 (16)
C4—C51.385 (2)C13—H13A0.9900
C5—H50.9500C13—H13B0.9900
C5—C61.383 (2)C13—C141.5186 (17)
C6—H60.9500C14—H14A0.9900
C6—C71.3888 (18)C14—H14B0.9900
C7—H70.9500C14—C151.5242 (18)
C8—H8A0.9900C15—H15A0.9800
C8—H8B0.9900C15—H15B0.9800
C8—C91.5249 (17)C15—H15C0.9800
C1—N1—C2126.66 (10)C10—C9—H9B109.0
C1—N1—H1119.1 (13)C9—C10—H10A109.2
C2—N1—H1112.1 (13)C9—C10—H10B109.2
C1—N2—C8121.99 (9)C9—C10—C11112.25 (12)
C1—N2—C12122.95 (9)H10A—C10—H10B107.9
C8—N2—C12115.00 (9)C11—C10—H10A109.2
N1—C1—S1121.22 (8)C11—C10—H10B109.2
N2—C1—S1122.70 (8)C10—C11—H11A109.5
N2—C1—N1116.08 (10)C10—C11—H11B109.5
C3—C2—N1118.18 (11)C10—C11—H11C109.5
C7—C2—N1121.64 (11)H11A—C11—H11B109.5
C7—C2—C3120.00 (11)H11A—C11—H11C109.5
C2—C3—H3120.0H11B—C11—H11C109.5
C4—C3—C2119.94 (12)N2—C12—H12A109.4
C4—C3—H3120.0N2—C12—H12B109.4
C3—C4—H4120.0N2—C12—C13110.96 (9)
C5—C4—C3120.01 (12)H12A—C12—H12B108.0
C5—C4—H4120.0C13—C12—H12A109.4
C4—C5—H5120.0C13—C12—H12B109.4
C6—C5—C4119.94 (12)C12—C13—H13A109.1
C6—C5—H5120.0C12—C13—H13B109.1
C5—C6—H6119.8H13A—C13—H13B107.8
C5—C6—C7120.48 (13)C14—C13—C12112.46 (10)
C7—C6—H6119.8C14—C13—H13A109.1
C2—C7—C6119.61 (12)C14—C13—H13B109.1
C2—C7—H7120.2C13—C14—H14A109.2
C6—C7—H7120.2C13—C14—H14B109.2
N2—C8—H8A109.4C13—C14—C15111.96 (11)
N2—C8—H8B109.4H14A—C14—H14B107.9
N2—C8—C9111.07 (9)C15—C14—H14A109.2
H8A—C8—H8B108.0C15—C14—H14B109.2
C9—C8—H8A109.4C14—C15—H15A109.5
C9—C8—H8B109.4C14—C15—H15B109.5
C8—C9—H9A109.0C14—C15—H15C109.5
C8—C9—H9B109.0H15A—C15—H15B109.5
H9A—C9—H9B107.8H15A—C15—H15C109.5
C10—C9—C8112.91 (10)H15B—C15—H15C109.5
C10—C9—H9A109.0
N1—C2—C3—C4174.90 (10)C3—C4—C5—C60.45 (19)
N1—C2—C7—C6175.74 (11)C4—C5—C6—C70.57 (19)
N2—C8—C9—C10177.68 (10)C5—C6—C7—C21.16 (19)
N2—C12—C13—C14175.23 (10)C7—C2—C3—C40.27 (17)
C1—N1—C2—C3129.37 (12)C8—N2—C1—S111.78 (15)
C1—N1—C2—C755.54 (16)C8—N2—C1—N1168.43 (10)
C1—N2—C8—C992.75 (12)C8—N2—C12—C1397.50 (11)
C1—N2—C12—C1379.64 (13)C8—C9—C10—C11176.92 (11)
C2—N1—C1—S13.80 (16)C12—N2—C1—S1165.16 (8)
C2—N1—C1—N2176.00 (10)C12—N2—C1—N114.63 (15)
C2—C3—C4—C50.87 (18)C12—N2—C8—C990.08 (11)
C3—C2—C7—C60.74 (17)C12—C13—C14—C15179.20 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.86 (2)2.62 (2)3.4656 (11)167 (2)
C12—H12A···S1i0.992.673.6588 (13)174
Symmetry code: (i) y1/3, x+y+1/3, z+4/3.
 

Acknowledgements

The authors thank Ing. Jan Goeman for the LC–MS measurements.

Funding information

Funding for this research was provided by: Fonds Wetenschappelijk Onderzoek (grant No. G099319N; bursary No. 1S28820N); Bijzonder Onderzoeksfonds UGent (grant No. BOF2015/GOA/007).

References

First citationAbe, S., Čapek, R. K., De Geyter, B. & Hens, Z. (2012). ACS Nano, 6, 42–53.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAbe, S., Čapek, R. K., De Geyter, B. & Hens, Z. (2013). ACS Nano, 7, 943–949.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBhide, M. A., Mears, K. L., Carmalt, C. J. & Knapp, C. E. (2021). Chem. Sci. 12, 8822–8831.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDhaene, E., Billet, J., Bennett, E., Van Driessche, I. & De Roo, J. (2019). Nano Lett. 19, 7411–7417.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl-Hiti, G. A., Smith, K., Alshammari, M. B., Hegazy, A. S. & Kariuki, B. M. (2017b). Z. Kristallogr. New Cryst. Struct. 232, 105–107.  CAS Google Scholar
First citationEl-Hiti, G. A., Smith, K., Hegazy, A. S., Alotaibi, M. H. & Kariuki, B. M. (2014). Acta Cryst. E70, o704.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Hiti, G. A., Smith, K., Hegazy, A. S., Alshammari, M. B. & Kariuki, B. M. (2018). IUCrData, 3, x180045.  Google Scholar
First citationEl-Hiti, G. A., Smith, K., Hegazy, A. S., Alotaibi, M. H. & Kariuki, B. M. (2017a). Z. Kristallogr. New Cryst. Struct. 232, 31–32.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHamachi, L. S., Jen-La Plante, I., Coryell, A. C., De Roo, J. & Owen, J. S. (2017). Chem. Mater. 29, 8711–8719.  Web of Science CrossRef CAS Google Scholar
First citationHendricks, M. P., Campos, M. P., Cleveland, G. T., Jen-La Plante, I. & Owen, J. S. (2015). Science, 348, 1226–1230.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHens, Z. (2015). Science, 348, 1211–1212.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOwen, J. S., Chan, E. M., Liu, H. & Alivisatos, A. P. (2010). J. Am. Chem. Soc. 132, 18206–18213.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPanda, T. K., Bhattacharjee, J., Das, S. & Kottalanka, R. (2017). CSD Private Communication.  Google Scholar
First citationRahman, F. U., Bibi, M., Khan, E., Shah, A. B., Muhammad, M., Tahir, M. N., Shahzad, A., Ullah, F., Zahoor, M., Alamery, S. & Batiha, G. E.-S. (2021). Molecules, 26, 4506.  Web of Science CSD CrossRef PubMed Google Scholar
First citationRamnathan, A., Sivakumar, K., Janarthanan, N., Meerarani, D., Ramadas, K. & Fun, H.-K. (1996). Acta Cryst. C52, 411–414.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Oxford, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhao, P. S., Qin, Y. Q., Zhang, J. & Jian, F. F. (2008). Pol. J. Chem. 82, 2153–2165.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds