research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surface analysis of 5-amino-1-(4-meth­­oxy­phen­yl)pyrazole-4-carb­ox­ylic acid and 5-amino-3-(4-meth­­oxy­phen­yl)isoxazole

crossmark logo

aGeorgia Southern University, 11935 Abercorn St., Department of Chemistry and, Biochemistry, Savannah GA 30458, USA
*Correspondence e-mail: cpadgett@georgiasouthern.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 31 January 2022; accepted 16 February 2022; online 25 February 2022)

The title compounds, C11H11N3O3, (I), and C10H10N2O2, (II), are commercially available and were crystallized from ethyl acetate solution. The dihedral angle between the pyrazole and phenyl rings in (I) is 52.34 (7)° and the equivalent angle between the isoxazole and phenyl rings in (II) is 7.30 (13)°. In the crystal of (I), the mol­ecules form carb­oxy­lic acid inversion dimers with an R(8) ring motif via pairwise O—H⋯O hydrogen bonds. In the crystal of (II), the mol­ecules are linked via N—H⋯N hydrogen bonds forming chains propagating along [010] with a C(5) motif. A weak N—H⋯π inter­action also features in the packing of (II). Hirshfeld surface analysis was used to explore the inter­molecular contacts in the crystals of both title compounds: the most important contacts for (I) are H⋯H (41.5%) and O⋯H/H⋯O (22.4%). For (II), the most significant contact percentages are H⋯H (36.1%) followed by C⋯H/H⋯C (31.3%).

1. Chemical context

This report is one of a series on the structures and hydrogen-bonding motifs in small-mol­ecule aromatic amino carb­oxy­lic acids (I)[link] and small-mol­ecule aromatic amino compounds (II)[link]. This study follows other reports including, for example, 3-amino­pyrazine-2-carb­oxy­lic acid (Dobson & Gerkin, 1996[Dobson, A. J. & Gerkin, R. E. (1996). Acta Cryst. C52, 1512-1514.]), 5-amino­isophthalic acid hemihydrate (Dobson & Gerkin, 1998[Dobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 1503-1505.]), and 1,4-di­benzyl­piperazine-2,5-dione (Nunez, et al., 2004[Nunez, L., Brown, J. D., Donnelly, A. M., Whitlock, C. R. & Dobson, A. J. (2004). Acta Cryst. E60, 2076-2078.]). We now describe the structures of 5-amino-1-(4-meth­oxy­phen­yl)-pyrazole-4-carb­oxy­lic acid, (I)[link] and 5-amino-3-(4-meth­oxy­phen­yl)isoxazole, (II)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structure of compound (I)[link] is shown in Fig. 1[link]. The pyrazole ring (r.m.s. deviation = 0.010 Å) is rotated by 52.34 (7)° relative to the phenyl ring (r.m.s. deviation = 0.010 Å), which is the primary contribution to the general non-planarity of the mol­ecule. An intra­molecular N3—H3A⋯O2 hydrogen bond is observed (Table 1[link] and Fig. 1[link]). This bond forms an S(6) ring motif (Fig. 1[link] and Table 1[link]) with an N3⋯O2 distance of 2.941 (3) Å. This is a common feature in analogous compounds (such as those listed in the Database survey). The C3—N3 distance of 1.353 (2) Å is typical for an amino group bound to an aromatic ring. The carb­oxy­lic carbon–oxygen distances are 1.255 (2) and 1.316 (2) for C4—O2 and C4—O1, respectively, indicating that the former bond may be affected by the intra­molecular N—H⋯O hydrogen bond.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2 0.87 (2) 2.32 (2) 2.941 (3) 128.5 (18)
O1—H1⋯O2i 0.90 (2) 1.75 (2) 2.649 (2) 176 (3)
Symmetry code: (i) [-x+1, -y, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with displacement ellipsoids drawn at the 50% probability level. The intra­molecular hydrogen bond is represented by a red dashed line.

The mol­ecular structure of compound (II)[link] is shown in Fig. 2[link]. The angle between the phenyl and isoxazole rings is 7.30 (13)°, resulting in the overall mol­ecule being close to planar with the r.m.s. deviation of all non-hydrogen atoms being 0.054 Å. The N1—O1 distance is 1.434 (4) Å and is consistent with other isoxazoles (see Database survey section). The C3—N2 distance is 1.350 (5) Å and is typical of an amino group bound to an aromatic ring.

[Figure 2]
Figure 2
The mol­ecular structure of (II)[link] with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the extended structure of (I)[link], the mol­ecules form centrosymmetric hydrogen-bonded dimers via the O1—H1⋯O2i [symmetry code: (i) −x + 1, −y, −z + 1] link to generate an R(8) loop with O⋯O = 2.649 (2) Å, see Table 1[link] and Fig. 3[link]. These dimers are linked via ππ inter­actions, notably weak stacking inter­actions between the 4-meth­oxy­phenyl rings [Cg1⋯Cg1 (x + 1, y, z) = 3.9608 (4) Å, where Cg1 is the centroid of the C5–C10 ring] along the a-axis direction.

[Figure 3]
Figure 3
A view along the a-axis direction of the crystal packing of (I)[link] with hydrogen bonds shown as red dashed lines.

In the packing of (II)[link], the mol­ecules form hydrogen-bonded chains running along the b-axis direction via the N2—H2A⋯N1i hydrogen bond [symmetry code: (i) −x + 1, y + [{1\over 2}], −z + [{3\over 2}]] hydrogen bond forms a C(5) chain motif with an N⋯N distance of 3.003 (5) Å, see Table 2[link] and Fig. 4[link]. No ππ inter­actions are observed.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg2 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.89 (3) 2.12 (3) 3.003 (5) 174 (6)
N2—H2BCg2ii 0.85 (2) 2.97 (4) 3.709 (4) 147 (4)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 4]
Figure 4
A view along the a-axis direction of the crystal packing of (II)[link] with hydrogen bonds shown as red dashed lines.

4. Hirshfeld surface analysis

The inter­molecular inter­actions were further investigated by qu­anti­tative analysis of the Hirshfeld surface, and visualized with Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. University of Western Australia. https://hirshfeldsurface.net.]; Spackman et al., 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The shorter and longer contacts are indicated as red and blue spots, respectively, on the Hirshfeld surfaces, and contacts with distances approximately equal to the sum of the van der Waals radii are colored white. The function dnorm is a ratio enclosing the distances of any surface point to the nearest inter­ior (di) and exterior (de) atom and the van der Waals (vdW) radii of the atoms. The dnorm plots were mapped with a color scale between −0.18 au (blue) and +1.4 au (red).

Fig. 5[link]. shows the dnorm surface of compound (I)[link]. The most intense red spots on the dnorm surface correspond to the O1—H1⋯O2 inter­actions. The red and blue triangles on the shape-index surface indicate that there are weak π-stacking inter­actions in the crystal structure. Analysis of the two-dimensional fingerprint plots indicate that the H⋯H (41.5%) inter­actions are the major factor in the crystal packing with O⋯H/H⋯O (22.4%) inter­actions making the next highest contribution. The percentage contributions of other significant contacts are: C⋯H/H⋯C (13.1%) and N⋯H/ H⋯N (8.7%).

[Figure 5]
Figure 5
Hirshfeld surface for (I)[link] mapped over dnorm.

Fig. 6[link] shows the dnorm surface of compound (II)[link]. The large red spots represent N2—H2A⋯N1 inter­actions. Some additional inter­actions indicated by very light-red spots correspond to contacts around phenyl ring and isoxazole rings: N2—H2BCg1ii [2.97 (4) Å], C6—H6⋯Cg1iii (2.86 Å) and C9—H9⋯Cg2ii (2.86 Å) [symmetry codes: (ii) x + [{1\over 2}], −y + [{3\over 2}], −z + 1; (iii) x − [{1\over 2}], −y + [{1\over 2}], −z + 1; Cg1 and Cg2 are the centroids of the O1/N1/C1–C3 and C4–C9 rings, respectively]. Analysis of the two-dimensional fingerprint plots indicates that the H⋯H (36.1%) inter­actions are the major factor in the crystal packing with C⋯H/H⋯C (31.3%) contacts making the next highest contribution. The percentage contributions of other weak inter­actions are: O⋯H/H⋯O (17.3%) and N⋯H/ H⋯N (12.1%). Figures showing the shape-index surface for each compound and the overall fingerprint plots are included in the supporting information.

[Figure 6]
Figure 6
Hirshfeld surface for (II)[link] mapped over dnorm.

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 13 hits for the 3-phenyl­isoxazol-5-amine moiety. The four most closely related compounds are: 5-di­acetyl­amino-3,4-di­phenyl­isoxazole (CSD refcode ACPIXZ; Simon et al., 1974[Simon, K., Sasvári, K., Dvortsák, P., Horváth, K. & Harsányi, K. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 1409-1412.]), 1,5-dimethyl-4-phenyl-3-(3-phenyl-1,2-oxazol-5-yl)imidazol­id­in-2-one (HOGYAE; Li et al., 2007[Li, H., You, L., Zhang, X., Johnson, W. L., Figueroa, R. & Hsung, R. P. (2007). Heterocycles, 74, 553-568.]), N-4-dimethyl-N-[3-{4-(tri­fluoro­meth­yl)phen­yl]-1,2-oxazol-5-yl}benzene-1-sulfonamide (XOSHUL; Chen & Cui, 2019[Chen, C. & Cui, S. (2019). J. Org. Chem. 84, 12157-12164.]), 3-phenyl-5-(1H-pyrazol-1-yl)-1,2-oxazole (ZEVGIT; Mikhailov et al., 2018[Mikhailov, K. I., Galenko, E. E., Galenko, A. V., Novikov, M. S., Ivanov, A. Y., Starova, G. L. & Khlebnikov, A. F. (2018). J. Org. Chem. 83, 3177-3187.]).

A similar search gave 14 hits for the 5-amino-1-phenyl-1H-pyrazole-4-carb­oxy­lic acid moiety. The seven most closely related compounds are: ethyl 1-(4-chloro-2-nitro­phen­yl)-5-nitro-4,5-di­hydro-1H-pyrazole-4-carboxyl­ate (GOLHEV; Zia-ur-Rehman et al., 2009[Zia-ur-Rehman, M., Elsegood, M. R. J., Choudary, J. A., Fasih Ullah, M. & Siddiqui, H. L. (2009). Acta Cryst. E65, o275-o276.]), 5-amino-1-phenyl-3-(tri­fluoro­meth­yl)-1H-pyrazole-4-carb­oxy­lic acid (HUDDEQ; Caruso et al., 2009[Caruso, F., Raimondi, M. V., Daidone, G., Pettinari, C. & Rossi, M. (2009). Acta Cryst. E65, o2173.]), 5-amino-1-phenyl-1H-pyrazole-4-carb­oxy­lic acid (KODXIL; Zia-ur-Rehman et al., 2008[Zia-ur-Rehman, M., Elsegood, M. R. J., Akbar, N. & Shah Zaib Saleem, R. (2008). Acta Cryst. E64, o1312-o1313.]), ethyl 5-amino-1-(2,4-di­nitro­phen­yl)-1H-pyrazole-4-carboxyl­ate (QAHJER; Ghorab et al., 2016[Ghorab, M. M., Alsaid, M. S. & Ghabbour, H. A. (2016). Z. Kristallogr. New Cryst. Struct. 231, 699-701.]), ethyl 5-amino-1-phenyl-1H-pyrazole-4-carboxyl­ate (RUVHUO, Soares et al., 2020[Soares, I. C., Junior, H. C. S., de Almeida, P. S. V. B., Alves, O. C., Soriano, S., Ferreira, G. F. & Guedes, G. P. (2020). Inorg. Chem. Commun. 121, 108201.]), ethyl 5-amino-1-(4-sulfamoylphen­yl)-1H-pyrazole-4-carboxyl­ate (XUTZIX; Ibrahim et al., 2015[Ibrahim, H. S., Abou-Seri, S. M., Tanc, M., Elaasser, M. M., Abdel-Aziz, H. A. & Supuran, C. T. (2015). Eur. J. Med. Chem. 103, 583-593.]) and 2-eth­oxy­ethyl 5-amino-1-(2,4-di­methyl­phen­yl)-3-(methyl­thio)-1H-pyrazole-4-carboxyl­ate (YOYHOK, Liu et al., 2009[Liu, Y., Liu, S., Li, Y., Song, H. & Wang, Q. (2009). Bioorg. Med. Chem. Lett. 19, 2953-2956.]).

6. Synthesis and crystallization

Compounds (I)[link] and (II)[link] are commercially available and were purchased from Aldrich. Both were dissolved in ethyl acetate until saturated and these solutions were allowed to evaporate slowly at room temperature, which resulted in X-ray quality crystals.

7. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3[link]. All carbon-bound H atoms were positioned geometrically and refined as riding, with C—H = 0.95 or 0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). In order to ensure a chemically meaningful O—H distance in (I)[link], this was restrained to a target value of 0.84 (2) Å and Uiso(H) = 1.5Ueq(O). In (I)[link], the amino H atoms were located in a difference-Fourier map. In (II)[link], the N—H distances were restrained to a target value of 0.84 (2) Å and Uiso(H) = 1.5Ueq(N). The absolute structure of (II)[link] was indeterminate based on the present refinement.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C11H11N3O3 C10H10N2O2
Mr 233.23 190.20
Crystal system, space group Monoclinic, P21/n Orthorhombic, P212121
Temperature (K) 170 170
a, b, c (Å) 3.9608 (4), 24.104 (3), 11.1762 (10) 7.6496 (11), 8.7565 (15), 14.128 (2)
α, β, γ (°) 90, 90.189 (9), 90 90, 90, 90
V3) 1067.0 (2) 946.4 (3)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.11 0.10
Crystal size (mm) 0.5 × 0.2 × 0.2 0.4 × 0.2 × 0.2
 
Data collection
Diffractometer Rigaku XtaLAB mini Rigaku XtaLAB mini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.975, 1.000 0.757, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8175, 2937, 1667 6912, 2635, 1344
Rint 0.032 0.050
(sin θ/λ)max−1) 0.694 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.155, 1.03 0.052, 0.168, 1.02
No. of reflections 2937 2635
No. of parameters 168 137
No. of restraints 1 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.19 0.17, −0.16
Absolute structure Flack x determined using 385 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.7 (10)
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

5-Amino-1-(4-methoxyphenyl)pyrazole-4-carboxylic acid (I) top
Crystal data top
C11H11N3O3F(000) = 488
Mr = 233.23Dx = 1.452 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 3.9608 (4) ÅCell parameters from 1271 reflections
b = 24.104 (3) Åθ = 2.0–23.7°
c = 11.1762 (10) ŵ = 0.11 mm1
β = 90.189 (9)°T = 170 K
V = 1067.0 (2) Å3Block, clear colourless
Z = 40.5 × 0.2 × 0.2 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
2937 independent reflections
Radiation source: Sealed Tube, Rigaku (Mo) X-ray Source1667 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.032
Detector resolution: 13.6612 pixels mm-1θmax = 29.6°, θmin = 2.0°
profile data from ω–scansh = 55
Absorption correction: multi-scan
(CrysalisPro; Rigaku OD, 2018)
k = 3333
Tmin = 0.975, Tmax = 1.000l = 1514
8175 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.060P)2 + 0.1763P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.155(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.16 e Å3
2937 reflectionsΔρmin = 0.19 e Å3
168 parametersExtinction correction: SHELXL2018/1 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.017 (3)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3397 (4)0.03421 (7)0.62727 (13)0.0697 (5)
H10.370 (8)0.0005 (8)0.594 (2)0.113 (11)*
C10.2875 (5)0.14586 (10)0.72321 (18)0.0595 (5)
H1A0.2085840.1203320.7815200.071*
N10.4218 (4)0.22042 (7)0.63223 (12)0.0495 (4)
C20.4182 (5)0.12959 (8)0.61090 (17)0.0519 (5)
O20.5820 (4)0.06706 (6)0.46040 (12)0.0648 (4)
N20.2864 (5)0.19977 (8)0.73857 (14)0.0608 (5)
O30.5775 (4)0.44729 (6)0.57003 (13)0.0699 (5)
C30.5066 (4)0.17936 (8)0.55617 (15)0.0463 (4)
N30.6542 (5)0.18839 (9)0.44896 (14)0.0573 (5)
H3A0.704 (5)0.1581 (9)0.4099 (19)0.060 (6)*
H3B0.692 (6)0.2227 (10)0.422 (2)0.070 (7)*
C40.4535 (5)0.07533 (9)0.56133 (17)0.0545 (5)
C50.4620 (4)0.27870 (8)0.61733 (15)0.0462 (4)
C60.3325 (5)0.30549 (8)0.51751 (15)0.0495 (5)
H60.2158300.2850180.4576480.059*
C70.3738 (5)0.36188 (9)0.50557 (16)0.0522 (5)
H70.2858590.3803020.4370910.063*
C80.5434 (5)0.39210 (8)0.59310 (16)0.0504 (5)
C90.6654 (5)0.36518 (8)0.69428 (16)0.0524 (5)
H90.7741430.3857040.7558920.063*
C100.6278 (5)0.30858 (8)0.70480 (15)0.0505 (5)
H100.7168710.2899720.7728720.061*
C110.7499 (6)0.48080 (10)0.6567 (2)0.0770 (7)
H11A0.9792120.4665150.6686200.115*
H11B0.6273910.4796130.7327050.115*
H11C0.7610200.5191800.6280810.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0905 (12)0.0604 (10)0.0584 (9)0.0021 (9)0.0143 (8)0.0150 (7)
C10.0614 (12)0.0677 (14)0.0495 (11)0.0015 (10)0.0083 (9)0.0107 (9)
N10.0505 (9)0.0608 (10)0.0373 (8)0.0023 (7)0.0036 (7)0.0019 (6)
C20.0491 (11)0.0609 (12)0.0457 (10)0.0016 (9)0.0010 (8)0.0053 (8)
O20.0815 (11)0.0609 (9)0.0521 (8)0.0018 (7)0.0098 (7)0.0048 (6)
N20.0691 (11)0.0708 (12)0.0427 (8)0.0016 (9)0.0140 (8)0.0069 (7)
O30.0846 (11)0.0573 (9)0.0678 (9)0.0025 (8)0.0131 (8)0.0037 (7)
C30.0403 (9)0.0623 (12)0.0362 (8)0.0017 (8)0.0026 (7)0.0013 (8)
N30.0731 (12)0.0585 (11)0.0402 (9)0.0022 (9)0.0104 (8)0.0009 (8)
C40.0528 (11)0.0610 (13)0.0495 (11)0.0002 (9)0.0029 (9)0.0104 (9)
C50.0404 (9)0.0593 (11)0.0390 (9)0.0021 (8)0.0038 (7)0.0005 (7)
C60.0468 (10)0.0638 (12)0.0379 (9)0.0034 (9)0.0023 (8)0.0026 (8)
C70.0511 (11)0.0647 (13)0.0409 (9)0.0033 (9)0.0025 (8)0.0011 (8)
C80.0480 (10)0.0576 (12)0.0455 (10)0.0026 (8)0.0030 (8)0.0053 (8)
C90.0495 (11)0.0664 (13)0.0413 (9)0.0001 (9)0.0026 (8)0.0091 (8)
C100.0483 (10)0.0669 (13)0.0364 (9)0.0025 (9)0.0014 (8)0.0024 (8)
C110.0820 (16)0.0637 (14)0.0852 (16)0.0024 (12)0.0122 (13)0.0173 (12)
Geometric parameters (Å, º) top
O1—H10.901 (17)N3—H3B0.90 (2)
O1—C41.316 (2)C5—C61.386 (2)
C1—H1A0.9500C5—C101.379 (2)
C1—C21.415 (3)C6—H60.9500
C1—N21.311 (3)C6—C71.376 (3)
N1—N21.397 (2)C7—H70.9500
N1—C31.348 (2)C7—C81.391 (3)
N1—C51.424 (2)C8—C91.389 (3)
C2—C31.392 (3)C9—H90.9500
C2—C41.427 (3)C9—C101.378 (3)
O2—C41.255 (2)C10—H100.9500
O3—C81.362 (2)C11—H11A0.9800
O3—C111.433 (3)C11—H11B0.9800
C3—N31.353 (2)C11—H11C0.9800
N3—H3A0.87 (2)
C4—O1—H1113.6 (19)C10—C5—C6120.09 (19)
C2—C1—H1A123.4C5—C6—H6120.2
N2—C1—H1A123.4C7—C6—C5119.65 (17)
N2—C1—C2113.11 (18)C7—C6—H6120.2
N2—N1—C5119.63 (15)C6—C7—H7119.8
C3—N1—N2111.84 (16)C6—C7—C8120.44 (18)
C3—N1—C5128.51 (15)C8—C7—H7119.8
C1—C2—C4129.42 (19)O3—C8—C7115.24 (17)
C3—C2—C1104.13 (18)O3—C8—C9125.16 (17)
C3—C2—C4126.45 (18)C9—C8—C7119.60 (19)
C1—N2—N1103.90 (16)C8—C9—H9120.2
C8—O3—C11118.03 (17)C10—C9—C8119.65 (17)
N1—C3—C2106.99 (16)C10—C9—H9120.2
N1—C3—N3123.35 (18)C5—C10—H10119.7
N3—C3—C2129.65 (19)C9—C10—C5120.54 (17)
C3—N3—H3A114.1 (14)C9—C10—H10119.7
C3—N3—H3B121.7 (15)O3—C11—H11A109.5
H3A—N3—H3B124 (2)O3—C11—H11B109.5
O1—C4—C2116.02 (18)O3—C11—H11C109.5
O2—C4—O1121.64 (19)H11A—C11—H11B109.5
O2—C4—C2122.34 (18)H11A—C11—H11C109.5
C6—C5—N1120.85 (16)H11B—C11—H11C109.5
C10—C5—N1119.05 (16)
C1—C2—C3—N11.5 (2)C3—C2—C4—O1177.21 (18)
C1—C2—C3—N3177.56 (19)C3—C2—C4—O22.1 (3)
C1—C2—C4—O12.3 (3)C4—C2—C3—N1178.11 (18)
C1—C2—C4—O2178.46 (19)C4—C2—C3—N32.9 (3)
N1—C5—C6—C7179.75 (16)C5—N1—N2—C1179.45 (17)
N1—C5—C10—C9178.75 (16)C5—N1—C3—C2179.87 (16)
C2—C1—N2—N10.0 (2)C5—N1—C3—N30.8 (3)
N2—C1—C2—C30.9 (2)C5—C6—C7—C80.2 (3)
N2—C1—C2—C4178.6 (2)C6—C5—C10—C90.3 (3)
N2—N1—C3—C21.6 (2)C6—C7—C8—O3178.16 (17)
N2—N1—C3—N3177.50 (17)C6—C7—C8—C91.3 (3)
N2—N1—C5—C6127.58 (18)C7—C8—C9—C102.3 (3)
N2—N1—C5—C1051.4 (2)C8—C9—C10—C51.8 (3)
O3—C8—C9—C10177.11 (18)C10—C5—C6—C70.8 (3)
C3—N1—N2—C11.0 (2)C11—O3—C8—C7180.00 (19)
C3—N1—C5—C654.3 (3)C11—O3—C8—C90.5 (3)
C3—N1—C5—C10126.71 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O20.87 (2)2.32 (2)2.941 (3)128.5 (18)
O1—H1···O2i0.90 (2)1.75 (2)2.649 (2)176 (3)
Symmetry code: (i) x+1, y, z+1.
5-Amino-3-(4-methoxyphenyl)isoxazole (II) top
Crystal data top
C10H10N2O2Dx = 1.335 Mg m3
Mr = 190.20Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1405 reflections
a = 7.6496 (11) Åθ = 2.7–22.5°
b = 8.7565 (15) ŵ = 0.10 mm1
c = 14.128 (2) ÅT = 170 K
V = 946.4 (3) Å3Block, clear colourless
Z = 40.4 × 0.2 × 0.2 mm
F(000) = 400
Data collection top
Rigaku XtaLAB mini
diffractometer
2635 independent reflections
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source1344 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.050
Detector resolution: 13.6612 pixels mm-1θmax = 29.6°, θmin = 2.7°
profile data from ω–scansh = 109
Absorption correction: multi-scan
(CrysalisPro; Rigaku OD, 2018)
k = 1111
Tmin = 0.757, Tmax = 1.000l = 1119
6912 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0606P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.052(Δ/σ)max < 0.001
wR(F2) = 0.168Δρmax = 0.17 e Å3
S = 1.02Δρmin = 0.16 e Å3
2635 reflectionsExtinction correction: SHELXL2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
137 parametersExtinction coefficient: 0.037 (7)
2 restraintsAbsolute structure: Flack x determined using 385 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.7 (10)
Hydrogen site location: mixed
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5261 (3)0.8179 (3)0.69875 (17)0.0617 (7)
C10.5966 (4)0.6690 (4)0.5813 (2)0.0523 (8)
N10.4969 (4)0.6710 (4)0.6566 (2)0.0632 (8)
O20.6029 (4)0.1662 (3)0.33196 (17)0.0736 (8)
N20.6808 (5)1.0370 (5)0.6730 (3)0.0718 (10)
C20.6906 (5)0.8049 (4)0.5699 (3)0.0615 (10)
H20.7708030.8296160.5209340.074*
C30.6421 (5)0.8938 (4)0.6445 (2)0.0578 (9)
C40.5977 (4)0.5345 (4)0.5186 (2)0.0516 (8)
C50.5115 (5)0.4010 (4)0.5422 (2)0.0588 (9)
H50.4526530.3951030.6013050.071*
C60.5081 (5)0.2752 (5)0.4821 (2)0.0613 (10)
H60.4465750.1853650.4996730.074*
C70.5963 (5)0.2827 (5)0.3959 (3)0.0592 (10)
C80.6848 (5)0.4147 (5)0.3719 (2)0.0629 (10)
H80.7465540.4199480.3136700.076*
C90.6843 (5)0.5390 (5)0.4321 (2)0.0606 (10)
H90.7442600.6294300.4140440.073*
C100.5103 (6)0.0287 (5)0.3529 (3)0.0887 (14)
H10A0.5338200.0472110.3035180.133*
H10B0.3846400.0499240.3553050.133*
H10C0.5490380.0111380.4142540.133*
H2A0.635 (9)1.074 (6)0.726 (3)0.17 (3)*
H2B0.753 (5)1.087 (5)0.640 (3)0.090 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0673 (15)0.0646 (17)0.0531 (13)0.0011 (14)0.0098 (11)0.0035 (12)
C10.0433 (16)0.065 (2)0.0489 (17)0.0065 (18)0.0021 (14)0.0079 (16)
N10.071 (2)0.064 (2)0.0551 (16)0.0038 (18)0.0105 (15)0.0017 (15)
O20.0721 (17)0.089 (2)0.0600 (15)0.0106 (18)0.0091 (13)0.0176 (14)
N20.080 (3)0.065 (2)0.071 (2)0.0054 (19)0.0106 (19)0.0007 (18)
C20.056 (2)0.070 (3)0.058 (2)0.001 (2)0.0137 (17)0.0019 (19)
C30.056 (2)0.063 (2)0.0545 (19)0.0013 (18)0.0014 (16)0.0057 (18)
C40.0453 (17)0.062 (2)0.0477 (15)0.0034 (17)0.0009 (15)0.0059 (15)
C50.057 (2)0.070 (2)0.0493 (18)0.0015 (19)0.0071 (16)0.0024 (17)
C60.055 (2)0.075 (2)0.0539 (19)0.0026 (19)0.0072 (18)0.0003 (18)
C70.0492 (18)0.077 (3)0.0512 (18)0.0034 (19)0.0005 (17)0.0031 (17)
C80.055 (2)0.083 (3)0.0502 (19)0.001 (2)0.0097 (16)0.0034 (19)
C90.056 (2)0.073 (2)0.0527 (19)0.001 (2)0.0068 (16)0.0096 (18)
C100.093 (3)0.092 (3)0.080 (3)0.019 (3)0.015 (3)0.020 (3)
Geometric parameters (Å, º) top
O1—N11.434 (4)C4—C91.390 (5)
O1—C31.348 (4)C5—H50.9500
C1—N11.310 (4)C5—C61.391 (5)
C1—C21.399 (5)C6—H60.9500
C1—C41.474 (5)C6—C71.394 (5)
O2—C71.363 (5)C7—C81.382 (6)
O2—C101.429 (5)C8—H80.9500
N2—C31.350 (5)C8—C91.381 (5)
N2—H2A0.89 (3)C9—H90.9500
N2—H2B0.85 (2)C10—H10A0.9800
C2—H20.9500C10—H10B0.9800
C2—C31.362 (5)C10—H10C0.9800
C4—C51.383 (5)
C3—O1—N1108.0 (3)C6—C5—H5119.0
N1—C1—C2112.4 (3)C5—C6—H6120.4
N1—C1—C4120.2 (3)C5—C6—C7119.2 (4)
C2—C1—C4127.4 (3)C7—C6—H6120.4
C1—N1—O1105.0 (3)O2—C7—C6124.2 (4)
C7—O2—C10118.4 (3)O2—C7—C8116.4 (3)
C3—N2—H2A120 (4)C8—C7—C6119.3 (4)
C3—N2—H2B117 (3)C7—C8—H8119.8
H2A—N2—H2B122 (5)C9—C8—C7120.5 (3)
C1—C2—H2127.5C9—C8—H8119.8
C3—C2—C1104.9 (3)C4—C9—H9119.3
C3—C2—H2127.5C8—C9—C4121.3 (4)
O1—C3—N2115.7 (3)C8—C9—H9119.3
O1—C3—C2109.7 (3)O2—C10—H10A109.5
N2—C3—C2134.6 (4)O2—C10—H10B109.5
C5—C4—C1121.8 (3)O2—C10—H10C109.5
C5—C4—C9117.6 (3)H10A—C10—H10B109.5
C9—C4—C1120.5 (3)H10A—C10—H10C109.5
C4—C5—H5119.0H10B—C10—H10C109.5
C4—C5—C6122.1 (3)
C1—C2—C3—O10.2 (4)C3—O1—N1—C10.2 (4)
C1—C2—C3—N2178.0 (4)C4—C1—N1—O1178.9 (3)
C1—C4—C5—C6178.2 (3)C4—C1—C2—C3178.6 (3)
C1—C4—C9—C8179.2 (3)C4—C5—C6—C70.9 (6)
N1—O1—C3—N2178.3 (3)C5—C4—C9—C80.2 (5)
N1—O1—C3—C20.3 (4)C5—C6—C7—O2179.5 (4)
N1—C1—C2—C30.1 (4)C5—C6—C7—C80.0 (5)
N1—C1—C4—C57.7 (5)C6—C7—C8—C90.9 (6)
N1—C1—C4—C9171.3 (3)C7—C8—C9—C41.0 (6)
O2—C7—C8—C9179.5 (3)C9—C4—C5—C60.8 (5)
C2—C1—N1—O10.1 (4)C10—O2—C7—C61.7 (6)
C2—C1—C4—C5173.7 (3)C10—O2—C7—C8178.8 (4)
C2—C1—C4—C97.3 (5)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.89 (3)2.12 (3)3.003 (5)174 (6)
N2—H2B···Cg2ii0.85 (2)2.97 (4)3.709 (4)147 (4)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1/2, y+3/2, z+1.
 

Funding information

The authors would like to thank Georgia Southern University, Department of Chemistry and Biochemistry for the financial support of this work.

References

First citationCaruso, F., Raimondi, M. V., Daidone, G., Pettinari, C. & Rossi, M. (2009). Acta Cryst. E65, o2173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, C. & Cui, S. (2019). J. Org. Chem. 84, 12157–12164.  CrossRef CAS PubMed Google Scholar
First citationDobson, A. J. & Gerkin, R. E. (1996). Acta Cryst. C52, 1512–1514.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 1503–1505.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhorab, M. M., Alsaid, M. S. & Ghabbour, H. A. (2016). Z. Kristallogr. New Cryst. Struct. 231, 699–701.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, H., You, L., Zhang, X., Johnson, W. L., Figueroa, R. & Hsung, R. P. (2007). Heterocycles, 74, 553–568.  CAS Google Scholar
First citationIbrahim, H. S., Abou-Seri, S. M., Tanc, M., Elaasser, M. M., Abdel-Aziz, H. A. & Supuran, C. T. (2015). Eur. J. Med. Chem. 103, 583–593.  CrossRef CAS PubMed Google Scholar
First citationLiu, Y., Liu, S., Li, Y., Song, H. & Wang, Q. (2009). Bioorg. Med. Chem. Lett. 19, 2953–2956.  CrossRef PubMed CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMikhailov, K. I., Galenko, E. E., Galenko, A. V., Novikov, M. S., Ivanov, A. Y., Starova, G. L. & Khlebnikov, A. F. (2018). J. Org. Chem. 83, 3177–3187.  CrossRef CAS PubMed Google Scholar
First citationNunez, L., Brown, J. D., Donnelly, A. M., Whitlock, C. R. & Dobson, A. J. (2004). Acta Cryst. E60, 2076–2078.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimon, K., Sasvári, K., Dvortsák, P., Horváth, K. & Harsányi, K. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 1409–1412.  CrossRef Google Scholar
First citationSoares, I. C., Junior, H. C. S., de Almeida, P. S. V. B., Alves, O. C., Soriano, S., Ferreira, G. F. & Guedes, G. P. (2020). Inorg. Chem. Commun. 121, 108201.  CrossRef Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationZia-ur-Rehman, M., Elsegood, M. R. J., Akbar, N. & Shah Zaib Saleem, R. (2008). Acta Cryst. E64, o1312–o1313.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Elsegood, M. R. J., Choudary, J. A., Fasih Ullah, M. & Siddiqui, H. L. (2009). Acta Cryst. E65, o275–o276.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds