research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[[di­aqua­tetra-μ2-cyanido-platinum(II)iron(II)] methanol 4/3-solvate]: a three-dimensional Hofmann clathrate analogue

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska St, 01601 Kyiv, Ukraine, bUkrOrgSyntez Ltd, 67 Chervonotkatska St, 02094 Kyiv, Ukraine, cFaculty of Natural Sciences, National University of Kyiv-Mohyla Academy, 2 Skovorody St, 04070 Kyiv, Ukraine, dFaculty of Electrical Engineering and Computer Science & Research Center, MANSiD, Stefan cel Mare University, 13 Universitatii St., 720229 Suceava, Romania, and eDepartment of Inorganic Polymers, "Petru Poni", Institute of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania
*Correspondence e-mail: igolenya@ua.fm

Edited by M. Weil, Vienna University of Technology, Austria (Received 14 October 2021; accepted 17 January 2022; online 25 January 2022)

In the title polymeric coordination compound, {[FePt(CN)4(H2O)2]·1.33CH3OH}n, the FeII cation (site symmetry 4/mm.m) is coordinated by the N atoms of four cyanide anions (CN) and the O atoms of two water mol­ecules, forming a nearly regular [FeN4O2] octa­hedron. According the Fe—N and Fe—O bond lengths, the FeII atom is in the high-spin state. The cyanide anions act in a bridging manner to connect the FeII and PtII atoms. The [Pt(CN)4]2– moieties (Pt with site symmetry 4/mm.m) have a perfect square-planar shape. The latter anion is located perpendicular to the FeN4 plane, thus ensuring the creation of a three-dimensional framework. The crystal structure features methanol solvent mol­ecules of which 4/3 were located per FeII cation. These solvent mol­ecules are located in hexa­gonal pores; they inter­act with coordinating water mol­ecules through weak hydrogen bonds. Other guest mol­ecules could not be modelled in a satisfactory way and their contribution to the scattering was removed by a mask procedure.

1. Chemical context

Cyanide-based complexes form a large group of coordination compounds, which can offer numerous structures and functionalities. As a result of the ability of the cyanide anion to act in a bridging way, this group often links two different metal cations, enabling the formation of one-, two- or three-dimensional frameworks. The beginning of the investigation of cyanide-based complexes dates back to the 18th century when Prussian blue was discovered (Dacarro et al., 2018[Dacarro, G., Taglietti, A. & Pallavicini, P. (2018). Molecules, 23, 1414.]). Since then, hundreds of cyanide-based complexes have been obtained and proven to be efficient as mol­ecular magnets, in separation, condensation, storage, catalysis, polymer synthesis, switching, etc (Zakaria & Chikyow, 2017[Zakaria, M. B. & Chikyow, T. (2017). Coord. Chem. Rev. 352, 328-345.]).

Among all cyanide-based complexes, Hofmann clathrate analogues attract considerable attention. This is a group of polymeric coordination complexes with general formula [M(L)x{M′(CN)y}z·n(guest/solvent) where M has an octa­hedral coordination environment with two L ligands in axial positions and four N atoms of bridging cyanide groups in equatorial positions, which link M and M′ metals into infinite layers (Powell & Rayner, 1949[Powell, H. M. & Rayner, J. H. (1949). Nature, 163, 566-567.]; Hofmann & Küspert, 1897[Hofmann, K. A. & Küspert, F. (1897). Z. Anorg. Chem. 15, 204-207.]). If the L ligand is bridging as well (e.g. pyrazine), the creation of a three-dimensional framework is observed (Niel et al., 2001[Niel, V., Martinez-Agudo, J. M., Carmen Muñoz, M., Gaspar, A. B. & Real, J. A. (2001). Inorg. Chem. 40, 3838-3839.]). In addition, the chemical composition of Hofmann clathrates can easily be modified by variation of the guest/solvent mol­ecules.

