research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Single-crystal structure analysis of non-deuterated triglycine sulfate by neutron diffraction at 20 and 298 K: a new disorder model for the 298 K structure

crossmark logo

aSchool of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan, bJ-PARC Center, Japan Atomic Energy Agency, Shirakata 2-4, Tokai, Ibaraki, 319-1195, Japan, cIntegrated Molecular Structure Analysis Laboratory, Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan, dDepartment of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan, eFaculty of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan, and fResearch Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
*Correspondence e-mail: tasahi@waseda.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 December 2021; accepted 24 January 2022; online 8 February 2022)

Precise single-crystal structure analyses of the title compound, bis­(glycinium) sulfate–glycine (1/1), 2C2H6NO2+·SO42−·C2H5NO2 (or C6H17N3O10S), non-deuterated triglycine sulfate (HTGS) at 20 K and 298 K were undertaken using time-of-flight neutron diffraction data. At 20 K for the O—H⋯O hydrogen bond between the glycinium cation and the zwitterionic, unprotonated glycine mol­ecule that is associated with the ferroelectric behaviour of HTGS, O—H = 1.070 (3), H⋯O = 1.408 (3) [δ = 0.338 (4)], O⋯O = 2.4777 (15) Å and O—H⋯O = 179.0 (4)°, which is in good agreement with previous studies. Two reasonable structures for the same three atoms were refined for the 298 K dataset. One is a single-minimum potential-energy model, with O—H = 1.090 (12), H⋯O = 1.361 (12) [δ = 0.271 (17)], O⋯O = 2.450 (7) Å and O—H⋯O = 179.2 (10)°, having the H atom with a large ellipticity along the bond path between the O atoms. The other is a double-minimum potential-energy model having two H atom sites with occupancies of 0.876 (8) and 0.124 (8): for the major occupancy component, O—H = 1.065 (12), H⋯O = 1.387 (12), O⋯O = 2.451 (7) Å and O—H⋯O = 178.2 (11)° and for the minor component, O—H = 1.06 (4), H⋯O = 1.41 (4), O⋯O = 2.451 (7) Å and O—H⋯O = 166 (2)°. These models did not show any significant differences in R factors. In addition, the unit-cell parameters and other structural parameters of HTGS did not show any major differences compared to those of partially deuterated TGS and fully deuterated TGS for both 20 K and 298 K.

1. Chemical context

Triglycine sulfate, 2(C2H6NO2)+·(C2H5NO2)·(SO4)2– (TGS), is a hydrogen-bond ferroelectric material (Matthias et al. 1956[Matthias, B. T., Miller, C. E. & Remeika, J. P. (1956). Phys. Rev. 104, 849-850.]) exhibiting a second-order and order–disorder-type ferroelectric phase transition at a Curie temperature (TC) of 322 K (Triebwasser, 1958[Triebwasser, S. (1958). IBM J. Res. & Dev. 2, 212-217.]). The TGS structure belongs to the point group C2h and the space group P21/m in the paraelectric phase and C2 and P21 in the ferroelectric phase, respectively (Wood & Holden, 1957[Wood, E. A. & Holden, A. N. (1957). Acta Cryst. 10, 145-146.]). Because of its high pyroelectricity, TGS has long been used as a material for pyroelectric sensors. Therefore, determining the crystal structure of TGS is essential for understanding such physical properties.

The atomic coordinates, except for those of the hydrogen atoms, of TGS at room temperature were first determined using single-crystal X-ray diffraction (Hoshino et al., 1959[Hoshino, S., Okaya, Y. & Pepinsky, R. (1959). Phys. Rev. 115, 323-330.]). The study assumed the presence of one neutral glycine mol­ecule (C2H5NO2) exhibiting a zwitterionic configuration, and two monoprotonated glycinium ions (C2H6NO2+), from the detailed analysis of the bond lengths and angles of the glycine mol­ecules. The authors also proposed a hydrogen-bonding scheme and pointed out that the hydrogen atom that lies between the oxygen atom of the carboxyl group in the glycine III cation (GIII) and the O atom in the glycine II mol­ecule (GII) plays a crucial role in the dipole reversal. Many structural studies on TGS have subsequently been conducted (see Database survey): most of them were X-ray diffraction studies, but some of them were neutron diffraction studies. The atomic coordinates of non-deuterated TGS (hereinafter, designated as HTGS in place of TGS), including those of the hydrogen atoms at room temperature, were first revealed using single-crystal neutron diffraction (Padmanabhan & Yadav, 1971[Padmanabhan, V. M. & Yadav, V. S. (1971). Current Science (Bangalore) 40, 60-61.]) and the atomic arrangements including hydrogen atoms of the zwitterion and glycinium ions were directly observed. The neutron diffraction experiment revealed that the hydrogen atom forming the O—H⋯O hydrogen bond between the GIII and GII species was closer to the GIII O atom compared to that in GII. This result agreed with that obtained by Hoshino et al. (1959[Hoshino, S., Okaya, Y. & Pepinsky, R. (1959). Phys. Rev. 115, 323-330.]). The structure refinement of HTGS with an applied external electric field at 298 K revealed the placement of all the hydrogen atoms and the unambiguous definition of the hydrogen-bonding scheme in an ordered domain structure (Kay & Kleinberg, 1973[Kay, M. I. & Kleinberg, R. (1973). Ferroelectrics, 5, 45-52.]).

Crystal-structure refinements of partially deuterated TGS (DTGS), where deuterium replaced the H atoms except for the hydrogen atoms of the methyl­ene (CH2) group in each glycine mol­ecule and those in sulfuric acid mol­ecules at 40 K and 180 K (Protas et al., 1997[Protas, J., Gerbaux, X., Hadni, A. & Schweiss, P. (1997). Ferroelectrics, 193, 51-62.]) showed that the refined structures were consistent with those of the HTGS reported by Kay & Kleinberg (1973[Kay, M. I. & Kleinberg, R. (1973). Ferroelectrics, 5, 45-52.]). Protas et al. (1997[Protas, J., Gerbaux, X., Hadni, A. & Schweiss, P. (1997). Ferroelectrics, 193, 51-62.]) also observed that HTGS and DTGS in the ferroelectric phase had a consistent structure from 40 K to 298 K. The deuterium atom lying between GIII and GII was ∼0.40 Å closer to the O atom of the carboxyl group of GIII than that of GII at both temperatures. In contrast, the crystal-structure refinement of HTGS at room temperature showed positional disorder over two adjacent sites of the amino group in glycinium cation I (GI) (Choudhury & Chitra, 2008[Choudhury, R. R. & Chitra, R. (2008). Pramana - J. Phys. 71, 911-915.]). However, this is not in agreement with the refined structure of HTGS reported by Padmanabhan & Yadav (1971[Padmanabhan, V. M. & Yadav, V. S. (1971). Current Science (Bangalore) 40, 60-61.]) where the GI species was analysed as an ordered structure.

In the crystal structure of fully deuterated TGS (FDTGS), all the hydrogen atoms in the glycine mol­ecules and sulfuric acid mol­ecules are substituted by deuterium atoms: the crystal structures did not show major changes between 20 K and 295 K (Hudspeth et al., 2013[Hudspeth, J. M., Goossens, D. J., Gutmann, M. J. & Studer, A. J. (2013). Cryst. Res. Technol. 48, 169-180.]). The unit-cell parameters of these FDTGS structures were consistent with those of HTGS (Kay & Kleinberg, 1973[Kay, M. I. & Kleinberg, R. (1973). Ferroelectrics, 5, 45-52.]; Choudhury & Chitra, 2008[Choudhury, R. R. & Chitra, R. (2008). Pramana - J. Phys. 71, 911-915.]) and DTGS (Protas et al., 1997[Protas, J., Gerbaux, X., Hadni, A. & Schweiss, P. (1997). Ferroelectrics, 193, 51-62.]).

Structural analysis of DTGS at 40 K and FDTGS at 20 K have been undertaken by Protas et al. (1997[Protas, J., Gerbaux, X., Hadni, A. & Schweiss, P. (1997). Ferroelectrics, 193, 51-62.]) and Hudspeth et al. (2013[Hudspeth, J. M., Goossens, D. J., Gutmann, M. J. & Studer, A. J. (2013). Cryst. Res. Technol. 48, 169-180.]), respectively, as mentioned above. However, a precise structural analysis of HTGS including hydrogen atoms at low temperatures has not been reported. Furthermore, two different structures of HTGS at ∼298 K were reported: one is an ordered structure by Padmanabhan & Yadav (1971[Padmanabhan, V. M. & Yadav, V. S. (1971). Current Science (Bangalore) 40, 60-61.]) and the other is a disordered structure by Choudhury & Chitra (2008[Choudhury, R. R. & Chitra, R. (2008). Pramana - J. Phys. 71, 911-915.]).

[Scheme 1]

With this motivation, in this study, single-crystal neutron diffraction of HTGS has been conducted at 20 K and 298 K in the ferroelectric phase. The single crystal neutron diffractometer SENJU (Ohhara et al. 2016[Ohhara, T., Kiyanagi, R., Oikawa, K., Kaneko, K., Kawasaki, T., Tamura, I., Nakao, A., Hanashima, T., Munakata, K., Moyoshi, T., Kuroda, T., Kimura, H., Sakakura, T., Lee, C.-H., Takahashi, M., Ohshima, K., Kiyotani, T., Noda, Y. & Arai, M. (2016). J. Appl. Cryst. 49, 120-127.]) at the J-PARC facility, which enables us to measure multiple Bragg reflections with high efficiency at low temperatures by combining high-power neutron sources and a time-of-flight Laue diffraction method, has firstly determined the precise crystal structure of HTGS at 20 K under suppression of thermal vibrations, including the atomic coordinates of the hydrogen atoms. Furthermore, a new structural model of HTGS at 298 K is proposed in addition to the structural model reported previously.

2. Structural commentary

2.1. Structural Refinement of HTGS at 20 K

The refined structures at 20 K are shown in Figs. 1[link] and 2[link]. It was confirmed that the GII C2H5NO2 glycine mol­ecule containing C15 exhibits the neutral zwitterion configuration, and the other two GI and GIII glycine moieties (C17 and C20, respectively) exist as monoprotonated C2H6NO2+ glycinium ions. The most significant feature of these glycine/glycinium species are the N—C—C—O(H) torsion angles (Terasawa et al. 2021[Terasawa, Y., Kikuta, T., Ichiki, M., Sato, S., Ishikawa, K. & Asahi, T. (2021). J. Phys. Chem. Solids, 151, 109890.]), viz.: 21.1 (1)° for N11—C17—C19—O7, −1.5 (1)° for N14—C15—C18—O10 and −1.4 (1)° for N21—C20—C16—O2. The sulfate ion shows its expected tetra­hedral shape with bond distances of 1.480 (2) Å (S1—O4), 1.470 (2) Å (S1—O5), 1.477 (2) Å (S1—O6) and 1.472 (2) Å (S1—O8) and bond angles of 110.3 (1)° (O4—S1—O5), 107.9 (1)° (O4—S1—O6), 108.7 (1)° (O4—S1—O8), 109.7 (1)° (O5—S1—O6), 110.6 (1)° (O5—S1—O8) and 109.7 (1)° (O6—S1—O8). The slight differences among these distances and angles may arise because of the different hydrogen bonds accepted by these O atoms. Numerous N—H⋯O and O—H⋯O hydrogen bonds (see supporting information) are formed between the glycine or glycinium species and the sulfate ions; four N—H⋯O hydrogen bonds and one O—H⋯O hydrogen bond are formed by GI, five N—H⋯O hydrogen bonds are formed by GII and five N—H⋯O hydrogen bonds with the sulfate ion and one O—H⋯O hydrogen bond to the glycine mol­ecule is formed by GIII.

[Figure 1]
Figure 1
The mol­ecular structure of HTGS at 20 K showing 50% displacement ellipsoids for all atoms.
[Figure 2]
Figure 2
[001] projection of the unit cell of HTGS at 20 K with hydrogen bonds shown as dashed lines. The O15—H15⋯O3 hydrogen bonds are shown as pink dashed lines. Glycine mol­ecules are represented as glycine I (GI), glycine II (GII), and glycine III (GIII), according to Hoshino et al. (1959[Hoshino, S., Okaya, Y. & Pepinsky, R. (1959). Phys. Rev. 115, 323-330.]). Symmetry codes: (i) −1 + x, y, 1 + z; (ii) −1 + x, y, z; (iii) 1 − x, [{1\over 2}] + y, 1 − z, (iv) 2 − x, −[{1\over 2}] + y, 2 − z.

The lattice constants and the key O15—H15⋯O3i [symmetry code: (i) 3 − x, −[{1\over 2}] + y, 2 − z for the present study] bond lengths for HTGS, DTGS and FDTGS at low temperature are listed in Table 1[link]. The parameters do not show any major differences, and H15 is 0.338 (4) Å closer to atom O15 in GIII than O3 in GII. This result shows good agreement with the data previously reported for DTGS (Protas et al. 1997[Protas, J., Gerbaux, X., Hadni, A. & Schweiss, P. (1997). Ferroelectrics, 193, 51-62.]), thus it may be concluded that the inter­molecular distances and angles do not change significantly upon deuteration.

Table 1
Lattice constants, inter­atomic distances and angles for HTGS, DTGS, and FDTGS at low temperatures

  This study Protas et al. (1997[Protas, J., Gerbaux, X., Hadni, A. & Schweiss, P. (1997). Ferroelectrics, 193, 51-62.]) Hudspeth et al. (2013[Hudspeth, J. M., Goossens, D. J., Gutmann, M. J. & Studer, A. J. (2013). Cryst. Res. Technol. 48, 169-180.])
  HTGS DTGS FDTGS
Temperature (K) 20 (2) 40 20 (2)
a (Å) 9.3946 (8) 9.406 (5) 9.409 (2)
b (Å) 12.5338 (11) 12.614 (5) 12.558 (3)
c (Å) 5.6630 (4) 5.654 (5) 5.673 (1)
β (Å) 110.500 (7) 110.49 (2) 110.44 (2)
V3) 624.59 (9) 628.4 (7) 628.2 (2)
O15⋯O3i (Å) 2.4777 (15) 2.486 (5)
O15—H(D)15 (Å) 1.070 (3) 1.041 (5)
H(D)15⋯O3i (Å) 1.408 (3) 1.445 (6)
O15—H(D)15⋯O3i (°) 179.0 (4) 178.4 (6)
Symmetry code for HTGS in this study: (i) 3 − x, −[{1\over 2}] + y, 2 − z.

2.2. Structural Refinement of HTGS at 298 K

The refined structures at 298 K are shown in Figs. 3[link], 4[link] and 5[link]. The crystallographic symmetry, the contents of the asymmetric unit, and the features of the mol­ecular structures are consistent with those for the 20 K structure apart the disordered N11/N11B amino group [refined site occupancies = 0.874 (8):0.126 (8)] in the GI cation and the O—H⋯O association for GIII and GII. Two models were refined considering the H atom between O15 in GIII and O3 in GII. For one model (298 K model 1), the H15 atom was refined with a large ellipticity along the bond path between O15 and O3 as a single minimum potential energy structure [Fig. 5[link](a)]. A double-minimum potential-energy structure could be deduced because the distance between O15 and O3i [symmetry code: (i) 1 − x, −[{1\over 2}] + y, −z for the present study] did not increase with an increase in the temperature; thus for the other model (298 K model 2), a pair of hydrogen atoms were refined along the bond path between O15 and O3i, the double-minimum potential structure [Fig. 5[link](b)].

[Figure 3]
Figure 3
The mol­ecular structure of HTGS at 298 K (model 1) showing 50% displacement ellipsoids for all atoms.
[Figure 4]
Figure 4
The mol­ecular structure of HTGS at 298 K (model 2) showing 50% displacement ellipsoids for all atoms.
[Figure 5]
Figure 5
[001] projection of the unit cell and detail of the hydrogen bond between GII and GIII of HTGS at 298 K with hydrogen bonds shown as dashed lines. The short O15—H15⋯O3 bonds are shown as pink dashed lines. Atoms N11 and N11B are disordered with occupancies of 87.5%/12.5%. Model 1 (a); a single-minimum potential energy model for H5; model 2 (b); a double-minimum potential-energy model for H15 and H3. Symmetry codes: (v) 1 − x, −[{1\over 2}] + y, 1 − z; (vi) 1 − x, −[{1\over 2}] + y, 2 − z; (vii) x, −1 + y, 1 + z.

The key parameters for the O15—H15⋯O3i hydrogen bond at 298 K are summarized in Table 2[link]. The residuals for models 1 and 2 (Table 3[link]) are almost identical: model 2 has one more variable parameter than model 1 (358 compared to 357). For model 1, H15 is 0.271 (17) Å closer to O15 in GIII than O3i in GII. On the other hand, the distance between O15 and H15 [1.090 (12) Å] is almost the same as that at 20 K despite there being no distance restraint for the H15⋯O3i separation. Therefore, the mixed structure (model 2) of the major ferroelectric phase and minor paraelectric phase is strongly suggested, because the occupancies of N11 and N11B and H15 and H3i are related by symmetry.

Table 2
Lattice constants, inter­atomic distances and angles at disordered atoms for HTGS and FDTGS at ∼298 K

  This study (model 1) This study (model 2) Kay et al. (1973[Kay, M. I. & Kleinberg, R. (1973). Ferroelectrics, 5, 45-52.]) Choudhury & Chitra (2008[Choudhury, R. R. & Chitra, R. (2008). Pramana - J. Phys. 71, 911-915.]) Hudspeth et al. (2013[Hudspeth, J. M., Goossens, D. J., Gutmann, M. J. & Studer, A. J. (2013). Cryst. Res. Technol. 48, 169-180.])
  HTGS HTGS HTGS HTGS FDTGS
Temperature (K) 298 (2) 298 (2) 298 RT 295
a (Å) 9.3910 (14) 9.3910 (14) 9.417 9.416 (7) 9.413 (2)
b (Å) 12.6021 (18) 12.6021 (18) 12.643 12.643 (1) 12.629 (2)
c (Å) 5.7125 (7) 5.7125 (7) 5.735 5.734 (3) 5.716 (1)
β (Å) 110.306 (13) 110.306 (13) 110.4 110.33 (3) 110.30 (2)
V3) 634.04 (16) 634.04 (16) 639.98 640.09 637.3 (2)
O15⋯O3i (Å) 2.450 (7) 2.451 (7) 2.50 2.470 (9)
O15—H(D)15 (Å) 1.090 (12) 1.065 (12) 1.10 1.115 (12) 1.077 (6)
H(D)15⋯O3i (Å) 1.361 (12) 1.387 (12) 1.36 1.356 (11)
H(D)3—O3 (Å) 1.06 (4)
O15—H(D)15⋯O3i (°) 179.2 (10) 178.2 (11) 176 (2) 177.3 (9)
Symmetry code for HGTS in this study: (i) 1 − x, −[{1\over 2}] + y, −z.

Table 3
Experimental details

  20 K 298 K model 1 298 K model 2
Crystal data
Chemical formula 2C2H6NO2+·SO42−·C2H5NO2 2C2H6NO2+·SO42−·C2H5NO2 2C2H6NO2+·SO42−·C2H5NO2
Mr 323.28 323.28 323.28
Crystal system, space group Monoclinic, P21 Monoclinic, P21 Monoclinic, P21
Temperature (K) 20 298 298
a, b, c (Å) 9.3946 (8), 12.5338 (11), 5.6630 (4) 9.3910 (14), 12.6021 (18), 5.7125 (7) 9.3910 (14), 12.6021 (18), 5.7125 (7)
β (°) 110.500 (7) 110.306 (13) 110.306 (13)
V3) 624.59 (9) 634.04 (16) 634.04 (16)
Z 2 2 2
Radiation type Neutrons, λ = 1 Å Neutrons, λ = 1 Å Neutrons, λ = 1 Å
μ (mm−1) 0.49 0.49 0.49
Crystal size (mm) 2.80 × 2.80 × 2.80 2.80 × 2.80 × 2.80 2.80 × 2.80 × 2.80
 
Data collection
Diffractometer Time-of-flight Laue-type single crystal neutron diffractometer Time-of-flight Laue-type single crystal neutron diffractometer Time-of-flight Laue-type single crystal neutron diffractometer
No. of measured, independent and observed [I > 2σ(I)] reflections 40510, 10169, 33150 14190, 3132, 10685 14190, 3132, 10685
(sin θ/λ)max−1) 0.998 0.994 0.994
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.193, 1.04 0.080, 0.209, 1.05 0.080, 0.209, 1.05
No. of reflections 40510 14190 14190
No. of parameters 350 357 358
No. of restraints 1 1 8
H-atom treatment All H-atom parameters refined All H-atom parameters refined All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 3.87, −6.29 3.50, −6.06 1.50, −1.70
Absolute structure Indeterminate for a neutron structure Indeterminate for a neutron structure Indeterminate for a neutron structure
Computer programs: STARGazer (Ohhara et al., 2009[Ohhara, T., Kusaka, K., Hosoya, T., Kurihara, K., Tomoyori, K., Niimura, N., Tanaka, I., Suzuki, J., Nakatani, T., Otomo, T., Matsuoka, S., Tomita, K., Nishimaki, Y., Ajima, T. & Ryufuku, S. (2009). Nucl. Instrum. Methods Phys. Res. A, 600, 195-197.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The unit-cell parameters and bond lengths for HTGS, DTGS, and FDTGS at 298 K are listed in Table 2[link]. The lattice parameters did not show any major differences and this result shows good agreement with that previously reported for DTGS (Protas et al., 1997[Protas, J., Gerbaux, X., Hadni, A. & Schweiss, P. (1997). Ferroelectrics, 193, 51-62.]). We may conclude that the inter­molecular distances and angles do not change significantly upon deuteration.

In the previous studies using single-crystal neutron diffraction, Kay & Kleinberg (1973[Kay, M. I. & Kleinberg, R. (1973). Ferroelectrics, 5, 45-52.]) proposed an ordered structure of HTGS because the domains were oriented by applying an external electric field. Hudspeth & Goossens (2012[Hudspeth, J. M. & Goossens, D. J. (2012). J. Cryst. Growth, 338, 177-180.]) proposed an ordered structure for FDTGS because TC for FDTGS increased by approximately 12 K compared to HTGS. Choudhury & Chitra (2008[Choudhury, R. R. & Chitra, R. (2008). Pramana - J. Phys. 71, 911-915.]) proposed a disordered structure for the GI amino group with unequal occupancies of N11 (88%) and N11B (12%); this occupancy ratio is in excellent agreement with the results in this study. For the hydrogen atom between the oxygen atom of the carboxyl group in GIII and that in the GII, the O⋯O distance was 2.470 (9) Å, and the H atom was approximately 0.241 Å closer to the GIII O atom than that in GII. They concluded that the structure of HTGS at room temperature has a single minimum potential energy in the O—H⋯O hydrogen-bond path between GIII and GII. In this study, two reasonable structures were refined as a single-minimum potential-energy model and a double-minimum model without any significant differences. Therefore, we conclude that there is a significant possibility of a double-minimum potential-energy model for HTGS at 298 K.

3. Supra­molecular features

Hydrogen bonds in the refined structures were consistent with those reported previously (see supporting information) and no additional inter­molecular inter­actions were found. Therefore, the 20 K and 298 K structures form essentially the structural motif of a three-dimensional network of N—H⋯O and O—H⋯O hydrogen bonds between glycinium cations, glycine mol­ecules and sulfate ions.

4. Database survey

The Cambridge Structural Database (Version 5.42, update of November 2020; Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) was searched for structures of triglycine sulfate and it returned no fewer than 29 hits: six of these records are structures obtained using neutron diffraction. The lattice constants of these structures are consistent with those of this study. The ionic states of glycine and the sulfate ion for five structures obtained using single-crystal neutron data are consistent with those for this study in which one neutral, zwitterionic glycine mol­ecule and two monoprotonated glycinium ions occur [CSD refcodes TGLYSU01 (Protas et al., 1997[Protas, J., Gerbaux, X., Hadni, A. & Schweiss, P. (1997). Ferroelectrics, 193, 51-62.]); TGLYSU02 (Padmanabhan & Yadav, 1971[Padmanabhan, V. M. & Yadav, V. S. (1971). Current Science (Bangalore) 40, 60-61.]); TGLYSU03 (Protas et al., 1997[Protas, J., Gerbaux, X., Hadni, A. & Schweiss, P. (1997). Ferroelectrics, 193, 51-62.]); TGLYSU11 (Kay & Kleinberg, 1973[Kay, M. I. & Kleinberg, R. (1973). Ferroelectrics, 5, 45-52.]); and TGLYS25 (Cheng et al., 1986[Cheng, Z., Cheng, Y., Zhang, P. & Yan, Q. (1986). Acta Phys. Sin. 35, 643-52.])]. In contrast, hydrogen atoms were not assigned in some of the structures obtained using X-ray diffraction: refcodes TGLYSU (Hoshino et al., 1959[Hoshino, S., Okaya, Y. & Pepinsky, R. (1959). Phys. Rev. 115, 323-330.]); TGLYSU13 (Itoh & Mitsui, 1973[Itoh, K. & Mitsui, T. (1973). Ferroelectrics, 5, 235-251.]); TGLYSU28 (Choudhury & Chitra, 2008[Choudhury, R. R. & Chitra, R. (2008). Pramana - J. Phys. 71, 911-915.]); TGLYSU29 (Kawasaki et al., 2021[Kawasaki, T., Kaimori, Y., Shimada, S., Hara, N., Sato, S., Suzuki, K., Asahi, T., Matsumoto, A. & Soai, S. (2021). Chem. Commun. 57, 5999-6002.]) and TGLYSU30 (Kawasaki et al., 2021[Kawasaki, T., Kaimori, Y., Shimada, S., Hara, N., Sato, S., Suzuki, K., Asahi, T., Matsumoto, A. & Soai, S. (2021). Chem. Commun. 57, 5999-6002.]). Furthermore, in several structures, some hydrogen atoms are missing: refcodes TGLYSU04 (Fletcher et al., 1976[Fletcher, S. R., Keve, E. T. & Skapski, A. C. (1976). Ferroelectrics, 14, 789-799.]); TGLYSU07 (Solans et al., 1985); TGLYSU15 (Itoh & Mitsui, 1973[Itoh, K. & Mitsui, T. (1973). Ferroelectrics, 5, 235-251.]); TGLYSU21, TGLYSU22, TGLYSU23 (Kolontsova et al., 1990[Kolontsova, E. V., Red'ko, S. V., Struchkov, Yu. T. & Yanovskii, A. I. (1990). Sov. Phys. Crystallogr. 35, 126-129.]). In one structure, HSO4 ions were proposed to be present: refcode TGLYSU04 (Fletcher et al., 1976[Fletcher, S. R., Keve, E. T. & Skapski, A. C. (1976). Ferroelectrics, 14, 789-799.]).

5. Synthesis and crystallization

The HTGS crystals were grown in an aqueous solution by the slow evaporation method at ∼293 K. Glycine (13.06 g; FUJIFILM Wako Pure Chemical Corporation; purity ≥ 99.0%) and sulfuric acid (3.1 ml; FUJIFILM; molar ratio 3:1) was added to 50 ml of water in a 100 ml beaker. They were dissolved by heating at ∼313 K with a 300 r.p.m. magnetic stirrer. After completely dissolving them, plastic films were double-wrapped around the beaker, and some holes were knocked in the films to evaporate the water slowly. The beaker was left to stand at ∼293 K. HTGS was crystallized after approximately a month, and then the solution was filtered. The collected crystals were dried in a desiccator at ∼293 K.

6. Refinement

Crystal data, data collection, and structural refinement details are summarized in Table 3[link]. All data were collected using the single-crystal neutron diffractometer SENJU (Ohhara et al., 2016[Ohhara, T., Kiyanagi, R., Oikawa, K., Kaneko, K., Kawasaki, T., Tamura, I., Nakao, A., Hanashima, T., Munakata, K., Moyoshi, T., Kuroda, T., Kimura, H., Sakakura, T., Lee, C.-H., Takahashi, M., Ohshima, K., Kiyotani, T., Noda, Y. & Arai, M. (2016). J. Appl. Cryst. 49, 120-127.]) at beamline BL18 of the Materials and Life Science Facility, Japan Proton Accelerator Research Complex. The crystal (colourless cube, ∼2.8 mm edge length) mounted on an aluminum pin was cooled to 20 K in a closed-cycle helium cryostat. The crystal was surrounded by 41 two-dimensional scintillation area detectors during the data collection. The same crystal was used for the measurement at 298 K after warming to room temperature. Three-dimensional data of (x, y, λ) were measured in 16 different orientations for each dataset. The measurement time was 1.5 h for one orientation; the raw data were processed using STARGazer (Ohhara et al. 2009[Ohhara, T., Kusaka, K., Hosoya, T., Kurihara, K., Tomoyori, K., Niimura, N., Tanaka, I., Suzuki, J., Nakatani, T., Otomo, T., Matsuoka, S., Tomita, K., Nishimaki, Y., Ajima, T. & Ryufuku, S. (2009). Nucl. Instrum. Methods Phys. Res. A, 600, 195-197.]) to generate HKLF files and visualize (x, y) slice maps and merged TOF profiles.

SHELXL2018 (Sheldrick 2015b[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) was used for least-squares refinements with neutron scattering lengths (fm) of 2.847 (S), 5.805 (O), −3.741 (H), 9.360 (N) and 6.648 (C). A reported structure determined by single-crystal X-ray diffraction (Hoshino et al., 1959[Hoshino, S., Okaya, Y. & Pepinsky, R. (1959). Phys. Rev. 115, 323-330.]) was used as the initial structural model. All atoms, including hydrogen atoms, were refined with Uij values. For the 298 K data, the refinement was initially performed without the hydrogen atom(s) between O15 and O3 to minimize the model dependence. A nuclear density distribution (Fig. 6[link]) with a large ellipticity along the bond path between O15 and O3 was observed. One hydrogen atom was assigned to this position and refined as a single-minimum potential-energy model (298 K model 1). In 298 K model 2, two hydrogen atoms (H15 and H3) with the restrictions listed below were included: (i) H15 and H3 were refined anisotropically and constrained to have the same displacement factors; (ii) O15 and H15 and O3 and H3 were restrained to have the same distances; (iii) the occupancies of H15 for H3 were linked to those of N11 and N11B.

[Figure 6]
Figure 6
A difference scattering density map for the 298 K structure without the H atom between O15 and O3. The red dotted lines and green solid lines show negative and positive density distribution, respectively. A nuclear density distribution with a large ellipticity along the bond path between O15 and O3 is observed.

Supporting information


Computing details top

For all structures, data collection: STARGazer (Ohhara et al., 2009); cell refinement: STARGazer (Ohhara et al., 2009); data reduction: STARGazer (Ohhara et al., 2009); program(s) used to solve structure: A reported structure determined by single-crystal X-ray diffraction (Hoshino et al., 1959) was used as the initial structure model.. Program(s) used to refine structure: SHELXT2018/3 (Sheldrick, 2015) for (20K); SHELXL2018/3 (Sheldrick, 2015) for 298KModel1, 298KModel2. For all structures, molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Bis(glycinium) sulfate–glycine (1/1) (20K) top
Crystal data top
2C2H6NO2+·SO42·C2H5NO2F(000) = 130.536
Mr = 323.28Dx = 1.719 Mg m3
Monoclinic, P21Neutrons radiation, λ = 1 Å
Hall symbol: P2ybCell parameters from 8174 reflections
a = 9.3946 (8) Åθ = 6.6–83.3°
b = 12.5338 (11) ŵ = 0.49 mm1
c = 5.6630 (4) ÅT = 20 K
β = 110.500 (7)°Block, colorless
V = 624.59 (9) Å32.80 × 2.80 × 2.80 mm
Z = 2
Data collection top
Time-of-flight Laue-type single crystal neutron
diffractometer
33150 reflections with I > 2σ(I)
Radiation source: spallation neutronRint = N/A
Detector resolution: 4 pixels mm-1θmax = 86.1°, θmin = 7.5°
time–of–flight Laue method scansh = 2323
40510 measured reflectionsk = 3131
10169 independent reflectionsl = 1314
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.1332P)2 + 0.072P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.073(Δ/σ)max = 0.001
wR(F2) = 0.193Δρmax = 3.87 e Å3
S = 1.04Δρmin = 6.28 e Å3
40510 reflectionsExtinction correction: SHELXL2018/3 (Sheldrick 2015)
350 parametersExtinction coefficient: 0.119 (3)
1 restraintAbsolute structure: Indeterminate for a neutron structure
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.'

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.9987 (2)0.25000 (15)0.2280 (4)0.00149 (18)
O31.46271 (12)0.96537 (9)0.8104 (2)0.00493 (13)
O21.20940 (13)0.49653 (10)0.7552 (2)0.00564 (13)
O40.85445 (12)0.24777 (9)0.0101 (2)0.00407 (11)
O50.96806 (13)0.25228 (9)0.4652 (2)0.00438 (12)
O61.08235 (12)0.34725 (8)0.2072 (2)0.00397 (12)
O71.39163 (12)0.73620 (10)0.0953 (2)0.00519 (13)
H71.2917 (3)0.7379 (3)0.0588 (6)0.0160 (4)
O81.08828 (12)0.15498 (8)0.2172 (2)0.00403 (12)
O91.50274 (14)0.72358 (11)0.3230 (2)0.00628 (14)
O101.22125 (13)0.98973 (10)0.7827 (2)0.00528 (13)
O151.44257 (13)0.50951 (11)0.7343 (2)0.00643 (14)
H151.4843 (4)0.4899 (3)0.9306 (6)0.0162 (4)
N111.64288 (8)0.78825 (6)0.17333 (14)0.00468 (8)
H11A1.5930 (5)0.7383 (3)0.3227 (7)0.0206 (5)
H11B1.7487 (3)0.8093 (3)0.1799 (7)0.0167 (4)
H11C1.5753 (4)0.8567 (3)0.2021 (6)0.0165 (4)
N141.10601 (8)0.92901 (5)0.29966 (13)0.00407 (8)
H14A1.0741 (4)0.9005 (3)0.1183 (6)0.0189 (5)
H14B1.0637 (4)1.0044 (3)0.2961 (8)0.0202 (6)
H14C1.0593 (4)0.8781 (3)0.3977 (7)0.0186 (5)
N211.07375 (7)0.57354 (5)0.28504 (13)0.00395 (8)
H21A1.0403 (4)0.6295 (3)0.3907 (7)0.0184 (5)
H21B1.0241 (4)0.5017 (3)0.2905 (7)0.0194 (5)
H21C1.0335 (4)0.6013 (3)0.1022 (6)0.0165 (4)
C151.27299 (11)0.92965 (8)0.42088 (19)0.00464 (11)
H15A1.3210 (5)0.9838 (4)0.3185 (7)0.0231 (7)
H15B1.3161 (5)0.8502 (3)0.4096 (8)0.0227 (7)
C161.29570 (10)0.51955 (7)0.64503 (18)0.00353 (10)
C171.65950 (10)0.73969 (8)0.07314 (19)0.00453 (11)
H17A1.7376 (4)0.7882 (3)0.2221 (7)0.0200 (6)
H17B1.7072 (5)0.6594 (3)0.0824 (9)0.0217 (6)
C181.31907 (10)0.96459 (7)0.69381 (17)0.00311 (10)
C191.50928 (10)0.73247 (7)0.11344 (18)0.00345 (10)
C201.24065 (11)0.56505 (8)0.38171 (19)0.00430 (10)
H20A1.2898 (4)0.6438 (3)0.3846 (8)0.0207 (6)
H20B1.2774 (4)0.5157 (4)0.2554 (7)0.0215 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0013 (5)0.0009 (4)0.0022 (4)0.0000 (3)0.0005 (4)0.0000 (4)
O30.0027 (3)0.0063 (3)0.0046 (3)0.0002 (2)0.0001 (2)0.0012 (2)
O20.0042 (3)0.0077 (3)0.0049 (3)0.0005 (2)0.0015 (2)0.0020 (3)
O40.0021 (3)0.0053 (3)0.0038 (3)0.0001 (2)0.0003 (2)0.0001 (2)
O50.0062 (3)0.0039 (3)0.0037 (3)0.0001 (2)0.0026 (2)0.0001 (2)
O60.0038 (3)0.0021 (2)0.0063 (3)0.0010 (2)0.0022 (2)0.0001 (2)
O70.0028 (3)0.0081 (3)0.0042 (3)0.0004 (2)0.0007 (2)0.0004 (2)
H70.0104 (8)0.0207 (11)0.0168 (10)0.0000 (8)0.0047 (7)0.0004 (9)
O80.0040 (3)0.0022 (2)0.0058 (3)0.0013 (2)0.0015 (2)0.0002 (2)
O90.0054 (3)0.0094 (4)0.0039 (3)0.0011 (3)0.0016 (2)0.0003 (3)
O100.0035 (3)0.0072 (3)0.0050 (3)0.0005 (2)0.0014 (2)0.0020 (3)
O150.0036 (3)0.0101 (4)0.0052 (3)0.0019 (3)0.0012 (2)0.0022 (3)
H150.0140 (9)0.0174 (10)0.0166 (10)0.0008 (8)0.0044 (8)0.0015 (9)
N110.00353 (17)0.00565 (19)0.00521 (18)0.00037 (14)0.00198 (15)0.00040 (15)
H11A0.0232 (14)0.0202 (12)0.0149 (10)0.0037 (11)0.0025 (10)0.0057 (9)
H11B0.0118 (9)0.0202 (11)0.0201 (11)0.0011 (8)0.0082 (8)0.0021 (10)
H11C0.0179 (11)0.0148 (10)0.0179 (10)0.0056 (8)0.0076 (9)0.0044 (8)
N140.00371 (17)0.00394 (16)0.00353 (17)0.00007 (13)0.00001 (13)0.00041 (13)
H14A0.0205 (12)0.0239 (13)0.0097 (8)0.0023 (10)0.0022 (8)0.0053 (8)
H14B0.0198 (12)0.0125 (9)0.0243 (14)0.0061 (9)0.0027 (11)0.0024 (9)
H14C0.0163 (11)0.0227 (13)0.0179 (11)0.0053 (9)0.0072 (9)0.0042 (10)
N210.00371 (17)0.00376 (17)0.00370 (17)0.00009 (13)0.00047 (14)0.00026 (13)
H21A0.0174 (11)0.0204 (12)0.0178 (11)0.0057 (9)0.0068 (9)0.0048 (9)
H21B0.0191 (12)0.0146 (10)0.0218 (13)0.0075 (9)0.0038 (10)0.0036 (9)
H21C0.0176 (11)0.0198 (11)0.0103 (8)0.0022 (8)0.0028 (8)0.0044 (8)
C150.0034 (2)0.0064 (3)0.0038 (2)0.0001 (2)0.00083 (19)0.0014 (2)
H15A0.0211 (13)0.0320 (17)0.0173 (11)0.0101 (12)0.0081 (11)0.0032 (12)
H15B0.0194 (12)0.0198 (12)0.0240 (14)0.0089 (10)0.0014 (11)0.0090 (11)
C160.0029 (2)0.0038 (2)0.0037 (2)0.00049 (18)0.00095 (19)0.00052 (19)
C170.0026 (2)0.0055 (3)0.0053 (3)0.00030 (19)0.0011 (2)0.0011 (2)
H17A0.0146 (10)0.0279 (15)0.0150 (10)0.0087 (10)0.0019 (8)0.0037 (10)
H17B0.0212 (13)0.0136 (10)0.0333 (18)0.0086 (9)0.0131 (13)0.0081 (11)
C180.0022 (2)0.0031 (2)0.0033 (2)0.00014 (17)0.00010 (18)0.00052 (18)
C190.0028 (2)0.0036 (2)0.0038 (2)0.00029 (17)0.00102 (19)0.00007 (18)
C200.0038 (2)0.0052 (3)0.0040 (2)0.00017 (19)0.0014 (2)0.00104 (19)
H20A0.0187 (12)0.0167 (11)0.0230 (14)0.0069 (9)0.0028 (10)0.0060 (10)
H20B0.0221 (13)0.0288 (16)0.0150 (10)0.0096 (12)0.0081 (10)0.0033 (11)
Geometric parameters (Å, º) top
S1—O51.470 (2)N14—H14B1.022 (3)
S1—O81.472 (2)N14—H14A1.028 (3)
S1—O61.477 (2)N14—H14C1.038 (3)
S1—O41.480 (2)N14—C151.4758 (11)
O3—C181.2778 (14)N21—H21B1.020 (3)
O3—H15i1.408 (4)N21—H21C1.031 (3)
O2—C161.2181 (15)N21—H21A1.039 (3)
O7—H71.030 (3)N21—C201.4726 (11)
O7—C191.3063 (14)C15—H15B1.086 (3)
O9—C191.2149 (15)C15—H15A1.088 (4)
O10—C181.2333 (15)C15—C181.5164 (13)
O15—H151.070 (4)C16—C201.5087 (13)
O15—C161.2987 (14)C17—H17A1.089 (3)
N11—H11A1.024 (3)C17—H17B1.095 (3)
N11—H11B1.042 (3)C17—C191.5092 (13)
N11—H11C1.045 (3)C20—H20A1.088 (3)
N11—C171.4800 (12)C20—H20B1.090 (3)
O5—S1—O8110.60 (14)H15B—C15—H15A107.9 (4)
O5—S1—O6109.68 (14)H15B—C15—N14109.0 (2)
O8—S1—O6109.68 (13)H15A—C15—N14109.1 (2)
O5—S1—O4110.31 (13)H15B—C15—C18110.2 (2)
O8—S1—O4108.66 (14)H15A—C15—C18109.8 (2)
O6—S1—O4107.86 (13)N14—C15—C18110.68 (7)
C18—O3—H15i117.66 (16)O2—C16—O15125.77 (11)
H7—O7—C19111.1 (2)O2—C16—C20122.44 (9)
H15—O15—C16112.3 (2)O15—C16—C20111.79 (9)
H11A—N11—H11B107.0 (3)H17A—C17—H17B108.8 (4)
H11A—N11—H11C107.2 (3)H17A—C17—N11108.7 (2)
H11B—N11—H11C108.7 (3)H17B—C17—N11109.2 (2)
H11A—N11—C17113.2 (2)H17A—C17—C19109.2 (2)
H11B—N11—C17110.6 (2)H17B—C17—C19109.0 (2)
H11C—N11—C17110.0 (2)N11—C17—C19111.83 (7)
H14B—N14—H14A109.0 (3)O10—C18—O3126.16 (11)
H14B—N14—H14C110.1 (3)O10—C18—C15120.14 (9)
H14A—N14—H14C106.9 (3)O3—C18—C15113.70 (9)
H14B—N14—C15110.3 (2)O9—C19—O7124.83 (10)
H14A—N14—C15111.0 (2)O9—C19—C17121.54 (10)
H14C—N14—C15109.5 (2)O7—C19—C17113.62 (9)
H21B—N21—H21C108.6 (3)H20A—C20—H20B107.2 (4)
H21B—N21—H21A110.1 (3)H20A—C20—N21109.3 (2)
H21C—N21—H21A105.8 (3)H20B—C20—N21109.7 (2)
H21B—N21—C20111.4 (2)H20A—C20—C16109.4 (2)
H21C—N21—C20111.5 (2)H20B—C20—C16110.9 (2)
H21A—N21—C20109.4 (2)N21—C20—C16110.28 (7)
H14B—N14—C15—H15B175.7 (4)H15A—C15—C18—O360.4 (3)
H14A—N14—C15—H15B54.8 (4)N14—C15—C18—O3179.09 (9)
H14C—N14—C15—H15B63.0 (4)H7—O7—C19—O95.4 (3)
H14B—N14—C15—H15A58.0 (4)H7—O7—C19—C17174.9 (2)
H14A—N14—C15—H15A62.9 (4)H17A—C17—C19—O938.9 (3)
H14C—N14—C15—H15A179.3 (4)H17B—C17—C19—O979.8 (3)
H14B—N14—C15—C1863.0 (3)N11—C17—C19—O9159.24 (11)
H14A—N14—C15—C18176.1 (3)H17A—C17—C19—O7141.4 (3)
H14C—N14—C15—C1858.4 (3)H17B—C17—C19—O799.8 (3)
H15—O15—C16—O29.2 (3)N11—C17—C19—O721.07 (12)
H15—O15—C16—C20170.4 (2)H21B—N21—C20—H20A176.3 (4)
H11A—N11—C17—H17A165.8 (4)H21C—N21—C20—H20A62.3 (3)
H11B—N11—C17—H17A45.7 (3)H21A—N21—C20—H20A54.4 (4)
H11C—N11—C17—H17A74.4 (3)H21B—N21—C20—H20B66.4 (4)
H11A—N11—C17—H17B47.1 (4)H21C—N21—C20—H20B55.0 (4)
H11B—N11—C17—H17B72.9 (3)H21A—N21—C20—H20B171.6 (4)
H11C—N11—C17—H17B167.0 (3)H21B—N21—C20—C1656.0 (3)
H11A—N11—C17—C1973.6 (3)H21C—N21—C20—C16177.5 (2)
H11B—N11—C17—C19166.3 (2)H21A—N21—C20—C1665.9 (3)
H11C—N11—C17—C1946.2 (2)O2—C16—C20—H20A118.9 (3)
H15i—O3—C18—O104.8 (2)O15—C16—C20—H20A60.7 (3)
H15i—O3—C18—C15175.85 (18)O2—C16—C20—H20B123.2 (3)
H15B—C15—C18—O10122.1 (3)O15—C16—C20—H20B57.2 (3)
H15A—C15—C18—O10119.1 (3)O2—C16—C20—N211.38 (14)
N14—C15—C18—O101.47 (14)O15—C16—C20—N21179.02 (9)
H15B—C15—C18—O358.5 (3)
Symmetry code: (i) x+3, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O4ii1.030 (3)1.497 (3)2.5258 (17)176.3 (4)
O15—H15···O3iii1.070 (3)1.408 (3)2.4777 (15)179.0 (4)
N11—H11A···O9iv1.024 (4)1.894 (4)2.8099 (13)147.1 (3)
N11—H11B···O6v1.042 (3)1.715 (3)2.7557 (14)176.7 (3)
N11—H11B···O8v1.042 (3)2.522 (4)3.1097 (14)115.1 (3)
N11—H11C···O3iv1.046 (4)1.741 (4)2.7736 (14)168.5 (3)
N14—H14A···O4ii1.028 (3)2.233 (4)2.9718 (13)127.4 (3)
N14—H14A···O6ii1.028 (3)2.026 (4)2.9771 (13)152.7 (3)
N14—H14B···O8vi1.023 (4)1.972 (4)2.8658 (12)144.4 (3)
N14—H14B···O2vii1.023 (4)2.481 (4)2.9914 (15)110.2 (3)
N14—H14C···O5vii1.039 (4)1.815 (4)2.7952 (13)155.8 (3)
N21—H21A···O5vii1.039 (4)1.757 (4)2.7501 (13)158.5 (3)
N21—H21B···O61.020 (4)2.110 (4)2.8758 (12)130.3 (3)
N21—H21B···O10viii1.020 (4)2.200 (4)2.8612 (15)121.0 (3)
N21—H21C···O4ii1.031 (3)2.313 (4)2.9677 (13)120.1 (3)
N21—H21C···O8ii1.031 (3)1.893 (3)2.9010 (13)165.1 (3)
C15—H15A···O15ix1.088 (5)2.365 (5)3.2496 (17)137.4 (3)
C15—H15B···O91.085 (4)2.537 (5)3.5320 (18)152.0 (3)
C17—H17B···O10x1.095 (4)2.280 (4)3.3311 (16)160.2 (4)
C20—H20A···O91.087 (4)2.369 (4)3.2703 (18)139.2 (3)
C20—H20A···O4ii1.087 (4)2.532 (4)3.0948 (15)111.2 (3)
Symmetry codes: (ii) x+2, y+1/2, z; (iii) x+3, y1/2, z+2; (iv) x, y, z1; (v) x+3, y+1/2, z; (vi) x, y+1, z; (vii) x+2, y+1/2, z+1; (viii) x+2, y1/2, z+1; (ix) x+3, y+1/2, z+1; (x) x+3, y1/2, z+1.
Bis(glycinium) sulfate–glycine (1/1) (298KModel1) top
Crystal data top
2C2H6NO2+·SO42·C2H5NO2F(000) = 130.536
Mr = 323.28Dx = 1.693 Mg m3
Monoclinic, P21Neutrons radiation, λ = 1 Å
Hall symbol: P2ybCell parameters from 3228 reflections
a = 9.3910 (14) Åθ = 6.6–83.3°
b = 12.6021 (18) ŵ = 0.49 mm1
c = 5.7125 (7) ÅT = 298 K
β = 110.306 (13)°Block, colorless
V = 634.04 (16) Å32.80 × 2.80 × 2.80 mm
Z = 2
Data collection top
Time-of-flight Laue-type single crystal neutron
diffractometer
10685 reflections with I > 2σ(I)
Radiation source: spallation neutronRint = N/A
Detector resolution: 4 pixels mm-1θmax = 83.7°, θmin = 7.9°
time–of–flight Laue method scansh = 1515
14190 measured reflectionsk = 2120
3132 independent reflectionsl = 99
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.1405P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.080(Δ/σ)max = 0.001
wR(F2) = 0.209Δρmax = 3.50 e Å3
S = 1.05Δρmin = 6.06 e Å3
14190 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018)
357 parametersExtinction coefficient: 0.119 (3)
1 restraintAbsolute structure: Indeterminate for a neutron structure
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.9997 (5)0.7500 (5)0.7732 (8)0.0132 (7)
O20.9154 (4)0.8459 (2)0.7922 (8)0.0239 (7)
O30.5395 (5)1.4692 (4)0.1995 (9)0.0336 (9)
O40.7789 (5)1.4949 (3)0.2233 (8)0.0308 (8)
O51.1424 (3)0.7495 (4)0.9937 (5)0.0239 (5)
O61.0347 (4)0.7517 (3)0.5439 (5)0.0252 (5)
O70.7864 (5)0.9977 (4)0.2398 (8)0.0313 (8)
O90.6071 (4)1.2431 (4)1.0767 (7)0.0318 (7)
H90.7083 (6)1.2436 (8)1.0440 (12)0.0370 (12)
O100.4960 (5)1.2334 (5)0.6667 (8)0.0435 (12)
O120.9126 (5)0.6560 (3)0.7868 (8)0.0260 (7)
O150.5516 (5)1.0201 (5)0.2419 (10)0.0419 (11)
H150.5111 (11)0.9968 (7)0.046 (2)0.050 (2)
N110.3571 (3)1.2889 (3)1.1627 (6)0.0318 (6)0.874 (8)
H11A0.4246 (11)1.3547 (10)1.200 (2)0.051 (2)0.874 (8)
H11B0.4071 (13)1.2382 (13)1.305 (2)0.063 (3)0.874 (8)
H11C0.2518 (10)1.3094 (9)1.176 (2)0.048 (2)0.874 (8)
N11B0.364 (2)1.224 (2)1.167 (4)0.0318 (6)0.126 (8)
H11D0.4273711.2840761.2765050.051 (2)0.126 (8)
H11E0.4214681.1530711.2175660.063 (3)0.126 (8)
H11F0.2609901.2187601.1929230.048 (2)0.126 (8)
N160.9163 (3)1.07320 (14)0.7057 (4)0.0229 (4)
H16A0.9555 (11)1.1246 (8)0.6000 (17)0.0451 (18)
H16B0.9613 (13)0.9994 (7)0.7083 (17)0.053 (2)
H16C0.9530 (12)1.1040 (6)0.8831 (14)0.0414 (17)
N210.8957 (3)1.42963 (15)0.6984 (4)0.0221 (4)
H21A0.9418 (11)1.3815 (9)0.6004 (18)0.049 (2)
H21B0.9277 (12)1.3988 (7)0.8734 (14)0.046 (2)
H21C0.9367 (12)1.5046 (7)0.7098 (16)0.052 (2)
C130.6830 (3)1.4683 (2)0.3127 (6)0.0204 (5)
C140.7510 (4)1.0688 (3)0.6007 (6)0.0257 (6)
H14A0.7068 (12)1.1483 (8)0.597 (2)0.059 (3)
H14B0.7088 (15)1.0190 (11)0.719 (2)0.064 (3)
C170.3401 (3)1.2452 (3)0.9149 (5)0.0256 (5)
H17A0.2645 (11)1.2958 (10)0.7802 (18)0.061 (3)
H17B0.2911 (14)1.1675 (8)0.895 (3)0.073 (4)
C180.6979 (4)1.0246 (2)0.3395 (6)0.0230 (6)
C190.4893 (3)1.2402 (2)0.8730 (5)0.0221 (5)
C200.7303 (4)1.4306 (3)0.5794 (6)0.0258 (6)
H20A0.6812 (15)1.4810 (13)0.682 (2)0.074 (4)
H20B0.6890 (13)1.3519 (10)0.584 (2)0.065 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0134 (18)0.0106 (13)0.0159 (17)0.0002 (19)0.0057 (14)0.0022 (19)
O20.0244 (15)0.0152 (12)0.0353 (19)0.0016 (11)0.0145 (14)0.0063 (10)
O30.0181 (15)0.0438 (19)0.0325 (19)0.0056 (14)0.0009 (13)0.0029 (15)
O40.0239 (17)0.0405 (18)0.0244 (16)0.0118 (14)0.0039 (13)0.0039 (14)
O50.0147 (11)0.0363 (12)0.0188 (10)0.0010 (15)0.0035 (9)0.0018 (14)
O60.0337 (15)0.0271 (11)0.0178 (10)0.0003 (13)0.0127 (10)0.0006 (15)
O70.0252 (17)0.0418 (18)0.0255 (16)0.0112 (15)0.0069 (14)0.0043 (14)
O90.0142 (12)0.0518 (19)0.0286 (14)0.0027 (18)0.0065 (11)0.0003 (16)
H90.021 (2)0.050 (3)0.039 (3)0.004 (3)0.010 (2)0.002 (3)
O100.0310 (19)0.071 (3)0.0268 (16)0.0066 (19)0.0084 (14)0.006 (2)
O120.0274 (17)0.0159 (12)0.035 (2)0.0001 (11)0.0111 (14)0.0072 (11)
O150.0222 (18)0.063 (3)0.039 (2)0.014 (2)0.0087 (17)0.0124 (19)
H150.031 (3)0.044 (3)0.071 (7)0.002 (4)0.015 (4)0.003 (3)
N110.0174 (10)0.0492 (17)0.0316 (11)0.0032 (12)0.0119 (9)0.0065 (11)
H11A0.037 (4)0.074 (6)0.048 (5)0.025 (5)0.020 (4)0.017 (4)
H11B0.047 (5)0.088 (9)0.051 (5)0.025 (6)0.014 (4)0.009 (6)
H11C0.028 (4)0.060 (5)0.061 (6)0.010 (4)0.022 (4)0.005 (3)
N11B0.0174 (10)0.0492 (17)0.0316 (11)0.0032 (12)0.0119 (9)0.0065 (11)
H11D0.037 (4)0.074 (6)0.048 (5)0.025 (5)0.020 (4)0.017 (4)
H11E0.047 (5)0.088 (9)0.051 (5)0.025 (6)0.014 (4)0.009 (6)
H11F0.028 (4)0.060 (5)0.061 (6)0.010 (4)0.022 (4)0.005 (3)
N160.0270 (10)0.0200 (8)0.0179 (8)0.0019 (6)0.0033 (7)0.0037 (7)
H16A0.039 (4)0.062 (5)0.033 (4)0.002 (3)0.012 (3)0.012 (3)
H16B0.057 (5)0.044 (4)0.042 (4)0.010 (3)0.003 (4)0.026 (4)
H16C0.056 (5)0.035 (3)0.028 (3)0.010 (2)0.008 (3)0.004 (3)
N210.0244 (9)0.0216 (8)0.0161 (8)0.0036 (6)0.0017 (7)0.0029 (7)
H21A0.040 (4)0.070 (5)0.037 (4)0.004 (3)0.011 (3)0.015 (4)
H21B0.063 (6)0.042 (3)0.027 (3)0.010 (3)0.007 (3)0.003 (3)
H21C0.057 (5)0.046 (4)0.040 (4)0.009 (3)0.001 (4)0.026 (4)
C130.0177 (11)0.0186 (10)0.0218 (12)0.0033 (8)0.0032 (9)0.0015 (9)
C140.0268 (14)0.0270 (12)0.0252 (13)0.0068 (10)0.0113 (11)0.0012 (10)
H14A0.045 (5)0.052 (4)0.069 (7)0.027 (4)0.005 (4)0.017 (4)
H14B0.071 (7)0.088 (7)0.043 (5)0.003 (4)0.034 (5)0.028 (6)
C170.0144 (10)0.0276 (10)0.0322 (12)0.0032 (12)0.0048 (9)0.0006 (11)
H17A0.039 (4)0.095 (7)0.047 (4)0.010 (4)0.010 (4)0.030 (5)
H17B0.058 (6)0.045 (4)0.127 (11)0.032 (6)0.046 (7)0.025 (4)
C180.0217 (12)0.0226 (12)0.0244 (13)0.0035 (9)0.0076 (10)0.0026 (9)
C190.0170 (10)0.0243 (11)0.0246 (10)0.0007 (9)0.0068 (8)0.0022 (9)
C200.0215 (13)0.0313 (13)0.0246 (14)0.0060 (10)0.0079 (11)0.0011 (11)
H20A0.059 (6)0.120 (10)0.049 (6)0.001 (6)0.027 (5)0.035 (7)
H20B0.055 (6)0.064 (5)0.059 (6)0.029 (4)0.003 (4)0.031 (5)
Geometric parameters (Å, º) top
S1—O61.456 (5)N11B—H11D1.0300
S1—O121.457 (6)N11B—C171.41 (2)
S1—O21.470 (6)N16—H16B1.020 (8)
S1—O51.487 (5)N16—H16C1.026 (7)
O3—C131.276 (5)N16—H16A1.036 (9)
O3—H15i1.361 (12)N16—C141.458 (4)
O4—C131.227 (5)N21—H21C1.014 (8)
O7—C181.208 (5)N21—H21B1.016 (7)
O9—H91.030 (7)N21—H21A1.018 (10)
O9—C191.298 (4)N21—C201.464 (4)
O10—C191.205 (5)C13—C201.508 (4)
O15—H151.089 (12)C14—H14A1.082 (9)
O15—C181.292 (5)C14—H14B1.093 (11)
N11—H11B1.010 (12)C14—C181.507 (5)
N11—H11A1.021 (10)C17—H17A1.060 (10)
N11—H11C1.049 (9)C17—H17B1.071 (9)
N11—C171.475 (4)C17—C191.503 (4)
N11B—H11E1.0300C20—H20B1.068 (10)
N11B—H11F1.0300C20—H20A1.072 (12)
O6—S1—O12111.5 (4)H21A—N21—C20109.6 (6)
O6—S1—O2110.5 (4)O4—C13—O3125.8 (4)
O12—S1—O2109.7 (3)O4—C13—C20120.3 (3)
O6—S1—O5110.1 (3)O3—C13—C20113.8 (3)
O12—S1—O5108.0 (4)H14A—C14—H14B108.9 (12)
O2—S1—O5106.9 (4)H14A—C14—N16108.6 (7)
C13—O3—H15i117.0 (5)H14B—C14—N16109.3 (8)
H9—O9—C19113.0 (5)H14A—C14—C18109.4 (7)
H15—O15—C18113.3 (6)H14B—C14—C18109.5 (7)
H11B—N11—H11A105.2 (11)N16—C14—C18111.2 (3)
H11B—N11—H11C106.6 (10)H17A—C17—H17B108.5 (12)
H11A—N11—H11C108.5 (8)H17A—C17—N11B133.5 (12)
H11B—N11—C17113.6 (10)H17B—C17—N11B81.1 (13)
H11A—N11—C17110.9 (6)H17A—C17—N11107.1 (7)
H11C—N11—C17111.6 (6)H17B—C17—N11110.1 (9)
H11E—N11B—H11F109.5H17A—C17—C19109.6 (7)
H11E—N11B—H11D109.5H17B—C17—C19109.6 (7)
H11F—N11B—H11D109.5N11B—C17—C19109.2 (8)
H11E—N11B—C17109.5N11—C17—C19111.8 (2)
H11F—N11B—C17109.5O7—C18—O15126.0 (4)
H11D—N11B—C17109.5O7—C18—C14121.7 (3)
H16B—N16—H16C109.6 (7)O15—C18—C14112.4 (4)
H16B—N16—H16A110.5 (10)O10—C19—O9124.1 (3)
H16C—N16—H16A105.9 (7)O10—C19—C17121.8 (3)
H16B—N16—C14110.4 (7)O9—C19—C17114.1 (3)
H16C—N16—C14111.4 (6)H20B—C20—H20A108.0 (13)
H16A—N16—C14109.1 (6)H20B—C20—N21108.5 (7)
H21C—N21—H21B108.5 (7)H20A—C20—N21109.8 (8)
H21C—N21—H21A111.4 (10)H20B—C20—C13109.6 (7)
H21B—N21—H21A106.1 (8)H20A—C20—C13109.5 (8)
H21C—N21—C20109.9 (7)N21—C20—C13111.4 (3)
H21B—N21—C20111.3 (7)
H15i—O3—C13—O43.7 (7)H14A—C14—C18—O7119.8 (9)
H15i—O3—C13—C20176.4 (5)H14B—C14—C18—O7121.0 (9)
H16B—N16—C14—H14A179.0 (11)N16—C14—C18—O70.1 (5)
H16C—N16—C14—H14A59.0 (10)H14A—C14—C18—O1559.9 (9)
H16A—N16—C14—H14A57.5 (11)H14B—C14—C18—O1559.3 (9)
H16B—N16—C14—H14B62.4 (11)N16—C14—C18—O15179.8 (4)
H16C—N16—C14—H14B59.6 (9)H9—O9—C19—O103.6 (9)
H16A—N16—C14—H14B176.1 (9)H9—O9—C19—C17176.9 (7)
H16B—N16—C14—C1858.6 (8)H17A—C17—C19—O1042.0 (9)
H16C—N16—C14—C18179.4 (5)H17B—C17—C19—O1077.0 (11)
H16A—N16—C14—C1862.9 (6)N11B—C17—C19—O10164.1 (12)
H11E—N11B—C17—H17A161.2N11—C17—C19—O10160.6 (4)
H11F—N11B—C17—H17A41.2H17A—C17—C19—O9138.5 (8)
H11D—N11B—C17—H17A78.8H17B—C17—C19—O9102.5 (10)
H11E—N11B—C17—H17B54.1N11B—C17—C19—O915.4 (12)
H11F—N11B—C17—H17B65.9N11—C17—C19—O919.9 (5)
H11D—N11B—C17—H17B174.1H21C—N21—C20—H20B175.1 (11)
H11E—N11B—C17—C1953.6H21B—N21—C20—H20B54.9 (10)
H11F—N11B—C17—C19173.6H21A—N21—C20—H20B62.1 (11)
H11D—N11B—C17—C1966.4H21C—N21—C20—H20A57.3 (12)
H11B—N11—C17—H17A166.7 (11)H21B—N21—C20—H20A62.9 (11)
H11A—N11—C17—H17A75.0 (11)H21A—N21—C20—H20A179.9 (11)
H11C—N11—C17—H17A46.1 (10)H21C—N21—C20—C1364.2 (7)
H11B—N11—C17—H17B48.9 (12)H21B—N21—C20—C13175.6 (6)
H11A—N11—C17—H17B167.2 (11)H21A—N21—C20—C1358.6 (8)
H11C—N11—C17—H17B71.7 (11)O4—C13—C20—H20B121.0 (10)
H11B—N11—C17—C1973.1 (8)O3—C13—C20—H20B59.1 (10)
H11A—N11—C17—C1945.2 (8)O4—C13—C20—H20A120.7 (10)
H11C—N11—C17—C19166.3 (7)O3—C13—C20—H20A59.2 (10)
H15—O15—C18—O76.2 (10)O4—C13—C20—N211.0 (5)
H15—O15—C18—C14173.5 (7)O3—C13—C20—N21179.1 (3)
Symmetry code: (i) x+1, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O5ii1.030 (7)1.492 (7)2.522 (5)176.8 (8)
O15—H15···O3iii1.090 (12)1.361 (12)2.450 (7)179.2 (10)
N11—H11A···O3iv1.020 (13)1.802 (13)2.809 (6)168.3 (10)
N11—H11B···O10iv1.012 (14)1.942 (12)2.806 (6)141.5 (13)
N11—H11C···O2v1.050 (11)1.705 (11)2.755 (5)177.7 (8)
N11—H11C···O12v1.050 (11)2.529 (12)3.132 (6)115.8 (8)
N16—H16A···O6vi1.036 (10)1.817 (11)2.786 (4)154.0 (9)
N16—H16B···O21.020 (10)2.074 (10)2.907 (3)137.4 (10)
N16—H16B···O4vii1.020 (10)2.334 (14)2.920 (6)115.4 (8)
N16—H16C···O5ii1.027 (8)2.258 (10)2.974 (5)125.5 (7)
N16—H16C···O12ii1.027 (8)1.982 (9)2.974 (5)161.7 (10)
N21—H21A···O6vi1.018 (11)1.879 (12)2.828 (4)153.8 (10)
N21—H21B···O2ii1.016 (8)2.076 (9)3.024 (5)154.3 (10)
N21—H21B···O5ii1.016 (8)2.213 (10)2.968 (5)129.9 (7)
N21—H21C···O12viii1.014 (9)1.989 (10)2.892 (4)147.0 (10)
N21—H21C···O7vi1.014 (9)2.517 (13)3.007 (6)109.2 (7)
C14—H14A···O101.082 (11)2.403 (13)3.287 (7)138.0 (9)
C17—H17A···O7ix1.060 (11)2.584 (14)3.404 (6)133.7 (8)
C17—H17B···O4x1.071 (11)2.305 (12)3.348 (5)164.2 (12)
C20—H20A···O15ix1.071 (15)2.423 (15)3.346 (7)143.7 (11)
C20—H20B···O101.069 (13)2.517 (14)3.468 (7)147.9 (10)
Symmetry codes: (ii) x+2, y+1/2, z+2; (iii) x+1, y1/2, z; (iv) x, y, z+1; (v) x+1, y+1/2, z+2; (vi) x+2, y+1/2, z+1; (vii) x+2, y1/2, z+1; (viii) x, y+1, z; (ix) x+1, y+1/2, z+1; (x) x+1, y1/2, z+1.
Bis(glycinium) sulfate–glycine (1/1) (298KModel2) top
Crystal data top
2C2H6NO2+·SO42·C2H5NO2F(000) = 130.536
Mr = 323.28Dx = 1.693 Mg m3
Monoclinic, P21Neutrons radiation, λ = 1 Å
Hall symbol: P2ybCell parameters from 3228 reflections
a = 9.3910 (14) Åθ = 6.6–83.3°
b = 12.6021 (18) ŵ = 0.49 mm1
c = 5.7125 (7) ÅT = 298 K
β = 110.306 (13)°Block, colorless
V = 634.04 (16) Å32.80 × 2.80 × 2.80 mm
Z = 2
Data collection top
Time-of-flight Laue-type single crystal neutron
diffractometer
10685 reflections with I > 2σ(I)
Radiation source: spallation neutronRint = N/A
Detector resolution: 4 pixels mm-1θmax = 83.7°, θmin = 7.9°
time–of–flight Laue method scansh = 1515
14190 measured reflectionsk = 2120
3132 independent reflectionsl = 99
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.1405P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.080(Δ/σ)max < 0.001
wR(F2) = 0.209Δρmax = 1.50 e Å3
S = 1.05Δρmin = 1.70 e Å3
14190 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2015)
358 parametersExtinction coefficient: 0.106 (5)
8 restraintsAbsolute structure: Indeterminate for a neutron structure
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.9997 (5)0.7502 (5)0.7732 (8)0.0131 (7)
O20.9154 (4)0.8462 (2)0.7921 (8)0.0238 (7)
O30.5395 (5)1.4695 (4)0.1996 (9)0.0337 (9)
H30.5153 (11)1.4925 (10)0.011 (8)0.046 (2)0.124 (8)
O40.7790 (5)1.4951 (3)0.2233 (8)0.0307 (8)
O51.1424 (3)0.7497 (4)0.9937 (5)0.0239 (5)
O61.0347 (4)0.7519 (3)0.5440 (5)0.0252 (5)
O70.7864 (5)0.9980 (3)0.2398 (8)0.0313 (8)
O90.6071 (4)1.2434 (4)1.0767 (7)0.0317 (7)
H90.7082 (6)1.2438 (8)1.0440 (12)0.0369 (12)
O100.4960 (5)1.2336 (5)0.6668 (8)0.0434 (12)
O120.9126 (5)0.6563 (3)0.7868 (8)0.0261 (7)
O150.5517 (5)1.0205 (5)0.2419 (10)0.0419 (11)
H150.5131 (11)0.9970 (8)0.051 (2)0.046 (2)0.876 (8)
N110.3571 (3)1.2892 (3)1.1626 (6)0.0316 (7)0.876 (8)
H11A0.4246 (12)1.3552 (10)1.200 (2)0.052 (2)0.876 (8)
H11B0.4077 (13)1.2388 (13)1.305 (2)0.062 (3)0.876 (8)
H11C0.2518 (10)1.3095 (9)1.176 (2)0.048 (2)0.876 (8)
N11B0.365 (2)1.226 (2)1.167 (5)0.0316 (7)0.124 (8)
H11D0.4260751.1567881.2210590.052 (2)0.124 (8)
H11E0.2624141.2188051.1933170.062 (3)0.124 (8)
H11F0.4253921.2881211.2731210.048 (2)0.124 (8)
N160.9164 (3)1.07348 (15)0.7057 (4)0.0228 (4)
H16A0.9553 (11)1.1250 (8)0.5999 (17)0.0454 (18)
H16B0.9613 (13)0.9997 (7)0.7084 (17)0.053 (2)
H16C0.9530 (12)1.1042 (6)0.8830 (14)0.0414 (17)
N210.8957 (3)1.42989 (15)0.6984 (4)0.0220 (4)
H21A0.9420 (11)1.3818 (9)0.6005 (18)0.049 (2)
H21B0.9277 (12)1.3990 (7)0.8735 (14)0.046 (2)
H21C0.9368 (12)1.5049 (7)0.7098 (16)0.053 (2)
C130.6830 (3)1.4686 (2)0.3128 (6)0.0203 (5)
C140.7510 (4)1.0691 (3)0.6007 (6)0.0257 (6)
H14A0.7067 (12)1.1486 (8)0.597 (2)0.060 (3)
H14B0.7088 (15)1.0192 (11)0.719 (2)0.064 (3)
C170.3401 (3)1.2455 (3)0.9149 (5)0.0256 (5)
H17A0.2643 (11)1.2962 (10)0.7802 (18)0.062 (3)
H17B0.2910 (14)1.1679 (8)0.895 (3)0.073 (4)
C180.6979 (4)1.0248 (2)0.3394 (6)0.0230 (6)
C190.4894 (3)1.2405 (2)0.8731 (5)0.0221 (5)
C200.7302 (4)1.4308 (3)0.5793 (6)0.0258 (6)
H20A0.6814 (15)1.4815 (13)0.683 (2)0.074 (4)
H20B0.6892 (13)1.3521 (10)0.584 (2)0.066 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0133 (18)0.0105 (13)0.0159 (17)0.0021 (19)0.0057 (14)0.0003 (19)
O20.0243 (15)0.0152 (12)0.0352 (19)0.0063 (10)0.0144 (14)0.0017 (11)
O30.0179 (15)0.0440 (19)0.0327 (19)0.0028 (15)0.0008 (13)0.0059 (15)
H30.026 (3)0.044 (3)0.062 (7)0.005 (3)0.008 (4)0.004 (4)
O40.0238 (17)0.0403 (18)0.0245 (17)0.0039 (14)0.0041 (13)0.0119 (14)
O50.0147 (11)0.0363 (12)0.0188 (10)0.0019 (14)0.0036 (9)0.0011 (15)
O60.0337 (15)0.0270 (11)0.0179 (10)0.0006 (15)0.0128 (10)0.0003 (13)
O70.0252 (17)0.0418 (18)0.0253 (16)0.0043 (14)0.0067 (14)0.0111 (15)
O90.0142 (12)0.0517 (19)0.0287 (14)0.0003 (16)0.0067 (11)0.0028 (18)
H90.021 (2)0.050 (3)0.039 (3)0.002 (3)0.010 (2)0.004 (3)
O100.0309 (19)0.071 (3)0.0268 (16)0.005 (2)0.0083 (14)0.0069 (19)
O120.0276 (17)0.0158 (12)0.035 (2)0.0072 (11)0.0113 (15)0.0001 (11)
O150.0222 (18)0.064 (3)0.038 (2)0.0124 (19)0.0085 (17)0.014 (2)
H150.026 (3)0.044 (3)0.062 (7)0.005 (3)0.008 (4)0.004 (4)
N110.0176 (10)0.0485 (18)0.0314 (11)0.0062 (11)0.0119 (9)0.0033 (12)
H11A0.038 (4)0.075 (6)0.048 (5)0.017 (4)0.020 (4)0.024 (5)
H11B0.046 (5)0.088 (9)0.048 (5)0.009 (6)0.013 (4)0.023 (6)
H11C0.028 (4)0.059 (5)0.061 (6)0.006 (3)0.023 (4)0.011 (4)
N11B0.0176 (10)0.0485 (18)0.0314 (11)0.0062 (11)0.0119 (9)0.0033 (12)
H11D0.038 (4)0.075 (6)0.048 (5)0.017 (4)0.020 (4)0.024 (5)
H11E0.046 (5)0.088 (9)0.048 (5)0.009 (6)0.013 (4)0.023 (6)
H11F0.028 (4)0.059 (5)0.061 (6)0.006 (3)0.023 (4)0.011 (4)
N160.0269 (10)0.0201 (8)0.0179 (8)0.0037 (7)0.0033 (7)0.0019 (6)
H16A0.039 (4)0.063 (5)0.033 (4)0.012 (4)0.011 (3)0.002 (3)
H16B0.057 (5)0.044 (4)0.042 (4)0.025 (4)0.003 (4)0.010 (3)
H16C0.056 (5)0.035 (3)0.028 (3)0.004 (3)0.008 (3)0.010 (2)
N210.0244 (9)0.0214 (8)0.0160 (8)0.0029 (7)0.0016 (7)0.0036 (6)
H21A0.040 (4)0.069 (5)0.036 (4)0.015 (4)0.011 (3)0.003 (3)
H21B0.063 (6)0.042 (3)0.026 (3)0.003 (3)0.007 (3)0.010 (3)
H21C0.057 (5)0.045 (4)0.041 (4)0.026 (4)0.001 (4)0.009 (3)
C130.0177 (11)0.0186 (10)0.0218 (12)0.0014 (9)0.0032 (9)0.0032 (8)
C140.0267 (14)0.0270 (12)0.0251 (13)0.0012 (10)0.0113 (11)0.0067 (10)
H14A0.045 (5)0.053 (4)0.069 (7)0.017 (4)0.005 (4)0.027 (4)
H14B0.072 (7)0.089 (7)0.044 (5)0.028 (6)0.034 (5)0.003 (4)
C170.0143 (10)0.0276 (10)0.0324 (12)0.0007 (11)0.0048 (9)0.0031 (12)
H17A0.040 (4)0.095 (7)0.046 (4)0.031 (5)0.010 (4)0.010 (5)
H17B0.058 (6)0.045 (4)0.126 (11)0.024 (4)0.045 (7)0.032 (6)
C180.0217 (12)0.0226 (12)0.0244 (13)0.0026 (9)0.0077 (10)0.0035 (9)
C190.0170 (10)0.0243 (11)0.0246 (11)0.0021 (9)0.0068 (8)0.0007 (9)
C200.0215 (13)0.0312 (13)0.0245 (14)0.0011 (11)0.0078 (11)0.0060 (10)
H20A0.060 (6)0.118 (10)0.049 (6)0.035 (7)0.028 (5)0.001 (6)
H20B0.055 (6)0.064 (5)0.059 (6)0.031 (5)0.003 (4)0.029 (4)
Geometric parameters (Å, º) top
S1—O121.456 (6)N11B—H11F1.0300
S1—O61.457 (5)N11B—H11D1.0300
S1—O21.469 (6)N11B—C171.40 (2)
S1—O51.487 (5)N16—H16B1.019 (8)
O3—H31.06 (4)N16—H16C1.026 (7)
O3—C131.277 (5)N16—H16A1.036 (9)
O3—H15i1.386 (12)N16—C141.459 (4)
H3—H15i0.37 (4)N21—H21C1.014 (8)
O4—C131.226 (5)N21—H21B1.016 (7)
O7—C181.208 (5)N21—H21A1.019 (10)
O9—H91.029 (7)N21—C201.464 (4)
O9—C191.298 (4)C13—C201.508 (4)
O10—C191.204 (5)C14—H14A1.082 (9)
O15—H151.066 (12)C14—H14B1.093 (11)
O15—C181.291 (5)C14—C181.507 (5)
N11—H11B1.010 (12)C17—H17A1.061 (10)
N11—H11A1.022 (11)C17—H17B1.070 (9)
N11—H11C1.050 (9)C17—C191.503 (4)
N11—C171.474 (4)C20—H20B1.068 (10)
N11B—H11E1.0300C20—H20A1.074 (12)
O12—S1—O6111.5 (4)H21B—N21—H21A106.0 (8)
O12—S1—O2109.8 (3)H21C—N21—C20110.0 (7)
O6—S1—O2110.4 (4)H21B—N21—C20111.3 (7)
O12—S1—O5108.0 (4)H21A—N21—C20109.6 (6)
O6—S1—O5110.1 (3)O4—C13—O3125.8 (4)
O2—S1—O5107.0 (4)O4—C13—C20120.4 (3)
H3—O3—C13109.5O3—C13—C20113.7 (3)
H3—O3—H15i8.0H14A—C14—H14B108.9 (12)
C13—O3—H15i117.4 (6)H14A—C14—N16108.7 (7)
H15i—H3—O3149 (4)H14B—C14—N16109.3 (8)
H9—O9—C19113.0 (5)H14A—C14—C18109.3 (7)
H15—O15—C18112.7 (7)H14B—C14—C18109.5 (7)
H15—O15—H3ii6 (3)N16—C14—C18111.1 (3)
C18—O15—H3ii118.9 (11)H17A—C17—H17B108.4 (12)
H3ii—H15—O15155.4H17A—C17—N11B133.1 (12)
H11B—N11—H11A105.0 (11)H17B—C17—N11B82.1 (14)
H11B—N11—H11C106.7 (10)H17A—C17—N11107.1 (7)
H11A—N11—H11C108.5 (9)H17B—C17—N11110.1 (9)
H11B—N11—C17113.7 (10)H17A—C17—C19109.7 (7)
H11A—N11—C17110.9 (6)H17B—C17—C19109.6 (7)
H11C—N11—C17111.7 (6)N11B—C17—C19108.9 (8)
H11E—N11B—H11F109.5N11—C17—C19111.8 (2)
H11E—N11B—H11D109.5O7—C18—O15126.0 (4)
H11F—N11B—H11D109.5O7—C18—C14121.7 (3)
H11E—N11B—C17109.5O15—C18—C14112.3 (4)
H11F—N11B—C17109.5O10—C19—O9124.2 (3)
H11D—N11B—C17109.5O10—C19—C17121.7 (3)
H16B—N16—H16C109.5 (7)O9—C19—C17114.1 (3)
H16B—N16—H16A110.6 (10)H20B—C20—H20A108.2 (13)
H16C—N16—H16A105.9 (7)H20B—C20—N21108.3 (7)
H16B—N16—C14110.3 (7)H20A—C20—N21109.6 (8)
H16C—N16—C14111.4 (6)H20B—C20—C13109.7 (7)
H16A—N16—C14109.0 (6)H20A—C20—C13109.6 (8)
H21C—N21—H21B108.5 (7)N21—C20—C13111.4 (3)
H21C—N21—H21A111.3 (10)
C13—O3—H3—H15i176.0H3ii—O15—C18—O76.9
C18—O15—H15—H3ii169.8H15—O15—C18—C14173.9 (7)
H3—O3—C13—O43.4H3ii—O15—C18—C14172.7
H15i—O3—C13—O44.0 (8)H14A—C14—C18—O7119.8 (9)
H3—O3—C13—C20176.7H14B—C14—C18—O7120.9 (10)
H15i—O3—C13—C20176.1 (6)N16—C14—C18—O70.1 (5)
H16B—N16—C14—H14A178.9 (11)H14A—C14—C18—O1559.8 (9)
H16C—N16—C14—H14A59.2 (10)H14B—C14—C18—O1559.4 (9)
H16A—N16—C14—H14A57.3 (11)N16—C14—C18—O15179.8 (4)
H16B—N16—C14—H14B62.3 (11)H9—O9—C19—O103.6 (9)
H16C—N16—C14—H14B59.6 (9)H9—O9—C19—C17177.0 (7)
H16A—N16—C14—H14B176.1 (10)H17A—C17—C19—O1042.0 (9)
H16B—N16—C14—C1858.6 (8)H17B—C17—C19—O1076.9 (11)
H16C—N16—C14—C18179.5 (5)N11B—C17—C19—O10165.1 (12)
H16A—N16—C14—C1863.0 (6)N11—C17—C19—O10160.7 (4)
H11E—N11B—C17—H17A43.9H17A—C17—C19—O9138.5 (8)
H11F—N11B—C17—H17A76.1H17B—C17—C19—O9102.5 (10)
H11D—N11B—C17—H17A163.9N11B—C17—C19—O914.3 (12)
H11E—N11B—C17—H17B64.0N11—C17—C19—O919.9 (5)
H11F—N11B—C17—H17B176.0H21C—N21—C20—H20B175.1 (11)
H11D—N11B—C17—H17B56.0H21B—N21—C20—H20B54.8 (10)
H11E—N11B—C17—C19172.1H21A—N21—C20—H20B62.2 (11)
H11F—N11B—C17—C1967.9H21C—N21—C20—H20A57.3 (12)
H11D—N11B—C17—C1952.1H21B—N21—C20—H20A63.0 (11)
H11B—N11—C17—H17A167.0 (11)H21A—N21—C20—H20A180.0 (11)
H11A—N11—C17—H17A74.9 (11)H21C—N21—C20—C1364.1 (7)
H11C—N11—C17—H17A46.3 (11)H21B—N21—C20—C13175.6 (6)
H11B—N11—C17—H17B49.3 (11)H21A—N21—C20—C1358.6 (8)
H11A—N11—C17—H17B167.4 (11)O4—C13—C20—H20B120.9 (10)
H11C—N11—C17—H17B71.4 (11)O3—C13—C20—H20B59.2 (10)
H11B—N11—C17—C1972.8 (8)O4—C13—C20—H20A120.5 (10)
H11A—N11—C17—C1945.3 (8)O3—C13—C20—H20A59.4 (10)
H11C—N11—C17—C19166.5 (7)O4—C13—C20—N210.9 (5)
H15—O15—C18—O75.7 (10)O3—C13—C20—N21179.2 (3)
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+1, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O15i1.06 (4)1.41 (4)2.451 (7)166 (2)
O9—H9···O5iii1.029 (7)1.493 (7)2.522 (5)176.7 (8)
O15—H15···O3ii1.07 (1)1.39 (1)2.451 (7)178 (1)
N11—H11A···O3iv1.022 (13)1.800 (13)2.809 (6)168.3 (10)
N11—H11B···O10iv1.011 (14)1.943 (12)2.807 (6)141.7 (13)
N11—H11C···O2v1.050 (11)1.706 (11)2.755 (5)177.5 (8)
N11—H11C···O12v1.050 (11)2.527 (12)3.132 (6)116.0 (8)
N16—H16A···O6vi1.036 (10)1.815 (11)2.785 (4)154.2 (9)
N16—H16B···O21.019 (10)2.074 (10)2.907 (3)137.5 (10)
N16—H16B···O4vii1.019 (10)2.333 (14)2.919 (6)115.4 (8)
N16—H16C···O5iii1.026 (8)2.258 (10)2.974 (5)125.5 (7)
N16—H16C···O12iii1.026 (8)1.982 (9)2.974 (5)161.6 (10)
N21—H21A···O6vi1.019 (11)1.880 (12)2.829 (4)153.6 (10)
N21—H21B···O2iii1.017 (8)2.076 (9)3.024 (5)154.3 (10)
N21—H21B···O5iii1.017 (8)2.213 (10)2.969 (5)129.9 (7)
N21—H21C···O12viii1.015 (10)1.989 (10)2.892 (4)146.9 (10)
N21—H21C···O7vi1.015 (10)2.516 (13)3.007 (6)109.3 (7)
C14—H14A···O101.082 (11)2.402 (13)3.287 (7)138.0 (9)
C17—H17A···O7ix1.062 (11)2.583 (13)3.404 (5)133.8 (8)
C17—H17B···O4x1.070 (11)2.307 (12)3.350 (5)164.2 (12)
C20—H20A···O15ix1.076 (15)2.423 (15)3.348 (7)143.3 (11)
C20—H20B···O101.068 (13)2.518 (14)3.468 (7)147.7 (10)
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+1, y1/2, z; (iii) x+2, y+1/2, z+2; (iv) x, y, z+1; (v) x+1, y+1/2, z+2; (vi) x+2, y+1/2, z+1; (vii) x+2, y1/2, z+1; (viii) x, y+1, z; (ix) x+1, y+1/2, z+1; (x) x+1, y1/2, z+1.
Lattice constants, interatomic distances and angles for HTGS, DTGS, and FDTGS at low temperatures top
This studyProtas et al. (1997)Hudspeth et al. (2013)
HTGSDTGSFDTGS
Temperature (K)20 (2)4020 (2)
a (Å)9.3946 (8)9.406 (5)9.409 (2)
b (Å)12.5338 (11)12.614 (5)12.558 (3)
c (Å)5.6630 (4)5.654 (5)5.673 (1)
β (Å)110.500 (7)110.49 (2)110.44 (2)
V3)624.59 (9)628.4 (7)628.2 (2)
O15···O3i (Å)2.4777 (15)2.486 (5)
O15—H(D)15 (Å)1.070 (3)1.041 (5)
H(D)15···O3i (Å)1.408 (3)1.445 (6)
O15—H(D)15···O3i (°)179.0 (4)178.4 (6)
Symmetry code for HTGS in this study: (i) 3 - x, -1/2 + y, 2 - z.
Lattice constants, interatomic distances and angles at disordered atoms for HTGS and FDTGS at ~298 K top
This study (Model 1)This study (Model 2)Kay et al. (1973)Choudhury & Chitra (2008)Hudspeth et al. (2013)
HTGSHTGSHTGSHTGSFDTGS
Temperature (K)298 (2)298 (2)298RT295
a (Å)9.3910 (14)9.3910 (14)9.4179.416 (7)9.413 (2)
b (Å)12.6021 (18)12.6021 (18)12.64312.643 (1)12.629 (2)
c (Å)5.7125 (7)5.7125 (7)5.7355.734 (3)5.716 (1)
β (Å)110.306 (13)110.306 (13)110.4110.33 (3)110.30 (2)
V3)634.04 (16)634.04 (16)639.98640.09637.3 (2)
O15···O3i (Å)2.450 (7)2.451 (7)2.502.470 (9)
O15—H(D)15 (Å)1.090 (12)1.065 (12)1.101.115 (12)1.077 (6)
H(D)15···O3i (Å)1.361 (12)1.387 (12)1.361.356 (11)
H(D)3—O3 (Å)1.06 (4)
O15—H(D)15···O3i (°)179.2 (10)178.2 (11)176 (2)177.3 (9)
Symmetry code for HGTS in this study: (i) 1 - x, -1/2 + y, -z.
 

Acknowledgements

The neutron diffraction measurements were conducted under the J-PARC MLF Fast Track Proposal No.2020BF1801.

Funding information

Funding for this research was provided by: Mitsubishi Materials Corporation (grant No. AXA30Z001000); Waseda University Grants for Special Research Projects (grant No. BARD01107201).

References

First citationCheng, Z., Cheng, Y., Zhang, P. & Yan, Q. (1986). Acta Phys. Sin. 35, 643–52.  CAS Google Scholar
First citationChoudhury, R. R. & Chitra, R. (2008). Pramana – J. Phys. 71, 911–915.  Web of Science CrossRef CAS Google Scholar
First citationFletcher, S. R., Keve, E. T. & Skapski, A. C. (1976). Ferroelectrics, 14, 789–799.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHoshino, S., Okaya, Y. & Pepinsky, R. (1959). Phys. Rev. 115, 323–330.  CSD CrossRef CAS Web of Science Google Scholar
First citationHudspeth, J. M. & Goossens, D. J. (2012). J. Cryst. Growth, 338, 177–180.  Web of Science CrossRef CAS Google Scholar
First citationHudspeth, J. M., Goossens, D. J., Gutmann, M. J. & Studer, A. J. (2013). Cryst. Res. Technol. 48, 169–180.  Web of Science CrossRef CAS Google Scholar
First citationItoh, K. & Mitsui, T. (1973). Ferroelectrics, 5, 235–251.  CrossRef CAS Web of Science Google Scholar
First citationKawasaki, T., Kaimori, Y., Shimada, S., Hara, N., Sato, S., Suzuki, K., Asahi, T., Matsumoto, A. & Soai, S. (2021). Chem. Commun. 57, 5999–6002.  Web of Science CSD CrossRef CAS Google Scholar
First citationKay, M. I. & Kleinberg, R. (1973). Ferroelectrics, 5, 45–52.  CrossRef CAS Web of Science Google Scholar
First citationKolontsova, E. V., Red'ko, S. V., Struchkov, Yu. T. & Yanovskii, A. I. (1990). Sov. Phys. Crystallogr. 35, 126–129.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatthias, B. T., Miller, C. E. & Remeika, J. P. (1956). Phys. Rev. 104, 849–850.  CrossRef CAS Web of Science Google Scholar
First citationOhhara, T., Kiyanagi, R., Oikawa, K., Kaneko, K., Kawasaki, T., Tamura, I., Nakao, A., Hanashima, T., Munakata, K., Moyoshi, T., Kuroda, T., Kimura, H., Sakakura, T., Lee, C.-H., Takahashi, M., Ohshima, K., Kiyotani, T., Noda, Y. & Arai, M. (2016). J. Appl. Cryst. 49, 120–127.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOhhara, T., Kusaka, K., Hosoya, T., Kurihara, K., Tomoyori, K., Niimura, N., Tanaka, I., Suzuki, J., Nakatani, T., Otomo, T., Matsuoka, S., Tomita, K., Nishimaki, Y., Ajima, T. & Ryufuku, S. (2009). Nucl. Instrum. Methods Phys. Res. A, 600, 195–197.  Web of Science CrossRef CAS Google Scholar
First citationPadmanabhan, V. M. & Yadav, V. S. (1971). Current Science (Bangalore) 40, 60–61.  CAS Google Scholar
First citationProtas, J., Gerbaux, X., Hadni, A. & Schweiss, P. (1997). Ferroelectrics, 193, 51–62.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTerasawa, Y., Kikuta, T., Ichiki, M., Sato, S., Ishikawa, K. & Asahi, T. (2021). J. Phys. Chem. Solids, 151, 109890.  Web of Science CrossRef Google Scholar
First citationTriebwasser, S. (1958). IBM J. Res. & Dev. 2, 212–217.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWood, E. A. & Holden, A. N. (1957). Acta Cryst. 10, 145–146.  CrossRef IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds