research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of 2-(p-tol­yl)-1H-perimidine hemihydrate and 1-methyl-2-(p-tol­yl)-1H-perimidine

crossmark logo

aN. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow 119991, Russian Federation, and bDepartment of Chemistry, Lomonosov Moscow State University, Lenin's Hills, 1-3, Moscow, 119991, Russian Federation
*Correspondence e-mail: bezzubov@igic.ras.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 December 2021; accepted 7 January 2022; online 14 January 2022)

The title compounds, 2-(4-methylphenyl)-1H-perimidine hemihydrate (1, C18H14N2·0.5H2O) and 1-methyl-2-(4-methylphenyl)-1H-perimidine (2, C19H16N2), were prepared and characterized by 1H NMR and single-crystal X-ray diffraction. The organic mol­ecule of the hemihydrate lies on a twofold rotation axis while the water mol­ecule lies on the inter­section of three twofold rotation axes (point group symmetry 222). As a consequence, the hydrogen atoms that are part of the N—H group and the water mol­ecule as well as the CH3 group of the p-tolyl ring are disordered over two positions. In compound 1, the perimidine and the 2-aryl rings are slightly twisted while its N-methyl­ated derivative 2 has a more distorted conformation because of the steric repulsion between the N-methyl group and the 2-aryl ring. In the crystal structures, mol­ecules of perimidine 2 are held together only by C—H⋯π contacts while the parent perimidine 1 does not exhibit this type of inter­action. Its crystal packing is established by inter­molecular N—H⋯O hydrogen bonds with the solvent water mol­ecules and additionally stabilized by ππ stacking.

1. Chemical context

Perimidines have found applications in industry as dyes and pigments because of their finely tunable optical properties (Pozharskii et al., 2020[Pozharskii, A. F., Gulevskaya, A. V., Claramunt, R. M., Alkorta, I. & Elguero, J. (2020). Russ. Chem. Rev. 89, 1204-1260.]). The introduction of electron-donating/withdrawing groups to the perimidine system dramatically affects its electronic structure and allows the color as well as color intensity of the perimidine to be varied. Additionally, a significant deepening of the color of perimidines can be achieved by decorating them with aromatic rings at position 2 while their optical characteristics can be modulated by varying the N-substituent (Sahiba & Agarwal, 2020[Sahiba, N. & Agarwal, S. (2020). Top. Curr. Chem. 378, article number 44.]). Recently, we have studied the effect of the N-substituent(s) on the structures of 2-(pyridin-2-yl)-1-H-perimidines (Kalle et al., 2021[Kalle, P., Tatarin, S. V., Zakharov, A. Y., Kiseleva, M. A. & Bezzubov, S. I. (2021). Acta Cryst. E77, 96-100.]). Herein, we report structural studies of 1-H-2-(p-tol­yl)-perimidine hemihydrate (1) and 1-methyl-2-(p-tol­yl)-perimidine (2).

[Scheme 1]

2. Structural commentary

The perimidine mol­ecule of 1 possesses C2 symmetry with the twofold rotation axis passing through carbon atoms C3–C6, C11 and C12 (Fig. 1[link]). This perimidine exhibits a C6—N1 bond length of 1.3345 (12) Å, a value inter­mediate between the average C—N single [1.366 (13) Å] and double [1.293 (11) Å] bond lengths in perimidines according to the Cambridge Crystal Structure Database (CSD version 5.43 November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The perimidine core of 1 is flat while the p-tolyl ring (C1–C5) forms a dihedral angle of 34.47 (5)° with the core, which is likely an effect of the crystal packing.

[Figure 1]
Figure 1
Mol­ecular structure of 1-H-2-(p-tol­yl)-perimidine (1), with displacement ellipsoids drawn at the 50% probability level. H atoms attached to N1 and N1A are present at half occupancy by virtue of the forced twofold symmetry. [Symmetry code: (A) −x + [{5\over 4}], −y + [{1\over 4}], z].

The asymmetric unit of crystal 2 contains two mol­ecules, which are N-methyl­ated analogs of compound 1 (Fig. 2[link]). Steric pressure exerted by the N-methyl group causes an increase of the inter­planar angle between the p-tolyl ring and the perimidine system [53.51 (10)° for one mol­ecule and 55.96 (9)° for the other]. Additionally, in the first mol­ecule, the angle between the N1—C19 bond and the centroid of the perimidine plane is as large as 8.7 (2)°. while the corresponding angle in the second mol­ecule is 6.1 (2)°.

[Figure 2]
Figure 2
Mol­ecular structure of 1-methyl-2-(p-tol­yl)-perimidine (2), with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

Recrystallization of 1 from toluene, di­chloro­methane, chloro­form or methanol gives crystals having an identical structure. An X-ray study of the crystals grown from hot toluene shows that compound 1 crystallizes as a hemihydrate in which the solvent mol­ecule plays a dominant role in the crystal packing. Each water mol­ecule, located at the inter­section of three twofold rotation axes (Wyckoff position 8a; point group symmetry 222), arranges four 2-(p-tol­yl)perimidines by mutual O—H⋯N and N—H⋯O inter­actions involving the O1 and N1 atoms as well as disordered hydrogen atoms H1 and H1B (Fig. 3[link], Table 1[link]). These hydrogen-bonded associates containing the included water mol­ecule are additionally stabilized by ππ contacts between the aromatic units [d(C1⋯N1–C12centroid) = 3.3276 (11) Å, centroid–centroid shift of 1.591 (1) Å, d(C7⋯C1–C5centroid) = 3.5950 (11) Å, centroid–centroid shift of 1.433 (1) Å]. The same inter­actions combine the associates into infinite stacks along the a axis, forming two-dimensional structural arrays. The alignment of the arrays along the c axis by weak van der Waals inter­actions between perimidine C9—H9 and C10—H10 bonds and the methyl group (C4) of the p-tolyl ring completes the crystal packing of 1.

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯N1 0.89 (3) 2.13 (3) 2.9826 (10) 162 (3)
N1—H1⋯O1 0.87 (3) 2.15 (3) 2.9826 (10) 160 (3)
[Figure 3]
Figure 3
Hydrogen bonding and ππ stacking inter­actions in the crystal structure of 1-H-2-(p-tol­yl)-perimidine (1), with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms of the minor disorder component are omitted for clarity.

In the crystal structure of 2 (Fig. 4[link]), the two crystallographically independent mol­ecules are held together by C—H⋯π inter­actions between the p-tolyl and perimidine systems involving the H5 atom and the centroid of the C32–C37 ring [2.8226 (13) Å, 144.85 (18)°] and the H21 atom and the centroid of the C9–C13/C18 ring [2.6199 (12) Å, 145.74 (19)°]. The resulting dimers form stacks via similar non-covalent bonds involving the H24 atom and the centroid of the C9–C13/C18 ring [2.8676 (12) Å, 151.1 (2)°] and the H2 atom and the centroid of the C32–C37 ring [3.1727 (13) Å, 142.3 (2)°]. The resulting layers are grafted together by weak C—H⋯N contacts involving the H19A and N4 atoms [d(H⋯N) = 2.624 (2) Å, C—H⋯N angle = 166.86 (18)°], forming arrays in the ab plane. The three-dimensional crystal packing is organized by the alignment of the arrays along the c axis by weak van der Waals inter­actions in the same manner as in the crystal of 1. It is inter­esting that compound 2, in contrast to the parent perimidine 1, crystallizes without notable ππ inter­actions.

[Figure 4]
Figure 4
Fragment of the crystal packing of 1-methyl-2-(p-tol­yl)-perimidine (2), with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms of the minor parts of the disordered methyl groups are omitted for clarity.

4. Database survey

A database search in the CSD (version 5.43 November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found only one crystal structure, a 2-aryl­perimidine hydrate in which one water mol­ecule combines two 2-(2-meth­oxy­phen­yl)-1-H-perimidines by O—H⋯N hydrogen bonds whereas the H atom at the second nitro­gen atom cannot inter­act with the oxygen atom of the water mol­ecule because it participates in an intra­molecular N—H⋯O bond with the meth­oxy group (PEKRIG; Foces-Foces et al., 1993[Foces-Foces, C., Llamas-Saiz, A. L., Claramunt, R. M., Sanz, D., Dotor, J. & Elguero, J. (1993). J. Crystallogr. Spectrosc. Res. 23, 305-312.]). A pseudo-tetra­hedral pattern of hydrogen-bonded organic mol­ecules around the included water mol­ecule is formed by 2-amino-4-(4-pyrid­yl)-6-phenyl­amino-1,3,5-triazine, which bears many more donor and acceptor hydrogen-bonding groups than compound 1 (TETRIT; Chan et al., 1996[Chan, C.-W., Mingos, D. M. P., White, A. J. P. & Williams, D. J. (1996). Polyhedron, 15, 1753-1767.]). The crystal structures of organic hydrates including N—H⋯O inter­actions have also been published [KIJPUO (Black et al., 1991[Black, D. S. C., Craig, D. C., Kassiou, M. & Read, R. W. (1991). Aust. J. Chem. 44, 143-149.]); FAZRED (Rosling et al., 1999[Rosling, A., Klika, K. D., Fülöp, F., Sillanpää, R. & Mattinen, J. (1999). Acta Chem. Scand. 53, 103-113.])].

5. Synthesis and crystallization

The title compounds were prepared as follows:

1-H-2-(p-tol­yl)perimidine (1).

A mixture of 1,8-di­aminona­phthalene (1.58 g, 0.01 mol), 4-methyl­benzaldehyde (1.18 ml, 0.01 mol) and sodium metabisulfite (5.7 g, 0.03 mol) in ethanol (40 ml) was refluxed under Ar for 2 h. The reaction mixture was cooled, filtered and the filtrate was evaporated to dryness and washed with water. The crude solid was recrystallized from toluene and dried in vacuo. Yield 2.20 g (85%). Single crystals suitable for X-ray analysis were grown from hot toluene.

1H NMR (DMSO-d6, ppm, 400 MHz): δ 2.34 (s, 3H, CH3), 6.65 (d, J = 7.2 Hz, 2H, Hnaph), 7.04 (d, J = 8.0 Hz, 2H, Hnaph), 7.15 (t, J = 7.2 Hz, 2H, Hnaph), 7.30 (d, J = 7.2 Hz, 2H, Htol), 7.95 (d, J = 8.0 Hz, 2H, Htol). See supplementary Fig. S1.

1-Methyl-2-(p-tol­yl)perimidine (2).

To a mixture of (1) (0.258 g, 1.0 mmol), solid KOH (0.056 g, 1.0 mmol) and anhydrous K2CO3 (0.138 g, 1.0 mmol) in anhydrous Ar-saturated aceto­nitrile methyl iodide (0.062 ml, 1.0 mmol) were added dropwise upon stirring and the resulting suspension was heated at 323 K for 1 h and then at room temperature for 1 h. The reaction mixture was evap­orated to dryness and the crude product was purified by column chromatography (eluent hexa­ne/ethyl acetate 1/1 → 1/5 v/v), recrystallized from a mixture of toluene/hexane and dried in vacuo. Yield 125 mg (46%). Single crystals suitable for X-ray analysis were grown by slow evaporation of the solvent from a solution of the substance in toluene.

1H NMR (CDCl3, ppm, 400 MHz): δ 2.42(s, 3H, CH3), 3.17 (s, 3H, N–CH3), 6.28 (d, J = 7.2 Hz, 1H, Hnaph), 6.94 (d, J = 7.3 Hz, 1H, Hnaph), 7.17–7.24 (m, 3H, Hnaph), 7.28–7.32 (m, 3H, Hnaph + Htol), 7.44 (d, J = 7.7 Hz, 2H, Htol). See supplementary Fig. S2.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C—H hydrogen atoms in the structures of 1 and 2 were placed in calculated positions and refined using a riding model [C—H = 0.94–0.97 Å with Uiso(H) = 1.2–1.5Ueq(C)]. N—H and O—H hydrogen atoms (structure 1) were located in difference electron-density maps and were refined with a fixed occupancy of 0.5. para-Methyl groups in both crystallographically independent mol­ecules of 2 were found to be rotationally disordered with occupancy ratios of 0.6/0.4 and 0.7/0.3. The same group in the structure of 1 was similarly disordered with an occupancy ratio of 0.5/0.5. The SIMU instruction was used to restrain the Uij components of the neighboring C6 and N1 atoms in the structure of 1. The most disagreeable reflections with an error/s.u. of more than 10 (0 0 4 in the structure of 1; 5 0 34 and 6 1 33 in the structure of 2) were omitted using the OMIT instruction in SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Table 2
Experimental details

  C18H14N2·0.5H2O C19H16N2
Crystal data
Mr 267.32 272.34
Crystal system, space group Orthorhombic, Fddd Orthorhombic, Pbca
Temperature (K) 100 100
a, b, c (Å) 7.2131 (2), 13.8648 (5), 53.4532 (18) 11.6878 (4), 18.0941 (6), 26.9604 (8)
V3) 5345.8 (3) 5701.6 (3)
Z 16 16
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.08
Crystal size (mm) 0.13 × 0.1 × 0.1 0.12 × 0.09 × 0.08
 
Data collection
Diffractometer Bruker D8 Venture Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.672, 0.746 0.676, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 14708, 2138, 1630 53425, 5047, 3857
Rint 0.044 0.093
(sin θ/λ)max−1) 0.725 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.140, 1.04 0.073, 0.157, 1.14
No. of reflections 2138 5047
No. of parameters 126 383
No. of restraints 6 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.34 0.23, −0.29
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-(4-Methylphenyl)-1H-perimidine hemihydrate (1) top
Crystal data top
C18H14N2·0.5H2ODx = 1.329 Mg m3
Mr = 267.32Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, FdddCell parameters from 4300 reflections
a = 7.2131 (2) Åθ = 3.0–31.5°
b = 13.8648 (5) ŵ = 0.08 mm1
c = 53.4532 (18) ÅT = 100 K
V = 5345.8 (3) Å3Block, orange
Z = 160.13 × 0.1 × 0.1 mm
F(000) = 2256
Data collection top
Bruker D8 Venture
diffractometer
2138 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs1630 reflections with I > 2σ(I)
Focusing mirrors monochromatorRint = 0.044
Detector resolution: 10.4 pixels mm-1θmax = 31.0°, θmin = 3.0°
ω–scanh = 910
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2016
Tmin = 0.672, Tmax = 0.746l = 7777
14708 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0761P)2 + 4.7998P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2138 reflectionsΔρmax = 0.42 e Å3
126 parametersΔρmin = 0.34 e Å3
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.87500.37500.37500.0216 (4)
H1B0.790 (4)0.335 (2)0.3693 (6)0.036 (9)*0.5
N10.65901 (13)0.20824 (7)0.35517 (2)0.0176 (2)
H10.708 (4)0.253 (2)0.3644 (6)0.026 (8)*0.5
C10.55996 (16)0.20495 (8)0.40781 (2)0.0177 (2)
H1A0.508 (2)0.2610 (11)0.3988 (3)0.024 (4)*
C20.55826 (15)0.20393 (8)0.43382 (2)0.0181 (3)
H20.503 (2)0.2585 (11)0.4429 (3)0.022 (3)*
C30.62500.12500.44720 (3)0.0171 (3)
C40.62500.12500.47536 (3)0.0226 (4)
H4A0.66490.18830.48150.034*0.5
H4B0.71050.07540.48150.034*0.5
H4C0.49960.11130.48150.034*0.5
C50.62500.12500.39454 (3)0.0155 (3)
C60.62500.12500.36684 (3)0.0182 (3)
C70.65540 (15)0.21186 (8)0.32902 (2)0.0148 (2)
C80.68100 (16)0.29750 (8)0.31632 (2)0.0188 (3)
H80.705 (2)0.3573 (10)0.3255 (3)0.022 (4)*
C90.67686 (17)0.29749 (8)0.28998 (2)0.0210 (3)
H90.697 (2)0.3594 (11)0.2812 (3)0.031 (4)*
C100.65083 (16)0.21420 (8)0.27653 (2)0.0193 (3)
H100.654 (2)0.2141 (10)0.2581 (3)0.029 (4)*
C110.62500.12500.28908 (3)0.0162 (3)
C120.62500.12500.31562 (3)0.0144 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0249 (9)0.0176 (8)0.0222 (8)0.0000.0000.000
N10.0173 (4)0.0223 (5)0.0133 (4)0.0015 (3)0.0005 (3)0.0017 (3)
C10.0172 (5)0.0200 (5)0.0160 (5)0.0012 (4)0.0005 (4)0.0013 (4)
C20.0172 (5)0.0210 (5)0.0160 (5)0.0009 (4)0.0021 (4)0.0015 (4)
C30.0153 (7)0.0230 (8)0.0128 (7)0.0030 (6)0.0000.000
C40.0244 (8)0.0294 (9)0.0141 (7)0.0001 (7)0.0000.000
C50.0126 (6)0.0209 (7)0.0130 (7)0.0034 (5)0.0000.000
C60.0150 (6)0.0261 (7)0.0134 (6)0.0007 (5)0.0000.000
C70.0140 (5)0.0167 (5)0.0137 (5)0.0007 (4)0.0005 (4)0.0009 (4)
C80.0222 (5)0.0163 (5)0.0179 (5)0.0023 (4)0.0002 (4)0.0010 (4)
C90.0251 (6)0.0192 (5)0.0188 (5)0.0008 (4)0.0006 (4)0.0060 (4)
C100.0202 (5)0.0238 (6)0.0140 (5)0.0012 (4)0.0003 (4)0.0025 (4)
C110.0143 (7)0.0201 (7)0.0142 (7)0.0011 (6)0.0000.000
C120.0116 (6)0.0167 (7)0.0149 (7)0.0013 (5)0.0000.000
Geometric parameters (Å, º) top
O1—H1B0.89 (3)C5—C1i1.3971 (14)
N1—H10.87 (3)C5—C61.481 (2)
N1—C61.3345 (12)C6—N1i1.3345 (12)
N1—C71.3993 (14)C7—C81.3801 (15)
C1—H1A0.987 (15)C7—C121.4182 (13)
C1—C21.3901 (15)C8—H80.978 (15)
C1—C51.3972 (14)C8—C91.4083 (16)
C2—H20.983 (15)C9—H90.988 (16)
C2—C31.3932 (14)C9—C101.3734 (17)
C3—C2i1.3932 (14)C10—H100.987 (16)
C3—C41.505 (2)C10—C111.4192 (13)
C4—H4A0.9800C11—C10i1.4194 (13)
C4—H4B0.9800C11—C121.419 (2)
C4—H4C0.9800C12—C7i1.4181 (13)
C6—N1—H1116 (2)N1i—C6—N1124.28 (14)
C6—N1—C7119.64 (10)N1—C6—C5117.86 (7)
C7—N1—H1123 (2)N1i—C6—C5117.86 (7)
C2—C1—H1A119.4 (9)N1—C7—C12118.49 (10)
C2—C1—C5120.17 (11)C8—C7—N1121.32 (10)
C5—C1—H1A120.3 (9)C8—C7—C12120.19 (10)
C1—C2—H2119.4 (8)C7—C8—H8120.5 (9)
C1—C2—C3121.22 (11)C7—C8—C9119.26 (11)
C3—C2—H2119.3 (8)C9—C8—H8120.2 (9)
C2i—C3—C2118.23 (14)C8—C9—H9118.1 (9)
C2i—C3—C4120.88 (7)C10—C9—C8121.76 (11)
C2—C3—C4120.89 (7)C10—C9—H9120.2 (9)
C3—C4—H4A109.5C9—C10—H10121.5 (9)
C3—C4—H4B109.5C9—C10—C11120.21 (11)
C3—C4—H4C109.5C11—C10—H10118.3 (9)
H4A—C4—H4B109.5C10—C11—C10i123.58 (14)
H4A—C4—H4C109.5C12—C11—C10118.21 (7)
H4B—C4—H4C109.5C12—C11—C10i118.21 (7)
C1i—C5—C1118.98 (14)C7i—C12—C7119.34 (13)
C1i—C5—C6120.51 (7)C7—C12—C11120.33 (7)
C1—C5—C6120.51 (7)C7i—C12—C11120.33 (7)
N1—C7—C8—C9179.77 (10)C7—N1—C6—N1i1.69 (7)
