research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of hexa­sodium tetra­serinolium paratungstate B deca­hydrate, [Na6{(CH2OH)2CHNH3}4][W12O40(OH)2]·10H2O

crossmark logo

aUniversität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstr. 14, Wien 1090, Austria, and bUniversität Wien, Fakultät für Geowissenschaften, Geographie und Astronomie, Institut für Mineralogie und Kristallographie, Althanstr. 14, Wien 1090, Austria
*Correspondence e-mail: nadiia.gumerova@univie.ac.at

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 November 2021; accepted 12 January 2022; online 18 January 2022)

The title polyoxometalate-based organic–inorganic hybrid compound, [Na6(C3H10NO2)4][W12O40(OH)2]·10H2O, consists of a di-μ3-hydroxido-tetra-μ3-oxido-octa­deca-μ-oxido-octa­deca­oxidododeca­tungstate (para­do­deca­tungstate B) anion, [W12O40(OH)2]10–, and six sodium cations coordinated by the oxygen ions of the polyanions, serinol ligands protonated at the N atom, and water mol­ecules. The centrosymmetric paratungstate B anion shows characteristic features in terms of bond lengths and angles. The three-dimensional framework structure is established by bonding of the sodium cations with oxygen ions of the paratungstate B anions and a network consisting of N—H⋯O and O—H⋯O hydrogen bonds of medium strength between the protonated serinol cations, water mol­ecules and the paratungstate B anions. The title compound was also characterized by means of elemental analysis, IR spectroscopy and thermogravimetric analysis.

1. Chemical context

Polyoxometalates (POMs) are discrete anionic mol­ecular clusters of metal oxide entities, which usually consist of transition metals of groups V and VI in their highest oxidation states. POMs exist at a unique inter­face between monomeric oxometalates and polymeric metal oxides and have a wide range of applications (Pope, 1983[Pope, M. (1983). Heteropoly and Isopoly Oxometalates. Berlin: Springer.]; Gumerova & Rompel, 2020[Gumerova, N. I. & Rompel, A. (2020). Chem. Soc. Rev. 49, 7568-7601.]). To date, a variety of strategies have been developed and used to build POM-based hybrid materials by varying the reaction conditions such as the type of addenda ions, organic ligands, pH, solvents, the molar ratio of the starting materials or the reaction environments. The [W12O40(OH)2]10– paratungstate B anion is stable in aqueous acidic solution and has a cluster-like structure of twelve W-centered distorted octa­hedra {WO6} (Evans & Rollins, 1976[Evans, H. T. & Rollins, O. W. (1976). Acta Cryst. B32, 1565-1567.]; Pope, 1983[Pope, M. (1983). Heteropoly and Isopoly Oxometalates. Berlin: Springer.]). Due to its high surface charge density q/m = 0.83 (q = net charge, m = number of metal ions), the paratungstate B anion can act as a multidentate ligand for alkaline (Peresypkina et al., 2014[Peresypkina, E. V., Virovets, A. V., Adonin, S. A., Abramov, P. A., Rogachev, A. V., Sinkevich, P. L., Korenev, V. S. & Sokolov, M. N. (2014). J. Struct. Chem. 55, 295-298.]) or transition-metal cations (Radio et al., 2010[Radio, S. V., Kryuchkov, M. A., Zavialova, E. G., Baumer, V. N., Shishkin, O. V. & Rozantsev, G. M. (2010). J. Coord. Chem. 63, 1678-1689.], 2011[Radio, S. V., Rozantsev, G. M., Baumer, V. N. & Shishkin, O. V. (2011). J. Struct. Chem. 52, 111-117.]; Gumerova et al., 2015[Gumerova, N. I., Kasyanova, K. V., Rozantsev, G. M., Baumer, V. N. & Radio, S. V. (2015). J. Clust Sci. 26, 1171-1186.], 2018[Gumerova, N. I., Dobrov, A., Roller, A. & Rompel, A. (2018). Acta Cryst. C74, 1252-1259.]) and as a precursor for the synthesis of catalytically active sandwich-type polyoxotungstates (POTs) (Sokolov et al., 2012[Sokolov, M. N., Adonin, S. A., Abramov, P. A., Mainichev, D. A., Zakharchuk, N. F. & Fedin, V. P. (2012). Chem. Commun. 48, 6666-6668.]).

A search in the Cambridge Structural Database (version 5.42, update of November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that seventeen organic–inorganic hybrid paratungstates B have been structurally characterized so far. We are expanding the class of hybrid paratungstates by using serinol (C3H9NO2; 2-amino-1,3-propandiol), which has not previously been used in its protonated form as a counter-cation for paratungstates and can coordinate to metal cations in different ways via its –NH2 or HOCH2– groups and thus influences both the structure and the properties of the compound significantly (Sifaki et al., 2021[Sifaki, K., Gumerova, N. I., Giester, G. & Rompel, A. (2021). Acta Cryst. C77, 420-425.]). Serinol is a very stable, readily water-soluble, non-toxic, odorless, biodegradable compound that is used as a versatile starting material in organic synthesis and as an additive for material applications, such as composite materials (Barbera et al., 2020[Barbera, V., Leonardi, G., Valerio, A. M., Rubino, L., Sun, S., Famulari, A., Galimberti, M., Citterio, A. & Sebastiano, R. (2020). ACS Sustainable Chem. Eng. 8, 9356-9366.]; Andreessen & Steinbüchel, 2011[Andreessen, B. & Steinbüchel, A. (2011). AMB Express, 1, article No. 12.]). In POM synthesis, due to its amino group, serinol can be regarded as an alk­oxy­lation ligand and/or as a buffer compound (pKa = 12.2; Chemicalbook, 2021[Chemicalbook (2021). https://www. chemicalbook.com/ChemicalProductProperty_EN_CB1738085.html]). With its protonated amine group it can also act as a counter-cation.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound is made up of half of the paratungstate B polyoxoanion, [W12O40(OH)2]10–, three sodium cations coordinated by water mol­ecules, terminal oxygen atoms of the paratungstate anion and the oxygen atoms of HOCH2– groups from two serinol cations protonated at the N atoms [(CH2OH)2CHNH3+] (Fig. 1[link]). An inversion center creates a full unit with formula [Na6((CH2OH)2CHNH3)4][W12O40(OH)2]·10H2O (Fig. 2[link]). The centrosymmetric paratungstate B anion [W12O40(OH)2]10– is structurally very similar to previously described ones (Radio et al., 2010[Radio, S. V., Kryuchkov, M. A., Zavialova, E. G., Baumer, V. N., Shishkin, O. V. & Rozantsev, G. M. (2010). J. Coord. Chem. 63, 1678-1689.], 2011[Radio, S. V., Rozantsev, G. M., Baumer, V. N. & Shishkin, O. V. (2011). J. Struct. Chem. 52, 111-117.]; Gumerova et al., 2015[Gumerova, N. I., Kasyanova, K. V., Rozantsev, G. M., Baumer, V. N. & Radio, S. V. (2015). J. Clust Sci. 26, 1171-1186.], 2018[Gumerova, N. I., Dobrov, A., Roller, A. & Rompel, A. (2018). Acta Cryst. C74, 1252-1259.]) and consists of four groups, viz. two {W3O13} and two {W3O14} units, with common vertices (Fig. 1[link]). In the {W3O13} groups each {WO6} octa­hedron has a terminal oxygen atom, while in the {W3O14} units each {WO6} octa­hedron has two unshared oxygen ions (Fig. 1[link]). The oxygen atoms associated with the central W ions can be divided into three groups: 1) terminal oxygen ions (Ot), each bonded to a W ion (magenta labeling in Fig. 1[link]); 2) bridging oxygen ions (Odb), each connected to two W ions (blue labeling in Fig. 1[link]); 3) triply bridging oxygen ions (Otb) linked to three W ions (green labeling in Fig. 1[link]).

[Figure 1]
Figure 1
The principal building units in the crystal structure of [Na6((CH2OH)2CHNH3)4][W12O40(OH)2]·10H2O. The asymmetric unit was doubled considering the inversion center, and coordination spheres for all cations were completed. Labeling of all atoms of asymmetric unit is shown; non-labeled atoms are generated by symmetry operationx + 1, −y + 1, −z + 1. The oxygen atoms in the paratungstate B anion are labeled according to their coordination mode: magenta for the terminal, blue for the double bridging, green for the triply bridging oxygen ions. Displacement ellipsoids are drawn at the 50% probability level. Color code: W, dark gray; Na, green; C, gray; N, blue; O, red.
[Figure 2]
Figure 2
The crystal packing of [Na6((CH2OH)2CHNH3)4][W12O40(OH)2]·10H2O viewed along the a axis. Color code: {WO6}: gray octa­hedra; Na: green; C: gray; N: blue; O: red.

3. Supra­molecular features

The paratungstate B anion is bound to twelve Na+ cations via both terminal (Ot) and bridging oxygen atoms (Odb). Each of the surrounding four Na1 cations and six Na3 cations are coordinated by the O atoms of two polyanions, while two Na2 cations are bound to one terminal oxygen atom of the polyanion and to the O atoms of two serinolium cations, which are further connected to the Na3 cations via the HOCH2– groups. Thus, a three-dimensional framework is established in the crystal structure by connecting paratungstate B anions through Ot—Na1—Ot, Ot—Na3—Ot and Ot—Na2–serinolium—Na3—Ot bridges (Fig. 2[link]). An intimate network of N—H⋯O and O—H⋯O hydrogen bonds of medium strength between the protonated serinol ligands, polyoxoanions and water mol­ecules consolidates the crystal packing (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O22—H22A⋯O1i 0.67 (7) 2.11 (7) 2.757 (5) 163 (8)
O23—H23A⋯O16i 0.78 (7) 2.04 (7) 2.802 (5) 165 (7)
O23—H23B⋯O16ii 0.91 (7) 1.91 (7) 2.811 (5) 175 (6)
O25—H25⋯O3iii 0.73 (6) 2.05 (7) 2.761 (5) 164 (7)
O26—H26⋯O15i 0.88 (7) 1.88 (7) 2.730 (5) 160 (6)
O27—H27⋯O2iii 0.67 (7) 2.04 (7) 2.696 (5) 165 (8)
O28—H28A⋯O21iv 0.75 (8) 2.01 (8) 2.735 (6) 160 (8)
O29—H29⋯O10v 0.81 (6) 1.91 (7) 2.692 (5) 163 (6)
N1—H1B⋯O15iii 0.91 1.82 2.723 (5) 170
N2—H2B⋯O24 0.91 1.96 2.867 (6) 172
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [x-1, y, z]; (iii) [x, y-1, z]; (iv) [-x+1, -y, -z+1]; (v) [-x+1, -y+1, -z+1].

4. Database survey

A search in the Cambridge Structural Database (CSD; version 5.42, update of November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated 17 structures with the formula search [`W12O42' or `W12O40(OH)2'], including eleven structures with only organic cations and six structures with organic and transition-metal cations. The 17 compounds deposited in the CSD all crystallize in centrosymmetric space groups, and the bond lengths in the paratungstate B anion are very similar to those observed in the title structure. A similar structure containing sodium and a protonated imidazole as counter-cations, viz. Na2(HIm)8[W12O40(OH)2]·10H2O (HIm: imidazolium), is comprised of infinite inorganic chains built up from [W12O40(OH)2]10– anions and sodium cations. Adjacent chains are further connected by hydrogen-bonding inter­actions between imid­azolium cations, water mol­ecules, and polyoxoanions (Chaalia et al., 2012[Chaalia, S., Daran, J.-C. & Haddad, A. (2012). Struct. Chem. 23, 645-652.]).

5. Synthesis and crystallization

To obtain the title compound, Na2WO4·2H2O (0.495 g, 1.5 mmol) was dissolved in 5 ml of distilled water and acidified with 1 M HCl to pH 3. Serinol (0.075 g, 0.8 mmol) was then added to the acidified orthotungstate solution, which increased the pH to 6.7. The reaction mixture was then heated to 363 K and stirred for 1 h, cooled to room temperature and left covered with parafilm. Colorless block-shaped crystals were filtered off after one week from the mother liquor, washed with water and ethanol and then air-dried (yield 0.12 g; 27%, based on W). Elemental analysis (%) for C12H62N4Na6O60W12 (calculated): C 3.23 (4.04), H 1.71 (1.75), N 1.41 (1.57), O 26.68 (26.92). FT–IR (cm−1): 3340 (s), 2952 (sh), 2889 (sh), 1614 (s), 1450 (m), 1066 (w), 1037 (m), 996 (w), 930 (s), 896 (s), 794 (s), 681 (s), 620 (m), 478 (s), 456 (s), 428 (s), 310 (s). Mass loss observed in thermogravimetric analysis in the temperature range 298–1073 K (calculated for four protonated serinol ligands, ten crystal water mol­ecules and one water mol­ecule from the anion): 16.67% (16.78%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The positions of the H atoms of the water mol­ecules (O22, O23, O24, O28) were obtained by difference-Fourier techniques and were refined with free isotropic displacement parameters and O—H distances restrained to 0.95 (2) Å. The disordered water mol­ecule (O30) was refined with two positions (O30A and O30B), with free occupancy factors to a total of 100%. H atoms bound to N or C atoms were placed in idealized positions (N—H = 0.91 Å and C—H = 0.99 or 1.00 Å for CH2 and CH groups, respectively) and refined in riding modes, with Uiso(H) values set to 1.5Ueq(N) or to 1.2Ueq(C). Three H-atom positions could not be included in the final model: two H-atom positions from the disordered water mol­ecule (O30A and O30B), and one H atom that should be located inside the paratungstate B anion on the triply bridging O8 atom, which was previously proven by neutron diffraction (Evans & Prince, 1983[Evans, H. T. & Prince, E. (1983). J. Am. Chem. Soc. 105, 4838-4839.]).

Table 2
Experimental details

Crystal data
Chemical formula [Na6((C12H40N4O8)][W12O40(OH)2]·10H2O
Mr 3566.79
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 12.0541 (8), 12.0821 (8), 12.7050 (8)
α, β, γ (°) 73.180 (2), 65.308 (2), 64.345 (2)
V3) 1502.07 (17)
Z 1
Radiation type Mo Kα
μ (mm−1) 23.04
Crystal size (mm) 0.05 × 0.05 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.245, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 39702, 5490, 5404
Rint 0.038
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.043, 1.25
No. of reflections 5490
No. of parameters 472
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.99, −1.62
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Hexasodium tetraserinolium di-µ3-hydroxido-tetra-µ3-oxido-octadeca-µ-oxido-octadecaoxidododecatungstate decahydrate top
Crystal data top
[Na6(C3H10NO2)4][W12O40(OH)2]·10H2OZ = 1
Mr = 3566.79F(000) = 1596
Triclinic, P1Dx = 3.943 Mg m3
a = 12.0541 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.0821 (8) ÅCell parameters from 9742 reflections
c = 12.7050 (8) Åθ = 2.2–33.1°
α = 73.180 (2)°µ = 23.04 mm1
β = 65.308 (2)°T = 200 K
γ = 64.345 (2)°Block, clear colourless
V = 1502.07 (17) Å30.05 × 0.05 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
5404 reflections with I > 2σ(I)
Radiation source: sealed x-ray tubeRint = 0.038
φ and ω scansθmax = 25.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1414
Tmin = 0.245, Tmax = 0.747k = 1414
39702 measured reflectionsl = 1515
5490 independent reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.017H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.043 w = 1/[σ2(Fo2) + (0.0095P)2 + 5.2022P]
where P = (Fo2 + 2Fc2)/3
S = 1.25(Δ/σ)max = 0.002
5490 reflectionsΔρmax = 0.99 e Å3
472 parametersΔρmin = 1.61 e Å3
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. olex2_refinement_description 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups, All O(H) groups At 1.5 times of: All N(H,H,H) groups, All O(H,H) groups 2. Uiso/Uaniso restraints and constraints O30A ~ O30B: within 2A with sigma of 0.04 and sigma for terminal atoms of 0.08 within 2A 3. Others Sof(O30A)=1-FVAR(1) Sof(O30B)=FVAR(1) 4.a Ternary CH refined with riding coordinates: C2(H2), C5(H5) 4.b Secondary CH2 refined with riding coordinates: C1(H1D,H1E), C3(H3A,H3B), C4(H4A,H4B), C6(H6A,H6B) 4.c Idealised Me refined as rotating group: N1(H1A,H1B,H1C), N2(H2A,H2B,H2C)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
W10.42560 (2)0.74680 (2)0.16437 (2)0.00609 (5)
W20.38107 (2)0.76530 (2)0.46722 (2)0.00492 (5)
W30.43557 (2)0.58129 (2)0.71174 (2)0.00468 (5)
W40.70356 (2)0.65943 (2)0.21152 (2)0.00538 (5)
W50.66091 (2)0.68816 (2)0.50890 (2)0.00550 (5)
W60.79490 (2)0.36191 (2)0.62441 (2)0.00589 (5)
Na10.2506 (2)0.6297 (2)0.05508 (18)0.0188 (4)
Na20.2644 (2)0.32264 (19)0.11025 (19)0.0195 (5)
Na30.1267 (2)0.09506 (18)0.40382 (18)0.0166 (4)
O10.3975 (3)0.7093 (3)0.0574 (3)0.0103 (7)
O20.2557 (3)0.7800 (3)0.2802 (3)0.0091 (7)
O30.4137 (3)0.9003 (3)0.1124 (3)0.0119 (7)
O40.6114 (3)0.6631 (3)0.1144 (3)0.0077 (7)
O50.4911 (3)0.7439 (3)0.3094 (3)0.0068 (6)
O60.2927 (3)0.6703 (3)0.4788 (3)0.0098 (7)
O70.2695 (3)0.9141 (3)0.4594 (3)0.0114 (7)
O80.5351 (3)0.5906 (3)0.5163 (3)0.0061 (6)
O90.5209 (3)0.8146 (3)0.4727 (3)0.0070 (6)
O100.3393 (3)0.7379 (3)0.6367 (3)0.0058 (6)
O110.3480 (3)0.5000 (3)0.6978 (3)0.0096 (7)
O120.3556 (3)0.6163 (3)0.8530 (3)0.0108 (7)
O130.5815 (3)0.4361 (3)0.7240 (3)0.0077 (7)
O140.5651 (3)0.6687 (3)0.6669 (3)0.0081 (7)
O150.7266 (3)0.7992 (3)0.1354 (3)0.0116 (7)
O160.8550 (3)0.5513 (3)0.1411 (3)0.0092 (7)
O170.7336 (3)0.6599 (3)0.3434 (3)0.0088 (7)
O180.7542 (3)0.7663 (3)0.5051 (3)0.0113 (7)
O190.7760 (3)0.5146 (3)0.5302 (3)0.0090 (7)
O200.9485 (3)0.2716 (3)0.5427 (3)0.0104 (7)
O210.8303 (3)0.3935 (3)0.7318 (3)0.0113 (7)
O220.3854 (4)0.4292 (4)0.1050 (4)0.0193 (9)
H22A0.447 (7)0.401 (7)0.068 (6)0.029*
H22B0.397 (7)0.418 (6)0.174 (6)0.029*
O230.1180 (4)0.5313 (4)0.0558 (3)0.0156 (8)
H23A0.138 (7)0.511 (6)0.005 (6)0.023*
H23B0.032 (7)0.540 (6)0.087 (6)0.023*
O240.1349 (4)0.3728 (4)0.3060 (4)0.0203 (9)
H24A0.155 (7)0.334 (6)0.368 (6)0.030*
H24B0.143 (8)0.423 (7)0.300 (7)0.030*
O250.3957 (4)0.1204 (3)0.1540 (4)0.0187 (8)
H250.390 (7)0.070 (6)0.137 (6)0.022*
O260.1374 (4)0.2320 (4)0.0943 (4)0.0260 (9)
H260.161 (7)0.230 (6)0.018 (6)0.031*
O270.0421 (4)0.0116 (4)0.3221 (4)0.0269 (10)
H270.101 (7)0.057 (7)0.313 (7)0.032*
O280.0593 (4)0.2184 (4)0.2434 (4)0.0249 (9)
H28A0.002 (8)0.277 (7)0.247 (7)0.037*
H28B0.118 (8)0.237 (7)0.254 (7)0.037*
O290.7568 (4)0.0498 (4)0.2733 (4)0.0182 (8)
H290.735 (6)0.119 (6)0.287 (6)0.022*
N10.6651 (4)0.0491 (4)0.0932 (4)0.0135 (9)