One of the attractive properties of Hofmann clathrate analogues is the ability of some complexes of this class to undergo spin crossover under the influence of external stimuli (Carmen Muñoz & Real, 2011[Carmen Muñoz, M. & Real, J. A. (2011). Coord. Chem. Rev. 255, 2068-2093.]; Kucheriv et al., 2021[Kucheriv, O. I., Fritsky, I. O. & Gural'skiy, I. A. (2021). Inorg. Chim. Acta, 521, 120303.]). The change of spin state can be observed in complexes of general formula [Fe(L)x{M′(CN)y}z] where L = azine or azole ligand, M′ = Cu, Ag, Au for y = 2, z = 2, and M′ = Ni, Pt, Pd for y = 4, z = 1 (Shylin et al., 2020[Shylin, S. I., Kucheriv, O. I., Shova, S., Ksenofontov, V., Tremel, W. & Gural'skiy, I. A. (2020). Inorg. Chem. 59, 6541-6549.]; Kuzevanova et al., 2021[Kuzevanova, I. S., Kucheriv, O. I., Hiiuk, V. M., Naumova, D. D., Shova, S., Shylin, S. I., Kotsyubynsky, V. O., Rotaru, A., Fritsky, I. O. & Gural'skiy, I. A. (2021). Dalton Trans. 50, 9250-9258.]).

[Scheme 1]

In this paper we report a {[FePt(CN)4(H2O)2]·4/3CH3OH}n coordination polymer with a non-classical Hofmann-type framework.

2. Structural commentary

The FeII cation (site symmetry 4/mm.m; Wyckoff position 3c) exists in an [FeN4O2] coordination environment (Fig. 1[link]), which is formed by the N atoms of four cyanide anions in equatorial positions [Fe1—N1 = 2.155 (18) Å] and the O atoms of two water mol­ecules in axial positions [Fe1— O1 = 2.15 (2) Å]. The similar lengths of the Fe—O and Fe—N bonds provide an almost ideal octa­hedral environment. The FeII—O and FeII—N bond lengths indicate that, at the temperature of the diffraction study, FeII is in the high-spin state. The cyanide anions connect the FeII and PtII atoms, whereby the latter (site symmetry 4/mm.m; Wyckoff position 3d) has a perfect square-planar environment with a Pt1—C1 bond length of 1.953 (17) Å. Contrary to classical Hofmann clathrate arrangements (Kucheriv et al., 2021[Kucheriv, O. I., Fritsky, I. O. & Gural'skiy, I. A. (2021). Inorg. Chim. Acta, 521, 120303.]), the tetra­cyanidoplatinate(II) anions in the title compound are located perpendicular to the FeN4 plane, which ensures the creation of a three-dimensional framework (Fig. 2[link]). As a result of the cubic symmetry of the crystal structure, no deviation from linearity is observed for the Fe–N–C–Pt fragments.

[Figure 1]
Figure 1
A fragment of the crystal structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 − x, 1 − y, +z; (ii) y, 1 − x, +z; (iii) 1 − y, x, z; (iv) 1 − z, y, −1 + x; (v) 2 − x, 1 − y, z; (vi) 1 + z, y, 1 − x; (vii) x, 1 − y, −z].
[Figure 2]
Figure 2
View of the crystal structure of the title compound along the a axis showing the three-dimensional coordination framework. Hydrogen bonds are shown as red dashed lines. Hydrogen atoms of the methyl group of the methanol solvent mol­ecules are omitted for clarity.

The title compound incorporates 4/3 methanol solvent mol­ecules per [FePt(CN)4(H2O)2] unit, which are located in hexa­gonal pores (Fig. 3[link]) and inter­act with the coordinating water mol­ecules through O—H⋯O hydrogen bonds (Table 1[link]). The framework features some additional highly disordered guest mol­ecules, which could not be modelled satisfactorily. Their contribution to the scattering was removed with a mask procedure implemented in OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]). These disordered guest mol­ecules reside in two types of void with total volumes of 138.3 and 20.3 Å3 corresponding to 36.4 and 2.6 electrons, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.82 2.20 3.020 (18) 175
[Figure 3]
Figure 3
View of the crystal structure of the title compound showing the methanol solvent mol­ecules, which are located in hexa­gonal pores. Hydrogen bonds are shown as red dashed lines.

In comparison, two similar coordination compounds, viz. [Fe(H2O)2{Pt(CN)4]·2acetone (Kuzevanova et al., 2019[Kuzevanova, I. S., Naumova, D. D., Terebilenko, K. V., Shova, S. & Gural'skiy, I. A. (2019). Acta Cryst. E75, 1536-1539.]) and [Fe(H2O)2{Ni(CN)4}]·2dioxane (Yuge et al., 1997[Yuge, H., Kim, C., Iwamoto, T. & Kitazawa, T. (1997). Inorg. Chim. Acta, 257, 217-224.]), form infin­ite {FeMII(CN)4} layers. The size of the available voids between the cyanidometallate layers in these two compounds allows the acetone or dioxane mol­ecules to rotate freely, thus leading to a high disorder of the solvent. Both of these compounds, as well as the title compound, represent spectacular examples of how variation of the guest/solvent mol­ecule can significantly influence the crystal structure of the coord­ination framework. Whereas small mol­ecules of methanol can fit inside the hexa­gonal pores of a three-dimensional framework, bulkier acetone or dioxane mol­ecules cannot be placed there, thus inducing the creation of layers.

3. Database survey

A survey of the Cambridge Structural Database (Version 5.40; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 106 framework structures containing Fe–N–C–Pt fragments. Among them there are three structures with an [FeN5O] coordination environment [AMIJEN (Kucheriv et al., 2016[Kucheriv, O. I., Shylin, S. I., Ksenofontov, V., Dechert, S., Haukka, M., Fritsky, I. O. & Gural'skiy, I. A. (2016). Inorg. Chem. 55, 4906-4914.]), ZOHBEG and ZOHBIK (Wong et al., 2019[Wong, B. J. C., Xu, D., Bao, S.-S., Zheng, L.-M. & Lei, J. (2019). Appl. Mater. Interfaces, 11, 12986-12992.])], three structures with an [FeN4O2] coord­ination environment [CEMJAI (Piñeiro-López et al., 2017[Piñeiro-López, L., Valverde-Muñoz, F. J., Seredyuk, M. & Znovjyak, K. (2017). IUCrData, 2, x171413.]), HOCRAU (Zhang et al., 2014[Zhang, M., Li, B.-B., Sun, J., Kong, X.-P., Gu, P.-P., Chen, Y.-Y. & Yuan, A.-H. (2014). Z. Anorg. Allg. Chem. 640, 1007-1011.]) and OKITAF (Haraguchi et al., 2016[Haraguchi, T., Otsubo, K., Sakata, O., Kawaguchi, S., Fujiwara, A. & Kitagawa, H. (2016). Chem. Commun. 52, 6017-6020.])] and three structures that have two different FeII cations forming [FeN4O2] and [FeN6] octa­hedra [AMIJOX (Kucheriv et al., 2016[Kucheriv, O. I., Shylin, S. I., Ksenofontov, V., Dechert, S., Haukka, M., Fritsky, I. O. & Gural'skiy, I. A. (2016). Inorg. Chem. 55, 4906-4914.]) and VOKLIS, VOKLIS01 (Sciortino et al., 2014[Sciortino, N. F., Neville, S. M., Létard, J.-F., Moubaraki, B., Murray, K. S. & Kepert, C. J. (2014). Inorg. Chem. 53, 7886-7893.])].