N1—C7—C12—C7i1.61 (6)C7—N1—C6—C5178.31 (7)
N1—C7—C12—C11178.39 (6)C7—C8—C9—C101.02 (18)
C1—C2—C3—C2i0.82 (7)C8—C7—C12—C7i178.51 (12)
C1—C2—C3—C4179.18 (7)C8—C7—C12—C111.49 (12)
C1i—C5—C6—N1i34.94 (7)C8—C9—C10—C110.73 (17)
C1i—C5—C6—N1145.06 (7)C9—C10—C11—C10i179.34 (13)
C1—C5—C6—N134.94 (7)C9—C10—C11—C120.66 (12)
C1—C5—C6—N1i145.06 (7)C10—C11—C12—C71.75 (7)
C2—C1—C5—C1i0.81 (7)C10i—C11—C12—C7i1.75 (7)
C2—C1—C5—C6179.20 (7)C10i—C11—C12—C7178.25 (7)
C5—C1—C2—C31.64 (15)C10—C11—C12—C7i178.25 (7)
C6—N1—C7—C8176.84 (9)C12—C7—C8—C90.10 (16)
C6—N1—C7—C123.29 (13)
Symmetry code: (i) x+5/4, y+1/4, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N10.89 (3)2.13 (3)2.9826 (10)162 (3)
N1—H1···O10.87 (3)2.15 (3)2.9826 (10)160 (3)
1-Methyl-2-(p-tolyl)-1-H-perimidine (2) top
Crystal data top
C19H16N2Dx = 1.269 Mg m3
Mr = 272.34Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 7540 reflections
a = 11.6878 (4) Åθ = 2.2–28.3°
b = 18.0941 (6) ŵ = 0.08 mm1
c = 26.9604 (8) ÅT = 100 K
V = 5701.6 (3) Å3Block, yellow
Z = 160.12 × 0.09 × 0.08 mm
F(000) = 2304
Data collection top
Bruker D8 Venture
diffractometer
5047 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs3857 reflections with I > 2σ(I)
Focusing mirrors monochromatorRint = 0.093
Detector resolution: 10.4 pixels mm-1θmax = 25.1°, θmin = 2.2°
ω–scanh = 1313
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2121
Tmin = 0.676, Tmax = 0.746l = 3132
53425 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.0485P)2 + 7.2287P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
5047 reflectionsΔρmax = 0.23 e Å3
383 parametersΔρmin = 0.29 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.43727 (19)0.18405 (12)0.31230 (8)0.0175 (5)
N20.2447 (2)0.21911 (12)0.29690 (8)0.0185 (5)
C10.3882 (2)0.11253 (15)0.21059 (10)0.0209 (6)
H10.41280.07600.23350.025*
C20.3842 (3)0.09595 (15)0.16034 (11)0.0233 (7)
H20.40380.04770.14930.028*
C30.3516 (2)0.14950 (16)0.12585 (10)0.0217 (7)
C40.3475 (3)0.13008 (18)0.07119 (11)0.0325 (8)
H4AA0.42550.12300.05880.049*0.7
H4AB0.31070.17030.05280.049*0.7
H4AC0.30360.08440.06670.049*0.7
H4BD0.26950.13720.05870.049*0.3
H4BE0.37020.07840.06670.049*0.3
H4BF0.40020.16220.05280.049*0.3
C50.3240 (2)0.21969 (16)0.14290 (10)0.0224 (7)
H50.30350.25710.11990.027*
C60.3261 (2)0.23577 (15)0.19325 (10)0.0197 (6)
H60.30660.28400.20430.024*
C70.3567 (2)0.18187 (15)0.22769 (10)0.0166 (6)
C80.3451 (2)0.19748 (14)0.28191 (10)0.0167 (6)
C90.2275 (2)0.22857 (14)0.34790 (10)0.0175 (6)
C100.1229 (3)0.25252 (16)0.36522 (11)0.0239 (7)
H100.06320.26350.34250.029*
C110.1044 (3)0.26077 (16)0.41622 (11)0.0270 (7)
H110.03220.27790.42770.032*
C120.1890 (3)0.24445 (16)0.45006 (11)0.0258 (7)
H120.17420.24960.48450.031*
C130.2973 (3)0.22019 (15)0.43391 (10)0.0215 (7)
C140.3895 (3)0.20256 (16)0.46636 (11)0.0268 (7)
H140.37980.20750.50120.032*
C150.4915 (3)0.17867 (16)0.44797 (11)0.0261 (7)
H150.55100.16630.47050.031*
C160.5117 (3)0.17171 (16)0.39662 (10)0.0233 (7)
H160.58400.15560.38460.028*
C170.4243 (2)0.18870 (14)0.36411 (10)0.0184 (6)
C180.3162 (2)0.21197 (14)0.38191 (10)0.0174 (6)
C190.5531 (2)0.17366 (16)0.29268 (10)0.0229 (7)
H19A0.57650.12210.29730.034*
H19B0.60630.20620.31040.034*
H19C0.55400.18570.25720.034*
N30.2012 (2)0.42161 (12)0.21218 (8)0.0219 (6)
N40.3830 (2)0.47987 (13)0.20977 (8)0.0226 (6)
C200.2838 (3)0.40519 (16)0.32035 (10)0.0259 (7)
H200.26470.35820.30710.031*
C210.2985 (3)0.41308 (16)0.37083 (11)0.0287 (7)
H210.29010.37110.39170.034*
C220.3253 (3)0.48092 (16)0.39184 (11)0.0258 (7)
C230.3434 (3)0.48919 (19)0.44674 (11)0.0387 (9)
H23A0.42500.48430.45430.058*0.6
H23B0.30050.45070.46430.058*0.6
H23C0.31640.53790.45740.058*0.6
H23D0.38900.53360.45320.058*0.4
H23E0.38380.44570.45950.058*0.4
H23F0.26910.49360.46330.058*0.4
C240.3369 (3)0.54109 (16)0.36007 (11)0.0255 (7)
H240.35460.58830.37350.031*
C250.3231 (3)0.53364 (15)0.30924 (11)0.0238 (7)
H250.33180.57560.28840.029*
C260.2967 (2)0.46554 (15)0.28853 (10)0.0205 (6)
C270.2939 (3)0.45635 (14)0.23366 (10)0.0208 (7)
C280.3886 (3)0.46785 (15)0.15836 (11)0.0250 (7)
C290.4843 (3)0.49011 (17)0.13268 (11)0.0291 (7)
H290.54610.51300.14960.035*
C300.4898 (3)0.47866 (17)0.08107 (12)0.0359 (8)
H300.55620.49350.06340.043*
C310.4011 (3)0.44640 (17)0.05601 (11)0.0347 (8)
H310.40640.44000.02110.042*
C320.3017 (3)0.42245 (16)0.08105 (11)0.0300 (8)
C330.2067 (3)0.38821 (17)0.05775 (12)0.0350 (8)
H330.20700.38140.02280.042*
C340.1150 (3)0.36494 (17)0.08484 (12)0.0356 (8)
H340.05300.34140.06840.043*
C350.1098 (3)0.37489 (16)0.13666 (11)0.0291 (7)
H350.04490.35860.15490.035*
C360.2001 (3)0.40848 (15)0.16054 (11)0.0241 (7)
C370.2970 (3)0.43318 (15)0.13339 (11)0.0241 (7)
C380.0958 (3)0.40401 (19)0.23934 (12)0.0341 (8)
H38A0.08880.35030.24290.051*
H38B0.02970.42310.22100.051*
H38C0.09850.42690.27230.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0187 (13)0.0200 (12)0.0137 (12)0.0014 (10)0.0004 (10)0.0016 (9)
N20.0223 (13)0.0151 (12)0.0180 (13)0.0003 (10)0.0015 (10)0.0008 (9)
C10.0273 (17)0.0156 (14)0.0198 (16)0.0042 (12)0.0009 (13)0.0021 (11)
C20.0266 (17)0.0176 (14)0.0257 (17)0.0053 (13)0.0035 (13)0.0053 (12)
C30.0216 (16)0.0276 (16)0.0159 (15)0.0070 (13)0.0003 (12)0.0027 (12)
C40.041 (2)0.0383 (19)0.0184 (17)0.0029 (15)0.0007 (14)0.0038 (13)
C50.0211 (16)0.0264 (16)0.0195 (16)0.0002 (13)0.0001 (12)0.0064 (12)
C60.0192 (15)0.0192 (15)0.0207 (16)0.0012 (12)0.0038 (12)0.0001 (11)
C70.0160 (15)0.0199 (14)0.0140 (14)0.0024 (11)0.0005 (11)0.0023 (11)
C80.0225 (16)0.0095 (13)0.0180 (15)0.0037 (11)0.0016 (12)0.0003 (10)
C90.0215 (16)0.0121 (13)0.0188 (15)0.0024 (11)0.0030 (12)0.0007 (10)
C100.0232 (17)0.0254 (16)0.0232 (16)0.0003 (13)0.0019 (13)0.0006 (12)
C110.0258 (17)0.0288 (17)0.0265 (17)0.0009 (14)0.0100 (14)0.0015 (13)
C120.0351 (19)0.0268 (16)0.0155 (15)0.0041 (14)0.0084 (13)0.0047 (12)
C130.0302 (17)0.0170 (14)0.0174 (15)0.0040 (13)0.0038 (13)0.0000 (11)
C140.038 (2)0.0294 (17)0.0128 (15)0.0052 (15)0.0012 (13)0.0009 (12)
C150.0322 (18)0.0278 (16)0.0182 (16)0.0028 (14)0.0082 (14)0.0014 (12)
C160.0228 (16)0.0260 (16)0.0210 (16)0.0011 (13)0.0015 (13)0.0012 (12)
C170.0254 (16)0.0123 (14)0.0174 (15)0.0021 (12)0.0005 (12)0.0009 (11)
C180.0246 (16)0.0131 (13)0.0146 (14)0.0061 (12)0.0023 (12)0.0013 (11)
C190.0190 (15)0.0301 (17)0.0196 (15)0.0008 (12)0.0004 (12)0.0015 (12)
N30.0266 (14)0.0194 (12)0.0197 (13)0.0025 (11)0.0023 (11)0.0007 (10)
N40.0283 (15)0.0201 (12)0.0195 (14)0.0027 (11)0.0024 (11)0.0046 (10)
C200.039 (2)0.0180 (15)0.0203 (16)0.0046 (13)0.0070 (14)0.0023 (12)
C210.042 (2)0.0235 (16)0.0202 (17)0.0018 (14)0.0080 (14)0.0013 (12)
C220.0284 (18)0.0270 (16)0.0219 (16)0.0017 (13)0.0026 (13)0.0063 (12)
C230.057 (2)0.0337 (19)0.0251 (18)0.0013 (17)0.0003 (17)0.0079 (14)
C240.0319 (18)0.0169 (15)0.0276 (18)0.0003 (13)0.0002 (14)0.0065 (12)
C250.0249 (17)0.0168 (15)0.0297 (18)0.0004 (12)0.0013 (13)0.0026 (12)
C260.0191 (15)0.0223 (15)0.0201 (16)0.0023 (12)0.0034 (12)0.0021 (12)
C270.0294 (17)0.0112 (14)0.0219 (16)0.0050 (12)0.0008 (13)0.0016 (11)
C280.0374 (19)0.0171 (15)0.0205 (16)0.0083 (13)0.0045 (14)0.0051 (12)
C290.036 (2)0.0277 (17)0.0234 (17)0.0025 (14)0.0060 (14)0.0052 (13)
C300.051 (2)0.0285 (18)0.0279 (19)0.0061 (16)0.0166 (17)0.0078 (14)
C310.062 (3)0.0271 (17)0.0153 (16)0.0097 (17)0.0064 (16)0.0034 (13)
C320.052 (2)0.0214 (16)0.0167 (16)0.0119 (15)0.0012 (15)0.0031 (12)
C330.060 (2)0.0280 (18)0.0176 (17)0.0130 (17)0.0071 (16)0.0014 (13)
C340.049 (2)0.0280 (18)0.0299 (19)0.0111 (16)0.0146 (17)0.0047 (14)
C350.0351 (19)0.0222 (16)0.0299 (18)0.0060 (14)0.0040 (15)0.0024 (13)
C360.0338 (18)0.0167 (14)0.0218 (16)0.0103 (13)0.0037 (14)0.0014 (12)
C370.0372 (19)0.0134 (14)0.0217 (16)0.0105 (13)0.0004 (14)0.0043 (11)
C380.0299 (19)0.041 (2)0.0308 (19)0.0058 (15)0.0084 (15)0.0078 (14)
Geometric parameters (Å, º) top
N1—C81.375 (3)N3—C271.380 (4)
N1—C171.407 (3)N3—C361.412 (4)
N1—C191.466 (4)N3—C381.468 (4)
N2—C81.301 (4)N4—C271.297 (4)
N2—C91.400 (3)N4—C281.404 (4)
C1—H10.9500C20—H200.9500
C1—C21.388 (4)C20—C211.379 (4)
C1—C71.386 (4)C20—C261.397 (4)
C2—H20.9500C21—H210.9500
C2—C31.396 (4)C21—C221.388 (4)
C3—C41.516 (4)C22—C231.503 (4)
C3—C51.389 (4)C22—C241.392 (4)
C4—H4AA0.9800C23—H23A0.9800
C4—H4AB0.9800C23—H23B0.9800
C4—H4AC0.9800C23—H23C0.9800
C4—H4BD0.9800C23—H23D0.9800
C4—H4BE0.9800C23—H23E0.9800
C4—H4BF0.9800C23—H23F0.9800
C5—H50.9500C24—H240.9500
C5—C61.388 (4)C24—C251.386 (4)
C6—H60.9500C25—H250.9500
C6—C71.393 (4)C25—C261.388 (4)
C7—C81.495 (4)C26—C271.489 (4)
C9—C101.378 (4)C28—C291.376 (4)
C9—C181.417 (4)C28—C371.412 (4)
C10—H100.9500C29—H290.9500
C10—C111.400 (4)C29—C301.408 (4)
C11—H110.9500C30—H300.9500
C11—C121.378 (4)C30—C311.369 (5)
C12—H120.9500C31—H310.9500
C12—C131.409 (4)C31—C321.412 (5)
C13—C141.424 (4)C32—C331.418 (5)
C13—C181.427 (4)C32—C371.425 (4)
C14—H140.9500C33—H330.9500
C14—C151.361 (4)C33—C341.364 (5)
C15—H150.9500C34—H340.9500
C15—C161.410 (4)C34—C351.410 (4)
C16—H160.9500C35—H350.9500
C16—C171.381 (4)C35—C361.377 (4)
C17—C181.416 (4)C36—C371.421 (4)
C19—H19A0.9800C38—H38A0.9800
C19—H19B0.9800C38—H38B0.9800
C19—H19C0.9800C38—H38C0.9800
C8—N1—C17119.8 (2)C27—N3—C36119.8 (3)
C8—N1—C19122.1 (2)C27—N3—C38123.2 (2)
C17—N1—C19117.7 (2)C36—N3—C38116.6 (3)
C8—N2—C9118.1 (2)C27—N4—C28118.5 (3)
C2—C1—H1119.6C21—C20—H20119.6
C7—C1—H1119.6C21—C20—C26120.8 (3)
C7—C1—C2120.7 (3)C26—C20—H20119.6
C1—C2—H2119.7C20—C21—H21119.2
C1—C2—C3120.6 (3)C20—C21—C22121.5 (3)
C3—C2—H2119.7C22—C21—H21119.2
C2—C3—C4119.7 (3)C21—C22—C23121.5 (3)
C5—C3—C2118.5 (3)C21—C22—C24117.6 (3)
C5—C3—C4121.8 (3)C24—C22—C23121.0 (3)
C3—C4—H4AA109.5C22—C23—H23A109.5
C3—C4—H4AB109.5C22—C23—H23B109.5
C3—C4—H4AC109.5C22—C23—H23C109.5
C3—C4—H4BD109.5C22—C23—H23D109.5
C3—C4—H4BE109.5C22—C23—H23E109.5
C3—C4—H4BF109.5C22—C23—H23F109.5
H4AA—C4—H4AB109.5H23A—C23—H23B109.5
H4AA—C4—H4AC109.5H23A—C23—H23C109.5
H4AB—C4—H4AC109.5H23B—C23—H23C109.5
H4BD—C4—H4BE109.5H23D—C23—H23E109.5
H4BD—C4—H4BF109.5H23D—C23—H23F109.5
H4BE—C4—H4BF109.5H23E—C23—H23F109.5
C3—C5—H5119.6C22—C24—H24119.3
C6—C5—C3120.7 (3)C25—C24—C22121.4 (3)
C6—C5—H5119.6C25—C24—H24119.3
C5—C6—H6119.7C24—C25—H25119.7
C5—C6—C7120.6 (3)C24—C25—C26120.7 (3)
C7—C6—H6119.7C26—C25—H25119.7
C1—C7—C6118.7 (2)C20—C26—C27121.4 (2)
C1—C7—C8121.3 (2)C25—C26—C20118.1 (3)
C6—C7—C8119.7 (2)C25—C26—C27120.3 (3)
N1—C8—C7118.6 (2)N3—C27—C26119.0 (3)
N2—C8—N1125.1 (2)N4—C27—N3124.9 (3)
N2—C8—C7116.2 (2)N4—C27—C26116.0 (3)
N2—C9—C18120.3 (2)N4—C28—C37120.3 (3)
C10—C9—N2119.9 (3)C29—C28—N4119.3 (3)
C10—C9—C18119.8 (2)C29—C28—C37120.4 (3)
C9—C10—H10119.9C28—C29—H29120.3
C9—C10—C11120.3 (3)C28—C29—C30119.5 (3)
C11—C10—H10119.9C30—C29—H29120.3
C10—C11—H11119.5C29—C30—H30119.5
C12—C11—C10121.1 (3)C31—C30—C29121.0 (3)
C12—C11—H11119.5C31—C30—H30119.5
C11—C12—H12119.8C30—C31—H31119.4
C11—C12—C13120.5 (3)C30—C31—C32121.2 (3)
C13—C12—H12119.8C32—C31—H31119.4
C12—C13—C14124.0 (3)C31—C32—C33124.5 (3)
C12—C13—C18118.4 (3)C31—C32—C37117.6 (3)
C14—C13—C18117.6 (3)C33—C32—C37117.9 (3)
C13—C14—H14119.7C32—C33—H33119.6
C15—C14—C13120.7 (3)C34—C33—C32120.9 (3)
C15—C14—H14119.7C34—C33—H33119.6
C14—C15—H15118.9C33—C34—H34119.2
C14—C15—C16122.2 (3)C33—C34—C35121.7 (3)
C16—C15—H15118.9C35—C34—H34119.2
C15—C16—H16120.7C34—C35—H35120.4
C17—C16—C15118.7 (3)C36—C35—C34119.1 (3)
C17—C16—H16120.7C36—C35—H35120.4
N1—C17—C18116.8 (2)N3—C36—C37116.6 (3)
C16—C17—N1122.5 (3)C35—C36—N3122.8 (3)
C16—C17—C18120.7 (3)C35—C36—C37120.6 (3)
C9—C18—C13120.0 (3)C28—C37—C32120.2 (3)
C17—C18—C9119.8 (2)C28—C37—C36119.9 (3)
C17—C18—C13120.1 (3)C36—C37—C32119.9 (3)
N1—C19—H19A109.5N3—C38—H38A109.5
N1—C19—H19B109.5N3—C38—H38B109.5
N1—C19—H19C109.5N3—C38—H38C109.5
H19A—C19—H19B109.5H38A—C38—H38B109.5
H19A—C19—H19C109.5H38A—C38—H38C109.5
H19B—C19—H19C109.5H38B—C38—H38C109.5
N1—C17—C18—C90.5 (4)N3—C36—C37—C280.9 (4)
N1—C17—C18—C13178.1 (2)N3—C36—C37—C32179.5 (2)
N2—C9—C10—C11178.8 (3)N4—C28—C29—C30179.5 (3)
N2—C9—C18—C13178.6 (2)N4—C28—C37—C32178.7 (2)
N2—C9—C18—C172.7 (4)N4—C28—C37—C361.7 (4)
C1—C2—C3—C4179.8 (3)C20—C21—C22—C23178.9 (3)
C1—C2—C3—C50.4 (4)C20—C21—C22—C240.0 (5)
C1—C7—C8—N156.1 (4)C20—C26—C27—N354.3 (4)
C1—C7—C8—N2120.2 (3)C20—C26—C27—N4123.2 (3)
C2—C1—C7—C63.0 (4)C21—C20—C26—C250.9 (5)
C2—C1—C7—C8171.5 (3)C21—C20—C26—C27173.2 (3)
C2—C3—C5—C61.5 (4)C21—C22—C24—C250.5 (5)
C3—C5—C6—C70.4 (4)C22—C24—C25—C260.2 (5)
C4—C3—C5—C6178.7 (3)C23—C22—C24—C25178.4 (3)
C5—C6—C7—C11.9 (4)C24—C25—C26—C200.4 (4)
C5—C6—C7—C8172.8 (3)C24—C25—C26—C27173.7 (3)
C6—C7—C8—N1129.4 (3)C25—C26—C27—N3131.8 (3)
C6—C7—C8—N254.3 (4)C25—C26—C27—N450.7 (4)
C7—C1—C2—C32.0 (4)C26—C20—C21—C220.7 (5)
C8—N1—C17—C16176.2 (2)C27—N3—C36—C35179.2 (3)
C8—N1—C17—C183.9 (4)C27—N3—C36—C370.5 (4)
C8—N2—C9—C10179.0 (3)C27—N4—C28—C29177.7 (3)
C8—N2—C9—C182.5 (4)C27—N4—C28—C372.1 (4)
C9—N2—C8—N11.1 (4)C28—N4—C27—N31.8 (4)
C9—N2—C8—C7174.9 (2)C28—N4—C27—C26175.5 (2)
C9—C10—C11—C120.8 (4)C28—C29—C30—C310.7 (5)
C10—C9—C18—C130.1 (4)C29—C28—C37—C321.5 (4)
C10—C9—C18—C17178.8 (3)C29—C28—C37—C36178.1 (3)
C10—C11—C12—C131.1 (4)C29—C30—C31—C321.0 (5)
C11—C12—C13—C14179.7 (3)C30—C31—C32—C33179.6 (3)
C11—C12—C13—C180.9 (4)C30—C31—C32—C370.1 (4)
C12—C13—C14—C15179.3 (3)C31—C32—C33—C34178.3 (3)
C12—C13—C18—C90.5 (4)C31—C32—C37—C281.1 (4)
C12—C13—C18—C17179.1 (3)C31—C32—C37—C36178.5 (3)
C13—C14—C15—C161.3 (5)C32—C33—C34—C351.0 (5)
C14—C13—C18—C9179.9 (2)C33—C32—C37—C28179.2 (3)
C14—C13—C18—C171.4 (4)C33—C32—C37—C361.2 (4)
C14—C15—C16—C171.0 (4)C33—C34—C35—C360.5 (5)
C15—C16—C17—N1179.3 (2)C34—C35—C36—N3179.0 (3)
C15—C16—C17—C180.6 (4)C34—C35—C36—C370.3 (4)
C16—C17—C18—C9179.5 (2)C35—C36—C37—C28179.7 (3)
C16—C17—C18—C131.8 (4)C35—C36—C37—C320.7 (4)
C17—N1—C8—N24.4 (4)C36—N3—C27—N41.0 (4)
C17—N1—C8—C7171.5 (2)C36—N3—C27—C26176.3 (2)
C18—C9—C10—C110.3 (4)C37—C28—C29—C300.6 (4)
C18—C13—C14—C150.1 (4)C37—C32—C33—C341.4 (4)
C19—N1—C8—N2168.0 (3)C38—N3—C27—N4172.2 (3)
C19—N1—C8—C716.1 (4)C38—N3—C27—C2610.6 (4)
C19—N1—C17—C1611.1 (4)C38—N3—C36—C355.7 (4)
C19—N1—C17—C18168.9 (2)C38—N3—C36—C37173.1 (3)
 

Acknowledgements

X-ray diffraction studies were performed at the Centre of Shared Equipment of IGIC RAS.

Funding information

Funding for this research was provided by: Presidential Grant Program (grant No. MK-1200.2020.3).

References

First citationBlack, D. S. C., Craig, D. C., Kassiou, M. & Read, R. W. (1991). Aust. J. Chem. 44, 143–149.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, C.-W., Mingos, D. M. P., White, A. J. P. & Williams, D. J. (1996). Polyhedron, 15, 1753–1767.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFoces-Foces, C., Llamas-Saiz, A. L., Claramunt, R. M., Sanz, D., Dotor, J. & Elguero, J. (1993). J. Crystallogr. Spectrosc. Res. 23, 305–312.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKalle, P., Tatarin, S. V., Zakharov, A. Y., Kiseleva, M. A. & Bezzubov, S. I. (2021). Acta Cryst. E77, 96–100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationPozharskii, A. F., Gulevskaya, A. V., Claramunt, R. M., Alkorta, I. & Elguero, J. (2020). Russ. Chem. Rev. 89, 1204–1260.  Web of Science CrossRef CAS Google Scholar
First citationRosling, A., Klika, K. D., Fülöp, F., Sillanpää, R. & Mattinen, J. (1999). Acta Chem. Scand. 53, 103–113.  Web of Science CSD CrossRef CAS Google Scholar
First citationSahiba, N. & Agarwal, S. (2020). Top. Curr. Chem. 378, article number 44.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds