research communications
Crystal structures and Hirshfeld surface analysis of 5-amino-1-(4-methoxyphenyl)pyrazole-4-carboxylic acid and 5-amino-3-(4-methoxyphenyl)isoxazole
aGeorgia Southern University, 11935 Abercorn St., Department of Chemistry and, Biochemistry, Savannah GA 30458, USA
*Correspondence e-mail: cpadgett@georgiasouthern.edu
The title compounds, C11H11N3O3, (I), and C10H10N2O2, (II), are commercially available and were crystallized from ethyl acetate solution. The dihedral angle between the pyrazole and phenyl rings in (I) is 52.34 (7)° and the equivalent angle between the isoxazole and phenyl rings in (II) is 7.30 (13)°. In the crystal of (I), the molecules form carboxylic acid inversion dimers with an R(8) ring motif via pairwise O—H⋯O hydrogen bonds. In the crystal of (II), the molecules are linked via N—H⋯N hydrogen bonds forming chains propagating along [010] with a C(5) motif. A weak N—H⋯π interaction also features in the packing of (II). Hirshfeld surface analysis was used to explore the intermolecular contacts in the crystals of both title compounds: the most important contacts for (I) are H⋯H (41.5%) and O⋯H/H⋯O (22.4%). For (II), the most significant contact percentages are H⋯H (36.1%) followed by C⋯H/H⋯C (31.3%).
Keywords: X-ray diffraction; crystal structure; isoxazole; Hirshfeld surface.
1. Chemical context
This report is one of a series on the structures and hydrogen-bonding motifs in small-molecule aromatic amino carboxylic acids (I) and small-molecule aromatic amino compounds (II). This study follows other reports including, for example, 3-aminopyrazine-2-carboxylic acid (Dobson & Gerkin, 1996), 5-aminoisophthalic acid hemihydrate (Dobson & Gerkin, 1998), and 1,4-dibenzylpiperazine-2,5-dione (Nunez, et al., 2004). We now describe the structures of 5-amino-1-(4-methoxyphenyl)-pyrazole-4-carboxylic acid, (I) and 5-amino-3-(4-methoxyphenyl)isoxazole, (II).
2. Structural commentary
The molecular structure of compound (I) is shown in Fig. 1. The pyrazole ring (r.m.s. deviation = 0.010 Å) is rotated by 52.34 (7)° relative to the phenyl ring (r.m.s. deviation = 0.010 Å), which is the primary contribution to the general non-planarity of the molecule. An intramolecular N3—H3A⋯O2 hydrogen bond is observed (Table 1 and Fig. 1). This bond forms an S(6) ring motif (Fig. 1 and Table 1) with an N3⋯O2 distance of 2.941 (3) Å. This is a common feature in analogous compounds (such as those listed in the Database survey). The C3—N3 distance of 1.353 (2) Å is typical for an amino group bound to an aromatic ring. The carboxylic carbon–oxygen distances are 1.255 (2) and 1.316 (2) for C4—O2 and C4—O1, respectively, indicating that the former bond may be affected by the intramolecular N—H⋯O hydrogen bond.
|
The molecular structure of compound (II) is shown in Fig. 2. The angle between the phenyl and isoxazole rings is 7.30 (13)°, resulting in the overall molecule being close to planar with the r.m.s. deviation of all non-hydrogen atoms being 0.054 Å. The N1—O1 distance is 1.434 (4) Å and is consistent with other isoxazoles (see Database survey section). The C3—N2 distance is 1.350 (5) Å and is typical of an amino group bound to an aromatic ring.
3. Supramolecular features
In the extended structure of (I), the molecules form centrosymmetric hydrogen-bonded dimers via the O1—H1⋯O2i [symmetry code: (i) −x + 1, −y, −z + 1] link to generate an R(8) loop with O⋯O = 2.649 (2) Å, see Table 1 and Fig. 3. These dimers are linked via π–π interactions, notably weak stacking interactions between the 4-methoxyphenyl rings [Cg1⋯Cg1 (x + 1, y, z) = 3.9608 (4) Å, where Cg1 is the centroid of the C5–C10 ring] along the a-axis direction.
In the packing of (II), the molecules form hydrogen-bonded chains running along the b-axis direction via the N2—H2A⋯N1i hydrogen bond [symmetry code: (i) −x + 1, y + , −z + ] hydrogen bond forms a C(5) chain motif with an N⋯N distance of 3.003 (5) Å, see Table 2 and Fig. 4. No π–π interactions are observed.
4. Hirshfeld surface analysis
The intermolecular interactions were further investigated by quantitative analysis of the Hirshfeld surface, and visualized with Crystal Explorer 17.5 (Turner et al., 2017; Spackman et al., 2009) and the two-dimensional fingerprint plots (McKinnon et al., 2007). The shorter and longer contacts are indicated as red and blue spots, respectively, on the Hirshfeld surfaces, and contacts with distances approximately equal to the sum of the van der Waals radii are colored white. The function dnorm is a ratio enclosing the distances of any surface point to the nearest interior (di) and exterior (de) atom and the van der Waals (vdW) radii of the atoms. The dnorm plots were mapped with a color scale between −0.18 au (blue) and +1.4 au (red).
Fig. 5. shows the dnorm surface of compound (I). The most intense red spots on the dnorm surface correspond to the O1—H1⋯O2 interactions. The red and blue triangles on the shape-index surface indicate that there are weak π-stacking interactions in the Analysis of the two-dimensional fingerprint plots indicate that the H⋯H (41.5%) interactions are the major factor in the crystal packing with O⋯H/H⋯O (22.4%) interactions making the next highest contribution. The percentage contributions of other significant contacts are: C⋯H/H⋯C (13.1%) and N⋯H/ H⋯N (8.7%).
Fig. 6 shows the dnorm surface of compound (II). The large red spots represent N2—H2A⋯N1 interactions. Some additional interactions indicated by very light-red spots correspond to contacts around phenyl ring and isoxazole rings: N2—H2B⋯Cg1ii [2.97 (4) Å], C6—H6⋯Cg1iii (2.86 Å) and C9—H9⋯Cg2ii (2.86 Å) [symmetry codes: (ii) x + , −y + , −z + 1; (iii) x − , −y + , −z + 1; Cg1 and Cg2 are the centroids of the O1/N1/C1–C3 and C4–C9 rings, respectively]. Analysis of the two-dimensional fingerprint plots indicates that the H⋯H (36.1%) interactions are the major factor in the crystal packing with C⋯H/H⋯C (31.3%) contacts making the next highest contribution. The percentage contributions of other weak interactions are: O⋯H/H⋯O (17.3%) and N⋯H/ H⋯N (12.1%). Figures showing the shape-index surface for each compound and the overall fingerprint plots are included in the supporting information.
5. Database survey
A search of the Cambridge Structural Database (CSD, version 5.42, update of November 2020; Groom et al., 2016) gave 13 hits for the 3-phenylisoxazol-5-amine moiety. The four most closely related compounds are: 5-diacetylamino-3,4-diphenylisoxazole (CSD refcode ACPIXZ; Simon et al., 1974), 1,5-dimethyl-4-phenyl-3-(3-phenyl-1,2-oxazol-5-yl)imidazolidin-2-one (HOGYAE; Li et al., 2007), N-4-dimethyl-N-[3-{4-(trifluoromethyl)phenyl]-1,2-oxazol-5-yl}benzene-1-sulfonamide (XOSHUL; Chen & Cui, 2019), 3-phenyl-5-(1H-pyrazol-1-yl)-1,2-oxazole (ZEVGIT; Mikhailov et al., 2018).
A similar search gave 14 hits for the 5-amino-1-phenyl-1H-pyrazole-4-carboxylic acid moiety. The seven most closely related compounds are: ethyl 1-(4-chloro-2-nitrophenyl)-5-nitro-4,5-dihydro-1H-pyrazole-4-carboxylate (GOLHEV; Zia-ur-Rehman et al., 2009), 5-amino-1-phenyl-3-(trifluoromethyl)-1H-pyrazole-4-carboxylic acid (HUDDEQ; Caruso et al., 2009), 5-amino-1-phenyl-1H-pyrazole-4-carboxylic acid (KODXIL; Zia-ur-Rehman et al., 2008), ethyl 5-amino-1-(2,4-dinitrophenyl)-1H-pyrazole-4-carboxylate (QAHJER; Ghorab et al., 2016), ethyl 5-amino-1-phenyl-1H-pyrazole-4-carboxylate (RUVHUO, Soares et al., 2020), ethyl 5-amino-1-(4-sulfamoylphenyl)-1H-pyrazole-4-carboxylate (XUTZIX; Ibrahim et al., 2015) and 2-ethoxyethyl 5-amino-1-(2,4-dimethylphenyl)-3-(methylthio)-1H-pyrazole-4-carboxylate (YOYHOK, Liu et al., 2009).
6. Synthesis and crystallization
Compounds (I) and (II) are commercially available and were purchased from Aldrich. Both were dissolved in ethyl acetate until saturated and these solutions were allowed to evaporate slowly at room temperature, which resulted in X-ray quality crystals.
7. Refinement
Crystal data, data collection, and structure . All carbon-bound H atoms were positioned geometrically and refined as riding, with C—H = 0.95 or 0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). In order to ensure a chemically meaningful O—H distance in (I), this was restrained to a target value of 0.84 (2) Å and Uiso(H) = 1.5Ueq(O). In (I), the amino H atoms were located in a difference-Fourier map. In (II), the N—H distances were restrained to a target value of 0.84 (2) Å and Uiso(H) = 1.5Ueq(N). The of (II) was indeterminate based on the present refinement.
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989022001827/hb8013sup1.cif
contains datablocks I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022001827/hb8013Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989022001827/hb8013IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022001827/hb8013Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989022001827/hb8013IIsup5.cml
Shape-index and fingerprint plots for compounds (I) and (II). DOI: https://doi.org/10.1107/S2056989022001827/hb8013sup6.pdf
For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C11H11N3O3 | F(000) = 488 |
Mr = 233.23 | Dx = 1.452 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 3.9608 (4) Å | Cell parameters from 1271 reflections |
b = 24.104 (3) Å | θ = 2.0–23.7° |
c = 11.1762 (10) Å | µ = 0.11 mm−1 |
β = 90.189 (9)° | T = 170 K |
V = 1067.0 (2) Å3 | Block, clear colourless |
Z = 4 | 0.5 × 0.2 × 0.2 mm |
Rigaku XtaLAB mini diffractometer | 2937 independent reflections |
Radiation source: Sealed Tube, Rigaku (Mo) X-ray Source | 1667 reflections with I > 2σ(I) |
Graphite Monochromator monochromator | Rint = 0.032 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 29.6°, θmin = 2.0° |
profile data from ω–scans | h = −5→5 |
Absorption correction: multi-scan (CrysalisPro; Rigaku OD, 2018) | k = −33→33 |
Tmin = 0.975, Tmax = 1.000 | l = −15→14 |
8175 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.049 | w = 1/[σ2(Fo2) + (0.060P)2 + 0.1763P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.155 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.16 e Å−3 |
2937 reflections | Δρmin = −0.19 e Å−3 |
168 parameters | Extinction correction: SHELXL2018/1 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.017 (3) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3397 (4) | 0.03421 (7) | 0.62727 (13) | 0.0697 (5) | |
H1 | 0.370 (8) | 0.0005 (8) | 0.594 (2) | 0.113 (11)* | |
C1 | 0.2875 (5) | 0.14586 (10) | 0.72321 (18) | 0.0595 (5) | |
H1A | 0.208584 | 0.120332 | 0.781520 | 0.071* | |
N1 | 0.4218 (4) | 0.22042 (7) | 0.63223 (12) | 0.0495 (4) | |
C2 | 0.4182 (5) | 0.12959 (8) | 0.61090 (17) | 0.0519 (5) | |
O2 | 0.5820 (4) | 0.06706 (6) | 0.46040 (12) | 0.0648 (4) | |
N2 | 0.2864 (5) | 0.19977 (8) | 0.73857 (14) | 0.0608 (5) | |
O3 | 0.5775 (4) | 0.44729 (6) | 0.57003 (13) | 0.0699 (5) | |
C3 | 0.5066 (4) | 0.17936 (8) | 0.55617 (15) | 0.0463 (4) | |
N3 | 0.6542 (5) | 0.18839 (9) | 0.44896 (14) | 0.0573 (5) | |
H3A | 0.704 (5) | 0.1581 (9) | 0.4099 (19) | 0.060 (6)* | |
H3B | 0.692 (6) | 0.2227 (10) | 0.422 (2) | 0.070 (7)* | |
C4 | 0.4535 (5) | 0.07533 (9) | 0.56133 (17) | 0.0545 (5) | |
C5 | 0.4620 (4) | 0.27870 (8) | 0.61733 (15) | 0.0462 (4) | |
C6 | 0.3325 (5) | 0.30549 (8) | 0.51751 (15) | 0.0495 (5) | |
H6 | 0.215830 | 0.285018 | 0.457648 | 0.059* | |
C7 | 0.3738 (5) | 0.36188 (9) | 0.50557 (16) | 0.0522 (5) | |
H7 | 0.285859 | 0.380302 | 0.437091 | 0.063* | |
C8 | 0.5434 (5) | 0.39210 (8) | 0.59310 (16) | 0.0504 (5) | |
C9 | 0.6654 (5) | 0.36518 (8) | 0.69428 (16) | 0.0524 (5) | |
H9 | 0.774143 | 0.385704 | 0.755892 | 0.063* | |
C10 | 0.6278 (5) | 0.30858 (8) | 0.70480 (15) | 0.0505 (5) | |
H10 | 0.716871 | 0.289972 | 0.772872 | 0.061* | |
C11 | 0.7499 (6) | 0.48080 (10) | 0.6567 (2) | 0.0770 (7) | |
H11A | 0.979212 | 0.466515 | 0.668620 | 0.115* | |
H11B | 0.627391 | 0.479613 | 0.732705 | 0.115* | |
H11C | 0.761020 | 0.519180 | 0.628081 | 0.115* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0905 (12) | 0.0604 (10) | 0.0584 (9) | −0.0021 (9) | 0.0143 (8) | 0.0150 (7) |
C1 | 0.0614 (12) | 0.0677 (14) | 0.0495 (11) | −0.0015 (10) | 0.0083 (9) | 0.0107 (9) |
N1 | 0.0505 (9) | 0.0608 (10) | 0.0373 (8) | −0.0023 (7) | 0.0036 (7) | 0.0019 (6) |
C2 | 0.0491 (11) | 0.0609 (12) | 0.0457 (10) | −0.0016 (9) | −0.0010 (8) | 0.0053 (8) |
O2 | 0.0815 (11) | 0.0609 (9) | 0.0521 (8) | −0.0018 (7) | 0.0098 (7) | 0.0048 (6) |
N2 | 0.0691 (11) | 0.0708 (12) | 0.0427 (8) | −0.0016 (9) | 0.0140 (8) | 0.0069 (7) |
O3 | 0.0846 (11) | 0.0573 (9) | 0.0678 (9) | −0.0025 (8) | −0.0131 (8) | −0.0037 (7) |
C3 | 0.0403 (9) | 0.0623 (12) | 0.0362 (8) | −0.0017 (8) | −0.0026 (7) | 0.0013 (8) |
N3 | 0.0731 (12) | 0.0585 (11) | 0.0402 (9) | −0.0022 (9) | 0.0104 (8) | 0.0009 (8) |
C4 | 0.0528 (11) | 0.0610 (13) | 0.0495 (11) | 0.0002 (9) | −0.0029 (9) | 0.0104 (9) |
C5 | 0.0404 (9) | 0.0593 (11) | 0.0390 (9) | −0.0021 (8) | 0.0038 (7) | −0.0005 (7) |
C6 | 0.0468 (10) | 0.0638 (12) | 0.0379 (9) | −0.0034 (9) | −0.0023 (8) | −0.0026 (8) |
C7 | 0.0511 (11) | 0.0647 (13) | 0.0409 (9) | 0.0033 (9) | −0.0025 (8) | 0.0011 (8) |
C8 | 0.0480 (10) | 0.0576 (12) | 0.0455 (10) | 0.0026 (8) | 0.0030 (8) | −0.0053 (8) |
C9 | 0.0495 (11) | 0.0664 (13) | 0.0413 (9) | 0.0001 (9) | −0.0026 (8) | −0.0091 (8) |
C10 | 0.0483 (10) | 0.0669 (13) | 0.0364 (9) | 0.0025 (9) | −0.0014 (8) | −0.0024 (8) |
C11 | 0.0820 (16) | 0.0637 (14) | 0.0852 (16) | −0.0024 (12) | −0.0122 (13) | −0.0173 (12) |
O1—H1 | 0.901 (17) | N3—H3B | 0.90 (2) |
O1—C4 | 1.316 (2) | C5—C6 | 1.386 (2) |
C1—H1A | 0.9500 | C5—C10 | 1.379 (2) |
C1—C2 | 1.415 (3) | C6—H6 | 0.9500 |
C1—N2 | 1.311 (3) | C6—C7 | 1.376 (3) |
N1—N2 | 1.397 (2) | C7—H7 | 0.9500 |
N1—C3 | 1.348 (2) | C7—C8 | 1.391 (3) |
N1—C5 | 1.424 (2) | C8—C9 | 1.389 (3) |
C2—C3 | 1.392 (3) | C9—H9 | 0.9500 |
C2—C4 | 1.427 (3) | C9—C10 | 1.378 (3) |
O2—C4 | 1.255 (2) | C10—H10 | 0.9500 |
O3—C8 | 1.362 (2) | C11—H11A | 0.9800 |
O3—C11 | 1.433 (3) | C11—H11B | 0.9800 |
C3—N3 | 1.353 (2) | C11—H11C | 0.9800 |
N3—H3A | 0.87 (2) | ||
C4—O1—H1 | 113.6 (19) | C10—C5—C6 | 120.09 (19) |
C2—C1—H1A | 123.4 | C5—C6—H6 | 120.2 |
N2—C1—H1A | 123.4 | C7—C6—C5 | 119.65 (17) |
N2—C1—C2 | 113.11 (18) | C7—C6—H6 | 120.2 |
N2—N1—C5 | 119.63 (15) | C6—C7—H7 | 119.8 |
C3—N1—N2 | 111.84 (16) | C6—C7—C8 | 120.44 (18) |
C3—N1—C5 | 128.51 (15) | C8—C7—H7 | 119.8 |
C1—C2—C4 | 129.42 (19) | O3—C8—C7 | 115.24 (17) |
C3—C2—C1 | 104.13 (18) | O3—C8—C9 | 125.16 (17) |
C3—C2—C4 | 126.45 (18) | C9—C8—C7 | 119.60 (19) |
C1—N2—N1 | 103.90 (16) | C8—C9—H9 | 120.2 |
C8—O3—C11 | 118.03 (17) | C10—C9—C8 | 119.65 (17) |
N1—C3—C2 | 106.99 (16) | C10—C9—H9 | 120.2 |
N1—C3—N3 | 123.35 (18) | C5—C10—H10 | 119.7 |
N3—C3—C2 | 129.65 (19) | C9—C10—C5 | 120.54 (17) |
C3—N3—H3A | 114.1 (14) | C9—C10—H10 | 119.7 |
C3—N3—H3B | 121.7 (15) | O3—C11—H11A | 109.5 |
H3A—N3—H3B | 124 (2) | O3—C11—H11B | 109.5 |
O1—C4—C2 | 116.02 (18) | O3—C11—H11C | 109.5 |
O2—C4—O1 | 121.64 (19) | H11A—C11—H11B | 109.5 |
O2—C4—C2 | 122.34 (18) | H11A—C11—H11C | 109.5 |
C6—C5—N1 | 120.85 (16) | H11B—C11—H11C | 109.5 |
C10—C5—N1 | 119.05 (16) | ||
C1—C2—C3—N1 | −1.5 (2) | C3—C2—C4—O1 | −177.21 (18) |
C1—C2—C3—N3 | 177.56 (19) | C3—C2—C4—O2 | 2.1 (3) |
C1—C2—C4—O1 | 2.3 (3) | C4—C2—C3—N1 | 178.11 (18) |
C1—C2—C4—O2 | −178.46 (19) | C4—C2—C3—N3 | −2.9 (3) |
N1—C5—C6—C7 | 179.75 (16) | C5—N1—N2—C1 | −179.45 (17) |
N1—C5—C10—C9 | −178.75 (16) | C5—N1—C3—C2 | 179.87 (16) |
C2—C1—N2—N1 | 0.0 (2) | C5—N1—C3—N3 | 0.8 (3) |
N2—C1—C2—C3 | 0.9 (2) | C5—C6—C7—C8 | −0.2 (3) |
N2—C1—C2—C4 | −178.6 (2) | C6—C5—C10—C9 | 0.3 (3) |
N2—N1—C3—C2 | 1.6 (2) | C6—C7—C8—O3 | 178.16 (17) |
N2—N1—C3—N3 | −177.50 (17) | C6—C7—C8—C9 | −1.3 (3) |
N2—N1—C5—C6 | −127.58 (18) | C7—C8—C9—C10 | 2.3 (3) |
N2—N1—C5—C10 | 51.4 (2) | C8—C9—C10—C5 | −1.8 (3) |
O3—C8—C9—C10 | −177.11 (18) | C10—C5—C6—C7 | 0.8 (3) |
C3—N1—N2—C1 | −1.0 (2) | C11—O3—C8—C7 | 180.00 (19) |
C3—N1—C5—C6 | 54.3 (3) | C11—O3—C8—C9 | −0.5 (3) |
C3—N1—C5—C10 | −126.71 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O2 | 0.87 (2) | 2.32 (2) | 2.941 (3) | 128.5 (18) |
O1—H1···O2i | 0.90 (2) | 1.75 (2) | 2.649 (2) | 176 (3) |
Symmetry code: (i) −x+1, −y, −z+1. |
C10H10N2O2 | Dx = 1.335 Mg m−3 |
Mr = 190.20 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 1405 reflections |
a = 7.6496 (11) Å | θ = 2.7–22.5° |
b = 8.7565 (15) Å | µ = 0.10 mm−1 |
c = 14.128 (2) Å | T = 170 K |
V = 946.4 (3) Å3 | Block, clear colourless |
Z = 4 | 0.4 × 0.2 × 0.2 mm |
F(000) = 400 |
Rigaku XtaLAB mini diffractometer | 2635 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source | 1344 reflections with I > 2σ(I) |
Graphite Monochromator monochromator | Rint = 0.050 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 29.6°, θmin = 2.7° |
profile data from ω–scans | h = −10→9 |
Absorption correction: multi-scan (CrysalisPro; Rigaku OD, 2018) | k = −11→11 |
Tmin = 0.757, Tmax = 1.000 | l = −11→19 |
6912 measured reflections |
Refinement on F2 | H atoms treated by a mixture of independent and constrained refinement |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0606P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.052 | (Δ/σ)max < 0.001 |
wR(F2) = 0.168 | Δρmax = 0.17 e Å−3 |
S = 1.02 | Δρmin = −0.16 e Å−3 |
2635 reflections | Extinction correction: SHELXL2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
137 parameters | Extinction coefficient: 0.037 (7) |
2 restraints | Absolute structure: Flack x determined using 385 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: dual | Absolute structure parameter: −0.7 (10) |
Hydrogen site location: mixed |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5261 (3) | 0.8179 (3) | 0.69875 (17) | 0.0617 (7) | |
C1 | 0.5966 (4) | 0.6690 (4) | 0.5813 (2) | 0.0523 (8) | |
N1 | 0.4969 (4) | 0.6710 (4) | 0.6566 (2) | 0.0632 (8) | |
O2 | 0.6029 (4) | 0.1662 (3) | 0.33196 (17) | 0.0736 (8) | |
N2 | 0.6808 (5) | 1.0370 (5) | 0.6730 (3) | 0.0718 (10) | |
C2 | 0.6906 (5) | 0.8049 (4) | 0.5699 (3) | 0.0615 (10) | |
H2 | 0.770803 | 0.829616 | 0.520934 | 0.074* | |
C3 | 0.6421 (5) | 0.8938 (4) | 0.6445 (2) | 0.0578 (9) | |
C4 | 0.5977 (4) | 0.5345 (4) | 0.5186 (2) | 0.0516 (8) | |
C5 | 0.5115 (5) | 0.4010 (4) | 0.5422 (2) | 0.0588 (9) | |
H5 | 0.452653 | 0.395103 | 0.601305 | 0.071* | |
C6 | 0.5081 (5) | 0.2752 (5) | 0.4821 (2) | 0.0613 (10) | |
H6 | 0.446575 | 0.185365 | 0.499673 | 0.074* | |
C7 | 0.5963 (5) | 0.2827 (5) | 0.3959 (3) | 0.0592 (10) | |
C8 | 0.6848 (5) | 0.4147 (5) | 0.3719 (2) | 0.0629 (10) | |
H8 | 0.746554 | 0.419948 | 0.313670 | 0.076* | |
C9 | 0.6843 (5) | 0.5390 (5) | 0.4321 (2) | 0.0606 (10) | |
H9 | 0.744260 | 0.629430 | 0.414044 | 0.073* | |
C10 | 0.5103 (6) | 0.0287 (5) | 0.3529 (3) | 0.0887 (14) | |
H10A | 0.533820 | −0.047211 | 0.303518 | 0.133* | |
H10B | 0.384640 | 0.049924 | 0.355305 | 0.133* | |
H10C | 0.549038 | −0.011138 | 0.414254 | 0.133* | |
H2A | 0.635 (9) | 1.074 (6) | 0.726 (3) | 0.17 (3)* | |
H2B | 0.753 (5) | 1.087 (5) | 0.640 (3) | 0.090 (17)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0673 (15) | 0.0646 (17) | 0.0531 (13) | −0.0011 (14) | 0.0098 (11) | 0.0035 (12) |
C1 | 0.0433 (16) | 0.065 (2) | 0.0489 (17) | 0.0065 (18) | 0.0021 (14) | 0.0079 (16) |
N1 | 0.071 (2) | 0.064 (2) | 0.0551 (16) | −0.0038 (18) | 0.0105 (15) | −0.0017 (15) |
O2 | 0.0721 (17) | 0.089 (2) | 0.0600 (15) | −0.0106 (18) | 0.0091 (13) | −0.0176 (14) |
N2 | 0.080 (3) | 0.065 (2) | 0.071 (2) | −0.0054 (19) | 0.0106 (19) | −0.0007 (18) |
C2 | 0.056 (2) | 0.070 (3) | 0.058 (2) | −0.001 (2) | 0.0137 (17) | 0.0019 (19) |
C3 | 0.056 (2) | 0.063 (2) | 0.0545 (19) | 0.0013 (18) | −0.0014 (16) | 0.0057 (18) |
C4 | 0.0453 (17) | 0.062 (2) | 0.0477 (15) | 0.0034 (17) | 0.0009 (15) | 0.0059 (15) |
C5 | 0.057 (2) | 0.070 (2) | 0.0493 (18) | 0.0015 (19) | 0.0071 (16) | 0.0024 (17) |
C6 | 0.055 (2) | 0.075 (2) | 0.0539 (19) | −0.0026 (19) | 0.0072 (18) | −0.0003 (18) |
C7 | 0.0492 (18) | 0.077 (3) | 0.0512 (18) | 0.0034 (19) | −0.0005 (17) | −0.0031 (17) |
C8 | 0.055 (2) | 0.083 (3) | 0.0502 (19) | 0.001 (2) | 0.0097 (16) | 0.0034 (19) |
C9 | 0.056 (2) | 0.073 (2) | 0.0527 (19) | −0.001 (2) | 0.0068 (16) | 0.0096 (18) |
C10 | 0.093 (3) | 0.092 (3) | 0.080 (3) | −0.019 (3) | 0.015 (3) | −0.020 (3) |
O1—N1 | 1.434 (4) | C4—C9 | 1.390 (5) |
O1—C3 | 1.348 (4) | C5—H5 | 0.9500 |
C1—N1 | 1.310 (4) | C5—C6 | 1.391 (5) |
C1—C2 | 1.399 (5) | C6—H6 | 0.9500 |
C1—C4 | 1.474 (5) | C6—C7 | 1.394 (5) |
O2—C7 | 1.363 (5) | C7—C8 | 1.382 (6) |
O2—C10 | 1.429 (5) | C8—H8 | 0.9500 |
N2—C3 | 1.350 (5) | C8—C9 | 1.381 (5) |
N2—H2A | 0.89 (3) | C9—H9 | 0.9500 |
N2—H2B | 0.85 (2) | C10—H10A | 0.9800 |
C2—H2 | 0.9500 | C10—H10B | 0.9800 |
C2—C3 | 1.362 (5) | C10—H10C | 0.9800 |
C4—C5 | 1.383 (5) | ||
C3—O1—N1 | 108.0 (3) | C6—C5—H5 | 119.0 |
N1—C1—C2 | 112.4 (3) | C5—C6—H6 | 120.4 |
N1—C1—C4 | 120.2 (3) | C5—C6—C7 | 119.2 (4) |
C2—C1—C4 | 127.4 (3) | C7—C6—H6 | 120.4 |
C1—N1—O1 | 105.0 (3) | O2—C7—C6 | 124.2 (4) |
C7—O2—C10 | 118.4 (3) | O2—C7—C8 | 116.4 (3) |
C3—N2—H2A | 120 (4) | C8—C7—C6 | 119.3 (4) |
C3—N2—H2B | 117 (3) | C7—C8—H8 | 119.8 |
H2A—N2—H2B | 122 (5) | C9—C8—C7 | 120.5 (3) |
C1—C2—H2 | 127.5 | C9—C8—H8 | 119.8 |
C3—C2—C1 | 104.9 (3) | C4—C9—H9 | 119.3 |
C3—C2—H2 | 127.5 | C8—C9—C4 | 121.3 (4) |
O1—C3—N2 | 115.7 (3) | C8—C9—H9 | 119.3 |
O1—C3—C2 | 109.7 (3) | O2—C10—H10A | 109.5 |
N2—C3—C2 | 134.6 (4) | O2—C10—H10B | 109.5 |
C5—C4—C1 | 121.8 (3) | O2—C10—H10C | 109.5 |
C5—C4—C9 | 117.6 (3) | H10A—C10—H10B | 109.5 |
C9—C4—C1 | 120.5 (3) | H10A—C10—H10C | 109.5 |
C4—C5—H5 | 119.0 | H10B—C10—H10C | 109.5 |
C4—C5—C6 | 122.1 (3) | ||
C1—C2—C3—O1 | 0.2 (4) | C3—O1—N1—C1 | 0.2 (4) |
C1—C2—C3—N2 | −178.0 (4) | C4—C1—N1—O1 | −178.9 (3) |
C1—C4—C5—C6 | 178.2 (3) | C4—C1—C2—C3 | 178.6 (3) |
C1—C4—C9—C8 | −179.2 (3) | C4—C5—C6—C7 | 0.9 (6) |
N1—O1—C3—N2 | 178.3 (3) | C5—C4—C9—C8 | −0.2 (5) |
N1—O1—C3—C2 | −0.3 (4) | C5—C6—C7—O2 | 179.5 (4) |
N1—C1—C2—C3 | −0.1 (4) | C5—C6—C7—C8 | 0.0 (5) |
N1—C1—C4—C5 | −7.7 (5) | C6—C7—C8—C9 | −0.9 (6) |
N1—C1—C4—C9 | 171.3 (3) | C7—C8—C9—C4 | 1.0 (6) |
O2—C7—C8—C9 | 179.5 (3) | C9—C4—C5—C6 | −0.8 (5) |
C2—C1—N1—O1 | −0.1 (4) | C10—O2—C7—C6 | 1.7 (6) |
C2—C1—C4—C5 | 173.7 (3) | C10—O2—C7—C8 | −178.8 (4) |
C2—C1—C4—C9 | −7.3 (5) |
Cg2 is the centroid of the C4–C9 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···N1i | 0.89 (3) | 2.12 (3) | 3.003 (5) | 174 (6) |
N2—H2B···Cg2ii | 0.85 (2) | 2.97 (4) | 3.709 (4) | 147 (4) |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x+1/2, −y+3/2, −z+1. |
Funding information
The authors would like to thank Georgia Southern University, Department of Chemistry and Biochemistry for the financial support of this work.
References
Caruso, F., Raimondi, M. V., Daidone, G., Pettinari, C. & Rossi, M. (2009). Acta Cryst. E65, o2173. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chen, C. & Cui, S. (2019). J. Org. Chem. 84, 12157–12164. CrossRef CAS PubMed Google Scholar
Dobson, A. J. & Gerkin, R. E. (1996). Acta Cryst. C52, 1512–1514. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Dobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 1503–1505. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ghorab, M. M., Alsaid, M. S. & Ghabbour, H. A. (2016). Z. Kristallogr. New Cryst. Struct. 231, 699–701. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Li, H., You, L., Zhang, X., Johnson, W. L., Figueroa, R. & Hsung, R. P. (2007). Heterocycles, 74, 553–568. CAS Google Scholar
Ibrahim, H. S., Abou-Seri, S. M., Tanc, M., Elaasser, M. M., Abdel-Aziz, H. A. & Supuran, C. T. (2015). Eur. J. Med. Chem. 103, 583–593. CrossRef CAS PubMed Google Scholar
Liu, Y., Liu, S., Li, Y., Song, H. & Wang, Q. (2009). Bioorg. Med. Chem. Lett. 19, 2953–2956. CrossRef PubMed CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mikhailov, K. I., Galenko, E. E., Galenko, A. V., Novikov, M. S., Ivanov, A. Y., Starova, G. L. & Khlebnikov, A. F. (2018). J. Org. Chem. 83, 3177–3187. CrossRef CAS PubMed Google Scholar
Nunez, L., Brown, J. D., Donnelly, A. M., Whitlock, C. R. & Dobson, A. J. (2004). Acta Cryst. E60, 2076–2078. CrossRef Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Simon, K., Sasvári, K., Dvortsák, P., Horváth, K. & Harsányi, K. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 1409–1412. CrossRef Google Scholar
Soares, I. C., Junior, H. C. S., de Almeida, P. S. V. B., Alves, O. C., Soriano, S., Ferreira, G. F. & Guedes, G. P. (2020). Inorg. Chem. Commun. 121, 108201. CrossRef Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Zia-ur-Rehman, M., Elsegood, M. R. J., Akbar, N. & Shah Zaib Saleem, R. (2008). Acta Cryst. E64, o1312–o1313. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zia-ur-Rehman, M., Elsegood, M. R. J., Choudary, J. A., Fasih Ullah, M. & Siddiqui, H. L. (2009). Acta Cryst. E65, o275–o276. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.