4. Synthesis and crystallization

Crystals of the title compound were grown by slow diffusion between three layers in a 3 ml tube. The first layer was a solution of K2[Pt(CN)4] (0.02 mmol) in water (0.5 ml), the second was a mixture of water/methanol (1:1, 1.5 ml) and the third layer was a solution of Fe(OTs)2·6H2O (0.02 mmol) (OTs = p-toluene­sulfonate) in methanol (0.5 ml). After two weeks, colourless crystals grew in the middle layer; these were collected and maintained under the mother solution until measured.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms of water mol­ecules and the methanol OH group were placed at calculated positions and refined as riding on the bonded O atom. The occupancy of methanol atoms was refined and found to be equal to approximately 0.5 and later restrained to half-occupancy. As a result of symmetry restrictions, H atoms of the water mol­ecule are disordered over four positions and were constrained to have an occupancy of 1/4. The three H atoms of the methyl group are disordered over two sets of sites, and were refined as for an idealized methyl group and were allowed to rotate about the O—C bond. The H atom of the OH group is disordered over three sites. Its occupancy was restrained to coincide with half-occupancy of the complete mol­ecule.

Table 2
Experimental details

Crystal data
Chemical formula [FePt(CN)4(H2O)2]·1.33CH4O
Mr 433.77
Crystal system, space group Cubic, Pm[\overline{3}]m
Temperature (K) 293
a (Å) 10.5089 (3)
V3) 1160.56 (10)
Z 3
Radiation type Mo Kα
μ (mm−1) 9.96
Crystal size (mm) 0.04 × 0.04 × 0.04
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.930, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 2210, 336, 273
Rint 0.091
(sin θ/λ)max−1) 0.688
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.133, 1.07
No. of reflections 336
No. of parameters 23
No. of restraints 13
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.15, −1.36
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[[diaquatetra-µ2-cyanido-platinum(II)iron(II)] methanol 1.33-solvate] top
Crystal data top
[FePt(CN)4(H2O)2]·1.33CH4OMo Kα radiation, λ = 0.71073 Å
Mr = 433.77Cell parameters from 449 reflections
Cubic, Pm3mθ = 1.9–21.7°
a = 10.5089 (3) ŵ = 9.96 mm1
V = 1160.56 (10) Å3T = 293 K
Z = 3Cube, clear intense colourless
F(000) = 6000.04 × 0.04 × 0.04 mm
Dx = 1.862 Mg m3
Data collection top
Xcalibur, Eos
diffractometer
336 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
Detector resolution: 16.1593 pixels mm-1θmax = 29.3°, θmin = 1.9°
ω scansh = 98
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 1414
Tmin = 0.930, Tmax = 1.000l = 514
2210 measured reflections
Refinement top
Refinement on F213 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0611P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
336 reflectionsΔρmax = 2.15 e Å3
23 parametersΔρmin = 1.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt11.0000000.5000000.0000000.0374 (5)
Fe10.5000000.5000000.0000000.0395 (12)