H1A0.6205030.0823050.0419980.020*
H1B0.6945720.0350130.1005350.020*
H1C0.7343290.0744190.0661870.020*
N20.0763 (4)0.3259 (4)0.3009 (4)0.0123 (9)
H2A0.1095560.3877380.2490530.018*
H2B0.0041480.3327530.3010370.018*
H2C0.1376170.3319300.3736780.018*
C10.4520 (5)0.0653 (5)0.2438 (5)0.0165 (11)
H1D0.4723550.0252010.2574840.020*
H1E0.3886540.0994370.3173570.020*
C20.5768 (5)0.0910 (4)0.2092 (4)0.0107 (10)
H20.5544280.1820030.2033350.013*
C30.6425 (5)0.0233 (5)0.2991 (5)0.0162 (11)
H3A0.5800250.0471630.3767610.019*
H3B0.6674840.0669480.3026420.019*
C40.0445 (5)0.1009 (4)0.3328 (5)0.0147 (11)
H4A0.1351270.1001180.2991110.018*
H4B0.0087370.1132150.4159680.018*
C50.0397 (5)0.2030 (4)0.2660 (4)0.0127 (10)
H50.1224740.1873960.2901520.015*
C60.0209 (5)0.2060 (5)0.1362 (5)0.0187 (11)
H6A0.0412100.1249530.1150960.022*
H6B0.0418240.2702650.0987370.022*
O30B0.9054 (14)0.105 (2)0.080 (3)0.048 (6)0.48 (5)
O30A0.8950 (11)0.1308 (12)0.026 (2)0.035 (5)0.52 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.00509 (9)0.00748 (9)0.00526 (10)0.00281 (7)0.00147 (7)0.00021 (7)
W20.00343 (9)0.00618 (9)0.00481 (10)0.00225 (7)0.00065 (7)0.00056 (7)
W30.00345 (9)0.00601 (9)0.00437 (10)0.00258 (7)0.00026 (7)0.00063 (7)
W40.00401 (9)0.00709 (9)0.00488 (10)0.00339 (7)0.00000 (7)0.00063 (7)
W50.00430 (9)0.00760 (9)0.00575 (10)0.00427 (7)0.00078 (7)0.00051 (7)
W60.00366 (9)0.00720 (9)0.00671 (10)0.00237 (7)0.00130 (7)0.00083 (7)
Na10.0206 (11)0.0287 (12)0.0124 (10)0.0171 (10)0.0008 (9)0.0044 (9)
Na20.0148 (10)0.0173 (10)0.0248 (12)0.0047 (9)0.0068 (9)0.0020 (9)
Na30.0135 (10)0.0150 (10)0.0215 (11)0.0074 (8)0.0073 (9)0.0029 (8)
O10.0080 (16)0.0132 (17)0.0082 (17)0.0048 (14)0.0000 (13)0.0018 (13)
O20.0094 (16)0.0104 (16)0.0090 (17)0.0048 (14)0.0031 (14)0.0011 (13)
O30.0143 (18)0.0096 (16)0.0126 (18)0.0055 (14)0.0058 (15)0.0012 (13)
O40.0070 (16)0.0101 (16)0.0045 (16)0.0027 (13)0.0010 (13)0.0010 (13)
O50.0052 (15)0.0071 (15)0.0071 (16)0.0013 (13)0.0026 (13)0.0001 (12)
O60.0111 (17)0.0153 (17)0.0043 (16)0.0079 (14)0.0004 (13)0.0017 (13)
O70.0098 (17)0.0085 (16)0.0120 (18)0.0016 (14)0.0022 (14)0.0008 (13)
O80.0032 (15)0.0079 (15)0.0069 (16)0.0031 (13)0.0001 (13)0.0012 (12)
O90.0036 (15)0.0071 (15)0.0088 (16)0.0021 (13)0.0003 (13)0.0013 (12)
O100.0017 (15)0.0078 (15)0.0059 (16)0.0012 (12)0.0006 (12)0.0019 (12)
O110.0103 (17)0.0112 (16)0.0078 (17)0.0075 (14)0.0010 (14)0.0006 (13)
O120.0072 (16)0.0120 (16)0.0103 (18)0.0029 (14)0.0008 (14)0.0017 (13)
O130.0056 (16)0.0111 (16)0.0066 (16)0.0041 (13)0.0014 (13)0.0009 (13)
O140.0071 (16)0.0094 (16)0.0085 (17)0.0042 (13)0.0022 (13)0.0011 (13)
O150.0125 (17)0.0122 (17)0.0109 (17)0.0074 (14)0.0018 (14)0.0011 (13)
O160.0040 (15)0.0124 (16)0.0095 (17)0.0036 (13)0.0010 (13)0.0029 (13)
O170.0076 (16)0.0137 (16)0.0076 (17)0.0069 (14)0.0009 (13)0.0027 (13)
O180.0126 (17)0.0139 (17)0.0102 (17)0.0105 (15)0.0005 (14)0.0012 (14)
O190.0063 (16)0.0088 (16)0.0090 (17)0.0021 (13)0.0022 (13)0.0011 (13)
O200.0071 (16)0.0113 (16)0.0126 (18)0.0037 (14)0.0027 (14)0.0018 (13)
O210.0102 (17)0.0154 (17)0.0099 (17)0.0070 (14)0.0016 (14)0.0026 (14)
O220.0098 (19)0.033 (2)0.015 (2)0.0058 (18)0.0002 (16)0.0137 (18)
O230.0132 (19)0.026 (2)0.0117 (19)0.0114 (17)0.0014 (16)0.0046 (16)
O240.027 (2)0.024 (2)0.019 (2)0.0165 (19)0.0117 (18)0.0022 (18)
O250.019 (2)0.0128 (18)0.028 (2)0.0040 (16)0.0139 (17)0.0027 (16)
O260.031 (2)0.039 (2)0.013 (2)0.024 (2)0.0030 (18)0.0063 (18)
O270.013 (2)0.012 (2)0.052 (3)0.0004 (16)0.010 (2)0.0046 (19)
O280.013 (2)0.028 (2)0.033 (2)0.0048 (18)0.0076 (19)0.0059 (19)
O290.0168 (19)0.0132 (18)0.032 (2)0.0031 (16)0.0137 (17)0.0076 (16)
N10.018 (2)0.010 (2)0.010 (2)0.0072 (18)0.0023 (18)0.0010 (16)
N20.008 (2)0.015 (2)0.011 (2)0.0023 (17)0.0015 (17)0.0014 (17)
C10.014 (3)0.022 (3)0.015 (3)0.008 (2)0.005 (2)0.002 (2)
C20.010 (2)0.007 (2)0.013 (3)0.0018 (19)0.003 (2)0.0036 (19)
C30.019 (3)0.013 (2)0.017 (3)0.005 (2)0.008 (2)0.001 (2)
C40.014 (3)0.013 (2)0.016 (3)0.003 (2)0.005 (2)0.003 (2)
C50.005 (2)0.016 (2)0.018 (3)0.006 (2)0.002 (2)0.003 (2)
C60.016 (3)0.021 (3)0.022 (3)0.004 (2)0.012 (2)0.003 (2)
O30B0.048 (7)0.092 (10)0.028 (11)0.052 (7)0.011 (7)0.000 (9)
O30A0.046 (6)0.048 (7)0.027 (10)0.030 (5)0.017 (5)0.001 (5)
Geometric parameters (Å, º) top
W1—O11.743 (3)Na2—O252.321 (4)
W1—O21.906 (3)Na2—O262.328 (5)
W1—O31.742 (3)Na3—O7iv2.684 (4)
W1—O41.914 (3)Na3—O18v2.411 (4)
W1—O52.274 (3)Na3—O20vi2.458 (4)
W1—O13i2.270 (3)Na3—O272.375 (5)
W2—O51.905 (3)Na3—O282.522 (5)
W2—O61.818 (3)Na3—O29vii2.434 (4)
W2—O71.723 (3)O22—H22A0.68 (7)
W2—O82.259 (3)O22—H22B0.90 (7)
W2—O92.047 (3)O23—H23A0.78 (7)
W2—O101.956 (3)O23—H23B0.91 (7)
W3—O82.255 (3)O24—H24A0.86 (7)
W3—O101.953 (3)O24—H24B0.63 (7)
W3—O111.807 (3)O25—H250.73 (7)
W3—O121.723 (3)O25—C11.422 (7)
W3—O131.896 (3)O26—H260.89 (7)
W3—O142.052 (3)O26—C61.420 (7)
W4—O41.957 (3)O27—H270.67 (7)
W4—O52.227 (3)O27—C41.418 (6)
W4—O11i2.140 (3)O28—H28A0.75 (8)
W4—O151.761 (3)O28—H28B0.79 (8)
W4—O161.757 (3)O29—H290.81 (7)
W4—O171.858 (3)O29—C31.432 (6)
W5—O82.251 (3)N1—H1A0.9100
W5—O91.845 (3)N1—H1B0.9100
W5—O141.856 (3)N1—H1C0.9100
W5—O171.980 (3)N1—C21.489 (6)
W5—O181.734 (3)N2—H2A0.9100
W5—O191.965 (3)N2—H2B0.9100
W6—O2i1.966 (3)N2—H2C0.9100
W6—O6i2.189 (3)N2—C51.498 (6)
W6—O132.228 (3)C1—H1D0.9900
W6—O191.864 (3)C1—H1E0.9900
W6—O201.731 (3)C1—C21.525 (7)
W6—O211.765 (3)C2—H21.0000
Na1—Na23.513 (3)C2—C31.502 (7)
Na1—O12.365 (4)C3—H3A0.9900
Na1—O12ii2.360 (4)C3—H3B0.9900
Na1—O21i2.440 (4)C4—H4A0.9900
Na1—O222.339 (5)C4—H4B0.9900
Na1—O232.365 (4)C4—C51.517 (7)
Na1—O30Biii2.96 (3)C5—H51.0000
Na1—O30Aiii2.668 (12)C5—C61.496 (7)
Na2—O4iii2.606 (4)C6—H6A0.9900
Na2—O222.299 (4)C6—H6B0.9900
Na2—O232.471 (4)O30B—O30A0.772 (14)
Na2—O242.409 (5)
O1—W1—O299.34 (14)O24—Na2—Na182.89 (12)
O1—W1—O497.41 (14)O24—Na2—O4iii163.49 (15)
O1—W1—O5165.62 (13)O24—Na2—H22A99.6 (17)
O1—W1—O13i90.34 (13)O24—Na2—O2383.19 (15)
O2—W1—O4152.13 (14)O24—Na2—H23A99.9 (16)
O2—W1—O585.31 (13)O24—Na2—H24B14.0 (16)
O2—W1—O13i72.81 (12)O25—Na2—Na1141.81 (13)
O3—W1—O1101.50 (15)O25—Na2—O4iii95.66 (14)
O3—W1—O297.16 (15)O25—Na2—H22A91.2 (16)
O3—W1—O4101.13 (15)O25—Na2—O23175.41 (17)
O3—W1—O591.33 (14)O25—Na2—H23A158.6 (16)
O3—W1—O13i165.73 (14)O25—Na2—O2499.07 (17)
O4—W1—O573.49 (12)O25—Na2—H24B107.6 (17)
O4—W1—O13i85.00 (12)O25—Na2—O2684.84 (16)
O13i—W1—O577.96 (11)O26—Na2—Na1133.01 (14)
O5—W2—O885.93 (12)O26—Na2—O4iii91.27 (14)
O5—W2—O984.55 (13)O26—Na2—H22A162.9 (17)
O5—W2—O10155.42 (13)O26—Na2—O2390.92 (16)
O6—W2—O595.34 (14)O26—Na2—H23A82.9 (15)
O6—W2—O888.22 (13)O26—Na2—O2497.41 (16)
O6—W2—O9160.42 (14)O26—Na2—H24B108.9 (17)
O6—W2—O1091.33 (13)O18v—Na3—O7iv99.45 (13)
O7—W2—O5104.66 (15)O18v—Na3—O20vi82.68 (13)
O7—W2—O6103.57 (16)O18v—Na3—O2879.23 (14)
O7—W2—O8163.09 (14)O18v—Na3—O29vii104.03 (14)
O7—W2—O995.34 (14)O20vi—Na3—O7iv118.30 (13)
O7—W2—O1096.66 (14)O20vi—Na3—O2882.88 (14)
O9—W2—O872.23 (11)O27—Na3—O7iv88.69 (14)
O10—W2—O870.63 (12)O27—Na3—O18v162.22 (16)
O10—W2—O981.39 (13)O27—Na3—O20vi79.54 (14)
O10—W3—O870.79 (12)O27—Na3—O2898.85 (17)
O10—W3—O1482.41 (13)O27—Na3—O29vii92.51 (16)
O11—W3—O887.05 (13)O28—Na3—O7iv158.61 (15)
O11—W3—O1092.51 (14)O29vii—Na3—O7iv83.56 (13)
O11—W3—O1394.39 (14)O29vii—Na3—O20vi156.19 (16)
O11—W3—O14160.06 (14)O29vii—Na3—O2876.17 (15)
O12—W3—O8164.22 (13)W1—O1—Na1135.79 (18)
O12—W3—O1097.08 (14)W1—O2—W6i117.99 (16)
O12—W3—O11103.95 (15)W1—O4—W4117.48 (16)
O12—W3—O13103.07 (15)W1—O4—Na2iii116.67 (15)
O12—W3—O1495.83 (14)W4—O4—Na2iii116.38 (15)
O13—W3—O887.06 (13)W2—O5—W1125.33 (15)
O13—W3—O10156.41 (13)W2—O5—W4137.59 (16)
O13—W3—O1483.45 (13)W4—O5—W194.63 (12)
O14—W3—O873.06 (12)W2—O6—W6i139.38 (17)
O4—W4—O573.85 (12)W2—O7—Na3iv137.29 (18)
O4—W4—O11i81.97 (13)W3—O8—W297.22 (12)
O11i—W4—O577.76 (12)W5—O8—W294.75 (11)
O15—W4—O492.61 (14)W5—O8—W394.52 (12)
O15—W4—O596.44 (14)W5—O9—W2116.91 (15)
O15—W4—O11i172.94 (14)W3—O10—W2120.08 (15)
O15—W4—O1796.69 (15)W3—O11—W4i136.32 (18)
O16—W4—O496.54 (14)W3—O12—Na1viii170.67 (19)
O16—W4—O5160.85 (13)W3—O13—W1i126.28 (15)
O16—W4—O11i84.60 (13)W3—O13—W6137.29 (16)
O16—W4—O15100.58 (15)W6—O13—W1i95.12 (12)
O16—W4—O1799.46 (15)W5—O14—W3115.64 (16)
O17—W4—O4159.66 (14)W4—O17—W5148.36 (18)
O17—W4—O587.12 (13)W5—O18—Na3ix150.89 (19)
O17—W4—O11i87.11 (13)W6—O19—W5146.16 (18)
O9—W5—O876.09 (12)W6—O20—Na3vi132.86 (18)
O9—W5—O1493.33 (14)W6—O21—Na1i135.54 (18)
O9—W5—O1786.47 (14)Na1—O22—H22A122 (6)
O9—W5—O19154.74 (14)Na1—O22—H22B114 (4)
O14—W5—O876.78 (12)Na2—O22—Na198.47 (16)
O14—W5—O17156.72 (13)Na2—O22—H22A104 (6)
O14—W5—O1987.83 (14)Na2—O22—H22B113 (4)
O17—W5—O880.60 (12)H22A—O22—H22B104 (7)
O18—W5—O8178.51 (14)Na1—O23—Na293.15 (15)
O18—W5—O9102.80 (15)Na1—O23—H23A113 (5)
O18—W5—O14102.35 (15)Na1—O23—H23B138 (4)
O18—W5—O17100.38 (14)Na2—O23—H23A88 (5)
O18—W5—O19101.57 (15)Na2—O23—H23B113 (4)
O19—W5—O879.64 (12)H23A—O23—H23B101 (6)
O19—W5—O1782.74 (13)Na2—O24—H24A126 (5)
O2i—W6—O6i77.66 (13)Na2—O24—H24B98 (7)
O2i—W6—O1372.73 (12)H24A—O24—H24B101 (8)
O6i—W6—O1376.98 (12)Na2—O25—H25118 (5)
O19—W6—O2i156.59 (14)C1—O25—Na2130.9 (3)
O19—W6—O6i84.75 (13)C1—O25—H25107 (5)
O19—W6—O1388.45 (13)Na2—O26—H26106 (4)
O20—W6—O2i94.54 (14)C6—O26—Na2150.9 (3)
O20—W6—O6i90.10 (14)C6—O26—H26100 (4)
O20—W6—O13163.39 (13)Na3—O27—H27110 (6)
O20—W6—O19100.87 (15)C4—O27—Na3131.5 (3)
O20—W6—O21101.60 (16)C4—O27—H27112 (6)
O21—W6—O2i95.80 (14)Na3—O28—H28A110 (6)
O21—W6—O6i167.09 (14)Na3—O28—H28B107 (6)
O21—W6—O1390.50 (14)H28A—O28—H28B108 (8)
O21—W6—O1998.20 (15)Na3x—O29—H29108 (5)
O1—Na1—Na2130.03 (12)C3—O29—Na3x107.8 (3)
O1—Na1—O21i87.94 (13)C3—O29—H29109 (5)
O1—Na1—O30Biii75.4 (4)H1A—N1—H1B109.5
O1—Na1—O30Aiii82.9 (4)H1A—N1—H1C109.5
O12ii—Na1—Na290.80 (11)H1B—N1—H1C109.5
O12ii—Na1—O191.95 (13)C2—N1—H1A109.5
O12ii—Na1—O21i169.87 (16)C2—N1—H1B109.5
O12ii—Na1—O2387.84 (14)C2—N1—H1C109.5
O12ii—Na1—O30Biii106.9 (5)H2A—N2—H2B109.5
O12ii—Na1—O30Aiii94.4 (6)H2A—N2—H2C109.5
O21i—Na1—Na281.56 (10)H2B—N2—H2C109.5
O21i—Na1—O30Biii82.9 (6)C5—N2—H2A109.5
O21i—Na1—O30Aiii95.6 (6)C5—N2—H2B109.5
O22—Na1—Na240.33 (11)C5—N2—H2C109.5
O22—Na1—O189.70 (15)O25—C1—H1D109.6
O22—Na1—O12ii92.67 (15)O25—C1—H1E109.6
O22—Na1—O21i77.19 (14)O25—C1—C2110.2 (4)
O22—Na1—O2384.94 (15)H1D—C1—H1E108.1
O22—Na1—O30Biii155.5 (6)C2—C1—H1D109.6
O22—Na1—O30Aiii169.9 (6)C2—C1—H1E109.6
O23—Na1—Na244.61 (11)N1—C2—C1108.4 (4)
O23—Na1—O1174.62 (17)N1—C2—H2109.3
O23—Na1—O21i91.32 (14)N1—C2—C3110.2 (4)
O23—Na1—O30Biii109.8 (4)C1—C2—H2109.3
O23—Na1—O30Aiii102.5 (4)C3—C2—C1110.2 (4)
O30Biii—Na1—Na2149.3 (2)C3—C2—H2109.3
O30Aiii—Na1—Na2146.5 (3)O29—C3—C2112.1 (4)
O30Aiii—Na1—O30Biii14.6 (2)O29—C3—H3A109.2
Na1—Na2—H22A51.3 (16)O29—C3—H3B109.2
Na1—Na2—H23A51.3 (15)C2—C3—H3A109.2
Na1—Na2—H24B69.2 (17)C2—C3—H3B109.2
O4iii—Na2—Na180.92 (9)H3A—C3—H3B107.9
O4iii—Na2—H22A72.6 (17)O27—C4—H4A110.5
O4iii—Na2—H23A67.2 (16)O27—C4—H4B110.5
O4iii—Na2—H24B150.2 (17)O27—C4—C5106.2 (4)
O22—Na2—Na141.20 (11)H4A—C4—H4B108.7
O22—Na2—O4iii83.35 (14)C5—C4—H4A110.5
O22—Na2—H22A15.0 (16)C5—C4—H4B110.5
O22—Na2—O2383.43 (15)N2—C5—C4110.1 (4)
O22—Na2—H23A90.4 (15)N2—C5—H5107.2
O22—Na2—O2486.63 (15)C4—C5—H5107.2
O22—Na2—H24B74.3 (17)C6—C5—N2111.0 (4)
O22—Na2—O25100.64 (16)C6—C5—C4113.9 (4)
O22—Na2—O26172.64 (19)C6—C5—H5107.2
H22A—Na2—H23A95 (2)O26—C6—C5110.7 (4)
H22A—Na2—H24B88 (2)O26—C6—H6A109.5
O23—Na2—Na142.24 (10)O26—C6—H6B109.5
O23—Na2—O4iii82.65 (13)C5—C6—H6A109.5
O23—Na2—H22A92.4 (16)C5—C6—H6B109.5
O23—Na2—H23A17.7 (15)H6A—C6—H6B108.1
O23—Na2—H24B75.5 (17)O30A—O30B—Na1iii60.3 (18)
H23A—Na2—H24B93 (2)O30B—O30A—Na1iii105 (2)
Na2—O25—C1—C281.3 (5)O11i—W4—O17—W570.5 (3)
Na2—O26—C6—C528.2 (9)O12—W3—O11—W4i55.6 (3)
Na3—O27—C4—C570.6 (6)O12—W3—O13—W1i60.5 (2)
Na3x—O29—C3—C2169.3 (3)O12—W3—O13—W6136.2 (2)
O2—W1—O1—Na125.9 (3)O13i—W1—O1—Na146.8 (3)
O2i—W6—O19—W547.2 (6)O13—W3—O11—W4i49.1 (3)
O2i—W6—O20—Na3vi50.9 (2)O13—W6—O19—W511.3 (3)
O2i—W6—O21—Na1i30.6 (3)O13—W6—O20—Na3vi90.0 (5)
O3—W1—O1—Na1125.2 (3)O13—W6—O21—Na1i42.1 (3)
O4—W1—O1—Na1131.8 (2)O14—W3—O11—W4i132.0 (3)
O4—W4—O17—W513.1 (6)O14—W3—O13—W1i155.0 (2)
O5—W1—O1—Na182.1 (6)O14—W3—O13—W641.7 (2)
O5—W2—O6—W6i42.3 (3)O14—W5—O9—W276.39 (18)
O5—W2—O7—Na3iv150.8 (2)O14—W5—O18—Na3ix153.2 (4)
O5—W4—O17—W57.4 (3)O15—W4—O17—W5103.5 (3)
O6—W2—O7—Na3iv109.9 (2)O16—W4—O17—W5154.6 (3)
O6i—W6—O19—W588.4 (3)O17—W5—O9—W280.29 (17)
O6i—W6—O20—Na3vi128.5 (2)O17—W5—O14—W313.9 (4)
O6i—W6—O21—Na1i28.1 (8)O17—W5—O18—Na3ix31.8 (4)
O7—W2—O6—W6i64.3 (3)O18—W5—O9—W2179.85 (17)
O8—W2—O6—W6i128.0 (3)O18—W5—O14—W3178.84 (17)
O8—W2—O7—Na3iv23.3 (6)O19—W5—O9—W215.6 (4)
O8—W3—O11—W4i135.9 (2)O19—W5—O14—W379.79 (17)
O8—W3—O13—W1i131.77 (19)O19—W5—O18—Na3ix116.5 (4)
O8—W3—O13—W631.6 (2)O19—W6—O20—Na3vi146.9 (2)
O8—W5—O9—W20.89 (15)O19—W6—O21—Na1i130.6 (2)
O8—W5—O14—W30.08 (15)O20—W6—O19—W5177.5 (3)
O9—W2—O6—W6i131.0 (3)O20—W6—O21—Na1i126.5 (3)
O9—W2—O7—Na3iv65.0 (3)O21—W6—O19—W579.0 (3)
O9—W5—O14—W374.95 (18)O21—W6—O20—Na3vi46.0 (3)
O9—W5—O18—Na3ix56.9 (4)O25—C1—C2—N154.2 (5)
O10—W2—O6—W6i161.4 (3)O25—C1—C2—C3174.9 (4)
O10—W2—O7—Na3iv16.9 (3)O27—C4—C5—N2163.1 (4)
O10—W3—O11—W4i153.5 (2)O27—C4—C5—C671.6 (5)
O10—W3—O13—W1i151.6 (2)N1—C2—C3—O2963.4 (5)
O10—W3—O13—W611.8 (5)N2—C5—C6—O2661.3 (5)
O11—W3—O13—W1i45.0 (2)C1—C2—C3—O29177.0 (4)
O11—W3—O13—W6118.4 (2)C4—C5—C6—O2663.6 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z; (iv) x, y+1, z+1; (v) x1, y1, z; (vi) x+1, y, z+1; (vii) x1, y, z; (viii) x, y, z+1; (ix) x+1, y+1, z; (x) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H22A···O1iii0.67 (7)2.11 (7)2.757 (5)163 (8)
O23—H23A···O16iii0.78 (7)2.04 (7)2.802 (5)165 (7)
O23—H23B···O16vii0.91 (7)1.91 (7)2.811 (5)175 (6)
O25—H25···O3xi0.73 (6)2.05 (7)2.761 (5)164 (7)
O26—H26···O15iii0.88 (7)1.88 (7)2.730 (5)160 (6)
O27—H27···O2xi0.67 (7)2.04 (7)2.696 (5)165 (8)
O28—H28A···O21vi0.75 (8)2.01 (8)2.735 (6)160 (8)
O29—H29···O10i0.81 (6)1.91 (7)2.692 (5)163 (6)
N1—H1B···O15xi0.911.822.723 (5)170
N2—H2B···O240.911.962.867 (6)172
Symmetry codes: (i) x+1, y+1, z+1; (iii) x+1, y+1, z; (vi) x+1, y, z+1; (vii) x1, y, z; (xi) x, y1, z.
 

Footnotes

https://www.bpc.unvie.ac.at

Acknowledgements

We thank Dr Elias Tanuhadi for help with the TGA measurements.

Funding information

Funding for this research was provided by: Austrian Science Fund (grant No. P33089 to Annette Rompel; grant No. P33927 to Nadiia I. Gumerova); Erasmus+ (studentship No. 1016/2020 to Kleanthi Sifaki).

References

First citationAndreessen, B. & Steinbüchel, A. (2011). AMB Express, 1, article No. 12.  Google Scholar
First citationBarbera, V., Leonardi, G., Valerio, A. M., Rubino, L., Sun, S., Famulari, A., Galimberti, M., Citterio, A. & Sebastiano, R. (2020). ACS Sustainable Chem. Eng. 8, 9356–9366.  Web of Science CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaalia, S., Daran, J.-C. & Haddad, A. (2012). Struct. Chem. 23, 645–652.  CSD CrossRef CAS Google Scholar
First citationChemicalbook (2021). https://www. chemicalbook.com/ChemicalProductProperty_EN_CB1738085.html  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEvans, H. T. & Prince, E. (1983). J. Am. Chem. Soc. 105, 4838–4839.  CrossRef CAS Web of Science Google Scholar
First citationEvans, H. T. & Rollins, O. W. (1976). Acta Cryst. B32, 1565–1567.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGumerova, N. I., Dobrov, A., Roller, A. & Rompel, A. (2018). Acta Cryst. C74, 1252–1259.  CrossRef ICSD IUCr Journals Google Scholar
First citationGumerova, N. I., Kasyanova, K. V., Rozantsev, G. M., Baumer, V. N. & Radio, S. V. (2015). J. Clust Sci. 26, 1171–1186.  CrossRef ICSD CAS Google Scholar
First citationGumerova, N. I. & Rompel, A. (2020). Chem. Soc. Rev. 49, 7568–7601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationPeresypkina, E. V., Virovets, A. V., Adonin, S. A., Abramov, P. A., Rogachev, A. V., Sinkevich, P. L., Korenev, V. S. & Sokolov, M. N. (2014). J. Struct. Chem. 55, 295–298.  Web of Science CrossRef ICSD CAS Google Scholar
First citationPope, M. (1983). Heteropoly and Isopoly Oxometalates. Berlin: Springer.  Google Scholar
First citationRadio, S. V., Kryuchkov, M. A., Zavialova, E. G., Baumer, V. N., Shishkin, O. V. & Rozantsev, G. M. (2010). J. Coord. Chem. 63, 1678–1689.  Web of Science CrossRef ICSD CAS Google Scholar
First citationRadio, S. V., Rozantsev, G. M., Baumer, V. N. & Shishkin, O. V. (2011). J. Struct. Chem. 52, 111–117.  CrossRef ICSD CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSifaki, K., Gumerova, N. I., Giester, G. & Rompel, A. (2021). Acta Cryst. C77, 420–425.  CSD CrossRef IUCr Journals Google Scholar
First citationSokolov, M. N., Adonin, S. A., Abramov, P. A., Mainichev, D. A., Zakharchuk, N. F. & Fedin, V. P. (2012). Chem. Commun. 48, 6666–6668.  Web of Science CrossRef ICSD CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds