Jerry P. Jasinski tribute\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A tetra­nuclear nickel(II) complex, [Ni4(L)4](ClO4)4·C2H3N·2H2O, with an asymmetric Ni4O4 open-cubane-like core

crossmark logo

aDepartment of Chemistry, APS University, Rewa 486003, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: rnp64@ymail.com

(Received 20 July 2021; accepted 22 November 2021; online 14 January 2022)

A tetra­nuclear complex with an open-cubane-like core structure was synthesized from 2-meth­oxy-6-(pyridin-2-yl-hydrazonometh­yl)phenol (HL), namely, cyclo-tetra­kis­(μ-2-meth­oxy-6-{[2-(pyridin-2-yl)hydrazin-1-yl­idene]meth­yl}pheno­lato)tetra­nickel(II) tetra­kis­(perchlorate) aceto­nitrile monosolvate dihydrate, [Ni4(C13H12N3O2)4](ClO4)4·C2H3N·2H2O, and characterized using micro-analytical and spectroscopic techniques. The crystal-structure determination reveals the formation of a distorted Ni4O4 cubane-like core architecture encapsulated by four hydrazone Schiff base (HL) mol­ecules. A open-cube tetra­nuclear architecture is created in which nickel(II) ions of the NiN2O3 unit are connected by μ2-O anions of the phenolate moiety of HL. In this complex, each Ni centre has a slightly distorted square-pyramidal coordination environment. The supra­molecular architectures are stabilized via the presence of various inter­molecular hydrogen bonds and (ar­yl–aryl, ar­yl–chelate and chelate–chelate) stacking inter­actions.

1. Chemical context

Polynuclear metal(II) complexes have attracted much attention owing to their structural variety and significant applications in biology, catalysis, mol­ecular recognition and magnetism (Alcantara et al., 2006[Alcantara, K., Munge, B., Pendon, Z., Frank, H. A. & Rusling, J. F. (2006). J. Am. Chem. Soc. 128, 14930-14937.]; Powell, 2003[Powell, A. K. (2003). Comprehensive Coordination Chemistry II, edited by J. A. McCleverty & T. J. Meyer, p. 169. Oxford: Pergamon.]). As such, complexes containing a tetra­nuclear cubane-like core have been an important class of compounds (Yang et al., 2005). The synthesis of such polynuclear metal complexes can often be promoted with the use of polydentate Schiff base ligands possessing nitro­gen and oxygen donor atoms. Such Schiff bases are known to form high nuclearity complexes with inter­esting architectures, and the hydroxyl groups and other donor atoms are often suitable for the synthesis of polynuclear complexes (Gungor & Kara, 2015[Gungor, E. & Kara, H. (2015). J. Struct. Chem. 56, 1646-1652.]; Dutta et al., 2020[Dutta, N., Haldar, S., Majumder, A., Vijaykumar, G., Carrella, L. & Bera, M. (2020). Inorg. Chem. Commun. 121, 108208.]; Shit et al., 2013[Shit, S., Nandy, M., Rosair, G., Gómez-García, C. J., Almenar, J. J. B. & Mitra, S. (2013). Polyhedron, 61, 73-79.]). Several tetra­nuclear nickel(II) complexes have also been synthesized and their different electronic properties explored (Lin et al., 2011[Lin, S.-Y., Xu, G.-F., Zhao, L., Guo, Y.-N., Tang, J., Wang, Q.-L. & Liu, G.-X. (2011). Inorg. Chim. Acta, 373, 173-178.]; Nihei et al., 2003[Nihei, M., Hoshino, N., Ito, T. & Oshio, H. (2003). Polyhedron, 22, 2359-2362.]; Zhang et al., 2012[Zhang, S.-Y., Chen, W.-Q., Hu, B., Chen, Y.-M., Li, W. & Li, Y. (2012). Inorg. Chem. Commun. 16, 74-77.]; Liu et al., 2012[Liu, S., Wang, S., Cao, F., Fu, H., Li, D. & Dou, J. (2012). RSC Adv. 2, 1310-1313.]; Shit et al., 2013[Shit, S., Nandy, M., Rosair, G., Gómez-García, C. J., Almenar, J. J. B. & Mitra, S. (2013). Polyhedron, 61, 73-79.]). As part of our study of polynuclear complexes, we have been inter­ested in cubane-like structures to build complexes with high nuclearity (Ray et al., 2009[Ray, A., Rizzoli, C., Pilet, G., Desplanches, C., Garribba, E., Rentschler, E. & Mitra, S. (2009). Eur. J. Inorg. Chem. pp. 2915-2928.]; Chakraborty et al., 2009[Chakraborty, J., Thakurta, S., Pilet, G., Luneau, D. & Mitra, S. (2009). Polyhedron, 28, 819-825.]; Sagar et al., 2017[Sagar, S., Sengupta, S., Mota, A. J., Chattopadhyay, S. K., Espinosa Ferao, A., Riviere, E., Lewis, W. & Naskar, S. (2017). Dalton Trans. 46, 1249-1259.]; Pouralimardan et al., 2007[Pouralimardan, O., Chamayou, A. C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599-1608.]; Patel et al., 2019[Patel, S. K., Patel, R. N., Singh, Y., Singh, Y. P., Kumhar, D., Jadeja, R. N., Roy, H., Patel, A. K., Patel, N., Patel, N., Banerjee, A., Choquesillo-Lazarte, D. & Gutierrez, A. (2019). Polyhedron, 161, 198-212.]). In this article, the results were obtained with the Schiff base ligand (HL) 2-meth­oxy-6-(pyridin-2-yl-hydrazonometh­yl)-phenol, which can bind one or two metal ions, simultaneously. The stoichiometric reaction of nickel(II) perchlorate hexa­hydrate with this ligand resulted the formation of Ni4O4 distorted cubane-like structure described herein.

[Scheme 1]

2. Structural commentary

The hydrazone Schiff base (HL) was prepared by the reaction of 2-hydrazino­pyridine and 2-hy­droxy-3-meth­oxy­benz­alde­hyde in a 1:1 ratio in ethanol. The reaction of nickel perchlorate hexa­hydrate and the HL ligand yielded a tetra­nuclear open-cubane-like complex with an Ni4O4 core-type architecture. The tetra­nuclear complex is formulated as [Ni4(L)4](ClO4)4·C2H3N·2H2O (Fig. 1[link]). Selected bond parameters are given in Table 1[link]. The crystal-structure analysis reveals the formation of a distorted Ni4O4 cubane-like core. In this complex, four HL mol­ecules coordinate to the four nickel centres as a penta­dentate ligand (Fig. 2[link]). The deprotonated Schiff base (L) ligand coordinates in a penta­dentate mode (μ2-Ophenolate, η1-Nimino, η1-Npyridin, η1-Ometh­oxy), thus forming eight fused metal chelate rings (four five-membered and four six-membered rings). Such a coordination pattern results in a distorted square-pyramidal coordination sphere around each nickel(II) ion. The distortion in the square-pyramidal geometry is shown by the τ index (τ5, with values of 0 for a perfect square pyramid and 1 for a perfect trigonal bipyramid; Addison et al., 1984[Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The values for each NiII ion are 0.0383 for Ni1, 0.0050 for Ni2, 0.0033 for Ni3 and 0.0250 for Ni4. The fact that the τ-values are very close to zero indicates that the geometries around each Ni centre are slightly distorted from a perfect square-pyramidal environment.

Table 1
Selected geometric parameters (Å, °)

Ni1—N1A 1.932 (7) Ni3—N1C 1.932 (7)
Ni1—O1A 1.960 (5) Ni3—O1C 1.965 (5)
Ni1—N3A 1.980 (6) Ni3—N3C 1.975 (6)
Ni1—O1B 1.998 (5) Ni3—O1D 1.993 (5)
Ni1—O2B 2.276 (4) Ni3—O2D 2.264 (5)
Ni2—N1B 1.935 (6) Ni4—N1D 1.948 (7)
Ni2—O1B 1.962 (4) Ni4—O1D 1.950 (5)
Ni2—N3B 1.971 (6) Ni4—N3D 1.969 (6)
Ni2—O1C 1.997 (5) Ni4—O1A 1.993 (5)
Ni2—O2C 2.257 (5) Ni4—O2A 2.283 (5)
       
N1A—Ni1—O1A 92.2 (2) N1C—Ni3—O1C 91.2 (2)
N1A—Ni1—N3A 81.6 (2) N1C—Ni3—N3C 82.4 (3)
O1A—Ni1—N3A 173.5 (2) O1C—Ni3—N3C 172.3 (2)
N1A—Ni1—O1B 171.2 (2) N1C—Ni3—O1D 172.1 (2)
O1A—Ni1—O1B 87.1 (2) O1C—Ni3—O1D 88.1 (2)
N3A—Ni1—O1B 98.8 (2) N3C—Ni3—O1D 97.7 (2)
N1A—Ni1—O2B 113.4 (2) N1C—Ni3—O2D 111.5 (2)
O1A—Ni1—O2B 98.83 (19) O1C—Ni3—O2D 99.81 (19)
N3A—Ni1—O2B 85.3 (2) N3C—Ni3—O2D 86.5 (2)
O1B—Ni1—O2B 75.39 (17) O1D—Ni3—O2D 76.3 (2)
N1B—Ni2—O1B 91.3 (2) N1D—Ni4—O1D 89.9 (2)
N1B—Ni2—N3B 82.0 (2) N1D—Ni4—N3D 81.9 (3)
O1B—Ni2—N3B 171.8 (2) O1D—Ni4—N3D 170.6 (2)
N1B—Ni2—O1C 172.1 (2) N1D—Ni4—O1A 169.1 (2)
O1B—Ni2—O1C 88.8 (2) O1D—Ni4—O1A 89.5 (2)
N3B—Ni2—O1C 97.1 (2) N3D—Ni4—O1A 97.8 (2)
N1B—Ni2—O2C 111.7 (2) N1D—Ni4—O2A 116.3 (2)
O1B—Ni2—O2C 97.69 (18) O1D—Ni4—O2A 100.3 (2)
N3B—Ni2—O2C 89.2 (2) N3D—Ni4—O2A 87.4 (2)
O1C—Ni2—O2C 76.02 (19) O1A—Ni4—O2A 74.5 (2)
[Figure 1]
Figure 1
Mol­ecular structure of the tetra­nuclear nickel complex, [Ni4(L)4](ClO4)4·C2H3N·2H2O. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Ball-and-stick figure of the tetra­nuclear nickel complex, illustrating the coordination sphere about the nickel centres.

The hydroxyl group of each HL phenol is deprotonated and the oxygen atoms bridge two nickel centres. Similarly, the oxygen atom of the meth­oxy group coordinates to a second nickel centre in a μ2-mode. Each nickel centre is connected to the μ2-oxygen atoms, resulting in the construction of an Ni4O4 cubane-like core (Fig. 2[link]). The basal plane of each nickel centre is constituted by one phen­oxy oxygen, one meth­oxy oxygen, one azomethine nitro­gen and one pyridine nitro­gen atom. As a result of its weakly coordinating nature, each meth­oxy oxygen remains in an axial position. The Ni—N/O bond lengths are in the range 1.932 (7)–1.988 (5) Å and are very close to these reported for similar tetra­nuclear cubane-core-type complexes (Zhang et al., 2011[Zhang, S.-H., Li, N., Ge, C.-M., Feng, C. & Ma, L.-F. (2011). Dalton Trans. 40, 3000-3007.], 2013[Zhang, S.-H., Zhang, Y. D., Zou, H. H., Guo, J. J., Li, H. P., Song, Y. & Liang, H. (2013). Inorg. Chim. Acta, 396, 119-125.]; Yu et al., 2011[Yu, G.-M., Zhao, L., Zou, L.-F., Guo, Y.-N., Xu, G.-F., Li, Y.-H. & Tang, J. (2011). J. Chem. Crystallogr. 41, 606-609.]; Tong et al., 2002[Tong, M.-L., Zheng, S.-L., Shi, J.-X., Tong, Y.-X., Lee, H. K. & Chen, X.-M. (2002). J. Chem. Soc. Dalton Trans. pp. 1727-1734.]; Mandal et al., 2008[Mandal, D., Hong, C. S., Kim, H. C., Fun, H.-K. & Ray, D. (2008). Polyhedron, 27, 2372-2378.]; Clemente-Juan et al., 2000[Clemente-Juan, J. M., Chansou, B., Donnadieu, B. & Tuchagues, J.-P. (2000). Inorg. Chem. 39, 5515-5519.]; Li et al., 2006[Li, Y.-M., Zhang, J.-J., Fu, R.-B., Xiang, S.-C., Sheng, T.-L., Yuan, D.-Q., Huang, X.-H. & Wu, X.-T. (2006). Polyhedron, 25, 1618-1624.]; Sun et al., 2011[Sun, J.-P., Li, L.-C. & Zheng, X.-J. (2011). Inorg. Chem. Commun. 14, 877-881.]; Saha et al., 2014[Saha, S., Kottalanka, R. K., Bhowmik, P., Jana, S., Harms, K., Panda, T. K., Chattopadhyay, S. & Nayek, H. P. (2014). J. Mol. Struct. 1061, 26-31.]; Yang et al., 2006[Yang, E.-C., Wernsdorfer, W., Zakharov, L. N., Karaki, Y., Yamaguchi, A., Isidro, R. M., Lu, G.-D., Wilson, S. A., Rheingold, A. L., Ishimoto, H. & Hendrickson, D. N. (2006). Inorg. Chem. 45, 529-546.]).

3. Supra­molecular features

In the polynuclear crystal, inter­molecular hydrogen-bonding inter­actions are detected involving C—H and N—H donors from the hydrazone Schiff base and acceptor oxygen atoms of perchlorate counter-ions and solvate water mol­ecules (Fig. 3[link]). The important hydrogen-bonding parameters are collected in Table 2[link]. The two tetra­nuclear complexes are inter­connected through inter­molecular hydrogen bonding between C—H⋯O and N—H⋯O hydrogen bonds with the perchlorate ions, forming heterosynthons (Fig. 3[link]). Additionally, oxygen atoms of solvate water mol­ecules also act as acceptor atoms for inter­molecular hydrogen bonds. Furthermore, stabilization of the tetra­nuclear crystal lattice is facilitated by the presence of various weak (ar­yl–aryl, ar­yl–chelate and chelate–chelate) intra­molecular stacking inter­actions (Fig. 4[link]). The ortho­rhom­bic cell contains four formula units, and the packing is shown in Fig. 5[link]. The entire stacking pattern reveals that the inter­molecular hydrogen bonds remain between perchlorate counter-ions and C–H/N–H moieties of the same mol­ecule or adjacent mol­ecules. Similarly, solvate water mol­ecules also exert cooperative inter­molecular hydrogen bonds from C—H/N—H moieties of the complex, and the crystal lattice is also stabilized via ππ stacking inter­actions [centroid–centroid distances = 3.343 (3)–3.668 (3) Å].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7B—H7BB⋯N1Si 0.98 2.60 3.523 (11) 157
C13B—H13B⋯O13 0.95 2.42 3.126 (9) 131
C13C—H13C⋯N1S 0.95 2.59 3.348 (11) 137
N2D—H2DA⋯O2W 0.88 1.91 2.720 (9) 152
C7D—H7DC⋯O12 0.98 2.56 3.389 (10) 142
C12S—H12G⋯O14ii 0.98 2.37 3.335 (12) 168
O2W—H2W1⋯O11ii 0.84 (3) 2.12 (7) 2.795 (8) 138 (9)
O2W—H2W2⋯Cl4ii 0.83 (3) 2.78 (3) 3.599 (6) 170 (9)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [-x+1, -y+1, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
Inter­molecular N—H⋯O and C—H⋯O hydrogen bonding (drawn as dotted lines) between the tetra­nuclear complex, perchlorate counter-ions and water mol­ecules of crystallization.
[Figure 4]
Figure 4
Diagram showing the ππ stacking inter­actions (drawn as dashed lines) observed in the complex.
[Figure 5]
Figure 5
Crystal packing diagram viewed along a-axis of the complex.

4. Database survey

A search of the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2-meth­oxy-6-(pyridin-2-yl-hydrazonometh­yl)phenol gave no results. Several tetra­nuclear nickel complexes have been synthesized with several Schiff base ligands (Lin et al., 2011[Lin, S.-Y., Xu, G.-F., Zhao, L., Guo, Y.-N., Tang, J., Wang, Q.-L. & Liu, G.-X. (2011). Inorg. Chim. Acta, 373, 173-178.]; Liu et al., 2012[Liu, S., Wang, S., Cao, F., Fu, H., Li, D. & Dou, J. (2012). RSC Adv. 2, 1310-1313.]; Nihei et al., 2003[Nihei, M., Hoshino, N., Ito, T. & Oshio, H. (2003). Polyhedron, 22, 2359-2362.]; Saha et al., 2014[Saha, S., Kottalanka, R. K., Bhowmik, P., Jana, S., Harms, K., Panda, T. K., Chattopadhyay, S. & Nayek, H. P. (2014). J. Mol. Struct. 1061, 26-31.]; Shit et al., 2013[Shit, S., Nandy, M., Rosair, G., Gómez-García, C. J., Almenar, J. J. B. & Mitra, S. (2013). Polyhedron, 61, 73-79.]; Zhang et al., 2012[Zhang, S.-Y., Chen, W.-Q., Hu, B., Chen, Y.-M., Li, W. & Li, Y. (2012). Inorg. Chem. Commun. 16, 74-77.]).

5. Synthesis and crystallization

A mixture of 2-hydrazino­pyridine (0.327 g, 3.0 mmol) and 2-hy­droxy-3-meth­oxy­benzaldehyde (0.456 g, 3.0 mmol) in 30 mL of ethanol was refluxed for 3 h. The resulting light-yellow solution was cooled to room temperature. The obtained crystalline material was filtered off, washed with ethanol and kept in a CaCl2 desiccator. Yield 80%. Analysis calculated for C13H13N3O2: C, 64.18; H, 5.38; N, 17.27%. Found: C, 64.11; H, 5.27; N, 17.18%. FTIR (KBr cm−1): 1648, for (>C=N) and 3480 (–OH). The tetra­nuclear nickel complex was synthesized by taking an equimolar methano­lic solution (10 ml) of the HL ligand (0.243 g, 1.0 mmol) and nickel perchlorate hexa­hydrate (0.365 g, 1.0 mmol). The resulting solution was stirred for 3 h. The obtained green crystals, suitable for diffraction studies, were filtered off and washed with cold methanol and kept in a CaCl2 desiccator. Yield 62%. Analysis calculated for C54H55Cl4N13Ni4O26: C, 38.63; H, 3.30; N, 10.84%. Found: C, 38.28; H, 3.28; N, 10.98%. FTIR (KBr, υ, cm−1): 1626 (>C=N), 1537 (C—O), 487 (Ni—O) and 421 (Ni—N).

6. Refinement

Crystallographic data and refinement details are presented in Table 3[link]. H atoms were located in difference-Fourier maps and constrained to ride on their parent atoms with with C—H bond distances of 0.95 Å (aromatic H), 0.98 Å (methyl H) and 0.88 Å (N—H) and were refined as riding with isotropic displacement parameters 1.2 and 1.5 times those of the parent C/N atoms. Water H atoms were refined isotropically with Uĩso(H) = 1.5Ueq(O). Three of the four perchlorate anions are disordered over two orientations and were restrained to have tetra­hedral geometries with occupancies of 0.57 (6)/0.43 (6), 0.412 (13)/0.488 (13), and 0.806 (12)/0.194 (12), respectively.

Table 3
Experimental details

Crystal data
Chemical formula [Ni4(C13H12N3O2)4](ClO4)4·C2H3N·2H2O
Mr 1678.75
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 100
a, b, c (Å) 23.5976 (6), 11.8723 (3), 22.2989 (6)
V3) 6247.2 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.46
Crystal size (mm) 0.25 × 0.11 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.554, 0.765
No. of measured, independent and observed [I > 2σ(I)] reflections 86241, 14617, 11629
Rint 0.068
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.125, 1.06
No. of reflections 14617
No. of parameters 1051
No. of restraints 320
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.84, −1.30
Absolute structure Flack x determined using 4529 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.024 (5)
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL (Sheldrick 2008).

cyclo-Tetrakis(µ-2-methoxy-6-{[2-(pyridin-2-yl)hydrazin-1-ylidene]methyl}phenolato)tetranickel(II) tetrakis(perchlorate) acetonitrile monosolvate dihydrate top
Crystal data top
[Ni4(C13H12N3O2)4](ClO4)4·C2H3N·2H2ODx = 1.785 Mg m3
Mr = 1678.75Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 9461 reflections
a = 23.5976 (6) Åθ = 2.4–26.3°
b = 11.8723 (3) ŵ = 1.46 mm1
c = 22.2989 (6) ÅT = 100 K
V = 6247.2 (3) Å3Needle, green
Z = 40.25 × 0.11 × 0.09 mm
F(000) = 3432
Data collection top
Bruker APEXII CCD
diffractometer
11629 reflections with I > 2σ(I)
φ and ω scansRint = 0.068
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 1.9°
Tmin = 0.554, Tmax = 0.765h = 3131
86241 measured reflectionsk = 1515
14617 independent reflectionsl = 2629
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0571P)2 + 9.1783P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.84 e Å3
14617 reflectionsΔρmin = 1.30 e Å3
1051 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
320 restraintsExtinction coefficient: 0.00135 (19)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 4529 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.024 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.73671 (3)0.62167 (6)0.50776 (4)0.01973 (18)
Ni20.65087 (3)0.46794 (6)0.42646 (4)0.01955 (17)
Ni30.58915 (3)0.60905 (7)0.53570 (4)0.02116 (18)
Ni40.64341 (3)0.75702 (6)0.42586 (4)0.02228 (18)
O1A0.6789 (2)0.7401 (4)0.5065 (2)0.0261 (10)
O2A0.6144 (2)0.9102 (4)0.4796 (3)0.0319 (12)
N1A0.7519 (2)0.6456 (5)0.5919 (3)0.0282 (13)
N2A0.7897 (3)0.5687 (5)0.6153 (3)0.0315 (13)
H2AA0.7976240.5659690.6538170.06 (3)*
N3A0.7945 (2)0.5026 (5)0.5191 (3)0.0251 (12)
C1A0.6699 (3)0.8175 (6)0.5507 (3)0.0259 (15)
C2A0.6349 (3)0.9109 (5)0.5375 (4)0.0284 (15)
C3A0.6212 (4)0.9884 (6)0.5812 (4)0.0383 (19)
H3AA0.5970161.0498950.5718910.046*
C4A0.6423 (4)0.9769 (7)0.6381 (4)0.045 (2)
H4AA0.6326791.0305020.6680400.054*
C5A0.6775 (4)0.8881 (7)0.6523 (4)0.0406 (19)
H5AA0.6920220.8810580.6918640.049*
C6A0.6920 (3)0.8081 (6)0.6086 (3)0.0302 (16)
C7A0.5891 (4)1.0134 (6)0.4589 (4)0.044 (2)
H7AA0.6126581.0772930.4712550.066*
H7AB0.5511641.0212500.4762970.066*
H7AC0.5862341.0119040.4150720.066*
C8A0.7308 (3)0.7216 (6)0.6278 (3)0.0311 (16)
H8AA0.7416120.7198680.6688510.037*
C9A0.8139 (3)0.4970 (6)0.5750 (3)0.0265 (15)
C10A0.8565 (3)0.4202 (7)0.5921 (4)0.0326 (17)
H10A0.8695480.4174460.6324300.039*
C11A0.8782 (3)0.3517 (7)0.5509 (4)0.0363 (18)
H11A0.9061200.2980330.5620760.044*
C12A0.8601 (3)0.3578 (6)0.4908 (4)0.0342 (17)
H12A0.8763120.3109840.4607680.041*
C13A0.8179 (3)0.4346 (6)0.4770 (4)0.0298 (15)
H13A0.8049790.4397660.4367850.036*
O1B0.71137 (17)0.5813 (3)0.4250 (2)0.0231 (9)
O2B0.80171 (19)0.7036 (4)0.4463 (2)0.0256 (10)
N1B0.6495 (2)0.4613 (5)0.3398 (3)0.0254 (13)
N2B0.6028 (3)0.4046 (5)0.3185 (3)0.0301 (13)
H2BA0.5942590.4035290.2801350.07 (4)*
N3B0.5861 (2)0.3646 (4)0.4175 (3)0.0252 (12)
C1B0.7471 (3)0.6010 (5)0.3779 (3)0.0239 (14)
C2B0.7959 (3)0.6656 (5)0.3881 (3)0.0240 (14)
C3B0.8342 (3)0.6893 (6)0.3426 (3)0.0272 (15)
H3BA0.8673650.7322160.3504620.033*
C4B0.8230 (3)0.6488 (6)0.2849 (3)0.0302 (15)
H4BA0.8491590.6633390.2534370.036*
C5B0.7750 (3)0.5886 (6)0.2734 (3)0.0282 (15)
H5BA0.7676120.5638180.2336700.034*
C6B0.7361 (3)0.5626 (6)0.3195 (3)0.0252 (14)
C7B0.8561 (3)0.7453 (7)0.4645 (4)0.0367 (18)
H7BA0.8654250.8129320.4413730.055*
H7BB0.8849440.6874020.4574070.055*
H7BC0.8551230.7639560.5073410.055*
C8B0.6866 (3)0.4975 (6)0.3018 (3)0.0260 (14)
H8BA0.6813970.4809010.2605200.031*
C9B0.5706 (3)0.3504 (6)0.3597 (4)0.0282 (15)
C10B0.5229 (3)0.2854 (6)0.3442 (4)0.0352 (17)
H10B0.5112920.2784660.3035830.042*
C11B0.4938 (3)0.2330 (6)0.3886 (4)0.0369 (19)
H11B0.4613880.1889490.3791920.044*
C12B0.5115 (3)0.2435 (6)0.4488 (4)0.0316 (16)
H12B0.4921770.2047300.4799000.038*
C13B0.5568 (3)0.3103 (5)0.4614 (4)0.0298 (16)
H13B0.5683120.3192000.5019730.036*
O1C0.64418 (19)0.4911 (4)0.5149 (2)0.0252 (10)
O2C0.7018 (2)0.3254 (4)0.4662 (2)0.0303 (11)
N1C0.6018 (2)0.5844 (5)0.6203 (3)0.0281 (13)
N2C0.5735 (3)0.6611 (5)0.6559 (3)0.0327 (14)
H2CA0.5752730.6586890.6953410.14 (6)*
N3C0.5404 (2)0.7317 (5)0.5660 (3)0.0270 (12)
C1C0.6662 (3)0.4124 (6)0.5522 (3)0.0253 (15)
C2C0.6976 (3)0.3228 (6)0.5273 (4)0.0299 (16)
C3C0.7222 (3)0.2412 (6)0.5633 (4)0.0367 (18)
H3CA0.7429650.1810400.5457930.044*
C4C0.7164 (3)0.2480 (7)0.6254 (4)0.0385 (19)
H4CA0.7334330.1927830.6504170.046*
C5C0.6862 (3)0.3341 (7)0.6501 (4)0.0364 (18)
H5CA0.6825360.3378170.6924920.044*
C6C0.6602 (3)0.4172 (6)0.6149 (4)0.0290 (15)
C7C0.7241 (3)0.2280 (6)0.4358 (4)0.041 (2)
H7CA0.7645990.2207120.4445340.062*
H7CB0.7186470.2365420.3924290.062*
H7CC0.7041310.1604390.4496380.062*
C8C0.6291 (3)0.5033 (6)0.6458 (4)0.0329 (17)
H8CA0.6285740.5003920.6883260.040*
C9C0.5425 (3)0.7411 (6)0.6262 (4)0.0315 (16)
C10C0.5134 (3)0.8263 (7)0.6577 (4)0.0387 (18)
H10C0.5160370.8324980.7000310.046*
C11C0.4814 (4)0.8989 (7)0.6252 (5)0.047 (2)
H11C0.4614040.9576130.6448920.056*
C12C0.4776 (4)0.8880 (7)0.5629 (4)0.0383 (18)
H12C0.4547780.9381260.5401730.046*
C13C0.5076 (3)0.8034 (6)0.5351 (4)0.0314 (15)
H13C0.5049590.7956200.4928310.038*
O1D0.5854 (2)0.6484 (4)0.4489 (2)0.0273 (11)
O2D0.5083 (2)0.5253 (4)0.5041 (3)0.0335 (11)
N1D0.6176 (3)0.7490 (5)0.3430 (3)0.0319 (14)
N2D0.6544 (3)0.7994 (6)0.3044 (3)0.0354 (15)
H2DA0.6502300.7949690.2652190.06 (3)*
N3D0.7016 (3)0.8547 (5)0.3897 (3)0.0287 (13)
C1D0.5384 (3)0.6181 (5)0.4174 (4)0.0278 (15)
C2D0.4963 (3)0.5530 (5)0.4450 (3)0.0276 (15)
C3D0.4487 (3)0.5165 (6)0.4145 (4)0.0330 (17)
H3DA0.4208610.4725600.4344780.040*
C4D0.4418 (3)0.5441 (7)0.3551 (4)0.0381 (18)
H4DA0.4087600.5201280.3343460.046*
C5D0.4820 (3)0.6059 (6)0.3257 (4)0.0365 (18)
H5DA0.4771190.6231550.2843840.044*
C6D0.5309 (3)0.6444 (6)0.3562 (4)0.0319 (16)
C7D0.4621 (4)0.4883 (7)0.5406 (4)0.045 (2)
H7DA0.4511920.4117660.5287980.067*
H7DB0.4298290.5391440.5351350.067*
H7DC0.4736910.4885230.5827760.067*
C8D0.5718 (3)0.7045 (6)0.3210 (4)0.0324 (16)
H8DA0.5649680.7121280.2791870.039*
C9D0.6979 (3)0.8568 (6)0.3297 (4)0.0333 (17)
C10D0.7367 (4)0.9166 (7)0.2944 (4)0.0397 (19)
H10D0.7349360.9148950.2518650.048*
C11D0.7779 (4)0.9786 (7)0.3244 (5)0.046 (2)
H11D0.8048521.0206850.3020100.056*
C12D0.7801 (3)0.9795 (6)0.3863 (5)0.042 (2)
H12D0.8079321.0231290.4065590.050*
C13D0.7415 (3)0.9164 (6)0.4182 (4)0.0342 (17)
H13D0.7428850.9162020.4608220.041*
Cl10.52002 (8)0.25270 (17)0.65520 (9)0.0359 (4)
O110.4683 (2)0.1969 (6)0.6705 (3)0.0526 (16)
O120.5136 (3)0.3696 (5)0.6678 (3)0.0580 (18)
O130.5308 (4)0.2377 (7)0.5934 (3)0.071 (2)
O140.5644 (3)0.2096 (7)0.6908 (3)0.072 (2)
Cl20.64516 (10)0.75422 (18)0.80261 (10)0.0462 (5)
O210.6408 (13)0.711 (2)0.8612 (9)0.044 (6)0.57 (6)
O220.6361 (18)0.6641 (19)0.7612 (13)0.072 (8)0.57 (6)
O230.6043 (10)0.8369 (17)0.7913 (11)0.056 (6)0.57 (6)
O240.7018 (7)0.797 (3)0.7964 (16)0.097 (9)0.57 (6)
O21A0.6366 (17)0.693 (3)0.8554 (11)0.053 (11)0.43 (6)
O22A0.6610 (18)0.677 (2)0.7558 (11)0.053 (8)0.43 (6)
O23A0.5915 (12)0.800 (5)0.7822 (16)0.081 (11)0.43 (6)
O24A0.685 (2)0.838 (3)0.8092 (13)0.093 (12)0.43 (6)
Cl30.86202 (15)0.6242 (4)0.76039 (17)0.0898 (11)
O310.9121 (5)0.6848 (11)0.7412 (6)0.144 (5)
O320.8498 (7)0.5395 (12)0.7231 (6)0.064 (4)0.512 (13)
O330.8143 (6)0.7097 (13)0.7581 (8)0.074 (4)0.512 (13)
O340.8732 (11)0.598 (2)0.8193 (7)0.076 (5)0.512 (13)
O32A0.8836 (6)0.4985 (11)0.7347 (6)0.057 (4)0.488 (13)
O33A0.8224 (7)0.6441 (15)0.7248 (7)0.079 (4)0.488 (13)
O34A0.8626 (12)0.610 (2)0.8193 (7)0.068 (5)0.488 (13)
Cl40.32147 (12)0.5162 (3)0.59552 (15)0.0719 (8)
O410.3017 (5)0.4882 (10)0.6510 (4)0.076 (3)0.806 (12)
O420.3541 (5)0.6162 (7)0.6010 (5)0.063 (3)0.806 (12)
O430.3553 (5)0.4174 (9)0.5809 (6)0.092 (4)0.806 (12)
O440.2846 (5)0.5263 (11)0.5485 (4)0.087 (4)0.806 (12)
O41A0.2808 (14)0.491 (4)0.6390 (16)0.099 (14)0.194 (12)
O42A0.3754 (9)0.486 (4)0.6243 (13)0.106 (9)0.194 (12)
O43A0.3244 (17)0.6325 (18)0.5851 (18)0.061 (8)0.194 (12)
O44A0.3147 (16)0.457 (3)0.5430 (13)0.072 (9)0.194 (12)
N1S0.4678 (4)0.9156 (9)0.4038 (4)0.075 (3)
C11S0.4759 (4)0.9363 (7)0.3557 (5)0.051 (2)
C12S0.4883 (6)0.9668 (10)0.2935 (5)0.071 (3)
H12E0.5293730.9729790.2881260.106*
H12F0.4704151.0391740.2841500.106*
H12G0.4733520.9085630.2666810.106*
O1W0.5643 (5)0.4311 (10)0.2040 (5)0.040 (4)0.51 (2)
H1W10.538 (4)0.468 (11)0.2161 (18)0.060*0.51 (2)
H1W20.587 (6)0.474 (11)0.189 (9)0.060*0.51 (2)
O1WA0.5995 (10)0.3463 (16)0.1981 (8)0.096 (9)0.49 (2)
H1W30.602 (13)0.411 (14)0.19 (2)0.144*0.49 (2)
H1W40.565 (3)0.33 (2)0.199 (5)0.144*0.49 (2)
O2W0.6389 (3)0.7126 (6)0.1929 (3)0.0547 (17)
H2W10.6042 (15)0.712 (10)0.185 (5)0.082*
H2W20.651 (4)0.670 (9)0.167 (4)0.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0225 (4)0.0185 (4)0.0181 (4)0.0000 (3)0.0010 (3)0.0011 (3)
Ni20.0213 (3)0.0167 (3)0.0207 (4)0.0003 (3)0.0006 (4)0.0004 (4)
Ni30.0231 (4)0.0197 (4)0.0206 (4)0.0018 (3)0.0008 (3)0.0027 (3)
Ni40.0266 (4)0.0175 (4)0.0227 (4)0.0018 (3)0.0022 (4)0.0019 (4)
O1A0.031 (2)0.018 (2)0.029 (3)0.0000 (18)0.005 (2)0.003 (2)
O2A0.034 (3)0.020 (2)0.042 (3)0.008 (2)0.005 (2)0.004 (2)
N1A0.027 (3)0.029 (3)0.029 (3)0.004 (2)0.002 (2)0.000 (3)
N2A0.037 (3)0.032 (3)0.026 (3)0.002 (3)0.002 (3)0.005 (3)
N3A0.026 (3)0.024 (3)0.025 (3)0.002 (2)0.003 (2)0.002 (2)
C1A0.025 (3)0.020 (3)0.033 (4)0.003 (3)0.006 (3)0.004 (3)
C2A0.030 (3)0.018 (3)0.037 (4)0.006 (3)0.010 (3)0.003 (3)
C3A0.045 (4)0.025 (4)0.045 (5)0.004 (3)0.014 (4)0.009 (3)
C4A0.050 (5)0.034 (4)0.052 (6)0.006 (4)0.016 (4)0.019 (4)
C5A0.049 (5)0.036 (4)0.038 (5)0.007 (4)0.008 (4)0.011 (4)
C6A0.033 (4)0.028 (3)0.030 (4)0.006 (3)0.005 (3)0.006 (3)
C7A0.043 (4)0.028 (4)0.061 (6)0.009 (3)0.010 (4)0.015 (4)
C8A0.039 (4)0.031 (4)0.024 (4)0.008 (3)0.002 (3)0.005 (3)
C9A0.022 (3)0.028 (3)0.030 (4)0.008 (3)0.004 (3)0.004 (3)
C10A0.025 (3)0.038 (4)0.035 (4)0.002 (3)0.003 (3)0.013 (3)
C11A0.029 (4)0.038 (4)0.041 (5)0.000 (3)0.006 (3)0.011 (3)
C12A0.034 (4)0.027 (4)0.042 (5)0.002 (3)0.002 (3)0.001 (3)
C13A0.030 (4)0.029 (4)0.030 (4)0.000 (3)0.002 (3)0.002 (3)
O1B0.026 (2)0.024 (2)0.019 (2)0.0011 (17)0.002 (2)0.000 (2)
O2B0.025 (2)0.025 (2)0.026 (3)0.0070 (19)0.0051 (19)0.0003 (19)
N1B0.027 (3)0.022 (3)0.028 (3)0.001 (2)0.002 (2)0.001 (2)
N2B0.029 (3)0.036 (3)0.025 (4)0.006 (3)0.001 (2)0.000 (3)
N3B0.028 (3)0.018 (2)0.030 (3)0.003 (2)0.002 (2)0.000 (2)
C1B0.024 (3)0.019 (3)0.029 (4)0.003 (2)0.004 (3)0.001 (3)
C2B0.025 (3)0.020 (3)0.027 (4)0.001 (3)0.006 (3)0.002 (3)
C3B0.029 (3)0.029 (4)0.024 (4)0.000 (3)0.005 (3)0.002 (3)
C4B0.032 (4)0.036 (4)0.023 (4)0.001 (3)0.010 (3)0.003 (3)
C5B0.035 (4)0.029 (3)0.020 (4)0.001 (3)0.002 (3)0.004 (3)
C6B0.031 (3)0.021 (3)0.024 (4)0.000 (3)0.003 (3)0.002 (3)
C7B0.029 (4)0.043 (4)0.038 (5)0.010 (3)0.000 (3)0.010 (4)
C8B0.031 (3)0.023 (3)0.025 (4)0.003 (3)0.003 (3)0.005 (3)
C9B0.029 (3)0.021 (3)0.034 (4)0.001 (3)0.001 (3)0.002 (3)
C10B0.034 (4)0.032 (4)0.040 (5)0.004 (3)0.005 (3)0.011 (3)
C11B0.024 (3)0.025 (4)0.062 (6)0.003 (3)0.002 (4)0.001 (4)
C12B0.028 (3)0.024 (3)0.043 (5)0.001 (3)0.002 (3)0.003 (3)
C13B0.028 (3)0.018 (3)0.043 (5)0.004 (3)0.005 (3)0.003 (3)
O1C0.028 (2)0.019 (2)0.028 (3)0.0025 (18)0.004 (2)0.001 (2)
O2C0.031 (3)0.021 (2)0.039 (3)0.004 (2)0.000 (2)0.002 (2)
N1C0.028 (3)0.026 (3)0.030 (3)0.003 (2)0.004 (3)0.002 (3)
N2C0.037 (3)0.031 (3)0.030 (4)0.001 (3)0.008 (3)0.001 (3)
N3C0.025 (3)0.028 (3)0.028 (3)0.003 (2)0.003 (2)0.001 (2)
C1C0.021 (3)0.025 (3)0.031 (4)0.002 (2)0.002 (3)0.005 (3)
C2C0.025 (3)0.025 (3)0.040 (5)0.001 (3)0.001 (3)0.009 (3)
C3C0.029 (4)0.027 (4)0.054 (5)0.003 (3)0.001 (3)0.008 (4)
C4C0.038 (4)0.035 (4)0.043 (5)0.000 (3)0.009 (4)0.018 (4)
C5C0.037 (4)0.039 (4)0.033 (4)0.004 (3)0.011 (3)0.012 (3)
C6C0.028 (3)0.025 (3)0.034 (4)0.007 (3)0.004 (3)0.005 (3)
C7C0.042 (4)0.027 (4)0.055 (6)0.006 (3)0.002 (4)0.010 (4)
C8C0.032 (4)0.037 (4)0.031 (4)0.010 (3)0.004 (3)0.012 (3)
C9C0.028 (3)0.031 (4)0.035 (5)0.004 (3)0.005 (3)0.004 (3)
C10C0.044 (4)0.042 (4)0.031 (4)0.010 (4)0.016 (4)0.000 (3)
C11C0.039 (4)0.047 (5)0.053 (6)0.012 (4)0.015 (4)0.004 (4)
C12C0.037 (4)0.035 (4)0.043 (5)0.007 (3)0.012 (4)0.003 (4)
C13C0.033 (4)0.030 (4)0.032 (4)0.005 (3)0.004 (3)0.006 (3)
O1D0.029 (2)0.025 (2)0.028 (3)0.001 (2)0.005 (2)0.002 (2)
O2D0.030 (2)0.032 (3)0.038 (3)0.002 (2)0.002 (2)0.006 (2)
N1D0.038 (3)0.028 (3)0.030 (4)0.004 (3)0.006 (3)0.006 (3)
N2D0.037 (4)0.043 (4)0.027 (4)0.000 (3)0.003 (3)0.009 (3)
N3D0.039 (3)0.018 (3)0.030 (3)0.004 (2)0.004 (3)0.001 (2)
C1D0.030 (3)0.021 (3)0.032 (4)0.008 (3)0.001 (3)0.000 (3)
C2D0.033 (4)0.018 (3)0.032 (4)0.005 (3)0.000 (3)0.004 (3)
C3D0.030 (3)0.028 (3)0.042 (5)0.003 (3)0.005 (3)0.003 (3)
C4D0.030 (4)0.041 (4)0.043 (5)0.006 (3)0.009 (3)0.005 (4)
C5D0.039 (4)0.034 (4)0.036 (5)0.006 (3)0.013 (3)0.002 (3)
C6D0.036 (4)0.025 (3)0.034 (4)0.005 (3)0.005 (3)0.002 (3)
C7D0.045 (5)0.037 (4)0.053 (6)0.008 (4)0.006 (4)0.015 (4)
C8D0.037 (4)0.031 (4)0.030 (4)0.009 (3)0.000 (3)0.005 (3)
C9D0.042 (4)0.024 (3)0.034 (4)0.009 (3)0.012 (3)0.009 (3)
C10D0.044 (5)0.036 (4)0.039 (5)0.003 (4)0.017 (4)0.012 (4)
C11D0.049 (5)0.032 (4)0.058 (6)0.004 (4)0.022 (4)0.008 (4)
C12D0.037 (4)0.024 (4)0.066 (6)0.001 (3)0.007 (4)0.007 (4)
C13D0.033 (4)0.022 (3)0.047 (5)0.001 (3)0.005 (4)0.004 (3)
Cl10.0321 (9)0.0463 (10)0.0294 (10)0.0015 (8)0.0001 (7)0.0039 (8)
O110.037 (3)0.063 (4)0.058 (4)0.010 (3)0.002 (3)0.007 (3)
O120.080 (5)0.043 (3)0.051 (4)0.009 (3)0.002 (4)0.002 (3)
O130.091 (5)0.081 (5)0.040 (4)0.010 (4)0.022 (4)0.001 (4)
O140.039 (4)0.099 (6)0.076 (5)0.015 (4)0.010 (3)0.025 (4)
Cl20.0553 (12)0.0398 (11)0.0434 (13)0.0063 (9)0.0047 (10)0.0041 (9)
O210.054 (12)0.044 (9)0.034 (9)0.021 (8)0.004 (7)0.010 (7)
O220.114 (18)0.054 (10)0.049 (11)0.039 (11)0.045 (11)0.015 (8)
O230.064 (10)0.044 (9)0.059 (11)0.026 (7)0.025 (8)0.018 (7)
O240.066 (11)0.115 (17)0.110 (18)0.021 (11)0.008 (10)0.031 (14)
O21A0.057 (15)0.053 (16)0.049 (16)0.011 (11)0.001 (12)0.012 (13)
O22A0.088 (18)0.038 (10)0.032 (10)0.018 (10)0.000 (11)0.001 (7)
O23A0.064 (13)0.12 (2)0.062 (15)0.035 (15)0.011 (11)0.040 (16)
O24A0.15 (2)0.074 (16)0.056 (14)0.063 (16)0.006 (15)0.003 (11)
Cl30.076 (2)0.126 (3)0.067 (2)0.032 (2)0.0087 (16)0.013 (2)
O310.114 (8)0.178 (10)0.139 (9)0.060 (8)0.030 (7)0.013 (8)
O320.078 (7)0.074 (7)0.040 (6)0.002 (6)0.023 (6)0.005 (6)
O330.066 (7)0.085 (8)0.073 (8)0.021 (7)0.024 (7)0.008 (7)
O340.080 (9)0.085 (9)0.062 (8)0.005 (8)0.043 (7)0.002 (7)
O32A0.056 (7)0.076 (8)0.040 (7)0.010 (6)0.003 (6)0.017 (6)
O33A0.097 (8)0.086 (8)0.055 (7)0.004 (7)0.051 (6)0.001 (6)
O34A0.079 (10)0.080 (8)0.045 (7)0.005 (8)0.028 (7)0.007 (6)
Cl40.0608 (15)0.081 (2)0.074 (2)0.0103 (14)0.0146 (14)0.0152 (16)
O410.096 (8)0.088 (6)0.046 (6)0.016 (6)0.020 (5)0.040 (5)
O420.087 (7)0.044 (5)0.060 (6)0.010 (5)0.012 (5)0.009 (4)
O430.101 (8)0.068 (6)0.108 (9)0.017 (6)0.031 (7)0.010 (6)
O440.103 (8)0.112 (9)0.046 (6)0.010 (7)0.025 (6)0.015 (6)
O41A0.10 (2)0.13 (2)0.07 (2)0.014 (18)0.021 (18)0.032 (17)
O42A0.118 (14)0.098 (14)0.103 (15)0.008 (14)0.012 (14)0.010 (13)
O43A0.067 (15)0.050 (14)0.066 (15)0.016 (13)0.012 (14)0.021 (12)
O44A0.069 (15)0.098 (16)0.050 (14)0.005 (14)0.019 (13)0.014 (14)
N1S0.091 (7)0.084 (7)0.050 (6)0.039 (6)0.019 (5)0.029 (5)
C11S0.060 (6)0.035 (5)0.058 (7)0.003 (4)0.017 (5)0.001 (4)
C12S0.112 (10)0.067 (7)0.033 (6)0.025 (7)0.003 (6)0.010 (5)
O1W0.046 (7)0.043 (7)0.031 (7)0.002 (5)0.003 (5)0.001 (5)
O1WA0.14 (2)0.102 (17)0.051 (12)0.052 (15)0.027 (11)0.034 (11)
O2W0.063 (4)0.059 (4)0.042 (4)0.012 (4)0.004 (3)0.012 (3)
Geometric parameters (Å, º) top
Ni1—N1A1.932 (7)C1C—C6C1.406 (11)
Ni1—O1A1.960 (5)C1C—C2C1.410 (10)
Ni1—N3A1.980 (6)C2C—C3C1.386 (10)
Ni1—O1B1.998 (5)C3C—C4C1.393 (12)
Ni1—O2B2.276 (4)C3C—H3CA0.9500
Ni2—N1B1.935 (6)C4C—C5C1.363 (12)
Ni2—O1B1.962 (4)C4C—H4CA0.9500
Ni2—N3B1.971 (6)C5C—C6C1.401 (10)
Ni2—O1C1.997 (5)C5C—H5CA0.9500
Ni2—O2C2.257 (5)C6C—C8C1.434 (11)
Ni3—N1C1.932 (7)C7C—H7CA0.9800
Ni3—O1C1.965 (5)C7C—H7CB0.9800
Ni3—N3C1.975 (6)C7C—H7CC0.9800
Ni3—O1D1.993 (5)C8C—H8CA0.9500
Ni3—O2D2.264 (5)C9C—C10C1.409 (11)
Ni4—N1D1.948 (7)C10C—C11C1.355 (13)
Ni4—O1D1.950 (5)C10C—H10C0.9500
Ni4—N3D1.969 (6)C11C—C12C1.397 (13)
Ni4—O1A1.993 (5)C11C—H11C0.9500
Ni4—O2A2.283 (5)C12C—C13C1.375 (10)
O1A—C1A1.365 (8)C12C—H12C0.9500
O2A—C2A1.378 (10)C13C—H13C0.9500
O2A—C7A1.439 (8)O1D—C1D1.360 (9)
N1A—C8A1.305 (9)O2D—C2D1.387 (9)
N1A—N2A1.377 (9)O2D—C7D1.429 (9)
N2A—C9A1.364 (10)N1D—C8D1.300 (10)
N2A—H2AA0.8800N1D—N2D1.362 (9)
N3A—C9A1.330 (9)N2D—C9D1.355 (11)
N3A—C13A1.356 (9)N2D—H2DA0.8800
C1A—C6A1.396 (11)N3D—C9D1.341 (10)
C1A—C2A1.414 (10)N3D—C13D1.351 (10)
C2A—C3A1.379 (10)C1D—C2D1.403 (10)
C3A—C4A1.370 (13)C1D—C6D1.410 (11)
C3A—H3AA0.9500C2D—C3D1.383 (10)
C4A—C5A1.378 (13)C3D—C4D1.373 (12)
C4A—H4AA0.9500C3D—H3DA0.9500
C5A—C6A1.403 (10)C4D—C5D1.368 (12)
C5A—H5AA0.9500C4D—H4DA0.9500
C6A—C8A1.441 (11)C5D—C6D1.416 (11)
C7A—H7AA0.9800C5D—H5DA0.9500
C7A—H7AB0.9800C6D—C8D1.433 (11)
C7A—H7AC0.9800C7D—H7DA0.9800
C8A—H8AA0.9500C7D—H7DB0.9800
C9A—C10A1.411 (10)C7D—H7DC0.9800
C10A—C11A1.330 (12)C8D—H8DA0.9500
C10A—H10A0.9500C9D—C10D1.401 (11)
C11A—C12A1.408 (12)C10D—C11D1.390 (13)
C11A—H11A0.9500C10D—H10D0.9500
C12A—C13A1.384 (10)C11D—C12D1.381 (14)
C12A—H12A0.9500C11D—H11D0.9500
C13A—H13A0.9500C12D—C13D1.380 (11)
O1B—C1B1.367 (8)C12D—H12D0.9500
O2B—C2B1.380 (8)C13D—H13D0.9500
O2B—C7B1.435 (8)Cl1—O141.409 (6)
N1B—C8B1.292 (9)Cl1—O131.413 (7)
N1B—N2B1.377 (8)Cl1—O121.424 (6)
N2B—C9B1.353 (10)Cl1—O111.429 (6)
N2B—H2BA0.8800Cl2—O24A1.378 (18)
N3B—C9B1.351 (10)Cl2—O21A1.397 (18)
N3B—C13B1.360 (9)Cl2—O231.399 (14)
C1B—C2B1.402 (9)Cl2—O211.405 (15)
C1B—C6B1.404 (10)Cl2—O221.430 (14)
C2B—C3B1.387 (10)Cl2—O22A1.437 (17)
C3B—C4B1.398 (10)Cl2—O241.438 (14)
C3B—H3BA0.9500Cl2—O23A1.449 (17)
C4B—C5B1.364 (10)Cl3—O33A1.248 (12)
C4B—H4BA0.9500Cl3—O34A1.326 (15)
C5B—C6B1.414 (10)Cl3—O321.336 (12)
C5B—H5BA0.9500Cl3—O341.377 (15)
C6B—C8B1.453 (10)Cl3—O311.448 (9)
C7B—H7BA0.9800Cl3—O331.517 (12)
C7B—H7BB0.9800Cl3—O32A1.677 (14)
C7B—H7BC0.9800Cl4—O411.363 (9)
C8B—H8BA0.9500Cl4—O441.368 (9)
C9B—C10B1.408 (10)Cl4—O44A1.38 (2)
C10B—C11B1.356 (12)Cl4—O41A1.40 (2)
C10B—H10B0.9500Cl4—O43A1.40 (2)
C11B—C12B1.411 (12)Cl4—O421.420 (9)
C11B—H11B0.9500Cl4—O431.457 (10)
C12B—C13B1.360 (10)Cl4—O42A1.47 (2)
C12B—H12B0.9500N1S—C11S1.117 (13)
C13B—H13B0.9500C11S—C12S1.462 (15)
O1C—C1C1.355 (8)C12S—H12E0.9800
O2C—C2C1.368 (9)C12S—H12F0.9800
O2C—C7C1.439 (9)C12S—H12G0.9800
N1C—C8C1.290 (9)O1W—H1W10.80 (3)
N1C—N2C1.381 (9)O1W—H1W20.82 (3)
N2C—C9C1.371 (10)O1WA—H1W30.82 (3)
N2C—H2CA0.8800O1WA—H1W40.82 (3)
N3C—C13C1.341 (9)O2W—H2W10.84 (3)
N3C—C9C1.347 (10)O2W—H2W20.83 (3)
N1A—Ni1—O1A92.2 (2)C8C—N1C—N2C118.7 (7)
N1A—Ni1—N3A81.6 (2)C8C—N1C—Ni3128.3 (6)
O1A—Ni1—N3A173.5 (2)N2C—N1C—Ni3112.8 (5)
N1A—Ni1—O1B171.2 (2)C9C—N2C—N1C115.9 (7)
O1A—Ni1—O1B87.1 (2)C9C—N2C—H2CA122.1
N3A—Ni1—O1B98.8 (2)N1C—N2C—H2CA122.1
N1A—Ni1—O2B113.4 (2)C13C—N3C—C9C118.6 (6)
O1A—Ni1—O2B98.83 (19)C13C—N3C—Ni3129.0 (5)
N3A—Ni1—O2B85.3 (2)C9C—N3C—Ni3112.4 (5)
O1B—Ni1—O2B75.39 (17)O1C—C1C—C6C123.0 (6)
N1B—Ni2—O1B91.3 (2)O1C—C1C—C2C118.7 (7)
N1B—Ni2—N3B82.0 (2)C6C—C1C—C2C118.3 (6)
O1B—Ni2—N3B171.8 (2)O2C—C2C—C3C124.2 (7)
N1B—Ni2—O1C172.1 (2)O2C—C2C—C1C114.4 (6)
O1B—Ni2—O1C88.8 (2)C3C—C2C—C1C121.3 (8)
N3B—Ni2—O1C97.1 (2)C2C—C3C—C4C119.6 (7)
N1B—Ni2—O2C111.7 (2)C2C—C3C—H3CA120.2
O1B—Ni2—O2C97.69 (18)C4C—C3C—H3CA120.2
N3B—Ni2—O2C89.2 (2)C5C—C4C—C3C119.8 (7)
O1C—Ni2—O2C76.02 (19)C5C—C4C—H4CA120.1
N1C—Ni3—O1C91.2 (2)C3C—C4C—H4CA120.1
N1C—Ni3—N3C82.4 (3)C4C—C5C—C6C122.0 (8)
O1C—Ni3—N3C172.3 (2)C4C—C5C—H5CA119.0
N1C—Ni3—O1D172.1 (2)C6C—C5C—H5CA119.0
O1C—Ni3—O1D88.1 (2)C5C—C6C—C1C119.0 (7)
N3C—Ni3—O1D97.7 (2)C5C—C6C—C8C117.2 (8)
N1C—Ni3—O2D111.5 (2)C1C—C6C—C8C123.8 (7)
O1C—Ni3—O2D99.81 (19)O2C—C7C—H7CA109.5
N3C—Ni3—O2D86.5 (2)O2C—C7C—H7CB109.5
O1D—Ni3—O2D76.3 (2)H7CA—C7C—H7CB109.5
N1D—Ni4—O1D89.9 (2)O2C—C7C—H7CC109.5
N1D—Ni4—N3D81.9 (3)H7CA—C7C—H7CC109.5
O1D—Ni4—N3D170.6 (2)H7CB—C7C—H7CC109.5
N1D—Ni4—O1A169.1 (2)N1C—C8C—C6C125.2 (7)
O1D—Ni4—O1A89.5 (2)N1C—C8C—H8CA117.4
N3D—Ni4—O1A97.8 (2)C6C—C8C—H8CA117.4
N1D—Ni4—O2A116.3 (2)N3C—C9C—N2C116.4 (7)
O1D—Ni4—O2A100.3 (2)N3C—C9C—C10C122.5 (7)
N3D—Ni4—O2A87.4 (2)N2C—C9C—C10C121.1 (7)
O1A—Ni4—O2A74.5 (2)C11C—C10C—C9C117.5 (8)
C1A—O1A—Ni1125.5 (4)C11C—C10C—H10C121.3
C1A—O1A—Ni4121.3 (4)C9C—C10C—H10C121.3
Ni1—O1A—Ni4112.2 (2)C10C—C11C—C12C120.5 (8)
C2A—O2A—C7A116.2 (6)C10C—C11C—H11C119.7
C2A—O2A—Ni4113.0 (4)C12C—C11C—H11C119.7
C7A—O2A—Ni4129.4 (5)C13C—C12C—C11C118.8 (8)
C8A—N1A—N2A118.3 (7)C13C—C12C—H12C120.6
C8A—N1A—Ni1128.8 (5)C11C—C12C—H12C120.6
N2A—N1A—Ni1112.9 (5)N3C—C13C—C12C122.0 (8)
C9A—N2A—N1A115.8 (6)N3C—C13C—H13C119.0
C9A—N2A—H2AA122.1C12C—C13C—H13C119.0
N1A—N2A—H2AA122.1C1D—O1D—Ni4127.6 (5)
C9A—N3A—C13A118.5 (6)C1D—O1D—Ni3118.5 (4)
C9A—N3A—Ni1113.1 (5)Ni4—O1D—Ni3112.3 (2)
C13A—N3A—Ni1128.2 (5)C2D—O2D—C7D117.2 (6)
O1A—C1A—C6A123.8 (6)C2D—O2D—Ni3111.3 (4)
O1A—C1A—C2A117.9 (7)C7D—O2D—Ni3126.9 (5)
C6A—C1A—C2A118.3 (6)C8D—N1D—N2D118.1 (7)
O2A—C2A—C3A125.7 (7)C8D—N1D—Ni4129.7 (5)
O2A—C2A—C1A113.3 (6)N2D—N1D—Ni4112.2 (5)
C3A—C2A—C1A120.8 (8)C9D—N2D—N1D116.1 (7)
C4A—C3A—C2A120.2 (8)C9D—N2D—H2DA121.9
C4A—C3A—H3AA119.9N1D—N2D—H2DA121.9
C2A—C3A—H3AA119.9C9D—N3D—C13D120.3 (7)
C3A—C4A—C5A120.5 (8)C9D—N3D—Ni4112.0 (5)
C3A—C4A—H4AA119.7C13D—N3D—Ni4127.7 (6)
C5A—C4A—H4AA119.7O1D—C1D—C2D119.7 (7)
C4A—C5A—C6A120.3 (9)O1D—C1D—C6D122.9 (6)
C4A—C5A—H5AA119.8C2D—C1D—C6D117.2 (7)
C6A—C5A—H5AA119.8C3D—C2D—O2D124.0 (6)
C1A—C6A—C5A119.8 (7)C3D—C2D—C1D122.2 (7)
C1A—C6A—C8A124.7 (6)O2D—C2D—C1D113.8 (6)
C5A—C6A—C8A115.5 (7)C4D—C3D—C2D119.8 (7)
O2A—C7A—H7AA109.5C4D—C3D—H3DA120.1
O2A—C7A—H7AB109.5C2D—C3D—H3DA120.1
H7AA—C7A—H7AB109.5C5D—C4D—C3D120.5 (7)
O2A—C7A—H7AC109.5C5D—C4D—H4DA119.7
H7AA—C7A—H7AC109.5C3D—C4D—H4DA119.7
H7AB—C7A—H7AC109.5C4D—C5D—C6D120.5 (8)
N1A—C8A—C6A123.6 (7)C4D—C5D—H5DA119.7
N1A—C8A—H8AA118.2C6D—C5D—H5DA119.7
C6A—C8A—H8AA118.2C1D—C6D—C5D119.8 (7)
N3A—C9A—N2A116.2 (6)C1D—C6D—C8D123.8 (7)
N3A—C9A—C10A122.2 (7)C5D—C6D—C8D116.4 (7)
N2A—C9A—C10A121.6 (7)O2D—C7D—H7DA109.5
C11A—C10A—C9A118.8 (8)O2D—C7D—H7DB109.5
C11A—C10A—H10A120.6H7DA—C7D—H7DB109.5
C9A—C10A—H10A120.6O2D—C7D—H7DC109.5
C10A—C11A—C12A120.7 (7)H7DA—C7D—H7DC109.5
C10A—C11A—H11A119.6H7DB—C7D—H7DC109.5
C12A—C11A—H11A119.6N1D—C8D—C6D123.7 (7)
C13A—C12A—C11A117.5 (7)N1D—C8D—H8DA118.2
C13A—C12A—H12A121.2C6D—C8D—H8DA118.2
C11A—C12A—H12A121.2N3D—C9D—N2D117.1 (7)
N3A—C13A—C12A122.2 (7)N3D—C9D—C10D121.9 (8)
N3A—C13A—H13A118.9N2D—C9D—C10D121.0 (8)
C12A—C13A—H13A118.9C11D—C10D—C9D117.1 (8)
C1B—O1B—Ni2125.4 (4)C11D—C10D—H10D121.5
C1B—O1B—Ni1118.9 (4)C9D—C10D—H10D121.5
Ni2—O1B—Ni1111.5 (2)C12D—C11D—C10D120.7 (8)
C2B—O2B—C7B117.9 (5)C12D—C11D—H11D119.6
C2B—O2B—Ni1111.1 (4)C10D—C11D—H11D119.6
C7B—O2B—Ni1125.4 (4)C13D—C12D—C11D119.1 (8)
C8B—N1B—N2B118.7 (6)C13D—C12D—H12D120.4
C8B—N1B—Ni2129.1 (5)C11D—C12D—H12D120.4
N2B—N1B—Ni2112.1 (4)N3D—C13D—C12D120.8 (9)
C9B—N2B—N1B116.7 (6)N3D—C13D—H13D119.6
C9B—N2B—H2BA121.7C12D—C13D—H13D119.6
N1B—N2B—H2BA121.7O14—Cl1—O13111.7 (5)
C9B—N3B—C13B119.4 (6)O14—Cl1—O12108.8 (5)
C9B—N3B—Ni2112.6 (5)O13—Cl1—O12109.5 (4)
C13B—N3B—Ni2128.0 (5)O14—Cl1—O11109.3 (4)
O1B—C1B—C2B118.5 (6)O13—Cl1—O11109.1 (5)
O1B—C1B—C6B122.7 (6)O12—Cl1—O11108.3 (4)
C2B—C1B—C6B118.8 (6)O24A—Cl2—O21A112.5 (17)
O2B—C2B—C3B123.8 (6)O23—Cl2—O21111.8 (11)
O2B—C2B—C1B114.3 (6)O23—Cl2—O22107.8 (11)
C3B—C2B—C1B121.8 (7)O21—Cl2—O22108.6 (13)
C2B—C3B—C4B118.7 (7)O24A—Cl2—O22A111.1 (14)
C2B—C3B—H3BA120.6O21A—Cl2—O22A108.6 (16)
C4B—C3B—H3BA120.6O23—Cl2—O24112.1 (12)
C5B—C4B—C3B120.7 (7)O21—Cl2—O24106.6 (13)
C5B—C4B—H4BA119.7O22—Cl2—O24109.9 (12)
C3B—C4B—H4BA119.7O24A—Cl2—O23A111.2 (15)
C4B—C5B—C6B121.2 (7)O21A—Cl2—O23A109.4 (17)
C4B—C5B—H5BA119.4O22A—Cl2—O23A103.7 (15)
C6B—C5B—H5BA119.4O33A—Cl3—O34A131.5 (15)
C1B—C6B—C5B118.8 (6)O32—Cl3—O34117.6 (13)
C1B—C6B—C8B125.1 (6)O33A—Cl3—O31109.2 (10)
C5B—C6B—C8B116.1 (6)O34A—Cl3—O31110.4 (13)
O2B—C7B—H7BA109.5O32—Cl3—O31111.5 (9)
O2B—C7B—H7BB109.5O34—Cl3—O31103.8 (12)
H7BA—C7B—H7BB109.5O32—Cl3—O33108.8 (9)
O2B—C7B—H7BC109.5O34—Cl3—O33109.1 (13)
H7BA—C7B—H7BC109.5O31—Cl3—O33105.3 (8)
H7BB—C7B—H7BC109.5O33A—Cl3—O32A100.3 (10)
N1B—C8B—C6B122.9 (7)O34A—Cl3—O32A102.7 (13)
N1B—C8B—H8BA118.6O31—Cl3—O32A95.4 (7)
C6B—C8B—H8BA118.6O41—Cl4—O44120.0 (7)
N3B—C9B—N2B115.9 (6)O44A—Cl4—O41A114 (2)
N3B—C9B—C10B121.2 (7)O44A—Cl4—O43A111.8 (18)
N2B—C9B—C10B122.9 (7)O41A—Cl4—O43A111 (2)
C11B—C10B—C9B118.5 (8)O41—Cl4—O42108.1 (7)
C11B—C10B—H10B120.7O44—Cl4—O42109.7 (7)
C9B—C10B—H10B120.7O41—Cl4—O43101.2 (7)
C10B—C11B—C12B120.2 (7)O44—Cl4—O43104.3 (8)
C10B—C11B—H11B119.9O42—Cl4—O43113.3 (7)
C12B—C11B—H11B119.9O44A—Cl4—O42A110.2 (17)
C13B—C12B—C11B118.8 (7)O41A—Cl4—O42A104.0 (18)
C13B—C12B—H12B120.6O43A—Cl4—O42A105.6 (18)
C11B—C12B—H12B120.6N1S—C11S—C12S177.7 (12)
C12B—C13B—N3B121.7 (8)C11S—C12S—H12E109.5
C12B—C13B—H13B119.1C11S—C12S—H12F109.5
N3B—C13B—H13B119.1H12E—C12S—H12F109.5
C1C—O1C—Ni3126.9 (5)C11S—C12S—H12G109.5
C1C—O1C—Ni2118.8 (4)H12E—C12S—H12G109.5
Ni3—O1C—Ni2112.6 (2)H12F—C12S—H12G109.5
C2C—O2C—C7C118.5 (6)H1W1—O1W—H1W2107 (5)
C2C—O2C—Ni2111.7 (4)H1W3—O1WA—H1W4108 (5)
C7C—O2C—Ni2127.8 (5)H2W1—O2W—H2W2102 (4)
C8A—N1A—N2A—C9A174.9 (6)C8C—N1C—N2C—C9C176.2 (6)
Ni1—N1A—N2A—C9A6.2 (7)Ni3—N1C—N2C—C9C0.8 (7)
Ni1—O1A—C1A—C6A14.8 (9)Ni3—O1C—C1C—C6C12.1 (9)
Ni4—O1A—C1A—C6A177.7 (5)Ni2—O1C—C1C—C6C175.5 (5)
Ni1—O1A—C1A—C2A167.0 (4)Ni3—O1C—C1C—C2C169.2 (5)
Ni4—O1A—C1A—C2A0.5 (8)Ni2—O1C—C1C—C2C5.8 (8)
C7A—O2A—C2A—C3A17.2 (10)C7C—O2C—C2C—C3C11.8 (10)
Ni4—O2A—C2A—C3A175.2 (6)Ni2—O2C—C2C—C3C176.9 (6)
C7A—O2A—C2A—C1A166.9 (6)C7C—O2C—C2C—C1C169.2 (6)
Ni4—O2A—C2A—C1A0.8 (7)Ni2—O2C—C2C—C1C4.1 (7)
O1A—C1A—C2A—O2A0.2 (8)O1C—C1C—C2C—O2C0.5 (9)
C6A—C1A—C2A—O2A178.6 (6)C6C—C1C—C2C—O2C179.3 (6)
O1A—C1A—C2A—C3A175.9 (6)O1C—C1C—C2C—C3C178.5 (6)
C6A—C1A—C2A—C3A2.4 (10)C6C—C1C—C2C—C3C0.3 (10)
O2A—C2A—C3A—C4A176.9 (7)O2C—C2C—C3C—C4C178.5 (7)
C1A—C2A—C3A—C4A1.2 (11)C1C—C2C—C3C—C4C0.5 (11)
C2A—C3A—C4A—C5A0.1 (12)C2C—C3C—C4C—C5C0.6 (12)
C3A—C4A—C5A—C6A0.2 (12)C3C—C4C—C5C—C6C0.1 (12)
O1A—C1A—C6A—C5A175.9 (6)C4C—C5C—C6C—C1C0.8 (11)
C2A—C1A—C6A—C5A2.3 (10)C4C—C5C—C6C—C8C179.5 (7)
O1A—C1A—C6A—C8A5.5 (11)O1C—C1C—C6C—C5C177.8 (6)
C2A—C1A—C6A—C8A176.2 (6)C2C—C1C—C6C—C5C0.9 (10)
C4A—C5A—C6A—C1A1.1 (11)O1C—C1C—C6C—C8C1.8 (10)
C4A—C5A—C6A—C8A177.6 (7)C2C—C1C—C6C—C8C179.5 (6)
N2A—N1A—C8A—C6A178.6 (6)N2C—N1C—C8C—C6C179.8 (6)
Ni1—N1A—C8A—C6A2.7 (11)Ni3—N1C—C8C—C6C5.2 (10)
C1A—C6A—C8A—N1A3.8 (11)C5C—C6C—C8C—N1C178.4 (7)
C5A—C6A—C8A—N1A174.8 (7)C1C—C6C—C8C—N1C1.9 (11)
C13A—N3A—C9A—N2A178.7 (6)C13C—N3C—C9C—N2C175.7 (6)
Ni1—N3A—C9A—N2A2.9 (7)Ni3—N3C—C9C—N2C4.9 (8)
C13A—N3A—C9A—C10A2.2 (10)C13C—N3C—C9C—C10C2.6 (10)
Ni1—N3A—C9A—C10A178.0 (5)Ni3—N3C—C9C—C10C176.8 (6)
N1A—N2A—C9A—N3A6.0 (9)N1C—N2C—C9C—N3C3.9 (9)
N1A—N2A—C9A—C10A174.9 (6)N1C—N2C—C9C—C10C177.8 (7)
N3A—C9A—C10A—C11A0.4 (11)N3C—C9C—C10C—C11C1.4 (12)
N2A—C9A—C10A—C11A179.4 (7)N2C—C9C—C10C—C11C176.8 (7)
C9A—C10A—C11A—C12A1.9 (11)C9C—C10C—C11C—C12C0.4 (13)
C10A—C11A—C12A—C13A2.2 (11)C10C—C11C—C12C—C13C1.0 (13)
C9A—N3A—C13A—C12A1.8 (10)C9C—N3C—C13C—C12C2.0 (10)
Ni1—N3A—C13A—C12A176.9 (5)Ni3—N3C—C13C—C12C177.3 (6)
C11A—C12A—C13A—N3A0.4 (11)C11C—C12C—C13C—N3C0.3 (12)
C8B—N1B—N2B—C9B168.2 (6)C8D—N1D—N2D—C9D172.1 (6)
Ni2—N1B—N2B—C9B8.9 (7)Ni4—N1D—N2D—C9D7.5 (8)
Ni2—O1B—C1B—C2B165.5 (4)Ni4—O1D—C1D—C2D169.2 (4)
Ni1—O1B—C1B—C2B10.6 (7)Ni3—O1D—C1D—C2D5.0 (8)
Ni2—O1B—C1B—C6B16.7 (9)Ni4—O1D—C1D—C6D14.1 (9)
Ni1—O1B—C1B—C6B171.7 (5)Ni3—O1D—C1D—C6D178.3 (5)
C7B—O2B—C2B—C3B16.1 (10)C7D—O2D—C2D—C3D20.3 (10)
Ni1—O2B—C2B—C3B171.2 (5)Ni3—O2D—C2D—C3D178.1 (5)
C7B—O2B—C2B—C1B164.7 (6)C7D—O2D—C2D—C1D162.5 (6)
Ni1—O2B—C2B—C1B9.6 (7)Ni3—O2D—C2D—C1D4.7 (7)
O1B—C1B—C2B—O2B0.7 (9)O1D—C1D—C2D—C3D177.7 (6)
C6B—C1B—C2B—O2B177.2 (6)C6D—C1D—C2D—C3D0.8 (9)
O1B—C1B—C2B—C3B179.9 (6)O1D—C1D—C2D—O2D0.4 (9)
C6B—C1B—C2B—C3B2.1 (10)C6D—C1D—C2D—O2D176.5 (6)
O2B—C2B—C3B—C4B178.2 (6)O2D—C2D—C3D—C4D177.0 (7)
C1B—C2B—C3B—C4B1.0 (10)C1D—C2D—C3D—C4D0.0 (10)
C2B—C3B—C4B—C5B1.0 (11)C2D—C3D—C4D—C5D1.0 (11)
C3B—C4B—C5B—C6B1.9 (11)C3D—C4D—C5D—C6D1.3 (12)
O1B—C1B—C6B—C5B178.9 (6)O1D—C1D—C6D—C5D177.3 (6)
C2B—C1B—C6B—C5B1.1 (10)C2D—C1D—C6D—C5D0.5 (10)
O1B—C1B—C6B—C8B0.5 (10)O1D—C1D—C6D—C8D0.6 (11)
C2B—C1B—C6B—C8B178.3 (6)C2D—C1D—C6D—C8D176.2 (6)
C4B—C5B—C6B—C1B0.8 (11)C4D—C5D—C6D—C1D0.5 (11)
C4B—C5B—C6B—C8B179.7 (7)C4D—C5D—C6D—C8D177.5 (7)
N2B—N1B—C8B—C6B177.2 (6)N2D—N1D—C8D—C6D177.0 (7)
Ni2—N1B—C8B—C6B6.3 (10)Ni4—N1D—C8D—C6D3.5 (11)
C1B—C6B—C8B—N1B5.2 (11)C1D—C6D—C8D—N1D6.1 (11)
C5B—C6B—C8B—N1B175.3 (6)C5D—C6D—C8D—N1D177.1 (7)
C13B—N3B—C9B—N2B178.2 (6)C13D—N3D—C9D—N2D175.4 (6)
Ni2—N3B—C9B—N2B2.5 (7)Ni4—N3D—C9D—N2D3.8 (8)
C13B—N3B—C9B—C10B3.5 (10)C13D—N3D—C9D—C10D3.8 (10)
Ni2—N3B—C9B—C10B175.8 (5)Ni4—N3D—C9D—C10D177.0 (6)
N1B—N2B—C9B—N3B4.2 (9)N1D—N2D—C9D—N3D2.5 (10)
N1B—N2B—C9B—C10B177.5 (6)N1D—N2D—C9D—C10D176.8 (7)
N3B—C9B—C10B—C11B2.8 (11)N3D—C9D—C10D—C11D3.0 (11)
N2B—C9B—C10B—C11B179.1 (7)N2D—C9D—C10D—C11D176.2 (7)
C9B—C10B—C11B—C12B0.2 (11)C9D—C10D—C11D—C12D0.4 (12)
C10B—C11B—C12B—C13B2.4 (11)C10D—C11D—C12D—C13D1.2 (12)
C11B—C12B—C13B—N3B1.6 (10)C9D—N3D—C13D—C12D2.1 (10)
C9B—N3B—C13B—C12B1.3 (9)Ni4—N3D—C13D—C12D178.9 (5)
Ni2—N3B—C13B—C12B177.9 (5)C11D—C12D—C13D—N3D0.4 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7B—H7BB···N1Si0.982.603.523 (11)157
C13B—H13B···O130.952.423.126 (9)131
C13C—H13C···N1S0.952.593.348 (11)137
N2D—H2DA···O2W0.881.912.720 (9)152
C7D—H7DC···O120.982.563.389 (10)142
C12S—H12G···O14ii0.982.373.335 (12)168
O2W—H2W1···O11ii0.84 (3)2.12 (7)2.795 (8)138 (9)
O2W—H2W2···Cl4ii0.83 (3)2.78 (3)3.599 (6)170 (9)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1, y+1, z1/2.
 

Acknowledgements

The authors are thankful to the Head of the Department of Chemistry, A. P. S. University, Rewa, for providing the facilities required to perform this work. The authors are also thankful to SAIF, CDRI Lucknow, for the microanalysis.

References

First citationAddison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAlcantara, K., Munge, B., Pendon, Z., Frank, H. A. & Rusling, J. F. (2006). J. Am. Chem. Soc. 128, 14930–14937.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, J., Thakurta, S., Pilet, G., Luneau, D. & Mitra, S. (2009). Polyhedron, 28, 819–825.  Web of Science CSD CrossRef CAS Google Scholar
First citationClemente-Juan, J. M., Chansou, B., Donnadieu, B. & Tuchagues, J.-P. (2000). Inorg. Chem. 39, 5515–5519.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDutta, N., Haldar, S., Majumder, A., Vijaykumar, G., Carrella, L. & Bera, M. (2020). Inorg. Chem. Commun. 121, 108208.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGungor, E. & Kara, H. (2015). J. Struct. Chem. 56, 1646–1652.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, Y.-M., Zhang, J.-J., Fu, R.-B., Xiang, S.-C., Sheng, T.-L., Yuan, D.-Q., Huang, X.-H. & Wu, X.-T. (2006). Polyhedron, 25, 1618–1624.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, S.-Y., Xu, G.-F., Zhao, L., Guo, Y.-N., Tang, J., Wang, Q.-L. & Liu, G.-X. (2011). Inorg. Chim. Acta, 373, 173–178.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, S., Wang, S., Cao, F., Fu, H., Li, D. & Dou, J. (2012). RSC Adv. 2, 1310–1313.  Web of Science CSD CrossRef CAS Google Scholar
First citationMandal, D., Hong, C. S., Kim, H. C., Fun, H.-K. & Ray, D. (2008). Polyhedron, 27, 2372–2378.  Web of Science CSD CrossRef CAS Google Scholar
First citationNihei, M., Hoshino, N., Ito, T. & Oshio, H. (2003). Polyhedron, 22, 2359–2362.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPatel, S. K., Patel, R. N., Singh, Y., Singh, Y. P., Kumhar, D., Jadeja, R. N., Roy, H., Patel, A. K., Patel, N., Patel, N., Banerjee, A., Choquesillo-Lazarte, D. & Gutierrez, A. (2019). Polyhedron, 161, 198–212.  Web of Science CSD CrossRef CAS Google Scholar
First citationPouralimardan, O., Chamayou, A. C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599–1608.  Web of Science CSD CrossRef CAS Google Scholar
First citationPowell, A. K. (2003). Comprehensive Coordination Chemistry II, edited by J. A. McCleverty & T. J. Meyer, p. 169. Oxford: Pergamon.  Google Scholar
First citationRay, A., Rizzoli, C., Pilet, G., Desplanches, C., Garribba, E., Rentschler, E. & Mitra, S. (2009). Eur. J. Inorg. Chem. pp. 2915–2928.  Web of Science CSD CrossRef Google Scholar
First citationSagar, S., Sengupta, S., Mota, A. J., Chattopadhyay, S. K., Espinosa Ferao, A., Riviere, E., Lewis, W. & Naskar, S. (2017). Dalton Trans. 46, 1249–1259.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSaha, S., Kottalanka, R. K., Bhowmik, P., Jana, S., Harms, K., Panda, T. K., Chattopadhyay, S. & Nayek, H. P. (2014). J. Mol. Struct. 1061, 26–31.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShit, S., Nandy, M., Rosair, G., Gómez-García, C. J., Almenar, J. J. B. & Mitra, S. (2013). Polyhedron, 61, 73–79.  Web of Science CSD CrossRef CAS Google Scholar
First citationSun, J.-P., Li, L.-C. & Zheng, X.-J. (2011). Inorg. Chem. Commun. 14, 877–881.  Web of Science CSD CrossRef CAS Google Scholar
First citationTong, M.-L., Zheng, S.-L., Shi, J.-X., Tong, Y.-X., Lee, H. K. & Chen, X.-M. (2002). J. Chem. Soc. Dalton Trans. pp. 1727–1734.  Web of Science CSD CrossRef Google Scholar
First citationYang, E.-C., Wernsdorfer, W., Zakharov, L. N., Karaki, Y., Yamaguchi, A., Isidro, R. M., Lu, G.-D., Wilson, S. A., Rheingold, A. L., Ishimoto, H. & Hendrickson, D. N. (2006). Inorg. Chem. 45, 529–546.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYu, G.-M., Zhao, L., Zou, L.-F., Guo, Y.-N., Xu, G.-F., Li, Y.-H. & Tang, J. (2011). J. Chem. Crystallogr. 41, 606–609.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, S.-H., Li, N., Ge, C.-M., Feng, C. & Ma, L.-F. (2011). Dalton Trans. 40, 3000–3007.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, S.-H., Zhang, Y. D., Zou, H. H., Guo, J. J., Li, H. P., Song, Y. & Liang, H. (2013). Inorg. Chim. Acta, 396, 119–125.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, S.-Y., Chen, W.-Q., Hu, B., Chen, Y.-M., Li, W. & Li, Y. (2012). Inorg. Chem. Commun. 16, 74–77.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds