research communications
Single-crystal structure analysis of non-deuterated triglycine sulfate by neutron diffraction at 20 and 298 K: a new disorder model for the 298 K structure
aSchool of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan, bJ-PARC Center, Japan Atomic Energy Agency, Shirakata 2-4, Tokai, Ibaraki, 319-1195, Japan, cIntegrated Molecular Structure Analysis Laboratory, Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan, dDepartment of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan, eFaculty of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan, and fResearch Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
*Correspondence e-mail: tasahi@waseda.jp
Precise single-crystal structure analyses of the title compound, bis(glycinium) sulfate–glycine (1/1), 2C2H6NO2+·SO42−·C2H5NO2 (or C6H17N3O10S), non-deuterated triglycine sulfate (HTGS) at 20 K and 298 K were undertaken using time-of-flight neutron diffraction data. At 20 K for the O—H⋯O hydrogen bond between the glycinium cation and the zwitterionic, unprotonated glycine molecule that is associated with the ferroelectric behaviour of HTGS, O—H = 1.070 (3), H⋯O = 1.408 (3) [δ = 0.338 (4)], O⋯O = 2.4777 (15) Å and O—H⋯O = 179.0 (4)°, which is in good agreement with previous studies. Two reasonable structures for the same three atoms were refined for the 298 K dataset. One is a single-minimum potential-energy model, with O—H = 1.090 (12), H⋯O = 1.361 (12) [δ = 0.271 (17)], O⋯O = 2.450 (7) Å and O—H⋯O = 179.2 (10)°, having the H atom with a large ellipticity along the bond path between the O atoms. The other is a double-minimum potential-energy model having two H atom sites with occupancies of 0.876 (8) and 0.124 (8): for the major occupancy component, O—H = 1.065 (12), H⋯O = 1.387 (12), O⋯O = 2.451 (7) Å and O—H⋯O = 178.2 (11)° and for the minor component, O—H = 1.06 (4), H⋯O = 1.41 (4), O⋯O = 2.451 (7) Å and O—H⋯O = 166 (2)°. These models did not show any significant differences in R factors. In addition, the unit-cell parameters and other structural parameters of HTGS did not show any major differences compared to those of partially deuterated TGS and fully deuterated TGS for both 20 K and 298 K.
Keywords: triglycine sulfate; neutron diffraction; hydrogen atom; crystal structure.
1. Chemical context
Triglycine sulfate, 2(C2H6NO2)+·(C2H5NO2)·(SO4)2– (TGS), is a hydrogen-bond ferroelectric material (Matthias et al. 1956) exhibiting a second-order and order–disorder-type ferroelectric at a Curie temperature (TC) of 322 K (Triebwasser, 1958). The TGS structure belongs to the C2h and the P21/m in the paraelectric phase and C2 and P21 in the ferroelectric phase, respectively (Wood & Holden, 1957). Because of its high TGS has long been used as a material for pyroelectric sensors. Therefore, determining the of TGS is essential for understanding such physical properties.
The atomic coordinates, except for those of the hydrogen atoms, of TGS at room temperature were first determined using single-crystal X-ray diffraction (Hoshino et al., 1959). The study assumed the presence of one neutral glycine molecule (C2H5NO2) exhibiting a zwitterionic configuration, and two monoprotonated glycinium ions (C2H6NO2+), from the detailed analysis of the bond lengths and angles of the glycine molecules. The authors also proposed a hydrogen-bonding scheme and pointed out that the hydrogen atom that lies between the oxygen atom of the carboxyl group in the glycine III cation (GIII) and the O atom in the glycine II molecule (GII) plays a crucial role in the dipole reversal. Many structural studies on TGS have subsequently been conducted (see Database survey): most of them were X-ray diffraction studies, but some of them were neutron diffraction studies. The atomic coordinates of non-deuterated TGS (hereinafter, designated as HTGS in place of TGS), including those of the hydrogen atoms at room temperature, were first revealed using single-crystal neutron diffraction (Padmanabhan & Yadav, 1971) and the atomic arrangements including hydrogen atoms of the zwitterion and glycinium ions were directly observed. The neutron diffraction experiment revealed that the hydrogen atom forming the O—H⋯O hydrogen bond between the GIII and GII species was closer to the GIII O atom compared to that in GII. This result agreed with that obtained by Hoshino et al. (1959). The structure of HTGS with an applied external electric field at 298 K revealed the placement of all the hydrogen atoms and the unambiguous definition of the hydrogen-bonding scheme in an ordered domain structure (Kay & Kleinberg, 1973).
Crystal-structure refinements of partially deuterated TGS (DTGS), where deuterium replaced the H atoms except for the hydrogen atoms of the methylene (CH2) group in each glycine molecule and those in sulfuric acid molecules at 40 K and 180 K (Protas et al., 1997) showed that the refined structures were consistent with those of the HTGS reported by Kay & Kleinberg (1973). Protas et al. (1997) also observed that HTGS and DTGS in the ferroelectric phase had a consistent structure from 40 K to 298 K. The deuterium atom lying between GIII and GII was ∼0.40 Å closer to the O atom of the carboxyl group of GIII than that of GII at both temperatures. In contrast, the crystal-structure of HTGS at room temperature showed positional disorder over two adjacent sites of the amino group in glycinium cation I (GI) (Choudhury & Chitra, 2008). However, this is not in agreement with the refined structure of HTGS reported by Padmanabhan & Yadav (1971) where the GI species was analysed as an ordered structure.
In the et al., 2013). The unit-cell parameters of these FDTGS structures were consistent with those of HTGS (Kay & Kleinberg, 1973; Choudhury & Chitra, 2008) and DTGS (Protas et al., 1997).
of fully deuterated TGS (FDTGS), all the hydrogen atoms in the glycine molecules and sulfuric acid molecules are substituted by deuterium atoms: the crystal structures did not show major changes between 20 K and 295 K (HudspethStructural analysis of DTGS at 40 K and FDTGS at 20 K have been undertaken by Protas et al. (1997) and Hudspeth et al. (2013), respectively, as mentioned above. However, a precise structural analysis of HTGS including hydrogen atoms at low temperatures has not been reported. Furthermore, two different structures of HTGS at ∼298 K were reported: one is an ordered structure by Padmanabhan & Yadav (1971) and the other is a disordered structure by Choudhury & Chitra (2008).
With this motivation, in this study, single-crystal neutron diffraction of HTGS has been conducted at 20 K and 298 K in the ferroelectric phase. The single crystal neutron diffractometer SENJU (Ohhara et al. 2016) at the J-PARC facility, which enables us to measure multiple Bragg reflections with high efficiency at low temperatures by combining high-power neutron sources and a time-of-flight Laue diffraction method, has firstly determined the precise of HTGS at 20 K under suppression of thermal vibrations, including the atomic coordinates of the hydrogen atoms. Furthermore, a new structural model of HTGS at 298 K is proposed in addition to the structural model reported previously.
2. Structural commentary
2.1. Structural of HTGS at 20 K
The refined structures at 20 K are shown in Figs. 1 and 2. It was confirmed that the GII C2H5NO2 glycine molecule containing C15 exhibits the neutral zwitterion configuration, and the other two GI and GIII glycine moieties (C17 and C20, respectively) exist as monoprotonated C2H6NO2+ glycinium ions. The most significant feature of these glycine/glycinium species are the N—C—C—O(H) torsion angles (Terasawa et al. 2021), viz.: 21.1 (1)° for N11—C17—C19—O7, −1.5 (1)° for N14—C15—C18—O10 and −1.4 (1)° for N21—C20—C16—O2. The sulfate ion shows its expected tetrahedral shape with bond distances of 1.480 (2) Å (S1—O4), 1.470 (2) Å (S1—O5), 1.477 (2) Å (S1—O6) and 1.472 (2) Å (S1—O8) and bond angles of 110.3 (1)° (O4—S1—O5), 107.9 (1)° (O4—S1—O6), 108.7 (1)° (O4—S1—O8), 109.7 (1)° (O5—S1—O6), 110.6 (1)° (O5—S1—O8) and 109.7 (1)° (O6—S1—O8). The slight differences among these distances and angles may arise because of the different hydrogen bonds accepted by these O atoms. Numerous N—H⋯O and O—H⋯O hydrogen bonds (see supporting information) are formed between the glycine or glycinium species and the sulfate ions; four N—H⋯O hydrogen bonds and one O—H⋯O hydrogen bond are formed by GI, five N—H⋯O hydrogen bonds are formed by GII and five N—H⋯O hydrogen bonds with the sulfate ion and one O—H⋯O hydrogen bond to the glycine molecule is formed by GIII.
The lattice constants and the key O15—H15⋯O3i [symmetry code: (i) 3 − x, − + y, 2 − z for the present study] bond lengths for HTGS, DTGS and FDTGS at low temperature are listed in Table 1. The parameters do not show any major differences, and H15 is 0.338 (4) Å closer to atom O15 in GIII than O3 in GII. This result shows good agreement with the data previously reported for DTGS (Protas et al. 1997), thus it may be concluded that the intermolecular distances and angles do not change significantly upon deuteration.
2.2. Structural of HTGS at 298 K
The refined structures at 298 K are shown in Figs. 3, 4 and 5. The the contents of the and the features of the molecular structures are consistent with those for the 20 K structure apart the disordered N11/N11B amino group [refined site occupancies = 0.874 (8):0.126 (8)] in the GI cation and the O—H⋯O association for GIII and GII. Two models were refined considering the H atom between O15 in GIII and O3 in GII. For one model (298 K model 1), the H15 atom was refined with a large ellipticity along the bond path between O15 and O3 as a single minimum structure [Fig. 5(a)]. A double-minimum potential-energy structure could be deduced because the distance between O15 and O3i [symmetry code: (i) 1 − x, − + y, −z for the present study] did not increase with an increase in the temperature; thus for the other model (298 K model 2), a pair of hydrogen atoms were refined along the bond path between O15 and O3i, the double-minimum potential structure [Fig. 5(b)].
The key parameters for the O15—H15⋯O3i hydrogen bond at 298 K are summarized in Table 2. The residuals for models 1 and 2 (Table 3) are almost identical: model 2 has one more variable parameter than model 1 (358 compared to 357). For model 1, H15 is 0.271 (17) Å closer to O15 in GIII than O3i in GII. On the other hand, the distance between O15 and H15 [1.090 (12) Å] is almost the same as that at 20 K despite there being no distance restraint for the H15⋯O3i separation. Therefore, the mixed structure (model 2) of the major ferroelectric phase and minor paraelectric phase is strongly suggested, because the occupancies of N11 and N11B and H15 and H3i are related by symmetry.
|
|
The unit-cell parameters and bond lengths for HTGS, DTGS, and FDTGS at 298 K are listed in Table 2. The lattice parameters did not show any major differences and this result shows good agreement with that previously reported for DTGS (Protas et al., 1997). We may conclude that the intermolecular distances and angles do not change significantly upon deuteration.
In the previous studies using single-crystal neutron diffraction, Kay & Kleinberg (1973) proposed an ordered structure of HTGS because the domains were oriented by applying an external electric field. Hudspeth & Goossens (2012) proposed an ordered structure for FDTGS because TC for FDTGS increased by approximately 12 K compared to HTGS. Choudhury & Chitra (2008) proposed a disordered structure for the GI amino group with unequal occupancies of N11 (88%) and N11B (12%); this occupancy ratio is in excellent agreement with the results in this study. For the hydrogen atom between the oxygen atom of the carboxyl group in GIII and that in the GII, the O⋯O distance was 2.470 (9) Å, and the H atom was approximately 0.241 Å closer to the GIII O atom than that in GII. They concluded that the structure of HTGS at room temperature has a single minimum in the O—H⋯O hydrogen-bond path between GIII and GII. In this study, two reasonable structures were refined as a single-minimum potential-energy model and a double-minimum model without any significant differences. Therefore, we conclude that there is a significant possibility of a double-minimum potential-energy model for HTGS at 298 K.
3. Supramolecular features
Hydrogen bonds in the refined structures were consistent with those reported previously (see supporting information) and no additional intermolecular interactions were found. Therefore, the 20 K and 298 K structures form essentially the structural motif of a three-dimensional network of N—H⋯O and O—H⋯O hydrogen bonds between glycinium cations, glycine molecules and sulfate ions.
4. Database survey
The Cambridge Structural Database (Version 5.42, update of November 2020; Groom et al. 2016) was searched for structures of triglycine sulfate and it returned no fewer than 29 hits: six of these records are structures obtained using neutron diffraction. The lattice constants of these structures are consistent with those of this study. The ionic states of glycine and the sulfate ion for five structures obtained using single-crystal neutron data are consistent with those for this study in which one neutral, zwitterionic glycine molecule and two monoprotonated glycinium ions occur [CSD refcodes TGLYSU01 (Protas et al., 1997); TGLYSU02 (Padmanabhan & Yadav, 1971); TGLYSU03 (Protas et al., 1997); TGLYSU11 (Kay & Kleinberg, 1973); and TGLYS25 (Cheng et al., 1986)]. In contrast, hydrogen atoms were not assigned in some of the structures obtained using X-ray diffraction: refcodes TGLYSU (Hoshino et al., 1959); TGLYSU13 (Itoh & Mitsui, 1973); TGLYSU28 (Choudhury & Chitra, 2008); TGLYSU29 (Kawasaki et al., 2021) and TGLYSU30 (Kawasaki et al., 2021). Furthermore, in several structures, some hydrogen atoms are missing: refcodes TGLYSU04 (Fletcher et al., 1976); TGLYSU07 (Solans et al., 1985); TGLYSU15 (Itoh & Mitsui, 1973); TGLYSU21, TGLYSU22, TGLYSU23 (Kolontsova et al., 1990). In one structure, HSO4− ions were proposed to be present: refcode TGLYSU04 (Fletcher et al., 1976).
5. Synthesis and crystallization
The HTGS crystals were grown in an aqueous solution by the slow evaporation method at ∼293 K. Glycine (13.06 g; FUJIFILM Wako Pure Chemical Corporation; purity ≥ 99.0%) and sulfuric acid (3.1 ml; FUJIFILM; molar ratio 3:1) was added to 50 ml of water in a 100 ml beaker. They were dissolved by heating at ∼313 K with a 300 r.p.m. magnetic stirrer. After completely dissolving them, plastic films were double-wrapped around the beaker, and some holes were knocked in the films to evaporate the water slowly. The beaker was left to stand at ∼293 K. HTGS was crystallized after approximately a month, and then the solution was filtered. The collected crystals were dried in a desiccator at ∼293 K.
6. Refinement
Crystal data, data collection, and structural . All data were collected using the single-crystal neutron diffractometer SENJU (Ohhara et al., 2016) at beamline BL18 of the Materials and Life Science Facility, Japan Proton Accelerator Research Complex. The crystal (colourless cube, ∼2.8 mm edge length) mounted on an aluminum pin was cooled to 20 K in a closed-cycle helium cryostat. The crystal was surrounded by 41 two-dimensional scintillation area detectors during the data collection. The same crystal was used for the measurement at 298 K after warming to room temperature. Three-dimensional data of (x, y, λ) were measured in 16 different orientations for each dataset. The measurement time was 1.5 h for one orientation; the raw data were processed using STARGazer (Ohhara et al. 2009) to generate HKLF files and visualize (x, y) slice maps and merged TOF profiles.
details are summarized in Table 3SHELXL2018 (Sheldrick 2015b) was used for least-squares refinements with neutron scattering lengths (fm) of 2.847 (S), 5.805 (O), −3.741 (H), 9.360 (N) and 6.648 (C). A reported structure determined by single-crystal X-ray diffraction (Hoshino et al., 1959) was used as the initial structural model. All atoms, including hydrogen atoms, were refined with Uij values. For the 298 K data, the was initially performed without the hydrogen atom(s) between O15 and O3 to minimize the model dependence. A nuclear density distribution (Fig. 6) with a large ellipticity along the bond path between O15 and O3 was observed. One hydrogen atom was assigned to this position and refined as a single-minimum potential-energy model (298 K model 1). In 298 K model 2, two hydrogen atoms (H15 and H3) with the restrictions listed below were included: (i) H15 and H3 were refined anisotropically and constrained to have the same displacement factors; (ii) O15 and H15 and O3 and H3 were restrained to have the same distances; (iii) the occupancies of H15 for H3 were linked to those of N11 and N11B.
Supporting information
https://doi.org/10.1107/S2056989022000858/hb8004sup1.cif
contains datablocks global, 20K, 298KModel1, 298KModel2. DOI:Structure factors: contains datablock 20K. DOI: https://doi.org/10.1107/S2056989022000858/hb800420Ksup2.hkl
Structure factors: contains datablock 298KModel1. DOI: https://doi.org/10.1107/S2056989022000858/hb8004298KModel1sup3.hkl
Structure factors: contains datablock 298KModel2. DOI: https://doi.org/10.1107/S2056989022000858/hb8004298KModel2sup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022000858/hb800420Ksup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989022000858/hb8004298KModel1sup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989022000858/hb8004298KModel2sup7.cml
For all structures, data collection: STARGazer (Ohhara et al., 2009); cell
STARGazer (Ohhara et al., 2009); data reduction: STARGazer (Ohhara et al., 2009); program(s) used to solve structure: A reported structure determined by single-crystal X-ray diffraction (Hoshino et al., 1959) was used as the initial structure model.. Program(s) used to refine structure: SHELXT2018/3 (Sheldrick, 2015) for (20K); SHELXL2018/3 (Sheldrick, 2015) for 298KModel1, 298KModel2. For all structures, molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: PLATON (Spek, 2020) and publCIF (Westrip, 2010).2C2H6NO2+·SO42−·C2H5NO2 | F(000) = 130.536 |
Mr = 323.28 | Dx = 1.719 Mg m−3 |
Monoclinic, P21 | Neutrons radiation, λ = 1 Å |
Hall symbol: P2yb | Cell parameters from 8174 reflections |
a = 9.3946 (8) Å | θ = 6.6–83.3° |
b = 12.5338 (11) Å | µ = 0.49 mm−1 |
c = 5.6630 (4) Å | T = 20 K |
β = 110.500 (7)° | Block, colorless |
V = 624.59 (9) Å3 | 2.80 × 2.80 × 2.80 mm |
Z = 2 |
Time-of-flight Laue-type single crystal neutron diffractometer | 33150 reflections with I > 2σ(I) |
Radiation source: spallation neutron | Rint = N/A |
Detector resolution: 4 pixels mm-1 | θmax = 86.1°, θmin = 7.5° |
time–of–flight Laue method scans | h = −23→23 |
40510 measured reflections | k = −31→31 |
10169 independent reflections | l = −13→14 |
Refinement on F2 | All H-atom parameters refined |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.1332P)2 + 0.072P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.073 | (Δ/σ)max = 0.001 |
wR(F2) = 0.193 | Δρmax = 3.87 e Å−3 |
S = 1.04 | Δρmin = −6.28 e Å−3 |
40510 reflections | Extinction correction: SHELXL2018/3 (Sheldrick 2015) |
350 parameters | Extinction coefficient: 0.119 (3) |
1 restraint | Absolute structure: Indeterminate for a neutron structure |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.' |
x | y | z | Uiso*/Ueq | ||
S1 | 0.9987 (2) | 0.25000 (15) | 0.2280 (4) | 0.00149 (18) | |
O3 | 1.46271 (12) | 0.96537 (9) | 0.8104 (2) | 0.00493 (13) | |
O2 | 1.20940 (13) | 0.49653 (10) | 0.7552 (2) | 0.00564 (13) | |
O4 | 0.85445 (12) | 0.24777 (9) | 0.0101 (2) | 0.00407 (11) | |
O5 | 0.96806 (13) | 0.25228 (9) | 0.4652 (2) | 0.00438 (12) | |
O6 | 1.08235 (12) | 0.34725 (8) | 0.2072 (2) | 0.00397 (12) | |
O7 | 1.39163 (12) | 0.73620 (10) | −0.0953 (2) | 0.00519 (13) | |
H7 | 1.2917 (3) | 0.7379 (3) | −0.0588 (6) | 0.0160 (4) | |
O8 | 1.08828 (12) | 0.15498 (8) | 0.2172 (2) | 0.00403 (12) | |
O9 | 1.50274 (14) | 0.72358 (11) | 0.3230 (2) | 0.00628 (14) | |
O10 | 1.22125 (13) | 0.98973 (10) | 0.7827 (2) | 0.00528 (13) | |
O15 | 1.44257 (13) | 0.50951 (11) | 0.7343 (2) | 0.00643 (14) | |
H15 | 1.4843 (4) | 0.4899 (3) | 0.9306 (6) | 0.0162 (4) | |
N11 | 1.64288 (8) | 0.78825 (6) | −0.17333 (14) | 0.00468 (8) | |
H11A | 1.5930 (5) | 0.7383 (3) | −0.3227 (7) | 0.0206 (5) | |
H11B | 1.7487 (3) | 0.8093 (3) | −0.1799 (7) | 0.0167 (4) | |
H11C | 1.5753 (4) | 0.8567 (3) | −0.2021 (6) | 0.0165 (4) | |
N14 | 1.10601 (8) | 0.92901 (5) | 0.29966 (13) | 0.00407 (8) | |
H14A | 1.0741 (4) | 0.9005 (3) | 0.1183 (6) | 0.0189 (5) | |
H14B | 1.0637 (4) | 1.0044 (3) | 0.2961 (8) | 0.0202 (6) | |
H14C | 1.0593 (4) | 0.8781 (3) | 0.3977 (7) | 0.0186 (5) | |
N21 | 1.07375 (7) | 0.57354 (5) | 0.28504 (13) | 0.00395 (8) | |
H21A | 1.0403 (4) | 0.6295 (3) | 0.3907 (7) | 0.0184 (5) | |
H21B | 1.0241 (4) | 0.5017 (3) | 0.2905 (7) | 0.0194 (5) | |
H21C | 1.0335 (4) | 0.6013 (3) | 0.1022 (6) | 0.0165 (4) | |
C15 | 1.27299 (11) | 0.92965 (8) | 0.42088 (19) | 0.00464 (11) | |
H15A | 1.3210 (5) | 0.9838 (4) | 0.3185 (7) | 0.0231 (7) | |
H15B | 1.3161 (5) | 0.8502 (3) | 0.4096 (8) | 0.0227 (7) | |
C16 | 1.29570 (10) | 0.51955 (7) | 0.64503 (18) | 0.00353 (10) | |
C17 | 1.65950 (10) | 0.73969 (8) | 0.07314 (19) | 0.00453 (11) | |
H17A | 1.7376 (4) | 0.7882 (3) | 0.2221 (7) | 0.0200 (6) | |
H17B | 1.7072 (5) | 0.6594 (3) | 0.0824 (9) | 0.0217 (6) | |
C18 | 1.31907 (10) | 0.96459 (7) | 0.69381 (17) | 0.00311 (10) | |
C19 | 1.50928 (10) | 0.73247 (7) | 0.11344 (18) | 0.00345 (10) | |
C20 | 1.24065 (11) | 0.56505 (8) | 0.38171 (19) | 0.00430 (10) | |
H20A | 1.2898 (4) | 0.6438 (3) | 0.3846 (8) | 0.0207 (6) | |
H20B | 1.2774 (4) | 0.5157 (4) | 0.2554 (7) | 0.0215 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0013 (5) | 0.0009 (4) | 0.0022 (4) | 0.0000 (3) | 0.0005 (4) | 0.0000 (4) |
O3 | 0.0027 (3) | 0.0063 (3) | 0.0046 (3) | 0.0002 (2) | −0.0001 (2) | −0.0012 (2) |
O2 | 0.0042 (3) | 0.0077 (3) | 0.0049 (3) | −0.0005 (2) | 0.0015 (2) | 0.0020 (3) |
O4 | 0.0021 (3) | 0.0053 (3) | 0.0038 (3) | 0.0001 (2) | −0.0003 (2) | 0.0001 (2) |
O5 | 0.0062 (3) | 0.0039 (3) | 0.0037 (3) | −0.0001 (2) | 0.0026 (2) | 0.0001 (2) |
O6 | 0.0038 (3) | 0.0021 (2) | 0.0063 (3) | −0.0010 (2) | 0.0022 (2) | 0.0001 (2) |
O7 | 0.0028 (3) | 0.0081 (3) | 0.0042 (3) | −0.0004 (2) | 0.0007 (2) | 0.0004 (2) |
H7 | 0.0104 (8) | 0.0207 (11) | 0.0168 (10) | 0.0000 (8) | 0.0047 (7) | −0.0004 (9) |
O8 | 0.0040 (3) | 0.0022 (2) | 0.0058 (3) | 0.0013 (2) | 0.0015 (2) | −0.0002 (2) |
O9 | 0.0054 (3) | 0.0094 (4) | 0.0039 (3) | −0.0011 (3) | 0.0016 (2) | 0.0003 (3) |
O10 | 0.0035 (3) | 0.0072 (3) | 0.0050 (3) | 0.0005 (2) | 0.0014 (2) | −0.0020 (3) |
O15 | 0.0036 (3) | 0.0101 (4) | 0.0052 (3) | 0.0019 (3) | 0.0012 (2) | 0.0022 (3) |
H15 | 0.0140 (9) | 0.0174 (10) | 0.0166 (10) | 0.0008 (8) | 0.0044 (8) | 0.0015 (9) |
N11 | 0.00353 (17) | 0.00565 (19) | 0.00521 (18) | 0.00037 (14) | 0.00198 (15) | 0.00040 (15) |
H11A | 0.0232 (14) | 0.0202 (12) | 0.0149 (10) | −0.0037 (11) | 0.0025 (10) | −0.0057 (9) |
H11B | 0.0118 (9) | 0.0202 (11) | 0.0201 (11) | −0.0011 (8) | 0.0082 (8) | 0.0021 (10) |
H11C | 0.0179 (11) | 0.0148 (10) | 0.0179 (10) | 0.0056 (8) | 0.0076 (9) | 0.0044 (8) |
N14 | 0.00371 (17) | 0.00394 (16) | 0.00353 (17) | −0.00007 (13) | −0.00001 (13) | −0.00041 (13) |
H14A | 0.0205 (12) | 0.0239 (13) | 0.0097 (8) | −0.0023 (10) | 0.0022 (8) | −0.0053 (8) |
H14B | 0.0198 (12) | 0.0125 (9) | 0.0243 (14) | 0.0061 (9) | 0.0027 (11) | −0.0024 (9) |
H14C | 0.0163 (11) | 0.0227 (13) | 0.0179 (11) | −0.0053 (9) | 0.0072 (9) | 0.0042 (10) |
N21 | 0.00371 (17) | 0.00376 (17) | 0.00370 (17) | −0.00009 (13) | 0.00047 (14) | 0.00026 (13) |
H21A | 0.0174 (11) | 0.0204 (12) | 0.0178 (11) | 0.0057 (9) | 0.0068 (9) | −0.0048 (9) |
H21B | 0.0191 (12) | 0.0146 (10) | 0.0218 (13) | −0.0075 (9) | 0.0038 (10) | 0.0036 (9) |
H21C | 0.0176 (11) | 0.0198 (11) | 0.0103 (8) | 0.0022 (8) | 0.0028 (8) | 0.0044 (8) |
C15 | 0.0034 (2) | 0.0064 (3) | 0.0038 (2) | −0.0001 (2) | 0.00083 (19) | −0.0014 (2) |
H15A | 0.0211 (13) | 0.0320 (17) | 0.0173 (11) | −0.0101 (12) | 0.0081 (11) | 0.0032 (12) |
H15B | 0.0194 (12) | 0.0198 (12) | 0.0240 (14) | 0.0089 (10) | 0.0014 (11) | −0.0090 (11) |
C16 | 0.0029 (2) | 0.0038 (2) | 0.0037 (2) | 0.00049 (18) | 0.00095 (19) | 0.00052 (19) |
C17 | 0.0026 (2) | 0.0055 (3) | 0.0053 (3) | 0.00030 (19) | 0.0011 (2) | 0.0011 (2) |
H17A | 0.0146 (10) | 0.0279 (15) | 0.0150 (10) | −0.0087 (10) | 0.0019 (8) | −0.0037 (10) |
H17B | 0.0212 (13) | 0.0136 (10) | 0.0333 (18) | 0.0086 (9) | 0.0131 (13) | 0.0081 (11) |
C18 | 0.0022 (2) | 0.0031 (2) | 0.0033 (2) | 0.00014 (17) | 0.00010 (18) | −0.00052 (18) |
C19 | 0.0028 (2) | 0.0036 (2) | 0.0038 (2) | −0.00029 (17) | 0.00102 (19) | 0.00007 (18) |
C20 | 0.0038 (2) | 0.0052 (3) | 0.0040 (2) | 0.00017 (19) | 0.0014 (2) | 0.00104 (19) |
H20A | 0.0187 (12) | 0.0167 (11) | 0.0230 (14) | −0.0069 (9) | 0.0028 (10) | 0.0060 (10) |
H20B | 0.0221 (13) | 0.0288 (16) | 0.0150 (10) | 0.0096 (12) | 0.0081 (10) | −0.0033 (11) |
S1—O5 | 1.470 (2) | N14—H14B | 1.022 (3) |
S1—O8 | 1.472 (2) | N14—H14A | 1.028 (3) |
S1—O6 | 1.477 (2) | N14—H14C | 1.038 (3) |
S1—O4 | 1.480 (2) | N14—C15 | 1.4758 (11) |
O3—C18 | 1.2778 (14) | N21—H21B | 1.020 (3) |
O3—H15i | 1.408 (4) | N21—H21C | 1.031 (3) |
O2—C16 | 1.2181 (15) | N21—H21A | 1.039 (3) |
O7—H7 | 1.030 (3) | N21—C20 | 1.4726 (11) |
O7—C19 | 1.3063 (14) | C15—H15B | 1.086 (3) |
O9—C19 | 1.2149 (15) | C15—H15A | 1.088 (4) |
O10—C18 | 1.2333 (15) | C15—C18 | 1.5164 (13) |
O15—H15 | 1.070 (4) | C16—C20 | 1.5087 (13) |
O15—C16 | 1.2987 (14) | C17—H17A | 1.089 (3) |
N11—H11A | 1.024 (3) | C17—H17B | 1.095 (3) |
N11—H11B | 1.042 (3) | C17—C19 | 1.5092 (13) |
N11—H11C | 1.045 (3) | C20—H20A | 1.088 (3) |
N11—C17 | 1.4800 (12) | C20—H20B | 1.090 (3) |
O5—S1—O8 | 110.60 (14) | H15B—C15—H15A | 107.9 (4) |
O5—S1—O6 | 109.68 (14) | H15B—C15—N14 | 109.0 (2) |
O8—S1—O6 | 109.68 (13) | H15A—C15—N14 | 109.1 (2) |
O5—S1—O4 | 110.31 (13) | H15B—C15—C18 | 110.2 (2) |
O8—S1—O4 | 108.66 (14) | H15A—C15—C18 | 109.8 (2) |
O6—S1—O4 | 107.86 (13) | N14—C15—C18 | 110.68 (7) |
C18—O3—H15i | 117.66 (16) | O2—C16—O15 | 125.77 (11) |
H7—O7—C19 | 111.1 (2) | O2—C16—C20 | 122.44 (9) |
H15—O15—C16 | 112.3 (2) | O15—C16—C20 | 111.79 (9) |
H11A—N11—H11B | 107.0 (3) | H17A—C17—H17B | 108.8 (4) |
H11A—N11—H11C | 107.2 (3) | H17A—C17—N11 | 108.7 (2) |
H11B—N11—H11C | 108.7 (3) | H17B—C17—N11 | 109.2 (2) |
H11A—N11—C17 | 113.2 (2) | H17A—C17—C19 | 109.2 (2) |
H11B—N11—C17 | 110.6 (2) | H17B—C17—C19 | 109.0 (2) |
H11C—N11—C17 | 110.0 (2) | N11—C17—C19 | 111.83 (7) |
H14B—N14—H14A | 109.0 (3) | O10—C18—O3 | 126.16 (11) |
H14B—N14—H14C | 110.1 (3) | O10—C18—C15 | 120.14 (9) |
H14A—N14—H14C | 106.9 (3) | O3—C18—C15 | 113.70 (9) |
H14B—N14—C15 | 110.3 (2) | O9—C19—O7 | 124.83 (10) |
H14A—N14—C15 | 111.0 (2) | O9—C19—C17 | 121.54 (10) |
H14C—N14—C15 | 109.5 (2) | O7—C19—C17 | 113.62 (9) |
H21B—N21—H21C | 108.6 (3) | H20A—C20—H20B | 107.2 (4) |
H21B—N21—H21A | 110.1 (3) | H20A—C20—N21 | 109.3 (2) |
H21C—N21—H21A | 105.8 (3) | H20B—C20—N21 | 109.7 (2) |
H21B—N21—C20 | 111.4 (2) | H20A—C20—C16 | 109.4 (2) |
H21C—N21—C20 | 111.5 (2) | H20B—C20—C16 | 110.9 (2) |
H21A—N21—C20 | 109.4 (2) | N21—C20—C16 | 110.28 (7) |
H14B—N14—C15—H15B | −175.7 (4) | H15A—C15—C18—O3 | −60.4 (3) |
H14A—N14—C15—H15B | −54.8 (4) | N14—C15—C18—O3 | 179.09 (9) |
H14C—N14—C15—H15B | 63.0 (4) | H7—O7—C19—O9 | 5.4 (3) |
H14B—N14—C15—H15A | −58.0 (4) | H7—O7—C19—C17 | −174.9 (2) |
H14A—N14—C15—H15A | 62.9 (4) | H17A—C17—C19—O9 | −38.9 (3) |
H14C—N14—C15—H15A | −179.3 (4) | H17B—C17—C19—O9 | 79.8 (3) |
H14B—N14—C15—C18 | 63.0 (3) | N11—C17—C19—O9 | −159.24 (11) |
H14A—N14—C15—C18 | −176.1 (3) | H17A—C17—C19—O7 | 141.4 (3) |
H14C—N14—C15—C18 | −58.4 (3) | H17B—C17—C19—O7 | −99.8 (3) |
H15—O15—C16—O2 | −9.2 (3) | N11—C17—C19—O7 | 21.07 (12) |
H15—O15—C16—C20 | 170.4 (2) | H21B—N21—C20—H20A | −176.3 (4) |
H11A—N11—C17—H17A | 165.8 (4) | H21C—N21—C20—H20A | 62.3 (3) |
H11B—N11—C17—H17A | 45.7 (3) | H21A—N21—C20—H20A | −54.4 (4) |
H11C—N11—C17—H17A | −74.4 (3) | H21B—N21—C20—H20B | 66.4 (4) |
H11A—N11—C17—H17B | 47.1 (4) | H21C—N21—C20—H20B | −55.0 (4) |
H11B—N11—C17—H17B | −72.9 (3) | H21A—N21—C20—H20B | −171.6 (4) |
H11C—N11—C17—H17B | 167.0 (3) | H21B—N21—C20—C16 | −56.0 (3) |
H11A—N11—C17—C19 | −73.6 (3) | H21C—N21—C20—C16 | −177.5 (2) |
H11B—N11—C17—C19 | 166.3 (2) | H21A—N21—C20—C16 | 65.9 (3) |
H11C—N11—C17—C19 | 46.2 (2) | O2—C16—C20—H20A | 118.9 (3) |
H15i—O3—C18—O10 | 4.8 (2) | O15—C16—C20—H20A | −60.7 (3) |
H15i—O3—C18—C15 | −175.85 (18) | O2—C16—C20—H20B | −123.2 (3) |
H15B—C15—C18—O10 | −122.1 (3) | O15—C16—C20—H20B | 57.2 (3) |
H15A—C15—C18—O10 | 119.1 (3) | O2—C16—C20—N21 | −1.38 (14) |
N14—C15—C18—O10 | −1.47 (14) | O15—C16—C20—N21 | 179.02 (9) |
H15B—C15—C18—O3 | 58.5 (3) |
Symmetry code: (i) −x+3, y+1/2, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7···O4ii | 1.030 (3) | 1.497 (3) | 2.5258 (17) | 176.3 (4) |
O15—H15···O3iii | 1.070 (3) | 1.408 (3) | 2.4777 (15) | 179.0 (4) |
N11—H11A···O9iv | 1.024 (4) | 1.894 (4) | 2.8099 (13) | 147.1 (3) |
N11—H11B···O6v | 1.042 (3) | 1.715 (3) | 2.7557 (14) | 176.7 (3) |
N11—H11B···O8v | 1.042 (3) | 2.522 (4) | 3.1097 (14) | 115.1 (3) |
N11—H11C···O3iv | 1.046 (4) | 1.741 (4) | 2.7736 (14) | 168.5 (3) |
N14—H14A···O4ii | 1.028 (3) | 2.233 (4) | 2.9718 (13) | 127.4 (3) |
N14—H14A···O6ii | 1.028 (3) | 2.026 (4) | 2.9771 (13) | 152.7 (3) |
N14—H14B···O8vi | 1.023 (4) | 1.972 (4) | 2.8658 (12) | 144.4 (3) |
N14—H14B···O2vii | 1.023 (4) | 2.481 (4) | 2.9914 (15) | 110.2 (3) |
N14—H14C···O5vii | 1.039 (4) | 1.815 (4) | 2.7952 (13) | 155.8 (3) |
N21—H21A···O5vii | 1.039 (4) | 1.757 (4) | 2.7501 (13) | 158.5 (3) |
N21—H21B···O6 | 1.020 (4) | 2.110 (4) | 2.8758 (12) | 130.3 (3) |
N21—H21B···O10viii | 1.020 (4) | 2.200 (4) | 2.8612 (15) | 121.0 (3) |
N21—H21C···O4ii | 1.031 (3) | 2.313 (4) | 2.9677 (13) | 120.1 (3) |
N21—H21C···O8ii | 1.031 (3) | 1.893 (3) | 2.9010 (13) | 165.1 (3) |
C15—H15A···O15ix | 1.088 (5) | 2.365 (5) | 3.2496 (17) | 137.4 (3) |
C15—H15B···O9 | 1.085 (4) | 2.537 (5) | 3.5320 (18) | 152.0 (3) |
C17—H17B···O10x | 1.095 (4) | 2.280 (4) | 3.3311 (16) | 160.2 (4) |
C20—H20A···O9 | 1.087 (4) | 2.369 (4) | 3.2703 (18) | 139.2 (3) |
C20—H20A···O4ii | 1.087 (4) | 2.532 (4) | 3.0948 (15) | 111.2 (3) |
Symmetry codes: (ii) −x+2, y+1/2, −z; (iii) −x+3, y−1/2, −z+2; (iv) x, y, z−1; (v) −x+3, y+1/2, −z; (vi) x, y+1, z; (vii) −x+2, y+1/2, −z+1; (viii) −x+2, y−1/2, −z+1; (ix) −x+3, y+1/2, −z+1; (x) −x+3, y−1/2, −z+1. |
2C2H6NO2+·SO42−·C2H5NO2 | F(000) = 130.536 |
Mr = 323.28 | Dx = 1.693 Mg m−3 |
Monoclinic, P21 | Neutrons radiation, λ = 1 Å |
Hall symbol: P2yb | Cell parameters from 3228 reflections |
a = 9.3910 (14) Å | θ = 6.6–83.3° |
b = 12.6021 (18) Å | µ = 0.49 mm−1 |
c = 5.7125 (7) Å | T = 298 K |
β = 110.306 (13)° | Block, colorless |
V = 634.04 (16) Å3 | 2.80 × 2.80 × 2.80 mm |
Z = 2 |
Time-of-flight Laue-type single crystal neutron diffractometer | 10685 reflections with I > 2σ(I) |
Radiation source: spallation neutron | Rint = N/A |
Detector resolution: 4 pixels mm-1 | θmax = 83.7°, θmin = 7.9° |
time–of–flight Laue method scans | h = −15→15 |
14190 measured reflections | k = −21→20 |
3132 independent reflections | l = −9→9 |
Refinement on F2 | All H-atom parameters refined |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.1405P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.080 | (Δ/σ)max = 0.001 |
wR(F2) = 0.209 | Δρmax = 3.50 e Å−3 |
S = 1.05 | Δρmin = −6.06 e Å−3 |
14190 reflections | Extinction correction: SHELXL-2018/3 (Sheldrick 2018) |
357 parameters | Extinction coefficient: 0.119 (3) |
1 restraint | Absolute structure: Indeterminate for a neutron structure |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.9997 (5) | 0.7500 (5) | 0.7732 (8) | 0.0132 (7) | |
O2 | 0.9154 (4) | 0.8459 (2) | 0.7922 (8) | 0.0239 (7) | |
O3 | 0.5395 (5) | 1.4692 (4) | 0.1995 (9) | 0.0336 (9) | |
O4 | 0.7789 (5) | 1.4949 (3) | 0.2233 (8) | 0.0308 (8) | |
O5 | 1.1424 (3) | 0.7495 (4) | 0.9937 (5) | 0.0239 (5) | |
O6 | 1.0347 (4) | 0.7517 (3) | 0.5439 (5) | 0.0252 (5) | |
O7 | 0.7864 (5) | 0.9977 (4) | 0.2398 (8) | 0.0313 (8) | |
O9 | 0.6071 (4) | 1.2431 (4) | 1.0767 (7) | 0.0318 (7) | |
H9 | 0.7083 (6) | 1.2436 (8) | 1.0440 (12) | 0.0370 (12) | |
O10 | 0.4960 (5) | 1.2334 (5) | 0.6667 (8) | 0.0435 (12) | |
O12 | 0.9126 (5) | 0.6560 (3) | 0.7868 (8) | 0.0260 (7) | |
O15 | 0.5516 (5) | 1.0201 (5) | 0.2419 (10) | 0.0419 (11) | |
H15 | 0.5111 (11) | 0.9968 (7) | 0.046 (2) | 0.050 (2) | |
N11 | 0.3571 (3) | 1.2889 (3) | 1.1627 (6) | 0.0318 (6) | 0.874 (8) |
H11A | 0.4246 (11) | 1.3547 (10) | 1.200 (2) | 0.051 (2) | 0.874 (8) |
H11B | 0.4071 (13) | 1.2382 (13) | 1.305 (2) | 0.063 (3) | 0.874 (8) |
H11C | 0.2518 (10) | 1.3094 (9) | 1.176 (2) | 0.048 (2) | 0.874 (8) |
N11B | 0.364 (2) | 1.224 (2) | 1.167 (4) | 0.0318 (6) | 0.126 (8) |
H11D | 0.427371 | 1.284076 | 1.276505 | 0.051 (2) | 0.126 (8) |
H11E | 0.421468 | 1.153071 | 1.217566 | 0.063 (3) | 0.126 (8) |
H11F | 0.260990 | 1.218760 | 1.192923 | 0.048 (2) | 0.126 (8) |
N16 | 0.9163 (3) | 1.07320 (14) | 0.7057 (4) | 0.0229 (4) | |
H16A | 0.9555 (11) | 1.1246 (8) | 0.6000 (17) | 0.0451 (18) | |
H16B | 0.9613 (13) | 0.9994 (7) | 0.7083 (17) | 0.053 (2) | |
H16C | 0.9530 (12) | 1.1040 (6) | 0.8831 (14) | 0.0414 (17) | |
N21 | 0.8957 (3) | 1.42963 (15) | 0.6984 (4) | 0.0221 (4) | |
H21A | 0.9418 (11) | 1.3815 (9) | 0.6004 (18) | 0.049 (2) | |
H21B | 0.9277 (12) | 1.3988 (7) | 0.8734 (14) | 0.046 (2) | |
H21C | 0.9367 (12) | 1.5046 (7) | 0.7098 (16) | 0.052 (2) | |
C13 | 0.6830 (3) | 1.4683 (2) | 0.3127 (6) | 0.0204 (5) | |
C14 | 0.7510 (4) | 1.0688 (3) | 0.6007 (6) | 0.0257 (6) | |
H14A | 0.7068 (12) | 1.1483 (8) | 0.597 (2) | 0.059 (3) | |
H14B | 0.7088 (15) | 1.0190 (11) | 0.719 (2) | 0.064 (3) | |
C17 | 0.3401 (3) | 1.2452 (3) | 0.9149 (5) | 0.0256 (5) | |
H17A | 0.2645 (11) | 1.2958 (10) | 0.7802 (18) | 0.061 (3) | |
H17B | 0.2911 (14) | 1.1675 (8) | 0.895 (3) | 0.073 (4) | |
C18 | 0.6979 (4) | 1.0246 (2) | 0.3395 (6) | 0.0230 (6) | |
C19 | 0.4893 (3) | 1.2402 (2) | 0.8730 (5) | 0.0221 (5) | |
C20 | 0.7303 (4) | 1.4306 (3) | 0.5794 (6) | 0.0258 (6) | |
H20A | 0.6812 (15) | 1.4810 (13) | 0.682 (2) | 0.074 (4) | |
H20B | 0.6890 (13) | 1.3519 (10) | 0.584 (2) | 0.065 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0134 (18) | 0.0106 (13) | 0.0159 (17) | 0.0002 (19) | 0.0057 (14) | −0.0022 (19) |
O2 | 0.0244 (15) | 0.0152 (12) | 0.0353 (19) | 0.0016 (11) | 0.0145 (14) | 0.0063 (10) |
O3 | 0.0181 (15) | 0.0438 (19) | 0.0325 (19) | 0.0056 (14) | 0.0009 (13) | 0.0029 (15) |
O4 | 0.0239 (17) | 0.0405 (18) | 0.0244 (16) | 0.0118 (14) | 0.0039 (13) | −0.0039 (14) |
O5 | 0.0147 (11) | 0.0363 (12) | 0.0188 (10) | 0.0010 (15) | 0.0035 (9) | 0.0018 (14) |
O6 | 0.0337 (15) | 0.0271 (11) | 0.0178 (10) | −0.0003 (13) | 0.0127 (10) | −0.0006 (15) |
O7 | 0.0252 (17) | 0.0418 (18) | 0.0255 (16) | −0.0112 (15) | 0.0069 (14) | 0.0043 (14) |
O9 | 0.0142 (12) | 0.0518 (19) | 0.0286 (14) | −0.0027 (18) | 0.0065 (11) | 0.0003 (16) |
H9 | 0.021 (2) | 0.050 (3) | 0.039 (3) | −0.004 (3) | 0.010 (2) | 0.002 (3) |
O10 | 0.0310 (19) | 0.071 (3) | 0.0268 (16) | −0.0066 (19) | 0.0084 (14) | 0.006 (2) |
O12 | 0.0274 (17) | 0.0159 (12) | 0.035 (2) | 0.0001 (11) | 0.0111 (14) | −0.0072 (11) |
O15 | 0.0222 (18) | 0.063 (3) | 0.039 (2) | −0.014 (2) | 0.0087 (17) | −0.0124 (19) |
H15 | 0.031 (3) | 0.044 (3) | 0.071 (7) | −0.002 (4) | 0.015 (4) | −0.003 (3) |
N11 | 0.0174 (10) | 0.0492 (17) | 0.0316 (11) | −0.0032 (12) | 0.0119 (9) | −0.0065 (11) |
H11A | 0.037 (4) | 0.074 (6) | 0.048 (5) | −0.025 (5) | 0.020 (4) | −0.017 (4) |
H11B | 0.047 (5) | 0.088 (9) | 0.051 (5) | 0.025 (6) | 0.014 (4) | −0.009 (6) |
H11C | 0.028 (4) | 0.060 (5) | 0.061 (6) | −0.010 (4) | 0.022 (4) | −0.005 (3) |
N11B | 0.0174 (10) | 0.0492 (17) | 0.0316 (11) | −0.0032 (12) | 0.0119 (9) | −0.0065 (11) |
H11D | 0.037 (4) | 0.074 (6) | 0.048 (5) | −0.025 (5) | 0.020 (4) | −0.017 (4) |
H11E | 0.047 (5) | 0.088 (9) | 0.051 (5) | 0.025 (6) | 0.014 (4) | −0.009 (6) |
H11F | 0.028 (4) | 0.060 (5) | 0.061 (6) | −0.010 (4) | 0.022 (4) | −0.005 (3) |
N16 | 0.0270 (10) | 0.0200 (8) | 0.0179 (8) | −0.0019 (6) | 0.0033 (7) | 0.0037 (7) |
H16A | 0.039 (4) | 0.062 (5) | 0.033 (4) | 0.002 (3) | 0.012 (3) | −0.012 (3) |
H16B | 0.057 (5) | 0.044 (4) | 0.042 (4) | −0.010 (3) | −0.003 (4) | 0.026 (4) |
H16C | 0.056 (5) | 0.035 (3) | 0.028 (3) | −0.010 (2) | 0.008 (3) | −0.004 (3) |
N21 | 0.0244 (9) | 0.0216 (8) | 0.0161 (8) | 0.0036 (6) | 0.0017 (7) | −0.0029 (7) |
H21A | 0.040 (4) | 0.070 (5) | 0.037 (4) | −0.004 (3) | 0.011 (3) | 0.015 (4) |
H21B | 0.063 (6) | 0.042 (3) | 0.027 (3) | 0.010 (3) | 0.007 (3) | 0.003 (3) |
H21C | 0.057 (5) | 0.046 (4) | 0.040 (4) | 0.009 (3) | −0.001 (4) | −0.026 (4) |
C13 | 0.0177 (11) | 0.0186 (10) | 0.0218 (12) | 0.0033 (8) | 0.0032 (9) | 0.0015 (9) |
C14 | 0.0268 (14) | 0.0270 (12) | 0.0252 (13) | −0.0068 (10) | 0.0113 (11) | −0.0012 (10) |
H14A | 0.045 (5) | 0.052 (4) | 0.069 (7) | −0.027 (4) | 0.005 (4) | 0.017 (4) |
H14B | 0.071 (7) | 0.088 (7) | 0.043 (5) | −0.003 (4) | 0.034 (5) | −0.028 (6) |
C17 | 0.0144 (10) | 0.0276 (10) | 0.0322 (12) | −0.0032 (12) | 0.0048 (9) | −0.0006 (11) |
H17A | 0.039 (4) | 0.095 (7) | 0.047 (4) | 0.010 (4) | 0.010 (4) | 0.030 (5) |
H17B | 0.058 (6) | 0.045 (4) | 0.127 (11) | −0.032 (6) | 0.046 (7) | −0.025 (4) |
C18 | 0.0217 (12) | 0.0226 (12) | 0.0244 (13) | −0.0035 (9) | 0.0076 (10) | −0.0026 (9) |
C19 | 0.0170 (10) | 0.0243 (11) | 0.0246 (10) | −0.0007 (9) | 0.0068 (8) | 0.0022 (9) |
C20 | 0.0215 (13) | 0.0313 (13) | 0.0246 (14) | 0.0060 (10) | 0.0079 (11) | −0.0011 (11) |
H20A | 0.059 (6) | 0.120 (10) | 0.049 (6) | −0.001 (6) | 0.027 (5) | 0.035 (7) |
H20B | 0.055 (6) | 0.064 (5) | 0.059 (6) | 0.029 (4) | −0.003 (4) | −0.031 (5) |
S1—O6 | 1.456 (5) | N11B—H11D | 1.0300 |
S1—O12 | 1.457 (6) | N11B—C17 | 1.41 (2) |
S1—O2 | 1.470 (6) | N16—H16B | 1.020 (8) |
S1—O5 | 1.487 (5) | N16—H16C | 1.026 (7) |
O3—C13 | 1.276 (5) | N16—H16A | 1.036 (9) |
O3—H15i | 1.361 (12) | N16—C14 | 1.458 (4) |
O4—C13 | 1.227 (5) | N21—H21C | 1.014 (8) |
O7—C18 | 1.208 (5) | N21—H21B | 1.016 (7) |
O9—H9 | 1.030 (7) | N21—H21A | 1.018 (10) |
O9—C19 | 1.298 (4) | N21—C20 | 1.464 (4) |
O10—C19 | 1.205 (5) | C13—C20 | 1.508 (4) |
O15—H15 | 1.089 (12) | C14—H14A | 1.082 (9) |
O15—C18 | 1.292 (5) | C14—H14B | 1.093 (11) |
N11—H11B | 1.010 (12) | C14—C18 | 1.507 (5) |
N11—H11A | 1.021 (10) | C17—H17A | 1.060 (10) |
N11—H11C | 1.049 (9) | C17—H17B | 1.071 (9) |
N11—C17 | 1.475 (4) | C17—C19 | 1.503 (4) |
N11B—H11E | 1.0300 | C20—H20B | 1.068 (10) |
N11B—H11F | 1.0300 | C20—H20A | 1.072 (12) |
O6—S1—O12 | 111.5 (4) | H21A—N21—C20 | 109.6 (6) |
O6—S1—O2 | 110.5 (4) | O4—C13—O3 | 125.8 (4) |
O12—S1—O2 | 109.7 (3) | O4—C13—C20 | 120.3 (3) |
O6—S1—O5 | 110.1 (3) | O3—C13—C20 | 113.8 (3) |
O12—S1—O5 | 108.0 (4) | H14A—C14—H14B | 108.9 (12) |
O2—S1—O5 | 106.9 (4) | H14A—C14—N16 | 108.6 (7) |
C13—O3—H15i | 117.0 (5) | H14B—C14—N16 | 109.3 (8) |
H9—O9—C19 | 113.0 (5) | H14A—C14—C18 | 109.4 (7) |
H15—O15—C18 | 113.3 (6) | H14B—C14—C18 | 109.5 (7) |
H11B—N11—H11A | 105.2 (11) | N16—C14—C18 | 111.2 (3) |
H11B—N11—H11C | 106.6 (10) | H17A—C17—H17B | 108.5 (12) |
H11A—N11—H11C | 108.5 (8) | H17A—C17—N11B | 133.5 (12) |
H11B—N11—C17 | 113.6 (10) | H17B—C17—N11B | 81.1 (13) |
H11A—N11—C17 | 110.9 (6) | H17A—C17—N11 | 107.1 (7) |
H11C—N11—C17 | 111.6 (6) | H17B—C17—N11 | 110.1 (9) |
H11E—N11B—H11F | 109.5 | H17A—C17—C19 | 109.6 (7) |
H11E—N11B—H11D | 109.5 | H17B—C17—C19 | 109.6 (7) |
H11F—N11B—H11D | 109.5 | N11B—C17—C19 | 109.2 (8) |
H11E—N11B—C17 | 109.5 | N11—C17—C19 | 111.8 (2) |
H11F—N11B—C17 | 109.5 | O7—C18—O15 | 126.0 (4) |
H11D—N11B—C17 | 109.5 | O7—C18—C14 | 121.7 (3) |
H16B—N16—H16C | 109.6 (7) | O15—C18—C14 | 112.4 (4) |
H16B—N16—H16A | 110.5 (10) | O10—C19—O9 | 124.1 (3) |
H16C—N16—H16A | 105.9 (7) | O10—C19—C17 | 121.8 (3) |
H16B—N16—C14 | 110.4 (7) | O9—C19—C17 | 114.1 (3) |
H16C—N16—C14 | 111.4 (6) | H20B—C20—H20A | 108.0 (13) |
H16A—N16—C14 | 109.1 (6) | H20B—C20—N21 | 108.5 (7) |
H21C—N21—H21B | 108.5 (7) | H20A—C20—N21 | 109.8 (8) |
H21C—N21—H21A | 111.4 (10) | H20B—C20—C13 | 109.6 (7) |
H21B—N21—H21A | 106.1 (8) | H20A—C20—C13 | 109.5 (8) |
H21C—N21—C20 | 109.9 (7) | N21—C20—C13 | 111.4 (3) |
H21B—N21—C20 | 111.3 (7) | ||
H15i—O3—C13—O4 | 3.7 (7) | H14A—C14—C18—O7 | 119.8 (9) |
H15i—O3—C13—C20 | −176.4 (5) | H14B—C14—C18—O7 | −121.0 (9) |
H16B—N16—C14—H14A | −179.0 (11) | N16—C14—C18—O7 | −0.1 (5) |
H16C—N16—C14—H14A | 59.0 (10) | H14A—C14—C18—O15 | −59.9 (9) |
H16A—N16—C14—H14A | −57.5 (11) | H14B—C14—C18—O15 | 59.3 (9) |
H16B—N16—C14—H14B | 62.4 (11) | N16—C14—C18—O15 | −179.8 (4) |
H16C—N16—C14—H14B | −59.6 (9) | H9—O9—C19—O10 | 3.6 (9) |
H16A—N16—C14—H14B | −176.1 (9) | H9—O9—C19—C17 | −176.9 (7) |
H16B—N16—C14—C18 | −58.6 (8) | H17A—C17—C19—O10 | −42.0 (9) |
H16C—N16—C14—C18 | 179.4 (5) | H17B—C17—C19—O10 | 77.0 (11) |
H16A—N16—C14—C18 | 62.9 (6) | N11B—C17—C19—O10 | 164.1 (12) |
H11E—N11B—C17—H17A | 161.2 | N11—C17—C19—O10 | −160.6 (4) |
H11F—N11B—C17—H17A | 41.2 | H17A—C17—C19—O9 | 138.5 (8) |
H11D—N11B—C17—H17A | −78.8 | H17B—C17—C19—O9 | −102.5 (10) |
H11E—N11B—C17—H17B | 54.1 | N11B—C17—C19—O9 | −15.4 (12) |
H11F—N11B—C17—H17B | −65.9 | N11—C17—C19—O9 | 19.9 (5) |
H11D—N11B—C17—H17B | 174.1 | H21C—N21—C20—H20B | −175.1 (11) |
H11E—N11B—C17—C19 | −53.6 | H21B—N21—C20—H20B | −54.9 (10) |
H11F—N11B—C17—C19 | −173.6 | H21A—N21—C20—H20B | 62.1 (11) |
H11D—N11B—C17—C19 | 66.4 | H21C—N21—C20—H20A | −57.3 (12) |
H11B—N11—C17—H17A | 166.7 (11) | H21B—N21—C20—H20A | 62.9 (11) |
H11A—N11—C17—H17A | −75.0 (11) | H21A—N21—C20—H20A | 179.9 (11) |
H11C—N11—C17—H17A | 46.1 (10) | H21C—N21—C20—C13 | 64.2 (7) |
H11B—N11—C17—H17B | 48.9 (12) | H21B—N21—C20—C13 | −175.6 (6) |
H11A—N11—C17—H17B | 167.2 (11) | H21A—N21—C20—C13 | −58.6 (8) |
H11C—N11—C17—H17B | −71.7 (11) | O4—C13—C20—H20B | −121.0 (10) |
H11B—N11—C17—C19 | −73.1 (8) | O3—C13—C20—H20B | 59.1 (10) |
H11A—N11—C17—C19 | 45.2 (8) | O4—C13—C20—H20A | 120.7 (10) |
H11C—N11—C17—C19 | 166.3 (7) | O3—C13—C20—H20A | −59.2 (10) |
H15—O15—C18—O7 | −6.2 (10) | O4—C13—C20—N21 | −1.0 (5) |
H15—O15—C18—C14 | 173.5 (7) | O3—C13—C20—N21 | 179.1 (3) |
Symmetry code: (i) −x+1, y+1/2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9···O5ii | 1.030 (7) | 1.492 (7) | 2.522 (5) | 176.8 (8) |
O15—H15···O3iii | 1.090 (12) | 1.361 (12) | 2.450 (7) | 179.2 (10) |
N11—H11A···O3iv | 1.020 (13) | 1.802 (13) | 2.809 (6) | 168.3 (10) |
N11—H11B···O10iv | 1.012 (14) | 1.942 (12) | 2.806 (6) | 141.5 (13) |
N11—H11C···O2v | 1.050 (11) | 1.705 (11) | 2.755 (5) | 177.7 (8) |
N11—H11C···O12v | 1.050 (11) | 2.529 (12) | 3.132 (6) | 115.8 (8) |
N16—H16A···O6vi | 1.036 (10) | 1.817 (11) | 2.786 (4) | 154.0 (9) |
N16—H16B···O2 | 1.020 (10) | 2.074 (10) | 2.907 (3) | 137.4 (10) |
N16—H16B···O4vii | 1.020 (10) | 2.334 (14) | 2.920 (6) | 115.4 (8) |
N16—H16C···O5ii | 1.027 (8) | 2.258 (10) | 2.974 (5) | 125.5 (7) |
N16—H16C···O12ii | 1.027 (8) | 1.982 (9) | 2.974 (5) | 161.7 (10) |
N21—H21A···O6vi | 1.018 (11) | 1.879 (12) | 2.828 (4) | 153.8 (10) |
N21—H21B···O2ii | 1.016 (8) | 2.076 (9) | 3.024 (5) | 154.3 (10) |
N21—H21B···O5ii | 1.016 (8) | 2.213 (10) | 2.968 (5) | 129.9 (7) |
N21—H21C···O12viii | 1.014 (9) | 1.989 (10) | 2.892 (4) | 147.0 (10) |
N21—H21C···O7vi | 1.014 (9) | 2.517 (13) | 3.007 (6) | 109.2 (7) |
C14—H14A···O10 | 1.082 (11) | 2.403 (13) | 3.287 (7) | 138.0 (9) |
C17—H17A···O7ix | 1.060 (11) | 2.584 (14) | 3.404 (6) | 133.7 (8) |
C17—H17B···O4x | 1.071 (11) | 2.305 (12) | 3.348 (5) | 164.2 (12) |
C20—H20A···O15ix | 1.071 (15) | 2.423 (15) | 3.346 (7) | 143.7 (11) |
C20—H20B···O10 | 1.069 (13) | 2.517 (14) | 3.468 (7) | 147.9 (10) |
Symmetry codes: (ii) −x+2, y+1/2, −z+2; (iii) −x+1, y−1/2, −z; (iv) x, y, z+1; (v) −x+1, y+1/2, −z+2; (vi) −x+2, y+1/2, −z+1; (vii) −x+2, y−1/2, −z+1; (viii) x, y+1, z; (ix) −x+1, y+1/2, −z+1; (x) −x+1, y−1/2, −z+1. |
2C2H6NO2+·SO42−·C2H5NO2 | F(000) = 130.536 |
Mr = 323.28 | Dx = 1.693 Mg m−3 |
Monoclinic, P21 | Neutrons radiation, λ = 1 Å |
Hall symbol: P2yb | Cell parameters from 3228 reflections |
a = 9.3910 (14) Å | θ = 6.6–83.3° |
b = 12.6021 (18) Å | µ = 0.49 mm−1 |
c = 5.7125 (7) Å | T = 298 K |
β = 110.306 (13)° | Block, colorless |
V = 634.04 (16) Å3 | 2.80 × 2.80 × 2.80 mm |
Z = 2 |
Time-of-flight Laue-type single crystal neutron diffractometer | 10685 reflections with I > 2σ(I) |
Radiation source: spallation neutron | Rint = N/A |
Detector resolution: 4 pixels mm-1 | θmax = 83.7°, θmin = 7.9° |
time–of–flight Laue method scans | h = −15→15 |
14190 measured reflections | k = −21→20 |
3132 independent reflections | l = −9→9 |
Refinement on F2 | All H-atom parameters refined |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.1405P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.080 | (Δ/σ)max < 0.001 |
wR(F2) = 0.209 | Δρmax = 1.50 e Å−3 |
S = 1.05 | Δρmin = −1.70 e Å−3 |
14190 reflections | Extinction correction: SHELXL-2018/3 (Sheldrick 2015) |
358 parameters | Extinction coefficient: 0.106 (5) |
8 restraints | Absolute structure: Indeterminate for a neutron structure |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.9997 (5) | 0.7502 (5) | 0.7732 (8) | 0.0131 (7) | |
O2 | 0.9154 (4) | 0.8462 (2) | 0.7921 (8) | 0.0238 (7) | |
O3 | 0.5395 (5) | 1.4695 (4) | 0.1996 (9) | 0.0337 (9) | |
H3 | 0.5153 (11) | 1.4925 (10) | 0.011 (8) | 0.046 (2) | 0.124 (8) |
O4 | 0.7790 (5) | 1.4951 (3) | 0.2233 (8) | 0.0307 (8) | |
O5 | 1.1424 (3) | 0.7497 (4) | 0.9937 (5) | 0.0239 (5) | |
O6 | 1.0347 (4) | 0.7519 (3) | 0.5440 (5) | 0.0252 (5) | |
O7 | 0.7864 (5) | 0.9980 (3) | 0.2398 (8) | 0.0313 (8) | |
O9 | 0.6071 (4) | 1.2434 (4) | 1.0767 (7) | 0.0317 (7) | |
H9 | 0.7082 (6) | 1.2438 (8) | 1.0440 (12) | 0.0369 (12) | |
O10 | 0.4960 (5) | 1.2336 (5) | 0.6668 (8) | 0.0434 (12) | |
O12 | 0.9126 (5) | 0.6563 (3) | 0.7868 (8) | 0.0261 (7) | |
O15 | 0.5517 (5) | 1.0205 (5) | 0.2419 (10) | 0.0419 (11) | |
H15 | 0.5131 (11) | 0.9970 (8) | 0.051 (2) | 0.046 (2) | 0.876 (8) |
N11 | 0.3571 (3) | 1.2892 (3) | 1.1626 (6) | 0.0316 (7) | 0.876 (8) |
H11A | 0.4246 (12) | 1.3552 (10) | 1.200 (2) | 0.052 (2) | 0.876 (8) |
H11B | 0.4077 (13) | 1.2388 (13) | 1.305 (2) | 0.062 (3) | 0.876 (8) |
H11C | 0.2518 (10) | 1.3095 (9) | 1.176 (2) | 0.048 (2) | 0.876 (8) |
N11B | 0.365 (2) | 1.226 (2) | 1.167 (5) | 0.0316 (7) | 0.124 (8) |
H11D | 0.426075 | 1.156788 | 1.221059 | 0.052 (2) | 0.124 (8) |
H11E | 0.262414 | 1.218805 | 1.193317 | 0.062 (3) | 0.124 (8) |
H11F | 0.425392 | 1.288121 | 1.273121 | 0.048 (2) | 0.124 (8) |
N16 | 0.9164 (3) | 1.07348 (15) | 0.7057 (4) | 0.0228 (4) | |
H16A | 0.9553 (11) | 1.1250 (8) | 0.5999 (17) | 0.0454 (18) | |
H16B | 0.9613 (13) | 0.9997 (7) | 0.7084 (17) | 0.053 (2) | |
H16C | 0.9530 (12) | 1.1042 (6) | 0.8830 (14) | 0.0414 (17) | |
N21 | 0.8957 (3) | 1.42989 (15) | 0.6984 (4) | 0.0220 (4) | |
H21A | 0.9420 (11) | 1.3818 (9) | 0.6005 (18) | 0.049 (2) | |
H21B | 0.9277 (12) | 1.3990 (7) | 0.8735 (14) | 0.046 (2) | |
H21C | 0.9368 (12) | 1.5049 (7) | 0.7098 (16) | 0.053 (2) | |
C13 | 0.6830 (3) | 1.4686 (2) | 0.3128 (6) | 0.0203 (5) | |
C14 | 0.7510 (4) | 1.0691 (3) | 0.6007 (6) | 0.0257 (6) | |
H14A | 0.7067 (12) | 1.1486 (8) | 0.597 (2) | 0.060 (3) | |
H14B | 0.7088 (15) | 1.0192 (11) | 0.719 (2) | 0.064 (3) | |
C17 | 0.3401 (3) | 1.2455 (3) | 0.9149 (5) | 0.0256 (5) | |
H17A | 0.2643 (11) | 1.2962 (10) | 0.7802 (18) | 0.062 (3) | |
H17B | 0.2910 (14) | 1.1679 (8) | 0.895 (3) | 0.073 (4) | |
C18 | 0.6979 (4) | 1.0248 (2) | 0.3394 (6) | 0.0230 (6) | |
C19 | 0.4894 (3) | 1.2405 (2) | 0.8731 (5) | 0.0221 (5) | |
C20 | 0.7302 (4) | 1.4308 (3) | 0.5793 (6) | 0.0258 (6) | |
H20A | 0.6814 (15) | 1.4815 (13) | 0.683 (2) | 0.074 (4) | |
H20B | 0.6892 (13) | 1.3521 (10) | 0.584 (2) | 0.066 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0133 (18) | 0.0105 (13) | 0.0159 (17) | −0.0021 (19) | 0.0057 (14) | 0.0003 (19) |
O2 | 0.0243 (15) | 0.0152 (12) | 0.0352 (19) | 0.0063 (10) | 0.0144 (14) | 0.0017 (11) |
O3 | 0.0179 (15) | 0.0440 (19) | 0.0327 (19) | 0.0028 (15) | 0.0008 (13) | 0.0059 (15) |
H3 | 0.026 (3) | 0.044 (3) | 0.062 (7) | −0.005 (3) | 0.008 (4) | −0.004 (4) |
O4 | 0.0238 (17) | 0.0403 (18) | 0.0245 (17) | −0.0039 (14) | 0.0041 (13) | 0.0119 (14) |
O5 | 0.0147 (11) | 0.0363 (12) | 0.0188 (10) | 0.0019 (14) | 0.0036 (9) | 0.0011 (15) |
O6 | 0.0337 (15) | 0.0270 (11) | 0.0179 (10) | −0.0006 (15) | 0.0128 (10) | −0.0003 (13) |
O7 | 0.0252 (17) | 0.0418 (18) | 0.0253 (16) | 0.0043 (14) | 0.0067 (14) | −0.0111 (15) |
O9 | 0.0142 (12) | 0.0517 (19) | 0.0287 (14) | 0.0003 (16) | 0.0067 (11) | −0.0028 (18) |
H9 | 0.021 (2) | 0.050 (3) | 0.039 (3) | 0.002 (3) | 0.010 (2) | −0.004 (3) |
O10 | 0.0309 (19) | 0.071 (3) | 0.0268 (16) | 0.005 (2) | 0.0083 (14) | −0.0069 (19) |
O12 | 0.0276 (17) | 0.0158 (12) | 0.035 (2) | −0.0072 (11) | 0.0113 (15) | 0.0001 (11) |
O15 | 0.0222 (18) | 0.064 (3) | 0.038 (2) | −0.0124 (19) | 0.0085 (17) | −0.014 (2) |
H15 | 0.026 (3) | 0.044 (3) | 0.062 (7) | −0.005 (3) | 0.008 (4) | −0.004 (4) |
N11 | 0.0176 (10) | 0.0485 (18) | 0.0314 (11) | −0.0062 (11) | 0.0119 (9) | −0.0033 (12) |
H11A | 0.038 (4) | 0.075 (6) | 0.048 (5) | −0.017 (4) | 0.020 (4) | −0.024 (5) |
H11B | 0.046 (5) | 0.088 (9) | 0.048 (5) | −0.009 (6) | 0.013 (4) | 0.023 (6) |
H11C | 0.028 (4) | 0.059 (5) | 0.061 (6) | −0.006 (3) | 0.023 (4) | −0.011 (4) |
N11B | 0.0176 (10) | 0.0485 (18) | 0.0314 (11) | −0.0062 (11) | 0.0119 (9) | −0.0033 (12) |
H11D | 0.038 (4) | 0.075 (6) | 0.048 (5) | −0.017 (4) | 0.020 (4) | −0.024 (5) |
H11E | 0.046 (5) | 0.088 (9) | 0.048 (5) | −0.009 (6) | 0.013 (4) | 0.023 (6) |
H11F | 0.028 (4) | 0.059 (5) | 0.061 (6) | −0.006 (3) | 0.023 (4) | −0.011 (4) |
N16 | 0.0269 (10) | 0.0201 (8) | 0.0179 (8) | 0.0037 (7) | 0.0033 (7) | −0.0019 (6) |
H16A | 0.039 (4) | 0.063 (5) | 0.033 (4) | −0.012 (4) | 0.011 (3) | 0.002 (3) |
H16B | 0.057 (5) | 0.044 (4) | 0.042 (4) | 0.025 (4) | −0.003 (4) | −0.010 (3) |
H16C | 0.056 (5) | 0.035 (3) | 0.028 (3) | −0.004 (3) | 0.008 (3) | −0.010 (2) |
N21 | 0.0244 (9) | 0.0214 (8) | 0.0160 (8) | −0.0029 (7) | 0.0016 (7) | 0.0036 (6) |
H21A | 0.040 (4) | 0.069 (5) | 0.036 (4) | 0.015 (4) | 0.011 (3) | −0.003 (3) |
H21B | 0.063 (6) | 0.042 (3) | 0.026 (3) | 0.003 (3) | 0.007 (3) | 0.010 (3) |
H21C | 0.057 (5) | 0.045 (4) | 0.041 (4) | −0.026 (4) | −0.001 (4) | 0.009 (3) |
C13 | 0.0177 (11) | 0.0186 (10) | 0.0218 (12) | 0.0014 (9) | 0.0032 (9) | 0.0032 (8) |
C14 | 0.0267 (14) | 0.0270 (12) | 0.0251 (13) | −0.0012 (10) | 0.0113 (11) | −0.0067 (10) |
H14A | 0.045 (5) | 0.053 (4) | 0.069 (7) | 0.017 (4) | 0.005 (4) | −0.027 (4) |
H14B | 0.072 (7) | 0.089 (7) | 0.044 (5) | −0.028 (6) | 0.034 (5) | −0.003 (4) |
C17 | 0.0143 (10) | 0.0276 (10) | 0.0324 (12) | −0.0007 (11) | 0.0048 (9) | −0.0031 (12) |
H17A | 0.040 (4) | 0.095 (7) | 0.046 (4) | 0.031 (5) | 0.010 (4) | 0.010 (5) |
H17B | 0.058 (6) | 0.045 (4) | 0.126 (11) | −0.024 (4) | 0.045 (7) | −0.032 (6) |
C18 | 0.0217 (12) | 0.0226 (12) | 0.0244 (13) | −0.0026 (9) | 0.0077 (10) | −0.0035 (9) |
C19 | 0.0170 (10) | 0.0243 (11) | 0.0246 (11) | 0.0021 (9) | 0.0068 (8) | −0.0007 (9) |
C20 | 0.0215 (13) | 0.0312 (13) | 0.0245 (14) | −0.0011 (11) | 0.0078 (11) | 0.0060 (10) |
H20A | 0.060 (6) | 0.118 (10) | 0.049 (6) | 0.035 (7) | 0.028 (5) | −0.001 (6) |
H20B | 0.055 (6) | 0.064 (5) | 0.059 (6) | −0.031 (5) | −0.003 (4) | 0.029 (4) |
S1—O12 | 1.456 (6) | N11B—H11F | 1.0300 |
S1—O6 | 1.457 (5) | N11B—H11D | 1.0300 |
S1—O2 | 1.469 (6) | N11B—C17 | 1.40 (2) |
S1—O5 | 1.487 (5) | N16—H16B | 1.019 (8) |
O3—H3 | 1.06 (4) | N16—H16C | 1.026 (7) |
O3—C13 | 1.277 (5) | N16—H16A | 1.036 (9) |
O3—H15i | 1.386 (12) | N16—C14 | 1.459 (4) |
H3—H15i | 0.37 (4) | N21—H21C | 1.014 (8) |
O4—C13 | 1.226 (5) | N21—H21B | 1.016 (7) |
O7—C18 | 1.208 (5) | N21—H21A | 1.019 (10) |
O9—H9 | 1.029 (7) | N21—C20 | 1.464 (4) |
O9—C19 | 1.298 (4) | C13—C20 | 1.508 (4) |
O10—C19 | 1.204 (5) | C14—H14A | 1.082 (9) |
O15—H15 | 1.066 (12) | C14—H14B | 1.093 (11) |
O15—C18 | 1.291 (5) | C14—C18 | 1.507 (5) |
N11—H11B | 1.010 (12) | C17—H17A | 1.061 (10) |
N11—H11A | 1.022 (11) | C17—H17B | 1.070 (9) |
N11—H11C | 1.050 (9) | C17—C19 | 1.503 (4) |
N11—C17 | 1.474 (4) | C20—H20B | 1.068 (10) |
N11B—H11E | 1.0300 | C20—H20A | 1.074 (12) |
O12—S1—O6 | 111.5 (4) | H21B—N21—H21A | 106.0 (8) |
O12—S1—O2 | 109.8 (3) | H21C—N21—C20 | 110.0 (7) |
O6—S1—O2 | 110.4 (4) | H21B—N21—C20 | 111.3 (7) |
O12—S1—O5 | 108.0 (4) | H21A—N21—C20 | 109.6 (6) |
O6—S1—O5 | 110.1 (3) | O4—C13—O3 | 125.8 (4) |
O2—S1—O5 | 107.0 (4) | O4—C13—C20 | 120.4 (3) |
H3—O3—C13 | 109.5 | O3—C13—C20 | 113.7 (3) |
H3—O3—H15i | 8.0 | H14A—C14—H14B | 108.9 (12) |
C13—O3—H15i | 117.4 (6) | H14A—C14—N16 | 108.7 (7) |
H15i—H3—O3 | 149 (4) | H14B—C14—N16 | 109.3 (8) |
H9—O9—C19 | 113.0 (5) | H14A—C14—C18 | 109.3 (7) |
H15—O15—C18 | 112.7 (7) | H14B—C14—C18 | 109.5 (7) |
H15—O15—H3ii | 6 (3) | N16—C14—C18 | 111.1 (3) |
C18—O15—H3ii | 118.9 (11) | H17A—C17—H17B | 108.4 (12) |
H3ii—H15—O15 | 155.4 | H17A—C17—N11B | 133.1 (12) |
H11B—N11—H11A | 105.0 (11) | H17B—C17—N11B | 82.1 (14) |
H11B—N11—H11C | 106.7 (10) | H17A—C17—N11 | 107.1 (7) |
H11A—N11—H11C | 108.5 (9) | H17B—C17—N11 | 110.1 (9) |
H11B—N11—C17 | 113.7 (10) | H17A—C17—C19 | 109.7 (7) |
H11A—N11—C17 | 110.9 (6) | H17B—C17—C19 | 109.6 (7) |
H11C—N11—C17 | 111.7 (6) | N11B—C17—C19 | 108.9 (8) |
H11E—N11B—H11F | 109.5 | N11—C17—C19 | 111.8 (2) |
H11E—N11B—H11D | 109.5 | O7—C18—O15 | 126.0 (4) |
H11F—N11B—H11D | 109.5 | O7—C18—C14 | 121.7 (3) |
H11E—N11B—C17 | 109.5 | O15—C18—C14 | 112.3 (4) |
H11F—N11B—C17 | 109.5 | O10—C19—O9 | 124.2 (3) |
H11D—N11B—C17 | 109.5 | O10—C19—C17 | 121.7 (3) |
H16B—N16—H16C | 109.5 (7) | O9—C19—C17 | 114.1 (3) |
H16B—N16—H16A | 110.6 (10) | H20B—C20—H20A | 108.2 (13) |
H16C—N16—H16A | 105.9 (7) | H20B—C20—N21 | 108.3 (7) |
H16B—N16—C14 | 110.3 (7) | H20A—C20—N21 | 109.6 (8) |
H16C—N16—C14 | 111.4 (6) | H20B—C20—C13 | 109.7 (7) |
H16A—N16—C14 | 109.0 (6) | H20A—C20—C13 | 109.6 (8) |
H21C—N21—H21B | 108.5 (7) | N21—C20—C13 | 111.4 (3) |
H21C—N21—H21A | 111.3 (10) | ||
C13—O3—H3—H15i | 176.0 | H3ii—O15—C18—O7 | −6.9 |
C18—O15—H15—H3ii | −169.8 | H15—O15—C18—C14 | 173.9 (7) |
H3—O3—C13—O4 | 3.4 | H3ii—O15—C18—C14 | 172.7 |
H15i—O3—C13—O4 | 4.0 (8) | H14A—C14—C18—O7 | 119.8 (9) |
H3—O3—C13—C20 | −176.7 | H14B—C14—C18—O7 | −120.9 (10) |
H15i—O3—C13—C20 | −176.1 (6) | N16—C14—C18—O7 | −0.1 (5) |
H16B—N16—C14—H14A | −178.9 (11) | H14A—C14—C18—O15 | −59.8 (9) |
H16C—N16—C14—H14A | 59.2 (10) | H14B—C14—C18—O15 | 59.4 (9) |
H16A—N16—C14—H14A | −57.3 (11) | N16—C14—C18—O15 | −179.8 (4) |
H16B—N16—C14—H14B | 62.3 (11) | H9—O9—C19—O10 | 3.6 (9) |
H16C—N16—C14—H14B | −59.6 (9) | H9—O9—C19—C17 | −177.0 (7) |
H16A—N16—C14—H14B | −176.1 (10) | H17A—C17—C19—O10 | −42.0 (9) |
H16B—N16—C14—C18 | −58.6 (8) | H17B—C17—C19—O10 | 76.9 (11) |
H16C—N16—C14—C18 | 179.5 (5) | N11B—C17—C19—O10 | 165.1 (12) |
H16A—N16—C14—C18 | 63.0 (6) | N11—C17—C19—O10 | −160.7 (4) |
H11E—N11B—C17—H17A | 43.9 | H17A—C17—C19—O9 | 138.5 (8) |
H11F—N11B—C17—H17A | −76.1 | H17B—C17—C19—O9 | −102.5 (10) |
H11D—N11B—C17—H17A | 163.9 | N11B—C17—C19—O9 | −14.3 (12) |
H11E—N11B—C17—H17B | −64.0 | N11—C17—C19—O9 | 19.9 (5) |
H11F—N11B—C17—H17B | 176.0 | H21C—N21—C20—H20B | −175.1 (11) |
H11D—N11B—C17—H17B | 56.0 | H21B—N21—C20—H20B | −54.8 (10) |
H11E—N11B—C17—C19 | −172.1 | H21A—N21—C20—H20B | 62.2 (11) |
H11F—N11B—C17—C19 | 67.9 | H21C—N21—C20—H20A | −57.3 (12) |
H11D—N11B—C17—C19 | −52.1 | H21B—N21—C20—H20A | 63.0 (11) |
H11B—N11—C17—H17A | 167.0 (11) | H21A—N21—C20—H20A | −180.0 (11) |
H11A—N11—C17—H17A | −74.9 (11) | H21C—N21—C20—C13 | 64.1 (7) |
H11C—N11—C17—H17A | 46.3 (11) | H21B—N21—C20—C13 | −175.6 (6) |
H11B—N11—C17—H17B | 49.3 (11) | H21A—N21—C20—C13 | −58.6 (8) |
H11A—N11—C17—H17B | 167.4 (11) | O4—C13—C20—H20B | −120.9 (10) |
H11C—N11—C17—H17B | −71.4 (11) | O3—C13—C20—H20B | 59.2 (10) |
H11B—N11—C17—C19 | −72.8 (8) | O4—C13—C20—H20A | 120.5 (10) |
H11A—N11—C17—C19 | 45.3 (8) | O3—C13—C20—H20A | −59.4 (10) |
H11C—N11—C17—C19 | 166.5 (7) | O4—C13—C20—N21 | −0.9 (5) |
H15—O15—C18—O7 | −5.7 (10) | O3—C13—C20—N21 | 179.2 (3) |
Symmetry codes: (i) −x+1, y+1/2, −z; (ii) −x+1, y−1/2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O15i | 1.06 (4) | 1.41 (4) | 2.451 (7) | 166 (2) |
O9—H9···O5iii | 1.029 (7) | 1.493 (7) | 2.522 (5) | 176.7 (8) |
O15—H15···O3ii | 1.07 (1) | 1.39 (1) | 2.451 (7) | 178 (1) |
N11—H11A···O3iv | 1.022 (13) | 1.800 (13) | 2.809 (6) | 168.3 (10) |
N11—H11B···O10iv | 1.011 (14) | 1.943 (12) | 2.807 (6) | 141.7 (13) |
N11—H11C···O2v | 1.050 (11) | 1.706 (11) | 2.755 (5) | 177.5 (8) |
N11—H11C···O12v | 1.050 (11) | 2.527 (12) | 3.132 (6) | 116.0 (8) |
N16—H16A···O6vi | 1.036 (10) | 1.815 (11) | 2.785 (4) | 154.2 (9) |
N16—H16B···O2 | 1.019 (10) | 2.074 (10) | 2.907 (3) | 137.5 (10) |
N16—H16B···O4vii | 1.019 (10) | 2.333 (14) | 2.919 (6) | 115.4 (8) |
N16—H16C···O5iii | 1.026 (8) | 2.258 (10) | 2.974 (5) | 125.5 (7) |
N16—H16C···O12iii | 1.026 (8) | 1.982 (9) | 2.974 (5) | 161.6 (10) |
N21—H21A···O6vi | 1.019 (11) | 1.880 (12) | 2.829 (4) | 153.6 (10) |
N21—H21B···O2iii | 1.017 (8) | 2.076 (9) | 3.024 (5) | 154.3 (10) |
N21—H21B···O5iii | 1.017 (8) | 2.213 (10) | 2.969 (5) | 129.9 (7) |
N21—H21C···O12viii | 1.015 (10) | 1.989 (10) | 2.892 (4) | 146.9 (10) |
N21—H21C···O7vi | 1.015 (10) | 2.516 (13) | 3.007 (6) | 109.3 (7) |
C14—H14A···O10 | 1.082 (11) | 2.402 (13) | 3.287 (7) | 138.0 (9) |
C17—H17A···O7ix | 1.062 (11) | 2.583 (13) | 3.404 (5) | 133.8 (8) |
C17—H17B···O4x | 1.070 (11) | 2.307 (12) | 3.350 (5) | 164.2 (12) |
C20—H20A···O15ix | 1.076 (15) | 2.423 (15) | 3.348 (7) | 143.3 (11) |
C20—H20B···O10 | 1.068 (13) | 2.518 (14) | 3.468 (7) | 147.7 (10) |
Symmetry codes: (i) −x+1, y+1/2, −z; (ii) −x+1, y−1/2, −z; (iii) −x+2, y+1/2, −z+2; (iv) x, y, z+1; (v) −x+1, y+1/2, −z+2; (vi) −x+2, y+1/2, −z+1; (vii) −x+2, y−1/2, −z+1; (viii) x, y+1, z; (ix) −x+1, y+1/2, −z+1; (x) −x+1, y−1/2, −z+1. |
This study | Protas et al. (1997) | Hudspeth et al. (2013) | |
HTGS | DTGS | FDTGS | |
Temperature (K) | 20 (2) | 40 | 20 (2) |
a (Å) | 9.3946 (8) | 9.406 (5) | 9.409 (2) |
b (Å) | 12.5338 (11) | 12.614 (5) | 12.558 (3) |
c (Å) | 5.6630 (4) | 5.654 (5) | 5.673 (1) |
β (Å) | 110.500 (7) | 110.49 (2) | 110.44 (2) |
V (Å3) | 624.59 (9) | 628.4 (7) | 628.2 (2) |
O15···O3i (Å) | 2.4777 (15) | 2.486 (5) | – |
O15—H(D)15 (Å) | 1.070 (3) | 1.041 (5) | – |
H(D)15···O3i (Å) | 1.408 (3) | 1.445 (6) | – |
O15—H(D)15···O3i (°) | 179.0 (4) | 178.4 (6) | – |
Symmetry code for HTGS in this study: (i) 3 - x, -1/2 + y, 2 - z. |
This study (Model 1) | This study (Model 2) | Kay et al. (1973) | Choudhury & Chitra (2008) | Hudspeth et al. (2013) | |
HTGS | HTGS | HTGS | HTGS | FDTGS | |
Temperature (K) | 298 (2) | 298 (2) | 298 | RT | 295 |
a (Å) | 9.3910 (14) | 9.3910 (14) | 9.417 | 9.416 (7) | 9.413 (2) |
b (Å) | 12.6021 (18) | 12.6021 (18) | 12.643 | 12.643 (1) | 12.629 (2) |
c (Å) | 5.7125 (7) | 5.7125 (7) | 5.735 | 5.734 (3) | 5.716 (1) |
β (Å) | 110.306 (13) | 110.306 (13) | 110.4 | 110.33 (3) | 110.30 (2) |
V (Å3) | 634.04 (16) | 634.04 (16) | 639.98 | 640.09 | 637.3 (2) |
O15···O3i (Å) | 2.450 (7) | 2.451 (7) | 2.50 | 2.470 (9) | – |
O15—H(D)15 (Å) | 1.090 (12) | 1.065 (12) | 1.10 | 1.115 (12) | 1.077 (6) |
H(D)15···O3i (Å) | 1.361 (12) | 1.387 (12) | 1.36 | 1.356 (11) | – |
H(D)3—O3 (Å) | – | 1.06 (4) | – | – | – |
O15—H(D)15···O3i (°) | 179.2 (10) | 178.2 (11) | 176 (2) | 177.3 (9) | – |
Symmetry code for HGTS in this study: (i) 1 - x, -1/2 + y, -z. |
Acknowledgements
The neutron diffraction measurements were conducted under the J-PARC MLF Fast Track Proposal No.2020BF1801.
Funding information
Funding for this research was provided by: Mitsubishi Materials Corporation (grant No. AXA30Z001000); Waseda University Grants for Special Research Projects (grant No. BARD01107201).
References
Cheng, Z., Cheng, Y., Zhang, P. & Yan, Q. (1986). Acta Phys. Sin. 35, 643–52. CAS Google Scholar
Choudhury, R. R. & Chitra, R. (2008). Pramana – J. Phys. 71, 911–915. Web of Science CrossRef CAS Google Scholar
Fletcher, S. R., Keve, E. T. & Skapski, A. C. (1976). Ferroelectrics, 14, 789–799. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hoshino, S., Okaya, Y. & Pepinsky, R. (1959). Phys. Rev. 115, 323–330. CSD CrossRef CAS Web of Science Google Scholar
Hudspeth, J. M. & Goossens, D. J. (2012). J. Cryst. Growth, 338, 177–180. Web of Science CrossRef CAS Google Scholar
Hudspeth, J. M., Goossens, D. J., Gutmann, M. J. & Studer, A. J. (2013). Cryst. Res. Technol. 48, 169–180. Web of Science CrossRef CAS Google Scholar
Itoh, K. & Mitsui, T. (1973). Ferroelectrics, 5, 235–251. CrossRef CAS Web of Science Google Scholar
Kawasaki, T., Kaimori, Y., Shimada, S., Hara, N., Sato, S., Suzuki, K., Asahi, T., Matsumoto, A. & Soai, S. (2021). Chem. Commun. 57, 5999–6002. Web of Science CSD CrossRef CAS Google Scholar
Kay, M. I. & Kleinberg, R. (1973). Ferroelectrics, 5, 45–52. CrossRef CAS Web of Science Google Scholar
Kolontsova, E. V., Red'ko, S. V., Struchkov, Yu. T. & Yanovskii, A. I. (1990). Sov. Phys. Crystallogr. 35, 126–129. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Matthias, B. T., Miller, C. E. & Remeika, J. P. (1956). Phys. Rev. 104, 849–850. CrossRef CAS Web of Science Google Scholar
Ohhara, T., Kiyanagi, R., Oikawa, K., Kaneko, K., Kawasaki, T., Tamura, I., Nakao, A., Hanashima, T., Munakata, K., Moyoshi, T., Kuroda, T., Kimura, H., Sakakura, T., Lee, C.-H., Takahashi, M., Ohshima, K., Kiyotani, T., Noda, Y. & Arai, M. (2016). J. Appl. Cryst. 49, 120–127. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ohhara, T., Kusaka, K., Hosoya, T., Kurihara, K., Tomoyori, K., Niimura, N., Tanaka, I., Suzuki, J., Nakatani, T., Otomo, T., Matsuoka, S., Tomita, K., Nishimaki, Y., Ajima, T. & Ryufuku, S. (2009). Nucl. Instrum. Methods Phys. Res. A, 600, 195–197. Web of Science CrossRef CAS Google Scholar
Padmanabhan, V. M. & Yadav, V. S. (1971). Current Science (Bangalore) 40, 60–61. CAS Google Scholar
Protas, J., Gerbaux, X., Hadni, A. & Schweiss, P. (1997). Ferroelectrics, 193, 51–62. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Terasawa, Y., Kikuta, T., Ichiki, M., Sato, S., Ishikawa, K. & Asahi, T. (2021). J. Phys. Chem. Solids, 151, 109890. Web of Science CrossRef Google Scholar
Triebwasser, S. (1958). IBM J. Res. & Dev. 2, 212–217. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wood, E. A. & Holden, A. N. (1957). Acta Cryst. 10, 145–146. CrossRef IUCr Journals Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.