N10.7051 (17)0.5000000.0000000.059 (4)
C10.8141 (17)0.5000000.0000000.047 (4)
O10.5000000.5000000.2049 (19)0.112 (9)
H1A0.5496900.4503100.2387380.168*0.25
H1B0.4236800.5000000.2338480.168*0.25
O20.6888 (17)0.3112 (17)0.3112 (17)0.049 (7)0.5
H20.6109900.2940000.2940000.073*0.1667
C20.7666 (19)0.2334 (19)0.2334 (19)0.088 (14)0.5
H2A0.7281530.2246280.1510030.132*0.0833
H2B0.7753720.1510030.2718470.132*0.0833
H2C0.8489970.2718470.2246280.132*0.0833
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0420 (6)0.0282 (7)0.0420 (6)0.0000.0000.000
Fe10.0399 (16)0.0399 (16)0.039 (2)0.0000.0000.000
N10.060 (11)0.054 (10)0.064 (11)0.0000.0000.000
C10.032 (9)0.046 (10)0.063 (12)0.0000.0000.000
O10.144 (15)0.144 (15)0.047 (14)0.0000.0000.000
O20.049 (7)0.049 (7)0.049 (7)0.019 (7)0.019 (7)0.019 (7)
C20.088 (14)0.088 (14)0.088 (14)0.021 (11)0.021 (11)0.021 (11)
Geometric parameters (Å, º) top
Pt1—C1i1.953 (17)O1—H1A0.8198
Pt1—C1ii1.953 (17)O1—H1Aix0.8198
Pt1—C1iii1.953 (17)O1—H1Bix0.8579
Pt1—C11.953 (17)O1—H1Bx0.8579
Fe1—N12.155 (18)O1—H1Bviii0.8579
Fe1—N1iv2.155 (18)O1—H1B0.8579
Fe1—N1v2.155 (18)O2—H20.8565
Fe1—N1vi2.155 (18)O2—H2xi0.8565
Fe1—O1v2.15 (2)O2—H2xii0.8565
Fe1—O12.15 (2)O2—C21.42 (2)
N1—C11.15 (2)C2—H2A0.9600
O1—H1Avii0.8198C2—H2B0.9600
O1—H1Aviii0.8198C2—H2C0.9600
C1i—Pt1—C1iii180.0H1A—O1—H1Aix79.1
C1iii—Pt1—C190.0H1Aviii—O1—H1Bx116.2
C1i—Pt1—C190.0H1A—O1—H1Bx41.4
C1i—Pt1—C1ii90.0H1Avii—O1—H1Bviii116.2
C1iii—Pt1—C1ii90.0H1Avii—O1—H1Bix41.4
C1ii—Pt1—C1180.0H1A—O1—H1B116.2
N1—Fe1—N1v180.0H1Avii—O1—H1Bx41.4
N1vi—Fe1—N1iv180.0H1A—O1—H1Bix116.2
N1v—Fe1—N1iv90.0H1A—O1—H1Bviii41.4
N1—Fe1—N1vi90.0H1Aix—O1—H1Bx116.2
N1v—Fe1—N1vi90.0H1Aix—O1—H1Bviii41.4
N1—Fe1—N1iv90.0H1Aviii—O1—H1Bviii116.2
O1v—Fe1—N1vi90.0H1Aviii—O1—H1Bix41.4
O1v—Fe1—N1iv90.0H1Aix—O1—H1Bix116.2
O1—Fe1—N1v90.0H1B—O1—H1Avii116.2
O1—Fe1—N1vi90.0H1B—O1—H1Aix41.4
O1—Fe1—N1iv90.0H1B—O1—H1Aviii41.4
O1v—Fe1—N190.0H1Bix—O1—H1Bviii138.4
O1—Fe1—N190.0H1Bviii—O1—H1Bx82.8
O1v—Fe1—N1v90.0H1B—O1—H1Bviii82.8
O1v—Fe1—O1180.0H1B—O1—H1Bix82.8
C1—N1—Fe1180.0H1B—O1—H1Bx138.4
N1—C1—Pt1180.0H1Bix—O1—H1Bx82.8
Fe1—O1—H1Aviii115.740 (1)H2xi—O2—H2xii111.0
Fe1—O1—H1Aix115.740 (1)H2—O2—H2xii111.0
Fe1—O1—H1A115.7H2—O2—H2xi111.0
Fe1—O1—H1Avii115.740 (2)C2—O2—H2107.9
Fe1—O1—H1B110.8C2—O2—H2xii107.857 (3)
Fe1—O1—H1Bix110.8C2—O2—H2xi107.857 (8)
Fe1—O1—H1Bx110.799 (2)O2—C2—H2A109.5
Fe1—O1—H1Bviii110.8O2—C2—H2B109.5
H1Aix—O1—H1Aviii79.1O2—C2—H2C109.5
H1A—O1—H1Aviii128.5H2A—C2—H2B109.5
H1A—O1—H1Avii79.1H2A—C2—H2C109.5
H1Aix—O1—H1Avii128.5H2B—C2—H2C109.5
H1Aviii—O1—H1Avii79.1
Symmetry codes: (i) z+1, y+1, x1; (ii) x+2, y+1, z; (iii) z+1, y, x+1; (iv) y+1, x+1, z; (v) x+1, y+1, z; (vi) y, x, z; (vii) y+1, x, z; (viii) y, x, z; (ix) y, x+1, z; (x) x+1, y+1, z; (xi) z+1, x+1, y; (xii) y+1, z, x+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.822.203.020 (18)175
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 19BF037-01M); H2020 Marie Skłodowska-Curie Actions (grant No. 734322). VMH thanks the Yuchymenko Family Endowment Fund for financial support.

References

First citationCarmen Muñoz, M. & Real, J. A. (2011). Coord. Chem. Rev. 255, 2068–2093.  Google Scholar
First citationDacarro, G., Taglietti, A. & Pallavicini, P. (2018). Molecules, 23, 1414.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaraguchi, T., Otsubo, K., Sakata, O., Kawaguchi, S., Fujiwara, A. & Kitagawa, H. (2016). Chem. Commun. 52, 6017–6020.  CSD CrossRef CAS Google Scholar
First citationHofmann, K. A. & Küspert, F. (1897). Z. Anorg. Chem. 15, 204–207.  CrossRef CAS Google Scholar
First citationKucheriv, O. I., Fritsky, I. O. & Gural'skiy, I. A. (2021). Inorg. Chim. Acta, 521, 120303.  CrossRef Google Scholar
First citationKucheriv, O. I., Shylin, S. I., Ksenofontov, V., Dechert, S., Haukka, M., Fritsky, I. O. & Gural'skiy, I. A. (2016). Inorg. Chem. 55, 4906–4914.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKuzevanova, I. S., Kucheriv, O. I., Hiiuk, V. M., Naumova, D. D., Shova, S., Shylin, S. I., Kotsyubynsky, V. O., Rotaru, A., Fritsky, I. O. & Gural'skiy, I. A. (2021). Dalton Trans. 50, 9250–9258.  CSD CrossRef CAS PubMed Google Scholar
First citationKuzevanova, I. S., Naumova, D. D., Terebilenko, K. V., Shova, S. & Gural'skiy, I. A. (2019). Acta Cryst. E75, 1536–1539.  CSD CrossRef IUCr Journals Google Scholar
First citationNiel, V., Martinez-Agudo, J. M., Carmen Muñoz, M., Gaspar, A. B. & Real, J. A. (2001). Inorg. Chem. 40, 3838–3839.  CSD CrossRef PubMed CAS Google Scholar
First citationPiñeiro-López, L., Valverde-Muñoz, F. J., Seredyuk, M. & Znovjyak, K. (2017). IUCrData, 2, x171413.  Google Scholar
First citationPowell, H. M. & Rayner, J. H. (1949). Nature, 163, 566–567.  CrossRef CAS Web of Science Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSciortino, N. F., Neville, S. M., Létard, J.-F., Moubaraki, B., Murray, K. S. & Kepert, C. J. (2014). Inorg. Chem. 53, 7886–7893.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShylin, S. I., Kucheriv, O. I., Shova, S., Ksenofontov, V., Tremel, W. & Gural'skiy, I. A. (2020). Inorg. Chem. 59, 6541–6549.  CSD CrossRef CAS PubMed Google Scholar
First citationWong, B. J. C., Xu, D., Bao, S.-S., Zheng, L.-M. & Lei, J. (2019). Appl. Mater. Interfaces, 11, 12986–12992.  CrossRef Google Scholar
First citationYuge, H., Kim, C., Iwamoto, T. & Kitazawa, T. (1997). Inorg. Chim. Acta, 257, 217–224.  CSD CrossRef ICSD CAS Google Scholar
First citationZakaria, M. B. & Chikyow, T. (2017). Coord. Chem. Rev. 352, 328–345.  CrossRef CAS Google Scholar
First citationZhang, M., Li, B.-B., Sun, J., Kong, X.-P., Gu, P.-P., Chen, Y.-Y. & Yuan, A.-H. (2014). Z. Anorg. Allg. Chem. 640, 1007–1011.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds