research communications
Syntheses and crystal structures of 2-(p-tolyl)-1H-perimidine hemihydrate and 1-methyl-2-(p-tolyl)-1H-perimidine
aN. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow 119991, Russian Federation, and bDepartment of Chemistry, Lomonosov Moscow State University, Lenin's Hills, 1-3, Moscow, 119991, Russian Federation
*Correspondence e-mail: bezzubov@igic.ras.ru
The title compounds, 2-(4-methylphenyl)-1H-perimidine hemihydrate (1, C18H14N2·0.5H2O) and 1-methyl-2-(4-methylphenyl)-1H-perimidine (2, C19H16N2), were prepared and characterized by 1H NMR and single-crystal X-ray diffraction. The organic molecule of the hemihydrate lies on a twofold rotation axis while the water molecule lies on the intersection of three twofold rotation axes (point group symmetry 222). As a consequence, the hydrogen atoms that are part of the N—H group and the water molecule as well as the CH3 group of the p-tolyl ring are disordered over two positions. In compound 1, the perimidine and the 2-aryl rings are slightly twisted while its N-methylated derivative 2 has a more distorted conformation because of the steric repulsion between the N-methyl group and the 2-aryl ring. In the crystal structures, molecules of perimidine 2 are held together only by C—H⋯π contacts while the parent perimidine 1 does not exhibit this type of interaction. Its crystal packing is established by intermolecular N—H⋯O hydrogen bonds with the solvent water molecules and additionally stabilized by π–π stacking.
Keywords: crystal structure; perimidine; π–π stacking; hydrogen bonding; NMR study.
1. Chemical context
Perimidines have found applications in industry as dyes and pigments because of their finely tunable optical properties (Pozharskii et al., 2020). The introduction of electron-donating/withdrawing groups to the perimidine system dramatically affects its electronic structure and allows the color as well as color intensity of the perimidine to be varied. Additionally, a significant deepening of the color of perimidines can be achieved by decorating them with aromatic rings at position 2 while their optical characteristics can be modulated by varying the N-substituent (Sahiba & Agarwal, 2020). Recently, we have studied the effect of the N-substituent(s) on the structures of 2-(pyridin-2-yl)-1-H-perimidines (Kalle et al., 2021). Herein, we report structural studies of 1-H-2-(p-tolyl)-perimidine hemihydrate (1) and 1-methyl-2-(p-tolyl)-perimidine (2).
2. Structural commentary
The perimidine molecule of 1 possesses C2 symmetry with the twofold rotation axis passing through carbon atoms C3–C6, C11 and C12 (Fig. 1). This perimidine exhibits a C6—N1 bond length of 1.3345 (12) Å, a value intermediate between the average C—N single [1.366 (13) Å] and double [1.293 (11) Å] bond lengths in perimidines according to the Cambridge Database (CSD version 5.43 November 2021; Groom et al., 2016). The perimidine core of 1 is flat while the p-tolyl ring (C1–C5) forms a dihedral angle of 34.47 (5)° with the core, which is likely an effect of the crystal packing.
The 2 contains two molecules, which are N-methylated analogs of compound 1 (Fig. 2). Steric pressure exerted by the N-methyl group causes an increase of the interplanar angle between the p-tolyl ring and the perimidine system [53.51 (10)° for one molecule and 55.96 (9)° for the other]. Additionally, in the first molecule, the angle between the N1—C19 bond and the centroid of the perimidine plane is as large as 8.7 (2)°. while the corresponding angle in the second molecule is 6.1 (2)°.
of crystal3. Supramolecular features
Recrystallization of 1 from toluene, dichloromethane, chloroform or methanol gives crystals having an identical structure. An X-ray study of the crystals grown from hot toluene shows that compound 1 crystallizes as a hemihydrate in which the solvent molecule plays a dominant role in the crystal packing. Each water molecule, located at the intersection of three twofold rotation axes (Wyckoff position 8a; symmetry 222), arranges four 2-(p-tolyl)perimidines by mutual O—H⋯N and N—H⋯O interactions involving the O1 and N1 atoms as well as disordered hydrogen atoms H1 and H1B (Fig. 3, Table 1). These hydrogen-bonded associates containing the included water molecule are additionally stabilized by π–π contacts between the aromatic units [d(C1⋯N1–C12centroid) = 3.3276 (11) Å, centroid–centroid shift of 1.591 (1) Å, d(C7⋯C1–C5centroid) = 3.5950 (11) Å, centroid–centroid shift of 1.433 (1) Å]. The same interactions combine the associates into infinite stacks along the a axis, forming two-dimensional structural arrays. The alignment of the arrays along the c axis by weak van der Waals interactions between perimidine C9—H9 and C10—H10 bonds and the methyl group (C4) of the p-tolyl ring completes the crystal packing of 1.
|
In the 2 (Fig. 4), the two crystallographically independent molecules are held together by C—H⋯π interactions between the p-tolyl and perimidine systems involving the H5 atom and the centroid of the C32–C37 ring [2.8226 (13) Å, 144.85 (18)°] and the H21 atom and the centroid of the C9–C13/C18 ring [2.6199 (12) Å, 145.74 (19)°]. The resulting dimers form stacks via similar non-covalent bonds involving the H24 atom and the centroid of the C9–C13/C18 ring [2.8676 (12) Å, 151.1 (2)°] and the H2 atom and the centroid of the C32–C37 ring [3.1727 (13) Å, 142.3 (2)°]. The resulting layers are grafted together by weak C—H⋯N contacts involving the H19A and N4 atoms [d(H⋯N) = 2.624 (2) Å, C—H⋯N angle = 166.86 (18)°], forming arrays in the ab plane. The three-dimensional crystal packing is organized by the alignment of the arrays along the c axis by weak van der Waals interactions in the same manner as in the crystal of 1. It is interesting that compound 2, in contrast to the parent perimidine 1, crystallizes without notable π–π interactions.
of4. Database survey
A database search in the CSD (version 5.43 November 2021; Groom et al., 2016) found only one a 2-arylperimidine hydrate in which one water molecule combines two 2-(2-methoxyphenyl)-1-H-perimidines by O—H⋯N hydrogen bonds whereas the H atom at the second nitrogen atom cannot interact with the oxygen atom of the water molecule because it participates in an intramolecular N—H⋯O bond with the methoxy group (PEKRIG; Foces-Foces et al., 1993). A pseudo-tetrahedral pattern of hydrogen-bonded organic molecules around the included water molecule is formed by 2-amino-4-(4-pyridyl)-6-phenylamino-1,3,5-triazine, which bears many more donor and acceptor hydrogen-bonding groups than compound 1 (TETRIT; Chan et al., 1996). The crystal structures of organic hydrates including N—H⋯O interactions have also been published [KIJPUO (Black et al., 1991); FAZRED (Rosling et al., 1999)].
5. Synthesis and crystallization
The title compounds were prepared as follows:
1-H-2-(p-tolyl)perimidine (1).
A mixture of 1,8-diaminonaphthalene (1.58 g, 0.01 mol), 4-methylbenzaldehyde (1.18 ml, 0.01 mol) and sodium metabisulfite (5.7 g, 0.03 mol) in ethanol (40 ml) was refluxed under Ar for 2 h. The reaction mixture was cooled, filtered and the filtrate was evaporated to dryness and washed with water. The crude solid was recrystallized from toluene and dried in vacuo. Yield 2.20 g (85%). Single crystals suitable for X-ray analysis were grown from hot toluene.
1H NMR (DMSO-d6, ppm, 400 MHz): δ 2.34 (s, 3H, CH3), 6.65 (d, J = 7.2 Hz, 2H, Hnaph), 7.04 (d, J = 8.0 Hz, 2H, Hnaph), 7.15 (t, J = 7.2 Hz, 2H, Hnaph), 7.30 (d, J = 7.2 Hz, 2H, Htol), 7.95 (d, J = 8.0 Hz, 2H, Htol). See supplementary Fig. S1.
1-Methyl-2-(p-tolyl)perimidine (2).
To a mixture of (1) (0.258 g, 1.0 mmol), solid KOH (0.056 g, 1.0 mmol) and anhydrous K2CO3 (0.138 g, 1.0 mmol) in anhydrous Ar-saturated acetonitrile methyl iodide (0.062 ml, 1.0 mmol) were added dropwise upon stirring and the resulting suspension was heated at 323 K for 1 h and then at room temperature for 1 h. The reaction mixture was evaporated to dryness and the crude product was purified by (eluent hexane/ethyl acetate 1/1 → 1/5 v/v), recrystallized from a mixture of toluene/hexane and dried in vacuo. Yield 125 mg (46%). Single crystals suitable for X-ray analysis were grown by slow evaporation of the solvent from a solution of the substance in toluene.
1H NMR (CDCl3, ppm, 400 MHz): δ 2.42(s, 3H, CH3), 3.17 (s, 3H, N–CH3), 6.28 (d, J = 7.2 Hz, 1H, Hnaph), 6.94 (d, J = 7.3 Hz, 1H, Hnaph), 7.17–7.24 (m, 3H, Hnaph), 7.28–7.32 (m, 3H, Hnaph + Htol), 7.44 (d, J = 7.7 Hz, 2H, Htol). See supplementary Fig. S2.
6. Refinement
Crystal data, data collection and structure . All C—H hydrogen atoms in the structures of 1 and 2 were placed in calculated positions and refined using a riding model [C—H = 0.94–0.97 Å with Uiso(H) = 1.2–1.5Ueq(C)]. N—H and O—H hydrogen atoms (structure 1) were located in difference electron-density maps and were refined with a fixed occupancy of 0.5. para-Methyl groups in both crystallographically independent molecules of 2 were found to be rotationally disordered with occupancy ratios of 0.6/0.4 and 0.7/0.3. The same group in the structure of 1 was similarly disordered with an occupancy ratio of 0.5/0.5. The SIMU instruction was used to restrain the Uij components of the neighboring C6 and N1 atoms in the structure of 1. The most disagreeable reflections with an error/s.u. of more than 10 (0 0 4 in the structure of 1; 5 0 34 and 6 1 33 in the structure of 2) were omitted using the OMIT instruction in SHELXL (Sheldrick, 2015).
details are summarized in Table 2Supporting information
https://doi.org/10.1107/S2056989022000287/wm5631sup1.cif
contains datablocks 1, 2. DOI:1H NMR for compound 1. DOI: https://doi.org/10.1107/S2056989022000287/wm5631sup4.pdf
1H NMR for compound 2. DOI: https://doi.org/10.1107/S2056989022000287/wm5631sup5.pdf
Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989022000287/wm56311sup6.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989022000287/wm56312sup7.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022000287/wm56311sup8.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989022000287/wm56312sup9.mol
For both structures, data collection: APEX3 (Bruker, 2017); cell
SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C18H14N2·0.5H2O | Dx = 1.329 Mg m−3 |
Mr = 267.32 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Fddd | Cell parameters from 4300 reflections |
a = 7.2131 (2) Å | θ = 3.0–31.5° |
b = 13.8648 (5) Å | µ = 0.08 mm−1 |
c = 53.4532 (18) Å | T = 100 K |
V = 5345.8 (3) Å3 | Block, orange |
Z = 16 | 0.13 × 0.1 × 0.1 mm |
F(000) = 2256 |
Bruker D8 Venture diffractometer | 2138 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 1630 reflections with I > 2σ(I) |
Focusing mirrors monochromator | Rint = 0.044 |
Detector resolution: 10.4 pixels mm-1 | θmax = 31.0°, θmin = 3.0° |
ω–scan | h = −9→10 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −20→16 |
Tmin = 0.672, Tmax = 0.746 | l = −77→77 |
14708 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.049 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.140 | w = 1/[σ2(Fo2) + (0.0761P)2 + 4.7998P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
2138 reflections | Δρmax = 0.42 e Å−3 |
126 parameters | Δρmin = −0.34 e Å−3 |
6 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.8750 | 0.3750 | 0.3750 | 0.0216 (4) | |
H1B | 0.790 (4) | 0.335 (2) | 0.3693 (6) | 0.036 (9)* | 0.5 |
N1 | 0.65901 (13) | 0.20824 (7) | 0.35517 (2) | 0.0176 (2) | |
H1 | 0.708 (4) | 0.253 (2) | 0.3644 (6) | 0.026 (8)* | 0.5 |
C1 | 0.55996 (16) | 0.20495 (8) | 0.40781 (2) | 0.0177 (2) | |
H1A | 0.508 (2) | 0.2610 (11) | 0.3988 (3) | 0.024 (4)* | |
C2 | 0.55826 (15) | 0.20393 (8) | 0.43382 (2) | 0.0181 (3) | |
H2 | 0.503 (2) | 0.2585 (11) | 0.4429 (3) | 0.022 (3)* | |
C3 | 0.6250 | 0.1250 | 0.44720 (3) | 0.0171 (3) | |
C4 | 0.6250 | 0.1250 | 0.47536 (3) | 0.0226 (4) | |
H4A | 0.6649 | 0.1883 | 0.4815 | 0.034* | 0.5 |
H4B | 0.7105 | 0.0754 | 0.4815 | 0.034* | 0.5 |
H4C | 0.4996 | 0.1113 | 0.4815 | 0.034* | 0.5 |
C5 | 0.6250 | 0.1250 | 0.39454 (3) | 0.0155 (3) | |
C6 | 0.6250 | 0.1250 | 0.36684 (3) | 0.0182 (3) | |
C7 | 0.65540 (15) | 0.21186 (8) | 0.32902 (2) | 0.0148 (2) | |
C8 | 0.68100 (16) | 0.29750 (8) | 0.31632 (2) | 0.0188 (3) | |
H8 | 0.705 (2) | 0.3573 (10) | 0.3255 (3) | 0.022 (4)* | |
C9 | 0.67686 (17) | 0.29749 (8) | 0.28998 (2) | 0.0210 (3) | |
H9 | 0.697 (2) | 0.3594 (11) | 0.2812 (3) | 0.031 (4)* | |
C10 | 0.65083 (16) | 0.21420 (8) | 0.27653 (2) | 0.0193 (3) | |
H10 | 0.654 (2) | 0.2141 (10) | 0.2581 (3) | 0.029 (4)* | |
C11 | 0.6250 | 0.1250 | 0.28908 (3) | 0.0162 (3) | |
C12 | 0.6250 | 0.1250 | 0.31562 (3) | 0.0144 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0249 (9) | 0.0176 (8) | 0.0222 (8) | 0.000 | 0.000 | 0.000 |
N1 | 0.0173 (4) | 0.0223 (5) | 0.0133 (4) | −0.0015 (3) | −0.0005 (3) | 0.0017 (3) |
C1 | 0.0172 (5) | 0.0200 (5) | 0.0160 (5) | −0.0012 (4) | 0.0005 (4) | 0.0013 (4) |
C2 | 0.0172 (5) | 0.0210 (5) | 0.0160 (5) | −0.0009 (4) | 0.0021 (4) | −0.0015 (4) |
C3 | 0.0153 (7) | 0.0230 (8) | 0.0128 (7) | −0.0030 (6) | 0.000 | 0.000 |
C4 | 0.0244 (8) | 0.0294 (9) | 0.0141 (7) | 0.0001 (7) | 0.000 | 0.000 |
C5 | 0.0126 (6) | 0.0209 (7) | 0.0130 (7) | −0.0034 (5) | 0.000 | 0.000 |
C6 | 0.0150 (6) | 0.0261 (7) | 0.0134 (6) | −0.0007 (5) | 0.000 | 0.000 |
C7 | 0.0140 (5) | 0.0167 (5) | 0.0137 (5) | −0.0007 (4) | −0.0005 (4) | 0.0009 (4) |
C8 | 0.0222 (5) | 0.0163 (5) | 0.0179 (5) | −0.0023 (4) | −0.0002 (4) | 0.0010 (4) |
C9 | 0.0251 (6) | 0.0192 (5) | 0.0188 (5) | −0.0008 (4) | 0.0006 (4) | 0.0060 (4) |
C10 | 0.0202 (5) | 0.0238 (6) | 0.0140 (5) | 0.0012 (4) | 0.0003 (4) | 0.0025 (4) |
C11 | 0.0143 (7) | 0.0201 (7) | 0.0142 (7) | 0.0011 (6) | 0.000 | 0.000 |
C12 | 0.0116 (6) | 0.0167 (7) | 0.0149 (7) | 0.0013 (5) | 0.000 | 0.000 |
O1—H1B | 0.89 (3) | C5—C1i | 1.3971 (14) |
N1—H1 | 0.87 (3) | C5—C6 | 1.481 (2) |
N1—C6 | 1.3345 (12) | C6—N1i | 1.3345 (12) |
N1—C7 | 1.3993 (14) | C7—C8 | 1.3801 (15) |
C1—H1A | 0.987 (15) | C7—C12 | 1.4182 (13) |
C1—C2 | 1.3901 (15) | C8—H8 | 0.978 (15) |
C1—C5 | 1.3972 (14) | C8—C9 | 1.4083 (16) |
C2—H2 | 0.983 (15) | C9—H9 | 0.988 (16) |
C2—C3 | 1.3932 (14) | C9—C10 | 1.3734 (17) |
C3—C2i | 1.3932 (14) | C10—H10 | 0.987 (16) |
C3—C4 | 1.505 (2) | C10—C11 | 1.4192 (13) |
C4—H4A | 0.9800 | C11—C10i | 1.4194 (13) |
C4—H4B | 0.9800 | C11—C12 | 1.419 (2) |
C4—H4C | 0.9800 | C12—C7i | 1.4181 (13) |
C6—N1—H1 | 116 (2) | N1i—C6—N1 | 124.28 (14) |
C6—N1—C7 | 119.64 (10) | N1—C6—C5 | 117.86 (7) |
C7—N1—H1 | 123 (2) | N1i—C6—C5 | 117.86 (7) |
C2—C1—H1A | 119.4 (9) | N1—C7—C12 | 118.49 (10) |
C2—C1—C5 | 120.17 (11) | C8—C7—N1 | 121.32 (10) |
C5—C1—H1A | 120.3 (9) | C8—C7—C12 | 120.19 (10) |
C1—C2—H2 | 119.4 (8) | C7—C8—H8 | 120.5 (9) |
C1—C2—C3 | 121.22 (11) | C7—C8—C9 | 119.26 (11) |
C3—C2—H2 | 119.3 (8) | C9—C8—H8 | 120.2 (9) |
C2i—C3—C2 | 118.23 (14) | C8—C9—H9 | 118.1 (9) |
C2i—C3—C4 | 120.88 (7) | C10—C9—C8 | 121.76 (11) |
C2—C3—C4 | 120.89 (7) | C10—C9—H9 | 120.2 (9) |
C3—C4—H4A | 109.5 | C9—C10—H10 | 121.5 (9) |
C3—C4—H4B | 109.5 | C9—C10—C11 | 120.21 (11) |
C3—C4—H4C | 109.5 | C11—C10—H10 | 118.3 (9) |
H4A—C4—H4B | 109.5 | C10—C11—C10i | 123.58 (14) |
H4A—C4—H4C | 109.5 | C12—C11—C10 | 118.21 (7) |
H4B—C4—H4C | 109.5 | C12—C11—C10i | 118.21 (7) |
C1i—C5—C1 | 118.98 (14) | C7i—C12—C7 | 119.34 (13) |
C1i—C5—C6 | 120.51 (7) | C7—C12—C11 | 120.33 (7) |
C1—C5—C6 | 120.51 (7) | C7i—C12—C11 | 120.33 (7) |
N1—C7—C8—C9 | 179.77 (10) | C7—N1—C6—N1i | 1.69 (7) |
N1—C7—C12—C7i | 1.61 (6) | C7—N1—C6—C5 | −178.31 (7) |
N1—C7—C12—C11 | −178.39 (6) | C7—C8—C9—C10 | −1.02 (18) |
C1—C2—C3—C2i | −0.82 (7) | C8—C7—C12—C7i | −178.51 (12) |
C1—C2—C3—C4 | 179.18 (7) | C8—C7—C12—C11 | 1.49 (12) |
C1i—C5—C6—N1i | 34.94 (7) | C8—C9—C10—C11 | 0.73 (17) |
C1i—C5—C6—N1 | −145.06 (7) | C9—C10—C11—C10i | −179.34 (13) |
C1—C5—C6—N1 | 34.94 (7) | C9—C10—C11—C12 | 0.66 (12) |
C1—C5—C6—N1i | −145.06 (7) | C10—C11—C12—C7 | −1.75 (7) |
C2—C1—C5—C1i | −0.81 (7) | C10i—C11—C12—C7i | −1.75 (7) |
C2—C1—C5—C6 | 179.20 (7) | C10i—C11—C12—C7 | 178.25 (7) |
C5—C1—C2—C3 | 1.64 (15) | C10—C11—C12—C7i | 178.25 (7) |
C6—N1—C7—C8 | 176.84 (9) | C12—C7—C8—C9 | −0.10 (16) |
C6—N1—C7—C12 | −3.29 (13) |
Symmetry code: (i) −x+5/4, −y+1/4, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···N1 | 0.89 (3) | 2.13 (3) | 2.9826 (10) | 162 (3) |
N1—H1···O1 | 0.87 (3) | 2.15 (3) | 2.9826 (10) | 160 (3) |
C19H16N2 | Dx = 1.269 Mg m−3 |
Mr = 272.34 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 7540 reflections |
a = 11.6878 (4) Å | θ = 2.2–28.3° |
b = 18.0941 (6) Å | µ = 0.08 mm−1 |
c = 26.9604 (8) Å | T = 100 K |
V = 5701.6 (3) Å3 | Block, yellow |
Z = 16 | 0.12 × 0.09 × 0.08 mm |
F(000) = 2304 |
Bruker D8 Venture diffractometer | 5047 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 3857 reflections with I > 2σ(I) |
Focusing mirrors monochromator | Rint = 0.093 |
Detector resolution: 10.4 pixels mm-1 | θmax = 25.1°, θmin = 2.2° |
ω–scan | h = −13→13 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −21→21 |
Tmin = 0.676, Tmax = 0.746 | l = −31→32 |
53425 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.073 | H-atom parameters constrained |
wR(F2) = 0.157 | w = 1/[σ2(Fo2) + (0.0485P)2 + 7.2287P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max < 0.001 |
5047 reflections | Δρmax = 0.23 e Å−3 |
383 parameters | Δρmin = −0.29 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.43727 (19) | 0.18405 (12) | 0.31230 (8) | 0.0175 (5) | |
N2 | 0.2447 (2) | 0.21911 (12) | 0.29690 (8) | 0.0185 (5) | |
C1 | 0.3882 (2) | 0.11253 (15) | 0.21059 (10) | 0.0209 (6) | |
H1 | 0.4128 | 0.0760 | 0.2335 | 0.025* | |
C2 | 0.3842 (3) | 0.09595 (15) | 0.16034 (11) | 0.0233 (7) | |
H2 | 0.4038 | 0.0477 | 0.1493 | 0.028* | |
C3 | 0.3516 (2) | 0.14950 (16) | 0.12585 (10) | 0.0217 (7) | |
C4 | 0.3475 (3) | 0.13008 (18) | 0.07119 (11) | 0.0325 (8) | |
H4AA | 0.4255 | 0.1230 | 0.0588 | 0.049* | 0.7 |
H4AB | 0.3107 | 0.1703 | 0.0528 | 0.049* | 0.7 |
H4AC | 0.3036 | 0.0844 | 0.0667 | 0.049* | 0.7 |
H4BD | 0.2695 | 0.1372 | 0.0587 | 0.049* | 0.3 |
H4BE | 0.3702 | 0.0784 | 0.0667 | 0.049* | 0.3 |
H4BF | 0.4002 | 0.1622 | 0.0528 | 0.049* | 0.3 |
C5 | 0.3240 (2) | 0.21969 (16) | 0.14290 (10) | 0.0224 (7) | |
H5 | 0.3035 | 0.2571 | 0.1199 | 0.027* | |
C6 | 0.3261 (2) | 0.23577 (15) | 0.19325 (10) | 0.0197 (6) | |
H6 | 0.3066 | 0.2840 | 0.2043 | 0.024* | |
C7 | 0.3567 (2) | 0.18187 (15) | 0.22769 (10) | 0.0166 (6) | |
C8 | 0.3451 (2) | 0.19748 (14) | 0.28191 (10) | 0.0167 (6) | |
C9 | 0.2275 (2) | 0.22857 (14) | 0.34790 (10) | 0.0175 (6) | |
C10 | 0.1229 (3) | 0.25252 (16) | 0.36522 (11) | 0.0239 (7) | |
H10 | 0.0632 | 0.2635 | 0.3425 | 0.029* | |
C11 | 0.1044 (3) | 0.26077 (16) | 0.41622 (11) | 0.0270 (7) | |
H11 | 0.0322 | 0.2779 | 0.4277 | 0.032* | |
C12 | 0.1890 (3) | 0.24445 (16) | 0.45006 (11) | 0.0258 (7) | |
H12 | 0.1742 | 0.2496 | 0.4845 | 0.031* | |
C13 | 0.2973 (3) | 0.22019 (15) | 0.43391 (10) | 0.0215 (7) | |
C14 | 0.3895 (3) | 0.20256 (16) | 0.46636 (11) | 0.0268 (7) | |
H14 | 0.3798 | 0.2075 | 0.5012 | 0.032* | |
C15 | 0.4915 (3) | 0.17867 (16) | 0.44797 (11) | 0.0261 (7) | |
H15 | 0.5510 | 0.1663 | 0.4705 | 0.031* | |
C16 | 0.5117 (3) | 0.17171 (16) | 0.39662 (10) | 0.0233 (7) | |
H16 | 0.5840 | 0.1556 | 0.3846 | 0.028* | |
C17 | 0.4243 (2) | 0.18870 (14) | 0.36411 (10) | 0.0184 (6) | |
C18 | 0.3162 (2) | 0.21197 (14) | 0.38191 (10) | 0.0174 (6) | |
C19 | 0.5531 (2) | 0.17366 (16) | 0.29268 (10) | 0.0229 (7) | |
H19A | 0.5765 | 0.1221 | 0.2973 | 0.034* | |
H19B | 0.6063 | 0.2062 | 0.3104 | 0.034* | |
H19C | 0.5540 | 0.1857 | 0.2572 | 0.034* | |
N3 | 0.2012 (2) | 0.42161 (12) | 0.21218 (8) | 0.0219 (6) | |
N4 | 0.3830 (2) | 0.47987 (13) | 0.20977 (8) | 0.0226 (6) | |
C20 | 0.2838 (3) | 0.40519 (16) | 0.32035 (10) | 0.0259 (7) | |
H20 | 0.2647 | 0.3582 | 0.3071 | 0.031* | |
C21 | 0.2985 (3) | 0.41308 (16) | 0.37083 (11) | 0.0287 (7) | |
H21 | 0.2901 | 0.3711 | 0.3917 | 0.034* | |
C22 | 0.3253 (3) | 0.48092 (16) | 0.39184 (11) | 0.0258 (7) | |
C23 | 0.3434 (3) | 0.48919 (19) | 0.44674 (11) | 0.0387 (9) | |
H23A | 0.4250 | 0.4843 | 0.4543 | 0.058* | 0.6 |
H23B | 0.3005 | 0.4507 | 0.4643 | 0.058* | 0.6 |
H23C | 0.3164 | 0.5379 | 0.4574 | 0.058* | 0.6 |
H23D | 0.3890 | 0.5336 | 0.4532 | 0.058* | 0.4 |
H23E | 0.3838 | 0.4457 | 0.4595 | 0.058* | 0.4 |
H23F | 0.2691 | 0.4936 | 0.4633 | 0.058* | 0.4 |
C24 | 0.3369 (3) | 0.54109 (16) | 0.36007 (11) | 0.0255 (7) | |
H24 | 0.3546 | 0.5883 | 0.3735 | 0.031* | |
C25 | 0.3231 (3) | 0.53364 (15) | 0.30924 (11) | 0.0238 (7) | |
H25 | 0.3318 | 0.5756 | 0.2884 | 0.029* | |
C26 | 0.2967 (2) | 0.46554 (15) | 0.28853 (10) | 0.0205 (6) | |
C27 | 0.2939 (3) | 0.45635 (14) | 0.23366 (10) | 0.0208 (7) | |
C28 | 0.3886 (3) | 0.46785 (15) | 0.15836 (11) | 0.0250 (7) | |
C29 | 0.4843 (3) | 0.49011 (17) | 0.13268 (11) | 0.0291 (7) | |
H29 | 0.5461 | 0.5130 | 0.1496 | 0.035* | |
C30 | 0.4898 (3) | 0.47866 (17) | 0.08107 (12) | 0.0359 (8) | |
H30 | 0.5562 | 0.4935 | 0.0634 | 0.043* | |
C31 | 0.4011 (3) | 0.44640 (17) | 0.05601 (11) | 0.0347 (8) | |
H31 | 0.4064 | 0.4400 | 0.0211 | 0.042* | |
C32 | 0.3017 (3) | 0.42245 (16) | 0.08105 (11) | 0.0300 (8) | |
C33 | 0.2067 (3) | 0.38821 (17) | 0.05775 (12) | 0.0350 (8) | |
H33 | 0.2070 | 0.3814 | 0.0228 | 0.042* | |
C34 | 0.1150 (3) | 0.36494 (17) | 0.08484 (12) | 0.0356 (8) | |
H34 | 0.0530 | 0.3414 | 0.0684 | 0.043* | |
C35 | 0.1098 (3) | 0.37489 (16) | 0.13666 (11) | 0.0291 (7) | |
H35 | 0.0449 | 0.3586 | 0.1549 | 0.035* | |
C36 | 0.2001 (3) | 0.40848 (15) | 0.16054 (11) | 0.0241 (7) | |
C37 | 0.2970 (3) | 0.43318 (15) | 0.13339 (11) | 0.0241 (7) | |
C38 | 0.0958 (3) | 0.40401 (19) | 0.23934 (12) | 0.0341 (8) | |
H38A | 0.0888 | 0.3503 | 0.2429 | 0.051* | |
H38B | 0.0297 | 0.4231 | 0.2210 | 0.051* | |
H38C | 0.0985 | 0.4269 | 0.2723 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0187 (13) | 0.0200 (12) | 0.0137 (12) | 0.0014 (10) | 0.0004 (10) | −0.0016 (9) |
N2 | 0.0223 (13) | 0.0151 (12) | 0.0180 (13) | −0.0003 (10) | 0.0015 (10) | −0.0008 (9) |
C1 | 0.0273 (17) | 0.0156 (14) | 0.0198 (16) | −0.0042 (12) | 0.0009 (13) | 0.0021 (11) |
C2 | 0.0266 (17) | 0.0176 (14) | 0.0257 (17) | −0.0053 (13) | 0.0035 (13) | −0.0053 (12) |
C3 | 0.0216 (16) | 0.0276 (16) | 0.0159 (15) | −0.0070 (13) | −0.0003 (12) | −0.0027 (12) |
C4 | 0.041 (2) | 0.0383 (19) | 0.0184 (17) | −0.0029 (15) | −0.0007 (14) | −0.0038 (13) |
C5 | 0.0211 (16) | 0.0264 (16) | 0.0195 (16) | −0.0002 (13) | −0.0001 (12) | 0.0064 (12) |
C6 | 0.0192 (15) | 0.0192 (15) | 0.0207 (16) | 0.0012 (12) | 0.0038 (12) | −0.0001 (11) |
C7 | 0.0160 (15) | 0.0199 (14) | 0.0140 (14) | −0.0024 (11) | 0.0005 (11) | −0.0023 (11) |
C8 | 0.0225 (16) | 0.0095 (13) | 0.0180 (15) | −0.0037 (11) | 0.0016 (12) | 0.0003 (10) |
C9 | 0.0215 (16) | 0.0121 (13) | 0.0188 (15) | −0.0024 (11) | 0.0030 (12) | −0.0007 (10) |
C10 | 0.0232 (17) | 0.0254 (16) | 0.0232 (16) | −0.0003 (13) | 0.0019 (13) | −0.0006 (12) |
C11 | 0.0258 (17) | 0.0288 (17) | 0.0265 (17) | 0.0009 (14) | 0.0100 (14) | −0.0015 (13) |
C12 | 0.0351 (19) | 0.0268 (16) | 0.0155 (15) | −0.0041 (14) | 0.0084 (13) | −0.0047 (12) |
C13 | 0.0302 (17) | 0.0170 (14) | 0.0174 (15) | −0.0040 (13) | 0.0038 (13) | 0.0000 (11) |
C14 | 0.038 (2) | 0.0294 (17) | 0.0128 (15) | −0.0052 (15) | −0.0012 (13) | −0.0009 (12) |
C15 | 0.0322 (18) | 0.0278 (16) | 0.0182 (16) | −0.0028 (14) | −0.0082 (14) | 0.0014 (12) |
C16 | 0.0228 (16) | 0.0260 (16) | 0.0210 (16) | 0.0011 (13) | −0.0015 (13) | −0.0012 (12) |
C17 | 0.0254 (16) | 0.0123 (14) | 0.0174 (15) | −0.0021 (12) | −0.0005 (12) | −0.0009 (11) |
C18 | 0.0246 (16) | 0.0131 (13) | 0.0146 (14) | −0.0061 (12) | 0.0023 (12) | −0.0013 (11) |
C19 | 0.0190 (15) | 0.0301 (17) | 0.0196 (15) | 0.0008 (12) | 0.0004 (12) | −0.0015 (12) |
N3 | 0.0266 (14) | 0.0194 (12) | 0.0197 (13) | 0.0025 (11) | 0.0023 (11) | −0.0007 (10) |
N4 | 0.0283 (15) | 0.0201 (12) | 0.0195 (14) | 0.0027 (11) | 0.0024 (11) | 0.0046 (10) |
C20 | 0.039 (2) | 0.0180 (15) | 0.0203 (16) | −0.0046 (13) | 0.0070 (14) | −0.0023 (12) |
C21 | 0.042 (2) | 0.0235 (16) | 0.0202 (17) | −0.0018 (14) | 0.0080 (14) | 0.0013 (12) |
C22 | 0.0284 (18) | 0.0270 (16) | 0.0219 (16) | 0.0017 (13) | 0.0026 (13) | −0.0063 (12) |
C23 | 0.057 (2) | 0.0337 (19) | 0.0251 (18) | 0.0013 (17) | −0.0003 (17) | −0.0079 (14) |
C24 | 0.0319 (18) | 0.0169 (15) | 0.0276 (18) | −0.0003 (13) | 0.0002 (14) | −0.0065 (12) |
C25 | 0.0249 (17) | 0.0168 (15) | 0.0297 (18) | −0.0004 (12) | 0.0013 (13) | 0.0026 (12) |
C26 | 0.0191 (15) | 0.0223 (15) | 0.0201 (16) | 0.0023 (12) | 0.0034 (12) | −0.0021 (12) |
C27 | 0.0294 (17) | 0.0112 (14) | 0.0219 (16) | 0.0050 (12) | 0.0008 (13) | 0.0016 (11) |
C28 | 0.0374 (19) | 0.0171 (15) | 0.0205 (16) | 0.0083 (13) | 0.0045 (14) | 0.0051 (12) |
C29 | 0.036 (2) | 0.0277 (17) | 0.0234 (17) | 0.0025 (14) | 0.0060 (14) | 0.0052 (13) |
C30 | 0.051 (2) | 0.0285 (18) | 0.0279 (19) | 0.0061 (16) | 0.0166 (17) | 0.0078 (14) |
C31 | 0.062 (3) | 0.0271 (17) | 0.0153 (16) | 0.0097 (17) | 0.0064 (16) | 0.0034 (13) |
C32 | 0.052 (2) | 0.0214 (16) | 0.0167 (16) | 0.0119 (15) | 0.0012 (15) | 0.0031 (12) |
C33 | 0.060 (2) | 0.0280 (18) | 0.0176 (17) | 0.0130 (17) | −0.0071 (16) | 0.0014 (13) |
C34 | 0.049 (2) | 0.0280 (18) | 0.0299 (19) | 0.0111 (16) | −0.0146 (17) | −0.0047 (14) |
C35 | 0.0351 (19) | 0.0222 (16) | 0.0299 (18) | 0.0060 (14) | −0.0040 (15) | −0.0024 (13) |
C36 | 0.0338 (18) | 0.0167 (14) | 0.0218 (16) | 0.0103 (13) | −0.0037 (14) | 0.0014 (12) |
C37 | 0.0372 (19) | 0.0134 (14) | 0.0217 (16) | 0.0105 (13) | −0.0004 (14) | 0.0043 (11) |
C38 | 0.0299 (19) | 0.041 (2) | 0.0308 (19) | −0.0058 (15) | 0.0084 (15) | −0.0078 (14) |
N1—C8 | 1.375 (3) | N3—C27 | 1.380 (4) |
N1—C17 | 1.407 (3) | N3—C36 | 1.412 (4) |
N1—C19 | 1.466 (4) | N3—C38 | 1.468 (4) |
N2—C8 | 1.301 (4) | N4—C27 | 1.297 (4) |
N2—C9 | 1.400 (3) | N4—C28 | 1.404 (4) |
C1—H1 | 0.9500 | C20—H20 | 0.9500 |
C1—C2 | 1.388 (4) | C20—C21 | 1.379 (4) |
C1—C7 | 1.386 (4) | C20—C26 | 1.397 (4) |
C2—H2 | 0.9500 | C21—H21 | 0.9500 |
C2—C3 | 1.396 (4) | C21—C22 | 1.388 (4) |
C3—C4 | 1.516 (4) | C22—C23 | 1.503 (4) |
C3—C5 | 1.389 (4) | C22—C24 | 1.392 (4) |
C4—H4AA | 0.9800 | C23—H23A | 0.9800 |
C4—H4AB | 0.9800 | C23—H23B | 0.9800 |
C4—H4AC | 0.9800 | C23—H23C | 0.9800 |
C4—H4BD | 0.9800 | C23—H23D | 0.9800 |
C4—H4BE | 0.9800 | C23—H23E | 0.9800 |
C4—H4BF | 0.9800 | C23—H23F | 0.9800 |
C5—H5 | 0.9500 | C24—H24 | 0.9500 |
C5—C6 | 1.388 (4) | C24—C25 | 1.386 (4) |
C6—H6 | 0.9500 | C25—H25 | 0.9500 |
C6—C7 | 1.393 (4) | C25—C26 | 1.388 (4) |
C7—C8 | 1.495 (4) | C26—C27 | 1.489 (4) |
C9—C10 | 1.378 (4) | C28—C29 | 1.376 (4) |
C9—C18 | 1.417 (4) | C28—C37 | 1.412 (4) |
C10—H10 | 0.9500 | C29—H29 | 0.9500 |
C10—C11 | 1.400 (4) | C29—C30 | 1.408 (4) |
C11—H11 | 0.9500 | C30—H30 | 0.9500 |
C11—C12 | 1.378 (4) | C30—C31 | 1.369 (5) |
C12—H12 | 0.9500 | C31—H31 | 0.9500 |
C12—C13 | 1.409 (4) | C31—C32 | 1.412 (5) |
C13—C14 | 1.424 (4) | C32—C33 | 1.418 (5) |
C13—C18 | 1.427 (4) | C32—C37 | 1.425 (4) |
C14—H14 | 0.9500 | C33—H33 | 0.9500 |
C14—C15 | 1.361 (4) | C33—C34 | 1.364 (5) |
C15—H15 | 0.9500 | C34—H34 | 0.9500 |
C15—C16 | 1.410 (4) | C34—C35 | 1.410 (4) |
C16—H16 | 0.9500 | C35—H35 | 0.9500 |
C16—C17 | 1.381 (4) | C35—C36 | 1.377 (4) |
C17—C18 | 1.416 (4) | C36—C37 | 1.421 (4) |
C19—H19A | 0.9800 | C38—H38A | 0.9800 |
C19—H19B | 0.9800 | C38—H38B | 0.9800 |
C19—H19C | 0.9800 | C38—H38C | 0.9800 |
C8—N1—C17 | 119.8 (2) | C27—N3—C36 | 119.8 (3) |
C8—N1—C19 | 122.1 (2) | C27—N3—C38 | 123.2 (2) |
C17—N1—C19 | 117.7 (2) | C36—N3—C38 | 116.6 (3) |
C8—N2—C9 | 118.1 (2) | C27—N4—C28 | 118.5 (3) |
C2—C1—H1 | 119.6 | C21—C20—H20 | 119.6 |
C7—C1—H1 | 119.6 | C21—C20—C26 | 120.8 (3) |
C7—C1—C2 | 120.7 (3) | C26—C20—H20 | 119.6 |
C1—C2—H2 | 119.7 | C20—C21—H21 | 119.2 |
C1—C2—C3 | 120.6 (3) | C20—C21—C22 | 121.5 (3) |
C3—C2—H2 | 119.7 | C22—C21—H21 | 119.2 |
C2—C3—C4 | 119.7 (3) | C21—C22—C23 | 121.5 (3) |
C5—C3—C2 | 118.5 (3) | C21—C22—C24 | 117.6 (3) |
C5—C3—C4 | 121.8 (3) | C24—C22—C23 | 121.0 (3) |
C3—C4—H4AA | 109.5 | C22—C23—H23A | 109.5 |
C3—C4—H4AB | 109.5 | C22—C23—H23B | 109.5 |
C3—C4—H4AC | 109.5 | C22—C23—H23C | 109.5 |
C3—C4—H4BD | 109.5 | C22—C23—H23D | 109.5 |
C3—C4—H4BE | 109.5 | C22—C23—H23E | 109.5 |
C3—C4—H4BF | 109.5 | C22—C23—H23F | 109.5 |
H4AA—C4—H4AB | 109.5 | H23A—C23—H23B | 109.5 |
H4AA—C4—H4AC | 109.5 | H23A—C23—H23C | 109.5 |
H4AB—C4—H4AC | 109.5 | H23B—C23—H23C | 109.5 |
H4BD—C4—H4BE | 109.5 | H23D—C23—H23E | 109.5 |
H4BD—C4—H4BF | 109.5 | H23D—C23—H23F | 109.5 |
H4BE—C4—H4BF | 109.5 | H23E—C23—H23F | 109.5 |
C3—C5—H5 | 119.6 | C22—C24—H24 | 119.3 |
C6—C5—C3 | 120.7 (3) | C25—C24—C22 | 121.4 (3) |
C6—C5—H5 | 119.6 | C25—C24—H24 | 119.3 |
C5—C6—H6 | 119.7 | C24—C25—H25 | 119.7 |
C5—C6—C7 | 120.6 (3) | C24—C25—C26 | 120.7 (3) |
C7—C6—H6 | 119.7 | C26—C25—H25 | 119.7 |
C1—C7—C6 | 118.7 (2) | C20—C26—C27 | 121.4 (2) |
C1—C7—C8 | 121.3 (2) | C25—C26—C20 | 118.1 (3) |
C6—C7—C8 | 119.7 (2) | C25—C26—C27 | 120.3 (3) |
N1—C8—C7 | 118.6 (2) | N3—C27—C26 | 119.0 (3) |
N2—C8—N1 | 125.1 (2) | N4—C27—N3 | 124.9 (3) |
N2—C8—C7 | 116.2 (2) | N4—C27—C26 | 116.0 (3) |
N2—C9—C18 | 120.3 (2) | N4—C28—C37 | 120.3 (3) |
C10—C9—N2 | 119.9 (3) | C29—C28—N4 | 119.3 (3) |
C10—C9—C18 | 119.8 (2) | C29—C28—C37 | 120.4 (3) |
C9—C10—H10 | 119.9 | C28—C29—H29 | 120.3 |
C9—C10—C11 | 120.3 (3) | C28—C29—C30 | 119.5 (3) |
C11—C10—H10 | 119.9 | C30—C29—H29 | 120.3 |
C10—C11—H11 | 119.5 | C29—C30—H30 | 119.5 |
C12—C11—C10 | 121.1 (3) | C31—C30—C29 | 121.0 (3) |
C12—C11—H11 | 119.5 | C31—C30—H30 | 119.5 |
C11—C12—H12 | 119.8 | C30—C31—H31 | 119.4 |
C11—C12—C13 | 120.5 (3) | C30—C31—C32 | 121.2 (3) |
C13—C12—H12 | 119.8 | C32—C31—H31 | 119.4 |
C12—C13—C14 | 124.0 (3) | C31—C32—C33 | 124.5 (3) |
C12—C13—C18 | 118.4 (3) | C31—C32—C37 | 117.6 (3) |
C14—C13—C18 | 117.6 (3) | C33—C32—C37 | 117.9 (3) |
C13—C14—H14 | 119.7 | C32—C33—H33 | 119.6 |
C15—C14—C13 | 120.7 (3) | C34—C33—C32 | 120.9 (3) |
C15—C14—H14 | 119.7 | C34—C33—H33 | 119.6 |
C14—C15—H15 | 118.9 | C33—C34—H34 | 119.2 |
C14—C15—C16 | 122.2 (3) | C33—C34—C35 | 121.7 (3) |
C16—C15—H15 | 118.9 | C35—C34—H34 | 119.2 |
C15—C16—H16 | 120.7 | C34—C35—H35 | 120.4 |
C17—C16—C15 | 118.7 (3) | C36—C35—C34 | 119.1 (3) |
C17—C16—H16 | 120.7 | C36—C35—H35 | 120.4 |
N1—C17—C18 | 116.8 (2) | N3—C36—C37 | 116.6 (3) |
C16—C17—N1 | 122.5 (3) | C35—C36—N3 | 122.8 (3) |
C16—C17—C18 | 120.7 (3) | C35—C36—C37 | 120.6 (3) |
C9—C18—C13 | 120.0 (3) | C28—C37—C32 | 120.2 (3) |
C17—C18—C9 | 119.8 (2) | C28—C37—C36 | 119.9 (3) |
C17—C18—C13 | 120.1 (3) | C36—C37—C32 | 119.9 (3) |
N1—C19—H19A | 109.5 | N3—C38—H38A | 109.5 |
N1—C19—H19B | 109.5 | N3—C38—H38B | 109.5 |
N1—C19—H19C | 109.5 | N3—C38—H38C | 109.5 |
H19A—C19—H19B | 109.5 | H38A—C38—H38B | 109.5 |
H19A—C19—H19C | 109.5 | H38A—C38—H38C | 109.5 |
H19B—C19—H19C | 109.5 | H38B—C38—H38C | 109.5 |
N1—C17—C18—C9 | 0.5 (4) | N3—C36—C37—C28 | 0.9 (4) |
N1—C17—C18—C13 | −178.1 (2) | N3—C36—C37—C32 | −179.5 (2) |
N2—C9—C10—C11 | 178.8 (3) | N4—C28—C29—C30 | −179.5 (3) |
N2—C9—C18—C13 | −178.6 (2) | N4—C28—C37—C32 | 178.7 (2) |
N2—C9—C18—C17 | 2.7 (4) | N4—C28—C37—C36 | −1.7 (4) |
C1—C2—C3—C4 | −179.8 (3) | C20—C21—C22—C23 | −178.9 (3) |
C1—C2—C3—C5 | 0.4 (4) | C20—C21—C22—C24 | 0.0 (5) |
C1—C7—C8—N1 | 56.1 (4) | C20—C26—C27—N3 | 54.3 (4) |
C1—C7—C8—N2 | −120.2 (3) | C20—C26—C27—N4 | −123.2 (3) |
C2—C1—C7—C6 | −3.0 (4) | C21—C20—C26—C25 | −0.9 (5) |
C2—C1—C7—C8 | 171.5 (3) | C21—C20—C26—C27 | 173.2 (3) |
C2—C3—C5—C6 | −1.5 (4) | C21—C22—C24—C25 | −0.5 (5) |
C3—C5—C6—C7 | 0.4 (4) | C22—C24—C25—C26 | 0.2 (5) |
C4—C3—C5—C6 | 178.7 (3) | C23—C22—C24—C25 | 178.4 (3) |
C5—C6—C7—C1 | 1.9 (4) | C24—C25—C26—C20 | 0.4 (4) |
C5—C6—C7—C8 | −172.8 (3) | C24—C25—C26—C27 | −173.7 (3) |
C6—C7—C8—N1 | −129.4 (3) | C25—C26—C27—N3 | −131.8 (3) |
C6—C7—C8—N2 | 54.3 (4) | C25—C26—C27—N4 | 50.7 (4) |
C7—C1—C2—C3 | 2.0 (4) | C26—C20—C21—C22 | 0.7 (5) |
C8—N1—C17—C16 | 176.2 (2) | C27—N3—C36—C35 | −179.2 (3) |
C8—N1—C17—C18 | −3.9 (4) | C27—N3—C36—C37 | −0.5 (4) |
C8—N2—C9—C10 | 179.0 (3) | C27—N4—C28—C29 | −177.7 (3) |
C8—N2—C9—C18 | −2.5 (4) | C27—N4—C28—C37 | 2.1 (4) |
C9—N2—C8—N1 | −1.1 (4) | C28—N4—C27—N3 | −1.8 (4) |
C9—N2—C8—C7 | 174.9 (2) | C28—N4—C27—C26 | 175.5 (2) |
C9—C10—C11—C12 | −0.8 (4) | C28—C29—C30—C31 | 0.7 (5) |
C10—C9—C18—C13 | −0.1 (4) | C29—C28—C37—C32 | −1.5 (4) |
C10—C9—C18—C17 | −178.8 (3) | C29—C28—C37—C36 | 178.1 (3) |
C10—C11—C12—C13 | 1.1 (4) | C29—C30—C31—C32 | −1.0 (5) |
C11—C12—C13—C14 | 179.7 (3) | C30—C31—C32—C33 | −179.6 (3) |
C11—C12—C13—C18 | −0.9 (4) | C30—C31—C32—C37 | 0.1 (4) |
C12—C13—C14—C15 | 179.3 (3) | C31—C32—C33—C34 | 178.3 (3) |
C12—C13—C18—C9 | 0.5 (4) | C31—C32—C37—C28 | 1.1 (4) |
C12—C13—C18—C17 | 179.1 (3) | C31—C32—C37—C36 | −178.5 (3) |
C13—C14—C15—C16 | 1.3 (5) | C32—C33—C34—C35 | 1.0 (5) |
C14—C13—C18—C9 | 179.9 (2) | C33—C32—C37—C28 | −179.2 (3) |
C14—C13—C18—C17 | −1.4 (4) | C33—C32—C37—C36 | 1.2 (4) |
C14—C15—C16—C17 | −1.0 (4) | C33—C34—C35—C36 | −0.5 (5) |
C15—C16—C17—N1 | 179.3 (2) | C34—C35—C36—N3 | 179.0 (3) |
C15—C16—C17—C18 | −0.6 (4) | C34—C35—C36—C37 | 0.3 (4) |
C16—C17—C18—C9 | −179.5 (2) | C35—C36—C37—C28 | 179.7 (3) |
C16—C17—C18—C13 | 1.8 (4) | C35—C36—C37—C32 | −0.7 (4) |
C17—N1—C8—N2 | 4.4 (4) | C36—N3—C27—N4 | 1.0 (4) |
C17—N1—C8—C7 | −171.5 (2) | C36—N3—C27—C26 | −176.3 (2) |
C18—C9—C10—C11 | 0.3 (4) | C37—C28—C29—C30 | 0.6 (4) |
C18—C13—C14—C15 | −0.1 (4) | C37—C32—C33—C34 | −1.4 (4) |
C19—N1—C8—N2 | −168.0 (3) | C38—N3—C27—N4 | −172.2 (3) |
C19—N1—C8—C7 | 16.1 (4) | C38—N3—C27—C26 | 10.6 (4) |
C19—N1—C17—C16 | −11.1 (4) | C38—N3—C36—C35 | −5.7 (4) |
C19—N1—C17—C18 | 168.9 (2) | C38—N3—C36—C37 | 173.1 (3) |
Acknowledgements
X-ray diffraction studies were performed at the Centre of Shared Equipment of IGIC RAS.
Funding information
Funding for this research was provided by: Presidential Grant Program (grant No. MK-1200.2020.3).
References
Black, D. S. C., Craig, D. C., Kassiou, M. & Read, R. W. (1991). Aust. J. Chem. 44, 143–149. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chan, C.-W., Mingos, D. M. P., White, A. J. P. & Williams, D. J. (1996). Polyhedron, 15, 1753–1767. CSD CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Foces-Foces, C., Llamas-Saiz, A. L., Claramunt, R. M., Sanz, D., Dotor, J. & Elguero, J. (1993). J. Crystallogr. Spectrosc. Res. 23, 305–312. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kalle, P., Tatarin, S. V., Zakharov, A. Y., Kiseleva, M. A. & Bezzubov, S. I. (2021). Acta Cryst. E77, 96–100. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Pozharskii, A. F., Gulevskaya, A. V., Claramunt, R. M., Alkorta, I. & Elguero, J. (2020). Russ. Chem. Rev. 89, 1204–1260. Web of Science CrossRef CAS Google Scholar
Rosling, A., Klika, K. D., Fülöp, F., Sillanpää, R. & Mattinen, J. (1999). Acta Chem. Scand. 53, 103–113. Web of Science CSD CrossRef CAS Google Scholar
Sahiba, N. & Agarwal, S. (2020). Top. Curr. Chem. 378, article number 44. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.