research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 3-halo-2-organochalcogenylbenzo[b]chalcogenophenes

crossmark logo

aLaboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry, Federal University of Paraná-UFPR, PO Box 19061, Curitiba, PR, 81531-980, Brazil, bDepartment of Chemistry, Federal University of Paraná-UFPR, PO Box 19061, Curitiba, PR, 81531-980, Brazil, cDepartment of Biology, East Carolina University, Greenville, North Carolina, USA, dIOTO USA – 1997N Greene Street – Greenville, NC 27834, USA, eDepartment of Chemistry and Biology, Federal University of Technology - Paraná, Rua Deputado Heitor de Alencar Furtado, 5000, 81280-340, Curitiba, Brazil, and fIOTO INTERNATIONAL - Rodovia Gumercindo Boza 20088 – Campo Magro – PR, 83535-000, Brazil
*Correspondence e-mail: danielrampon@ufpr.br

Edited by J. Reibenspies, Texas A & M University, USA (Received 20 December 2021; accepted 27 January 2022; online 3 February 2022)

The structure of the title compounds 3-bromo-2-(phenyl­sulfan­yl)benzo[b]thiophene (C14H9BrS2; 1), 3-iodo-2-(phenyl­sulfan­yl)benzo[b]thio­phene (C14H9IS2; 2), 3-bromo-2-(phenyl­selan­yl)benzo[b]seleno­phene (C14H9BrSe2; 3), and 3-iodo-2-(phenyl­selan­yl)benzo[b]seleno­phene (C14H9ISe2; 4) were determined by single-crystal X-ray diffraction; all structures presented monoclinic (P21/c) symmetry. The phenyl group is distant from the halogen atom to minimize the steric hindrance repulsion for all structures. Moreover, the structures of 3 and 4 show an almost linear alignment of halogen–selenium–carbon atoms arising from the intra­molecular orbital inter­action between a lone pair of electrons on the halogen atom and the anti­bonding σ*Se–C orbital (nhalogenσ*Se–C). This inter­action leads to significant differences in the three-dimensional packing of the mol­ecules, which are assembled through ππ and C—H⋯π inter­actions. These data provide a better comprehension of the inter­molecular packing in benzo[b]chalcogenophenes, which is relevant for optoelectronic applications.

1. Chemical context

Chalcogenophenes derivatives are an attractive synthetic class of compounds with a wide range of relevant applications in medicinal chemistry (Keri et al., 2017[Keri, R. S., Chand, K., Budagumpi, S., Balappa Somappa, S., Patil, S. A. & Nagaraja, B. M. (2017). Eur. J. Med. Chem. 138, 1002-1033.]; Mahmoud et al., 2017[Mahmoud, A. B. A., Kirsch, G. & Peagle, E. (2017). Curr. Org. Synth. 14, 1091-1101.]; Paegle et al., 2016[Paegle, E., Domracheva, I., Turovska, B., Petrova, M., Kanepe-Lapsa, I., Gulbe, A., Liepinsh, E. & Arsenyan, P. (2016). Chem. Asian J. 11, 1929-1938.]), electrochemistry (Wei et al., 2017[Wei, J., Meng, D., Zhang, L. & Wang, Z. (2017). Chem. Asian J. 12, 1879-1882.]; Shahjad et al., 2017[Shahjad, A., Bhargav, R., Bhardwaj, D., Mishra, A. & Patra, A. (2017). Macromol. Chem. Phys. 218, 1700038-1700047.]), agrochemistry (Zani et al., 2004[Zani, F., Vicini, P. & Incerti, M. (2004). Eur. J. Med. Chem. 39, 135-140.]) and as organic semiconductors (Yang et al., 2018[Yang, F., Cheng, S., Zhang, X., Ren, X., Li, R., Dong, H. & Hu, W. (2018). Adv. Mater. 30, 1702415-1702442.]; Ostroverkhova, 2016[Ostroverkhova, O. (2016). Chem. Rev. 116, 13279-13412.]). π-extended benzo[b]chalcogenophenes derivatives have been widely studied as improved materials for optoelectronic devices such as organic photovoltaic cells (OPVs) (Ashraf et al., 2015[Ashraf, R. S., Meager, I., Nikolka, M., Kirkus, M., Planells, M., Schroeder, B. C., Holliday, S., Hurhangee, M., Nielsen, C. B., Sirringhaus, H. & McCulloch, L. (2015). J. Am. Chem. Soc. 137, 1314-1321.]; An et al., 2018[An, Y., Oh, J., Chen, S., Lee, B., Lee, S. M., Han, D. & Yang, C. (2018). Polym. Chem. 9, 593-602.]; Chen et al., 2017[Chen, G., Liu, S., Xu, J., He, R., He, Z., Wu, H.-B., Yang, W., Zhang, B. & Cao, Y. (2017). ACS Appl. Mater. Interfaces. 9, 4778-4787.]), liquid-crystal displays (LCD) (Ghosh & Lehmann, 2017[Ghosh, T. & Lehmann, M. (2017). J. Mater. Chem. C. 5, 12308-12337.]; Mei et al., 2013[Mei, J., Diao, Y., Appleton, A. L., Fang, L. & Bao, Z. (2013). J. Am. Chem. Soc. 135, 6724-6746.]), organic light-emitting diodes (OLEDs) (Grimsdale et al., 2009[Grimsdale, A. C., Leok Chan, K., Martin, R. E., Jokisz, P. G. & Holmes, A. B. (2009). Chem. Rev. 109, 897-1091.]; Zampetti et al., 2017[Zampetti, A., Minotto, A., Squeo, B. M., Gregoriou, V. G., Allard, S., Scherf, U., Chochos, C. L. & Cacialli, F. (2017). Sci. Rep. 7, 1-7.]; Arsenyan et al., 2019[Arsenyan, P., Petrenko, A., Leitonas, K., Volyniuk, D., Simokaitiene, J., Klinavičius, T., Skuodis, E., Lee, J.-H. & Gražulevičius, J. V. (2019). Inorg. Chem. 58, 10174-10183.]), and in organic field-effect transistors (OFETs) (Lee et al., 2019[Lee, S. M., Lee, H. R., Dutta, G., Lee, J., Oh, J. H. & Yang, G. (2019). Polym. Chem. 10, 2854-2862.]; Tisovský et al., 2019[Tisovský, P., Gáplovský, A., Gmucová, K., Novota, M., Pavúk, M. & Weis, M. (2019). Org. Electron. 68, 121-128.]). Benzo[b]chalcogenophenes derivatives also show relevant biological activities as anti-tumor (Arsenyan et al., 2011[Arsenyan, P., Paegle, E., Belyakov, S., Shestakova, I., Jaschenko, E., Domracheva, I. & Popelis, J. (2011). Eur. J. Med. Chem. 46, 3434-3443.]) and anti-inflammatory agents (Shah et al., 2018[Shah, R. & Verma, P. K. (2018). Chem. Cent. J. 12, 1-22.]). As part of our continuing work on benzo[b]chalcogenophenes (Luz et al., 2021[Luz, E. Q., Silvério, G. L., Seckler, D., Lima, D. B., Santana, F. S., Barbosa, R. B., Montes D'Oca, C. R. & Rampon, D. S. (2021). Adv. Synth. Catal. 363, 2610-2618.]), we report herein the crystallographic structural comparison of four 3-halo-2-(organochalcogen­yl)benzo[b]chalcogenophene derivatives.

[Scheme 1]

2. Structural commentary

The four organic compounds crystallize in the monoclinic P21/c space group, and all atoms occupy unique positions. Compounds 1 and 2 are isostructural containing an identical 3-halo-2-(phenysulfan­yl)benzo[b]thio­phene unit with bro­mine (1) or iodine (2) at the C3 position of the benzo[b]thio­phene ring (Figs. 1[link] and 2[link]). The isostructural compounds 3 and 4 also contain identical 3-halo-2-(phenyl­selan­yl)benzo[b]seleno­phene units with bromine (3) or iodine (4) at the C3 position of the benzo[b]seleno­phene ring (Figs. 3[link] and 4[link]). The respective benzo[b]chalcogenophene rings and the phenyl­sulfanyl and phenyselanyl groups are planar. As expected, the carbon–selenium bonds in mol­ecules 3 and 4 are longer than the respective carbon–sulfur bonds in mol­ecules 1 and 2.

[Figure 1]
Figure 1
The mol­ecular structure of 3-bromo-2-(phenyl­sulfan­yl)benzo[b]thio­phene (1), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of 3-iodo-2-(phenyl­sulfan­yl)benzo[b]thio­phene (2), with displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of 3-bromo-2-(phenyl­selan­yl)benzo[b]seleno­phene (3), with displacement ellipsoids drawn at the 50% probability level.
[Figure 4]
Figure 4
The mol­ecular structure of 3-iodo-2-(phenyl­selan­yl)benzo[b]seleno­phene (4), with displacement ellipsoids drawn at the 50% probability level.

Conformational changes are observed when we compare mol­ecules 1 and 2 containing sulfur atoms with mol­ecules 3 and 4 containing selenium atoms, as described below. In mol­ecules 1 and 2, the benzo[b]thio­phene ring is twisted away from the plane of phenyl­sulfanyl group showing inter­planar angles of 88.9 (8) and 87.9 (6)°, respectively (Figs. 5[link] and 6[link]). Additionally, for 1 and 2 the S1—C2—S10—C11 torsion angles are −97.56 (14) and 98.17 (15)°, respectively. Mol­ecules 3 and 4 also show the benzo[b]seleno­phene ring twisted away from the plane of the phenyl­selanyl group with inter­planar angles of 80.4 (8) and 79.7 (7)°, respectively (Figs. 7[link] and 8[link]). Conversely, the torsion angles (Se1—C2—Se10—C11) in mol­ecules 3 and 4 are 1.9 (3) and −4.0 (3)°, respectively, quite different than the S1—C2—S10—C11 torsion angles in mol­ecules 1 and 2. It is clear that the coplanarity between the phenyl and benzo[b]chalcogenophene rings is avoided in both pairs of mol­ecules to minimize steric hindrance. This structural arrangement is reinforced by the presence of the halogen atom at the C3 position of the benzo[b]chalcogenophene ring (Figs. 1[link], 2[link], 3[link] and 4[link]). Nevertheless, there is an almost linear alignment between the atoms Br1—Se10—C11 (3) and I1—Se10—C11 (4), which cannot be explained by steric factors alone. For instance, if we consider merely the higher steric hindrance between the phenyl and benzo[b]seleno­phene rings arising from the lower intrinsic C11—Se10–C2 angle directing the conformation of mol­ecules 3 and 4, the almost linear alignment between the atoms Br1—Se10—C11 (3) and I1—Se10—C11 (4) is still not fully understood. We have observed that the inter­atomic distances between the chalcogen and the halogen atoms [S10⋯Br1 (1) = 3.5061 (8) Å, S10⋯I1 (2) = 3.6310 (7) Å, Se10⋯Br (3) = 3.4196 (7) Å, Se10⋯-I (4) = 3.5260 (7) Å] are 0.14, 0.15, 0.33 and 0.35 Å shorter than the sum of the van der Waals radii of the respective two atoms in mol­ecules 1, 2, 3, and 4, respectively (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). The shorter inter­atomic distances Se10⋯Br and Se10⋯I and the remarkably almost linear alignment of the atoms in 3 [C11—Se10⋯Br1 = 152.95 (9)°] and in 4 [C11—Se10⋯I1 = 156.52 (1)°] when compared to mol­ecules 1 [C11—S10⋯Br1 = 93.01 (7)°] and 2 [C11—S10⋯I1 = 91.35 (7)°] indicate a stabilizing intra­molecular orbital inter­action (3-center-4-electrons, 3c–4e) between a lone pair of electrons of the halogen atom and the anti­bonding σ*Se–C11 orbital (nhalogenσ*Se–C11) (Mukherjee, 2010[Mukherjee, A., Zade, S., Singh, H. & Sunoj, R. (2010). Chem. Rev. 110, 4357-4416.]). The lower energy of the anti­bonding σ*Se–C11 orbital makes it a better acceptor when compared to the higher energy anti­bonding σ*S–C11 orbital, therefore making the intra­molecular nhalogenσ*Se–C11 orbital inter­action in mol­ecules 3 and 4 strong enough to change their mol­ecular conformation.

[Figure 5]
Figure 5
Representation of the inter­planar angle (α) between the planes containing the phenyl­sulfanyl, blue plane, and the benzo[b]thio­phene, purple plane, groups for 3-bromo-2-(phenyl­sulfan­yl)benzo[b]thio­phene (1). Displacement ellipsoids are drawn at the 50% probability level. Gray: carbon; yellow: sulfur; light green: bromine; white: hydrogen.
[Figure 6]
Figure 6
Representation of the inter­planar angle (α) between the planes containing the phenyl­sulfanyl, blue plane, and the benzo[b]thio­phene, purple plane, groups for 3-iodo-2-(phenyl­sulfan­yl)benzo[b]thio­phene (2). Displacement ellipsoids are drawn at the 50% probability level. Gray: carbon; yellow: sulfur; bluish green: iodine; white: hydrogen.
[Figure 7]
Figure 7
Representation of the inter­planar angle (α) between the planes containing the phenyl­selanyl, blue plane, and the benzo[b]seleno­phene, purple plane, groups for 3-bromo-2-(phenyl­selan­yl)benzo[b]seleno­phene (3). Displacement ellipsoids are drawn at the 50% probability level. Gray: carbon; orange: selenium; light green: bromine; white: hydrogen.
[Figure 8]
Figure 8
Representation of the inter­planar angle (α) between the planes containing the phenyl­selanyl, blue plane, and the benzo[b]seleno­phene, purple plane, groups for 3-iodo-2-(phenyl­selan­yl)benzo[b]seleno­phene (4). Displacement ellipsoids are drawn at the 50% probability level. Gray: carbon; orange: selenium; bluish green: iodine; white: hydrogen.

3. Supra­molecular features

The crystals of organic compounds 1 and 2 are related by an inversion center and assembled through C—H⋯π inter­molecular inter­actions along the b-axis direction (Fig. 9[link]). The weak C—H⋯π inter­actions are between the H5 atom and the centroid formed by atoms C11–C16 of the phenyl­sulfanyl group. The distances and angles comprising these contacts are 2.97 (2) Å, 137.1 (2)° for 1 and 2.93 (3) Å, 138.4 (2)° for 2. The structures 1 and 2 also show ππ stacking inter­actions between adjacent benzo[b]thio­phene rings along the c-axis direction with centroid–centroid distances of 3.7166 (2) and 3.7602 (4) Å for 1 and 2, respectively (Fig. 9[link], for 1). On the other hand, in compounds 3 and 4 C—H⋯π inter­actions are not present. However, ππ stacking inter­actions involving adjacent benzo[b]thio­phene rings are present along the a-axis direction, with centroid–centroid distances of 3.8139 (3) Å and 3.8772 (1) Å, respectively. Furthermore, ππ stacking inter­actions are observed along the b-axis direction between phenyl­sulfanyl groups related by an inversion center, with centroid–centroid distances of 3.6644 (2) and 3.7351 (1) Å for 3 and 4, respectively (Fig. 10[link], for 3).

[Figure 9]
Figure 9
Representation of some mol­ecules of 3-bromo-2-(phenyl­sulfan­yl)benzo[b]seleno­phene (1) viewed approximately down the c axis of the unit cell. The red dashed lines represent C—H⋯π inter­actions involving the H5 atom of the benzo[b]thio­pehene ring with an adjacent phenyl­sulfanyl group; the purple dashed lines represent ππ stacking inter­actions between adjacent benzo[b]thio­pehene rings. Displacement ellipsoids are drawn at the 50% probability level. The hydrogen atoms, except for H4, are omitted for clarity. Red and purple spheres represent the centroids of the respective organic groups.
[Figure 10]
Figure 10
Representation of the mol­ecules of 3-bromo-2-(phenyl­selan­yl)benzo[b]seleno­phene (3) viewed down the c axis of the unit cell. The purple and yellow dashed lines represent ππ stacking inter­actions between adjacent benzo[b]thio­pehene rings and between adjacent phenyl­sulfanyl groups, respectively. Displacement ellipsoids are drawn at the 50% probability level. The hydrogen atoms were omitted to clarity. Purple and yellow spheres represent the centroids of the respective organic groups.

4. Database survey

Several crystal structures of benzo[b]chalcogenophenes derivatives have been published. To the best of our knowledge, there are no studies about chalcogen atoms attached directly at position 2 of the benzo[b]chalcogenophene ring. With regard to benzo[b]thio­phenes, Xu et al. (2017[Xu, J., Yu, X., Yan, J. & Song, Q. (2017). Org. Lett. 19, 6292-6295.]) described the structure of 3-(aryl­sulfon­yl)benzo[b]thio­phene obtained by single-crystal X-ray diffraction. Additionally, Ramesh et al. (2016[Ramesh, E., Shankar, M., Dana, S. & Sahoo, A. (2016). Org. Chem. Front. 3, 1126-1130.]) reported the structures of 6-fluoro-2,2-(diphen­yl)benzo[b]thio­phene and 6-isopropyl-2,2-(diphen­yl)benzo[b]thio­phene obtained by single-crystal X-ray diffraction studies.

5. Synthesis and crystallization

The structures reported here were obtained by the one-pot synthesis of 3-halo-2-organochalcogenylbenzo[b]chalcogenophenes from 1-(2,2-di­bromo­vin­yl)-2-organochalcogenyl­benz­enes. By this method, a series of 2,3-disubstituted benzo[b]chalcogenophenes were prepared in yields of ca 80% (Luz et al., 2021[Luz, E. Q., Silvério, G. L., Seckler, D., Lima, D. B., Santana, F. S., Barbosa, R. B., Montes D'Oca, C. R. & Rampon, D. S. (2021). Adv. Synth. Catal. 363, 2610-2618.]). The title compounds were prepared as follows:

3-Bromo-2-(phenyl­sulfan­yl)benzo[b]thio­phene (1)

To a Schlenk tube containing 1-(2,2-di­bromo­vin­yl)-2-butyl­sulfanyl­benzene (0.25 mmol, 1.0 equiv.), diphenyl di­sulfide (0.125 mmol, 1.0 equiv.) was added in dry dimethyl sulfoxide (2.0 mL) followed by the addition of cesium carbon­ate (0.244 g, 0.75 mmol, 3.0 equiv.). The reaction system was heated to 383 K and stirred for 1.5 h. Then, the reaction mixture was cooled to room temperature and 2.5 equivalents of NBS (N-bromo­succinimide) in 2 mL of di­chloro­methane were slowly added (2.0 min) into the system. The reaction mixture was stirred at room temperature for 2 h. After this, the reaction solution was diluted in saturated thio­sulfate solution (20 mL) and washed with ethyl acetate (3 × 10 mL). The organic phase was dried over magnesium sulfate and concentrated under reduced pressure. The product was further purified by flash chromatography using hexane as eluent. Colorless needle-shaped single crystals of 1 suitable for X-ray analysis were grown by slow evaporation of a concentrated ethyl acetate solution over several days at room temperature. Yield: 0.066 g (82%); withe solid, m.p. 337–340 K. 1H NMR (CDCl3, 400 MHz) δ (ppm) = 7.77–7.75 (m, 1 H); 7.70–7.68 (m, 1H); 7.58–7.55 (m, 2H); 7.44–7.40 (m, 1H); 7.36–7.30 (m, 4H). 13C{1H} NMR (CDCl3, 100 MHz) δ (ppm) = 141.1, 138.5, 135.9, 133.1, 129.5, 128.3, 126.4, 125.4, 125.2, 123.3, 121.9, 114.4. MS (Rel. Int.) m/z: 321 (84.0), 241 (100), 210 (63.4), 77 (54.8) HRMS: Calculated mass for C14H10BrS2 [M]+: 321.9302, found: 321.9310.

3-Iodo-2-(phenyl­sulfan­yl)benzo[b]thio­phene (2)

The first step for obtaining 2 was analogous to that described for 1. The reaction mixture was cooled to room temperature and 1.5 equivalents of I2 in 2 mL of di­chloro­methane were slowly added (2.0 min) into the system. The reaction mixture was stirred at room temperature for 3.5 h. After this, the reaction solution was diluted in saturated sodium thio­sulfate solution (20 mL) and washed with ethyl acetate (3 × 10 mL). The organic phase was dried over magnesium sulfate and concentrated under reduced pressure. The product was further purified by flash chromatography using hexane as eluent. Colorless needle-shaped single crystals of 2 were obtained in the same way of 1. Yield: 0.073 g (79%); yellow solid, m.p. 325–327K. 1H NMR (CDCl3, 400 MHz) δ (ppm) = 7.72 (d, J = 8.0 Hz, 1 H); 7.66 (d, J = 7.6 Hz, 1 H); 7.44–7.40 (m, 2H); 7.34–7.21 (m, 5H). 13C{1H} NMR (CDCl3, 100 MHz) δ (ppm) = 141.5, 141.2, 136.5, 134.7, 130.3, 129.3, 127.7, 126.2, 126.0, 125.5, 122.1, 90.3. MS (Rel. Int.) m/z: 368 (94.3), 240 (100), 120 (50.3), 77 (10.5). HRMS: Calculated mass for C14H9IS2 [M]+: 367.9185, found: 367.9188.

3-Bromo-2-(phenyl­seln­yl)benzo[b]seleno­phene (3)

To a Schlenk tube containing 1-(2,2-di­bromo­vin­yl)-2-butyl­selanyl­benzene (0.25 mmol, 1.0 equiv.), diphenyl diselen­ide (0.125 mmol, 1.0 equiv.) was added in dry dimethyl sulfoxide (2.0 mL) followed by the addition of cesium carbonate (0.244 g, 0.75 mmol, 3.0 equiv.). The reaction system was heated to 384 K and stirred for 0.5 h. Then, the reaction mixture was cooled to room temperature and 2.5 equivalents of NBS (N-bromo­succinimide) in 2 mL of di­chloro­methane were slowly added (2.0 min) into the system. The reaction mixture was stirred at room temperature for 1 h. After this, the reaction solution was diluted in saturated sodium thio­sulfate solution (20 mL) and washed with ethyl acetate (3 × 10 mL). The organic phase was dried over magnesium sulfate and concentrated under reduced pressure. The product were further purified by flash chromatography using hexane as eluent. Colorless needle-shaped single crystals of 3 were obtained in the same way as 1. Yield: 0.081 g (79%); yellow oil. 1H NMR (CDCl3, 400 MHz) δ (ppm) = 7.76 (dd, J = 8.1 and 1.0 Hz, 1H); 7.69–7.66 (m, 3H); 7.41–7.32 (m, 4H); 7.24 (ddd, J = 8.2, 7.3 and 1.3 Hz, 1H). 13C{1H} NMR (CDCl3, 100 MHz) δ (ppm) = 141.1, 140.6, 134.4, 129.6, 129.5, 129.4, 129.0, 125.4, 125.1, 125.0, 124.9, 112.9. MS (Rel. Int.) m/z: 416 (96.8), 336 (100), 256 (42.4), 77 (62.0).

3-Iodo-2-(phenyl­selan­yl)benzo[b]seleno­phene (4)

The first step for obtaining 4 was similar to that described for 3. The reaction mixture was cooled to room temperature and 1.5 equivalents of I2 in 2 mL of di­chloro­methane were slowly added (2.0 min) into the system. The reaction was stirred at room temperature for 1 h. After this, the reaction solution was diluted in saturated sodium thio­sulfate solution (20 mL) and washed with ethyl acetate (3 × 10 mL). The organic phase was dried over magnesium sulfate and concentrated under reduced pressure. The product was further purified by flash chromatography using hexane as eluent. Colorless needle single crystals of 4 were obtained in the same way of (1). Yield: 0.090 g (78%); Orange solid, m.p. 329–331 K. 1H NMR (CDCl3, 400 MHz) δ (ppm) = 7.73–7.64 (m, 4H); 7.41–7.33 (m, 4H); 7.23–7.20 (m, 1H). 13C{1H} NMR (CDCl3, 100 MHz) δ (ppm) = 143.9, 142.2, 134.9, 134.7, 129.8, 129.7, 129.1, 127.6, 125.7, 125.1, 88.9. MS (Rel. Int.) m/z: 464 (48.2), 334 (47.0), 256 (51.4), 77 (53.2), 51 (100).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Hydrogen atoms of 1, 2 and 4 were located in difference-Fourier maps and were refined freely; the hydrogen atoms of 3 were included in idealized positions with aromatic C—H distances set to 0.93 Å and refined using a riding model Uiso(H) = 1.2Ueq(C).

Table 1
Experimental details

  1 2 3 4
Crystal data
Chemical formula C14H9BrS2 C14H9IS2 C14H9BrSe2 C14H9ISe2
Mr 321.24 368.23 415.04 462.03
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 296 294 297 292
a, b, c (Å) 8.2471 (8), 9.9562 (8), 15.7601 (14) 8.4872 (3), 9.9629 (4), 15.6485 (7) 12.3864 (11), 13.6816 (11), 8.0982 (6) 12.9606 (6), 13.5999 (7), 8.0448 (4)
β (°) 98.967 (3) 97.052 (1) 96.398 (3) 95.585 (2)
V3) 1278.2 (2) 1313.18 (9) 1363.82 (19) 1411.27 (12)
Z 4 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 3.51 2.73 8.33 7.40
Crystal size (mm) 0.28 × 0.21 × 0.14 0.16 × 0.13 × 0.05 0.17 × 0.17 × 0.12 0.51 × 0.47 × 0.24
 
Data collection
Diffractometer Bruker D8 Venture/Photon 100 CMOS Bruker D8 Venture/Photon 100 CMOS Bruker D8 Venture/Photon 100 CMOS Bruker D8 Venture/Photon 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.628, 0.746 0.690, 0.746 0.543, 0.746 0.390, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 55020, 3078, 2559 56046, 3001, 2585 43875, 2976, 2208 54241, 3391, 2702
Rint 0.041 0.045 0.060 0.054
(sin θ/λ)max−1) 0.660 0.650 0.639 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.04 0.022, 0.051, 1.08 0.035, 0.069, 1.03 0.037, 0.083, 1.04
No. of reflections 3078 3001 2976 3391
No. of parameters 190 190 154 190
H-atom treatment All H-atom parameters refined All H-atom parameters refined H-atom parameters constrained All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.41, −0.76 0.45, −0.86 0.93, −0.90 1.14, −1.82
Computer programs: APEX3 (Bruker, 2015[Bruker (2015). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012).

3-Bromo-2-(phenylsulfanyl)benzo[b]thiophene (1) top
Crystal data top
C14H9BrS2F(000) = 640
Mr = 321.24Dx = 1.669 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.2471 (8) ÅCell parameters from 9946 reflections
b = 9.9562 (8) Åθ = 2.6–28.0°
c = 15.7601 (14) ŵ = 3.51 mm1
β = 98.967 (3)°T = 296 K
V = 1278.2 (2) Å3Parallelepiped, colourless
Z = 40.28 × 0.21 × 0.14 mm
Data collection top
Bruker D8 Venture/Photon 100 CMOS
diffractometer
3078 independent reflections
Radiation source: fine-focus sealed tube2559 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 10.4167 pixels mm-1θmax = 28.0°, θmin = 3.2°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1313
Tmin = 0.628, Tmax = 0.746l = 2020
55020 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: difference Fourier map
wR(F2) = 0.073All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0347P)2 + 0.7059P]
where P = (Fo2 + 2Fc2)/3
3078 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.76 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.1651 (3)0.3373 (2)0.41693 (14)0.0405 (5)
C30.2308 (2)0.4295 (2)0.47529 (13)0.0361 (4)
C40.1731 (2)0.56405 (19)0.45645 (12)0.0315 (4)
C50.2140 (3)0.6832 (2)0.50152 (14)0.0399 (4)
C60.1421 (3)0.8012 (2)0.47034 (16)0.0460 (5)
C70.0310 (3)0.8041 (2)0.39437 (16)0.0468 (5)
C80.0120 (3)0.6888 (2)0.34898 (14)0.0426 (5)
C90.0599 (2)0.56820 (19)0.38079 (12)0.0325 (4)
C110.3783 (3)0.1481 (2)0.36842 (14)0.0392 (4)
C120.4614 (3)0.0261 (2)0.38205 (16)0.0487 (5)
C130.6017 (3)0.0046 (3)0.34629 (17)0.0562 (6)
C140.6591 (3)0.1024 (3)0.29691 (18)0.0578 (6)
C150.5762 (3)0.2225 (3)0.28289 (16)0.0512 (6)
C160.4356 (3)0.2460 (2)0.31852 (14)0.0435 (5)
Br10.38366 (3)0.38960 (3)0.57285 (2)0.05735 (10)
S10.02548 (7)0.41026 (6)0.33534 (4)0.04409 (13)
S100.19752 (8)0.16429 (6)0.41634 (5)0.05842 (19)
H50.289 (3)0.680 (2)0.5496 (15)0.042 (6)*
H60.172 (3)0.880 (3)0.4980 (17)0.053 (7)*
H70.009 (4)0.887 (3)0.3766 (18)0.060 (8)*
H80.089 (3)0.691 (3)0.2997 (17)0.055 (7)*
H120.429 (3)0.039 (3)0.4186 (17)0.056 (7)*
H130.660 (4)0.081 (3)0.3556 (18)0.065 (8)*
H140.751 (4)0.092 (3)0.278 (2)0.073 (9)*
H150.613 (3)0.286 (3)0.2530 (18)0.058 (8)*
H160.379 (3)0.325 (3)0.3084 (17)0.058 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0426 (11)0.0318 (9)0.0515 (12)0.0038 (8)0.0207 (9)0.0049 (9)
C30.0300 (9)0.0371 (10)0.0432 (10)0.0039 (7)0.0116 (8)0.0087 (8)
C40.0281 (8)0.0343 (9)0.0337 (9)0.0004 (7)0.0100 (7)0.0047 (7)
C50.0368 (10)0.0437 (11)0.0389 (11)0.0035 (8)0.0049 (8)0.0012 (9)
C60.0514 (13)0.0329 (10)0.0562 (13)0.0040 (9)0.0160 (10)0.0046 (10)
C70.0511 (13)0.0332 (10)0.0583 (14)0.0064 (9)0.0157 (10)0.0122 (10)
C80.0433 (11)0.0431 (11)0.0405 (11)0.0038 (9)0.0038 (9)0.0130 (9)
C90.0339 (9)0.0331 (9)0.0321 (9)0.0002 (7)0.0097 (7)0.0025 (7)
C110.0416 (11)0.0342 (10)0.0429 (11)0.0005 (8)0.0103 (8)0.0054 (8)
C120.0587 (14)0.0356 (11)0.0536 (13)0.0060 (10)0.0147 (11)0.0019 (10)
C130.0590 (15)0.0477 (13)0.0632 (15)0.0141 (12)0.0134 (12)0.0077 (12)
C140.0489 (14)0.0706 (17)0.0573 (15)0.0079 (12)0.0186 (11)0.0125 (13)
C150.0492 (13)0.0611 (15)0.0452 (12)0.0055 (11)0.0135 (10)0.0010 (11)
C160.0439 (11)0.0415 (11)0.0455 (12)0.0020 (9)0.0083 (9)0.0024 (9)
Br10.03881 (13)0.06510 (17)0.06559 (17)0.00695 (10)0.00017 (10)0.02733 (12)
S10.0519 (3)0.0402 (3)0.0404 (3)0.0055 (2)0.0080 (2)0.0061 (2)
S100.0637 (4)0.0289 (3)0.0928 (5)0.0022 (2)0.0440 (4)0.0058 (3)
Geometric parameters (Å, º) top
C2—C31.352 (3)C8—H80.92 (3)
C2—S101.744 (2)C9—S11.733 (2)
C2—S11.745 (2)C11—C161.381 (3)
C3—C41.437 (3)C11—C121.395 (3)
C3—Br11.873 (2)C11—S101.781 (2)
C4—C91.396 (3)C12—C131.380 (3)
C4—C51.397 (3)C12—H120.93 (3)
C5—C61.373 (3)C13—C141.376 (4)
C5—H50.90 (2)C13—H130.98 (3)
C6—C71.390 (4)C14—C151.377 (4)
C6—H60.91 (3)C14—H140.87 (3)
C7—C81.369 (3)C15—C161.385 (3)
C7—H70.92 (3)C15—H150.87 (3)
C8—C91.397 (3)C16—H160.91 (3)
C3—C2—S10128.98 (18)C4—C9—S1111.78 (14)
C3—C2—S1111.54 (15)C8—C9—S1126.76 (16)
S10—C2—S1119.44 (14)C16—C11—C12119.9 (2)
C2—C3—C4114.06 (18)C16—C11—S10124.14 (17)
C2—C3—Br1124.17 (16)C12—C11—S10115.92 (17)
C4—C3—Br1121.76 (15)C13—C12—C11119.7 (2)
C9—C4—C5119.07 (18)C13—C12—H12118.7 (16)
C9—C4—C3111.10 (17)C11—C12—H12121.4 (17)
C5—C4—C3129.82 (18)C14—C13—C12120.3 (2)
C6—C5—C4119.2 (2)C14—C13—H13120.0 (17)
C6—C5—H5122.1 (16)C12—C13—H13119.7 (17)
C4—C5—H5118.6 (16)C13—C14—C15119.9 (2)
C5—C6—C7121.1 (2)C13—C14—H14121 (2)
C5—C6—H6119.9 (17)C15—C14—H14119 (2)
C7—C6—H6118.9 (17)C14—C15—C16120.5 (2)
C8—C7—C6121.0 (2)C14—C15—H15120.8 (18)
C8—C7—H7123.0 (18)C16—C15—H15118.7 (18)
C6—C7—H7116.0 (18)C11—C16—C15119.6 (2)
C7—C8—C9118.2 (2)C11—C16—H16119.7 (18)
C7—C8—H8120.6 (18)C15—C16—H16120.7 (18)
C9—C8—H8121.2 (18)C9—S1—C291.51 (10)
C4—C9—C8121.46 (19)C2—S10—C11103.35 (10)
S10—C2—C3—C4178.52 (15)C7—C8—C9—S1179.94 (17)
S1—C2—C3—C40.7 (2)C16—C11—C12—C130.7 (4)
S10—C2—C3—Br11.5 (3)S10—C11—C12—C13179.2 (2)
S1—C2—C3—Br1179.28 (10)C11—C12—C13—C140.4 (4)
C2—C3—C4—C90.2 (2)C12—C13—C14—C150.1 (4)
Br1—C3—C4—C9179.83 (13)C13—C14—C15—C160.3 (4)
C2—C3—C4—C5179.69 (19)C12—C11—C16—C150.5 (3)
Br1—C3—C4—C50.3 (3)S10—C11—C16—C15178.85 (18)
C9—C4—C5—C60.0 (3)C14—C15—C16—C110.0 (4)
C3—C4—C5—C6179.8 (2)C4—C9—S1—C20.72 (15)
C4—C5—C6—C70.7 (3)C8—C9—S1—C2179.07 (19)
C5—C6—C7—C81.0 (4)C3—C2—S1—C90.82 (16)
C6—C7—C8—C90.5 (3)S10—C2—S1—C9178.86 (13)
C5—C4—C9—C80.5 (3)C3—C2—S10—C1184.8 (2)
C3—C4—C9—C8179.35 (18)S1—C2—S10—C1197.56 (14)
C5—C4—C9—S1179.67 (14)C16—C11—S10—C219.9 (2)
C3—C4—C9—S10.5 (2)C12—C11—S10—C2161.70 (18)
C7—C8—C9—C40.3 (3)
3-Iodo-2-(phenylsulfanyl)benzo[b]thiophene (2) top
Crystal data top
C14H9IS2F(000) = 712
Mr = 368.23Dx = 1.863 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.4872 (3) ÅCell parameters from 9841 reflections
b = 9.9629 (4) Åθ = 2.6–27.5°
c = 15.6485 (7) ŵ = 2.73 mm1
β = 97.052 (1)°T = 294 K
V = 1313.18 (9) Å3Parallelepiped, colourless
Z = 40.16 × 0.13 × 0.05 mm
Data collection top
Bruker D8 Venture/Photon 100 CMOS
diffractometer
3001 independent reflections
Radiation source: fine-focus sealed tube2585 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 10.4167 pixels mm-1θmax = 27.5°, θmin = 2.6°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1212
Tmin = 0.690, Tmax = 0.746l = 2020
56046 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: difference Fourier map
wR(F2) = 0.051All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0218P)2 + 0.8146P]
where P = (Fo2 + 2Fc2)/3
3001 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.85 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.6667 (3)0.8425 (2)0.08322 (15)0.0350 (5)
C30.7271 (2)0.9337 (2)0.02410 (14)0.0308 (4)
C40.6724 (2)1.0681 (2)0.04289 (13)0.0279 (4)
C50.7097 (3)1.1876 (2)0.00262 (15)0.0351 (5)
C60.6420 (3)1.3057 (2)0.02866 (17)0.0415 (5)
C70.5388 (3)1.3091 (2)0.10526 (17)0.0434 (6)
C80.5000 (3)1.1942 (2)0.15099 (15)0.0397 (5)
C90.5672 (2)1.0732 (2)0.11926 (13)0.0306 (4)
C110.8796 (3)0.6562 (2)0.13223 (14)0.0359 (5)
C120.9622 (3)0.5360 (2)0.11839 (17)0.0459 (6)
C131.1021 (3)0.5172 (3)0.15346 (19)0.0547 (7)
C141.1602 (3)0.6167 (3)0.20217 (19)0.0539 (7)
C151.0784 (3)0.7353 (3)0.21568 (17)0.0466 (6)
C160.9382 (3)0.7558 (2)0.18094 (16)0.0408 (5)
S10.53633 (8)0.91592 (6)0.16492 (4)0.04052 (14)
S100.69891 (8)0.66946 (6)0.08560 (5)0.04924 (16)
I10.88517 (2)0.88685 (2)0.08375 (2)0.04613 (7)
H50.779 (3)1.183 (3)0.0538 (17)0.047 (7)*
H60.667 (3)1.387 (3)0.0011 (18)0.048 (8)*
H70.502 (3)1.394 (3)0.1290 (19)0.059 (9)*
H80.434 (3)1.196 (3)0.2021 (17)0.049 (7)*
H120.924 (3)0.471 (3)0.0845 (17)0.049 (7)*
H131.162 (3)0.435 (3)0.1465 (19)0.061 (8)*
H141.251 (4)0.604 (3)0.229 (2)0.071 (10)*
H151.116 (3)0.797 (3)0.2450 (17)0.043 (7)*
H160.882 (3)0.829 (3)0.1901 (18)0.053 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0372 (11)0.0290 (11)0.0406 (12)0.0014 (9)0.0124 (9)0.0018 (9)
C30.0288 (10)0.0313 (10)0.0331 (11)0.0020 (8)0.0070 (8)0.0060 (8)
C40.0265 (9)0.0296 (10)0.0286 (10)0.0001 (8)0.0083 (8)0.0024 (8)
C50.0355 (11)0.0351 (12)0.0347 (12)0.0020 (9)0.0036 (9)0.0015 (9)
C60.0468 (13)0.0287 (12)0.0501 (14)0.0016 (10)0.0104 (11)0.0024 (10)
C70.0490 (14)0.0316 (12)0.0501 (14)0.0057 (10)0.0089 (11)0.0110 (10)
C80.0425 (12)0.0415 (13)0.0345 (12)0.0017 (10)0.0020 (10)0.0118 (10)
C90.0330 (10)0.0313 (10)0.0281 (10)0.0021 (8)0.0066 (8)0.0019 (8)
C110.0447 (12)0.0290 (10)0.0344 (11)0.0015 (9)0.0058 (9)0.0068 (9)
C120.0600 (16)0.0310 (13)0.0482 (15)0.0038 (11)0.0125 (12)0.0003 (11)
C130.0622 (17)0.0407 (14)0.0622 (18)0.0121 (13)0.0111 (14)0.0098 (13)
C140.0503 (15)0.0624 (18)0.0507 (16)0.0050 (13)0.0131 (12)0.0176 (14)
C150.0530 (15)0.0495 (15)0.0386 (13)0.0092 (12)0.0100 (11)0.0004 (12)
C160.0479 (13)0.0340 (13)0.0406 (13)0.0002 (11)0.0052 (10)0.0022 (10)
S10.0494 (3)0.0374 (3)0.0340 (3)0.0051 (2)0.0024 (2)0.0054 (2)
S100.0561 (4)0.0257 (3)0.0708 (4)0.0024 (3)0.0276 (3)0.0005 (3)
I10.03649 (9)0.04740 (10)0.05267 (11)0.00385 (7)0.00193 (6)0.01649 (7)
Geometric parameters (Å, º) top
C2—C31.353 (3)C8—H80.92 (3)
C2—S11.745 (2)C9—S11.728 (2)
C2—S101.746 (2)C11—C161.381 (3)
C3—C41.436 (3)C11—C121.391 (3)
C3—I12.076 (2)C11—S101.782 (2)
C4—C91.402 (3)C12—C131.380 (4)
C4—C51.403 (3)C12—H120.92 (3)
C5—C61.374 (3)C13—C141.378 (4)
C5—H50.93 (3)C13—H130.96 (3)
C6—C71.395 (4)C14—C151.374 (4)
C6—H60.93 (3)C14—H140.93 (3)
C7—C81.369 (4)C15—C161.383 (4)
C7—H70.96 (3)C15—H150.85 (3)
C8—C91.399 (3)C16—H160.87 (3)
C3—C2—S1111.84 (17)C8—C9—S1126.88 (17)
C3—C2—S10129.12 (18)C4—C9—S1111.62 (15)
S1—C2—S10119.02 (14)C16—C11—C12119.7 (2)
C2—C3—C4113.64 (19)C16—C11—S10123.96 (19)
C2—C3—I1123.89 (16)C12—C11—S10116.29 (19)
C4—C3—I1122.46 (16)C13—C12—C11119.8 (3)
C9—C4—C5118.87 (19)C13—C12—H12120.7 (17)
C9—C4—C3111.34 (19)C11—C12—H12119.5 (17)
C5—C4—C3129.8 (2)C14—C13—C12120.4 (3)
C6—C5—C4119.2 (2)C14—C13—H13117.1 (18)
C6—C5—H5122.5 (17)C12—C13—H13122.5 (18)
C4—C5—H5118.3 (17)C15—C14—C13119.7 (3)
C5—C6—C7121.2 (2)C15—C14—H14118 (2)
C5—C6—H6121.4 (17)C13—C14—H14122 (2)
C7—C6—H6117.3 (17)C14—C15—C16120.7 (3)
C8—C7—C6120.9 (2)C14—C15—H15119.1 (18)
C8—C7—H7119.3 (18)C16—C15—H15120.2 (18)
C6—C7—H7119.5 (18)C11—C16—C15119.7 (2)
C7—C8—C9118.3 (2)C11—C16—H16117.6 (19)
C7—C8—H8121.6 (18)C15—C16—H16122.6 (19)
C9—C8—H8120.0 (18)C9—S1—C291.54 (11)
C8—C9—C4121.5 (2)C2—S10—C11103.12 (11)
S1—C2—C3—C40.9 (2)C3—C4—C9—S10.7 (2)
S10—C2—C3—C4179.35 (17)C16—C11—C12—C130.0 (4)
S1—C2—C3—I1179.47 (11)S10—C11—C12—C13179.1 (2)
S10—C2—C3—I11.0 (3)C11—C12—C13—C140.1 (4)
C2—C3—C4—C90.1 (3)C12—C13—C14—C150.1 (4)
I1—C3—C4—C9179.77 (14)C13—C14—C15—C160.0 (4)
C2—C3—C4—C5179.4 (2)C12—C11—C16—C150.1 (4)
I1—C3—C4—C50.2 (3)S10—C11—C16—C15178.93 (19)
C9—C4—C5—C60.2 (3)C14—C15—C16—C110.1 (4)
C3—C4—C5—C6179.7 (2)C8—C9—S1—C2178.9 (2)
C4—C5—C6—C70.9 (4)C4—C9—S1—C21.01 (17)
C5—C6—C7—C80.9 (4)C3—C2—S1—C91.09 (17)
C6—C7—C8—C90.3 (4)S10—C2—S1—C9179.73 (14)
C7—C8—C9—C40.3 (3)C3—C2—S10—C1183.5 (2)
C7—C8—C9—S1179.78 (19)S1—C2—S10—C1198.17 (15)
C5—C4—C9—C80.4 (3)C16—C11—S10—C220.5 (2)
C3—C4—C9—C8179.2 (2)C12—C11—S10—C2160.48 (19)
C5—C4—C9—S1179.70 (16)
3-Bromo-2-(phenylselanyl)benzo[b]selenophene (3) top
Crystal data top
C14H9BrSe2F(000) = 784
Mr = 415.04Dx = 2.021 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.3864 (11) ÅCell parameters from 9947 reflections
b = 13.6816 (11) Åθ = 2.9–27.1°
c = 8.0982 (6) ŵ = 8.33 mm1
β = 96.398 (3)°T = 297 K
V = 1363.82 (19) Å3Parallelepiped, colourless
Z = 40.17 × 0.17 × 0.12 mm
Data collection top
Bruker D8 Venture/Photon 100 CMOS
diffractometer
2976 independent reflections
Radiation source: fine-focus sealed tube2208 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 10.4167 pixels mm-1θmax = 27.0°, θmin = 3.0°
φ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1717
Tmin = 0.543, Tmax = 0.746l = 1010
43875 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0201P)2 + 2.3843P]
where P = (Fo2 + 2Fc2)/3
2976 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 0.90 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.27259 (4)0.68913 (3)0.08792 (6)0.06404 (14)
C20.2358 (3)0.5151 (2)0.0834 (5)0.0433 (8)
C30.2903 (3)0.5551 (3)0.0323 (5)0.0451 (8)
C40.3618 (3)0.4929 (3)0.1127 (4)0.0465 (9)
C50.4294 (3)0.5160 (4)0.2330 (5)0.0632 (12)
H50.4316180.5793350.2740380.076*
C60.4933 (4)0.4437 (5)0.2911 (5)0.0795 (16)
H60.5401020.4592280.3693950.095*
C70.4887 (4)0.3486 (5)0.2344 (6)0.0819 (16)
H70.5311560.3007490.2771710.098*
C80.4225 (4)0.3237 (4)0.1160 (6)0.0700 (13)
H80.4196210.2597770.0777990.084*
C90.3605 (3)0.3961 (3)0.0552 (5)0.0496 (9)
Se10.26699 (4)0.38117 (3)0.11070 (6)0.05761 (13)
Se100.13853 (4)0.58065 (3)0.21047 (6)0.06282 (15)
C110.1055 (3)0.4715 (2)0.3458 (4)0.0422 (8)
C120.1734 (4)0.4475 (3)0.4854 (5)0.0616 (11)
H120.2363770.4833150.5150930.074*
C130.1472 (5)0.3698 (4)0.5807 (6)0.0723 (14)
H130.1934890.3525500.6745220.087*
C140.0552 (4)0.3181 (3)0.5402 (6)0.0653 (13)
H140.0385330.2657370.6060890.078*
C150.0132 (4)0.3424 (3)0.4031 (6)0.0611 (11)
H150.0764850.3066150.3756720.073*
C160.0109 (3)0.4202 (3)0.3041 (5)0.0475 (9)
H160.0360030.4373730.2109100.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0617 (3)0.0504 (2)0.0805 (3)0.0051 (2)0.0103 (2)0.0238 (2)
C20.043 (2)0.0332 (17)0.054 (2)0.0027 (15)0.0087 (17)0.0002 (15)
C30.043 (2)0.0412 (19)0.051 (2)0.0057 (16)0.0034 (17)0.0038 (16)
C40.036 (2)0.063 (2)0.0385 (19)0.0047 (18)0.0016 (16)0.0023 (17)
C50.045 (2)0.098 (4)0.045 (2)0.002 (2)0.0015 (19)0.001 (2)
C60.052 (3)0.145 (5)0.042 (2)0.007 (3)0.008 (2)0.008 (3)
C70.070 (3)0.117 (5)0.057 (3)0.027 (3)0.001 (3)0.026 (3)
C80.070 (3)0.075 (3)0.063 (3)0.016 (2)0.001 (2)0.021 (2)
C90.045 (2)0.057 (2)0.046 (2)0.0023 (18)0.0009 (17)0.0117 (18)
Se10.0678 (3)0.0342 (2)0.0741 (3)0.00042 (18)0.0227 (2)0.00167 (18)
Se100.0762 (3)0.0350 (2)0.0840 (3)0.00590 (19)0.0385 (3)0.00663 (19)
C110.046 (2)0.0352 (18)0.048 (2)0.0015 (16)0.0148 (17)0.0002 (15)
C120.051 (3)0.061 (3)0.070 (3)0.000 (2)0.008 (2)0.002 (2)
C130.089 (4)0.066 (3)0.058 (3)0.023 (3)0.009 (3)0.012 (2)
C140.095 (4)0.045 (2)0.060 (3)0.017 (2)0.030 (3)0.015 (2)
C150.063 (3)0.049 (2)0.075 (3)0.012 (2)0.024 (2)0.006 (2)
C160.046 (2)0.051 (2)0.045 (2)0.0014 (18)0.0037 (17)0.0043 (17)
Geometric parameters (Å, º) top
Br1—C31.895 (4)C8—H80.9300
C2—C31.333 (5)C9—Se11.881 (4)
C2—Se11.881 (3)Se10—C111.923 (3)
C2—Se101.894 (3)C11—C121.372 (5)
C3—C41.435 (5)C11—C161.375 (5)
C4—C51.391 (5)C12—C131.374 (6)
C4—C91.404 (6)C12—H120.9300
C5—C61.381 (7)C13—C141.350 (7)
C5—H50.9300C13—H130.9300
C6—C71.383 (8)C14—C151.361 (6)
C6—H60.9300C14—H140.9300
C7—C81.372 (7)C15—C161.385 (5)
C7—H70.9300C15—H150.9300
C8—C91.378 (6)C16—H160.9300
C3—C2—Se1111.6 (3)C8—C9—Se1126.1 (4)
C3—C2—Se10126.2 (3)C4—C9—Se1111.7 (3)
Se1—C2—Se10122.15 (18)C9—Se1—C286.85 (16)
C2—C3—C4117.5 (3)C2—Se10—C1197.51 (14)
C2—C3—Br1120.7 (3)C12—C11—C16120.5 (4)
C4—C3—Br1121.8 (3)C12—C11—Se10120.4 (3)
C5—C4—C9118.4 (4)C16—C11—Se10119.1 (3)
C5—C4—C3129.3 (4)C11—C12—C13119.2 (4)
C9—C4—C3112.3 (3)C11—C12—H12120.4
C6—C5—C4119.3 (5)C13—C12—H12120.4
C6—C5—H5120.3C14—C13—C12121.0 (4)
C4—C5—H5120.3C14—C13—H13119.5
C5—C6—C7120.9 (5)C12—C13—H13119.5
C5—C6—H6119.5C13—C14—C15120.1 (4)
C7—C6—H6119.5C13—C14—H14119.9
C8—C7—C6121.0 (5)C15—C14—H14119.9
C8—C7—H7119.5C14—C15—C16120.4 (4)
C6—C7—H7119.5C14—C15—H15119.8
C7—C8—C9118.1 (5)C16—C15—H15119.8
C7—C8—H8120.9C11—C16—C15118.9 (4)
C9—C8—H8120.9C11—C16—H16120.5
C8—C9—C4122.2 (4)C15—C16—H16120.5
Se1—C2—C3—C40.7 (5)C5—C4—C9—Se1178.4 (3)
Se10—C2—C3—C4178.9 (3)C3—C4—C9—Se10.9 (4)
Se1—C2—C3—Br1179.03 (19)C8—C9—Se1—C2179.9 (4)
Se10—C2—C3—Br11.4 (5)C4—C9—Se1—C20.5 (3)
C2—C3—C4—C5178.2 (4)C3—C2—Se1—C90.1 (3)
Br1—C3—C4—C52.1 (6)Se10—C2—Se1—C9179.5 (2)
C2—C3—C4—C91.1 (5)C3—C2—Se10—C11177.6 (4)
Br1—C3—C4—C9178.6 (3)Se1—C2—Se10—C111.9 (3)
C9—C4—C5—C60.4 (6)C16—C11—C12—C131.7 (6)
C3—C4—C5—C6178.8 (4)Se10—C11—C12—C13179.3 (3)
C4—C5—C6—C71.7 (7)C11—C12—C13—C141.0 (7)
C5—C6—C7—C81.6 (8)C12—C13—C14—C150.1 (7)
C6—C7—C8—C90.1 (7)C13—C14—C15—C160.0 (7)
C7—C8—C9—C41.2 (6)C12—C11—C16—C151.5 (6)
C7—C8—C9—Se1178.2 (3)Se10—C11—C16—C15179.2 (3)
C5—C4—C9—C81.0 (6)C14—C15—C16—C110.7 (6)
C3—C4—C9—C8179.6 (4)
3-Iodo-2-(phenylselanyl)benzo[b]selenophene (4) top
Crystal data top
C14H9ISe2F(000) = 856
Mr = 462.03Dx = 2.175 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.9606 (6) ÅCell parameters from 9830 reflections
b = 13.5999 (7) Åθ = 3.0–27.9°
c = 8.0448 (4) ŵ = 7.40 mm1
β = 95.585 (2)°T = 292 K
V = 1411.27 (12) Å3Parallelepiped, colourless
Z = 40.51 × 0.47 × 0.24 mm
Data collection top
Bruker D8 Venture/Photon 100 CMOS
diffractometer
3391 independent reflections
Radiation source: fine-focus sealed tube2702 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 10.4167 pixels mm-1θmax = 28.0°, θmin = 3.0°
φ and ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1717
Tmin = 0.390, Tmax = 0.746l = 1010
54241 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.083All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.030P)2 + 4.781P]
where P = (Fo2 + 2Fc2)/3
3391 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 1.14 e Å3
0 restraintsΔρmin = 1.82 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.7614 (3)0.4907 (3)0.4123 (5)0.0348 (9)
C30.7104 (3)0.4513 (3)0.5349 (5)0.0353 (9)
C40.6366 (3)0.5137 (4)0.6061 (5)0.0395 (10)
C50.5726 (4)0.4915 (5)0.7306 (6)0.0511 (13)
C60.5065 (4)0.5634 (6)0.7810 (7)0.0655 (18)
C70.5049 (5)0.6563 (6)0.7130 (8)0.0693 (19)
C80.5669 (5)0.6814 (5)0.5885 (7)0.0587 (15)
C90.6321 (4)0.6082 (4)0.5366 (6)0.0447 (11)
C110.8883 (3)0.5295 (3)0.1453 (5)0.0354 (9)
C120.9754 (4)0.5864 (4)0.1749 (6)0.0407 (10)
C130.9950 (4)0.6605 (4)0.0638 (7)0.0512 (13)
C140.9290 (5)0.6751 (4)0.0757 (7)0.0569 (15)
C150.8411 (6)0.6181 (5)0.1068 (8)0.0673 (17)
C160.8210 (5)0.5442 (5)0.0037 (8)0.0566 (14)
I10.74197 (2)0.30752 (2)0.61759 (4)0.04627 (11)
Se10.72215 (4)0.62182 (4)0.36770 (7)0.05061 (15)
Se100.86334 (4)0.42591 (4)0.29872 (7)0.04875 (15)
H50.575 (4)0.430 (4)0.777 (6)0.033 (12)*
H60.465 (5)0.541 (5)0.859 (8)0.08 (2)*
H80.571 (5)0.750 (5)0.540 (8)0.069 (19)*
H70.459 (5)0.703 (5)0.757 (8)0.08 (2)*
H121.022 (4)0.576 (4)0.263 (7)0.052 (16)*
H131.057 (5)0.701 (5)0.085 (8)0.068 (18)*
H140.941 (6)0.724 (6)0.147 (9)0.09 (2)*
H150.793 (6)0.631 (5)0.196 (9)0.09 (2)*
H160.768 (5)0.507 (5)0.015 (8)0.08 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.035 (2)0.028 (2)0.041 (2)0.0025 (17)0.0056 (18)0.0003 (17)
C30.033 (2)0.036 (2)0.037 (2)0.0010 (17)0.0029 (17)0.0001 (18)
C40.034 (2)0.050 (3)0.034 (2)0.0012 (19)0.0009 (17)0.0065 (19)
C50.041 (3)0.072 (4)0.039 (3)0.004 (2)0.003 (2)0.007 (3)
C60.044 (3)0.111 (6)0.042 (3)0.007 (3)0.008 (2)0.015 (3)
C70.062 (4)0.090 (5)0.054 (3)0.033 (3)0.000 (3)0.024 (3)
C80.064 (3)0.059 (4)0.051 (3)0.023 (3)0.006 (3)0.014 (3)
C90.040 (2)0.050 (3)0.043 (3)0.007 (2)0.000 (2)0.009 (2)
C110.037 (2)0.032 (2)0.039 (2)0.0015 (17)0.0112 (18)0.0031 (17)
C120.040 (2)0.042 (3)0.040 (2)0.004 (2)0.008 (2)0.003 (2)
C130.054 (3)0.039 (3)0.064 (3)0.012 (2)0.021 (3)0.004 (2)
C140.079 (4)0.038 (3)0.057 (3)0.008 (3)0.025 (3)0.014 (2)
C150.076 (4)0.070 (4)0.054 (3)0.013 (3)0.008 (3)0.007 (3)
C160.052 (3)0.055 (3)0.061 (3)0.009 (3)0.006 (3)0.001 (3)
I10.04859 (18)0.04025 (18)0.05068 (19)0.00477 (13)0.00843 (13)0.01099 (13)
Se10.0609 (3)0.0314 (3)0.0616 (3)0.0050 (2)0.0163 (2)0.0066 (2)
Se100.0558 (3)0.0320 (3)0.0628 (3)0.0051 (2)0.0282 (2)0.0073 (2)
Geometric parameters (Å, º) top
C2—C31.351 (6)C8—H81.01 (7)
C2—Se11.880 (4)C9—Se11.885 (5)
C2—Se101.895 (4)C11—C121.370 (6)
C3—C41.438 (6)C11—C161.380 (7)
C3—I12.093 (4)C11—Se101.921 (4)
C4—C51.393 (7)C12—C131.387 (7)
C4—C91.402 (7)C12—H120.90 (6)
C5—C61.386 (8)C13—C141.358 (9)
C5—H50.92 (5)C13—H130.97 (6)
C6—C71.377 (10)C14—C151.381 (9)
C6—H60.92 (7)C14—H140.90 (7)
C7—C81.386 (10)C15—C161.383 (9)
C7—H70.96 (7)C15—H150.92 (7)
C8—C91.396 (7)C16—H160.86 (7)
C3—C2—Se1111.9 (3)C8—C9—Se1125.5 (5)
C3—C2—Se10125.6 (3)C4—C9—Se1111.9 (3)
Se1—C2—Se10122.5 (2)C12—C11—C16120.4 (5)
C2—C3—C4116.7 (4)C12—C11—Se10119.3 (4)
C2—C3—I1120.5 (3)C16—C11—Se10120.3 (4)
C4—C3—I1122.8 (3)C11—C12—C13119.8 (5)
C5—C4—C9118.7 (5)C11—C12—H12122 (4)
C5—C4—C3128.6 (5)C13—C12—H12118 (4)
C9—C4—C3112.7 (4)C14—C13—C12119.9 (5)
C6—C5—C4119.1 (6)C14—C13—H13120 (4)
C6—C5—H5122 (3)C12—C13—H13120 (4)
C4—C5—H5119 (3)C13—C14—C15120.7 (5)
C7—C6—C5121.1 (6)C13—C14—H14120 (5)
C7—C6—H6127 (4)C15—C14—H14119 (5)
C5—C6—H6112 (5)C14—C15—C16119.7 (6)
C6—C7—C8121.8 (5)C14—C15—H15121 (5)
C6—C7—H7117 (4)C16—C15—H15119 (5)
C8—C7—H7122 (4)C11—C16—C15119.5 (5)
C7—C8—C9116.8 (6)C11—C16—H16119 (5)
C7—C8—H8124 (4)C15—C16—H16121 (5)
C9—C8—H8119 (4)C2—Se1—C986.8 (2)
C8—C9—C4122.5 (5)C2—Se10—C1197.92 (18)
Se1—C2—C3—C40.8 (5)C5—C4—C9—Se1178.7 (4)
Se10—C2—C3—C4179.3 (3)C3—C4—C9—Se11.6 (5)
Se1—C2—C3—I1177.8 (2)C16—C11—C12—C131.4 (7)
Se10—C2—C3—I10.7 (6)Se10—C11—C12—C13179.1 (4)
C2—C3—C4—C5178.7 (5)C11—C12—C13—C141.3 (8)
I1—C3—C4—C52.7 (7)C12—C13—C14—C151.2 (9)
C2—C3—C4—C91.6 (6)C13—C14—C15—C161.1 (10)
I1—C3—C4—C9177.0 (3)C12—C11—C16—C151.3 (8)
C9—C4—C5—C60.3 (7)Se10—C11—C16—C15178.9 (5)
C3—C4—C5—C6180.0 (5)C14—C15—C16—C111.1 (10)
C4—C5—C6—C71.5 (8)C3—C2—Se1—C90.1 (3)
C5—C6—C7—C81.8 (9)Se10—C2—Se1—C9178.5 (3)
C6—C7—C8—C90.8 (9)C8—C9—Se1—C2179.7 (5)
C7—C8—C9—C40.5 (8)C4—C9—Se1—C21.0 (4)
C7—C8—C9—Se1178.8 (4)C3—C2—Se10—C11177.6 (4)
C5—C4—C9—C80.7 (7)Se1—C2—Se10—C114.0 (3)
C3—C4—C9—C8179.1 (5)
 

Acknowledgements

ELQ and DSR thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for fellowships.

Funding information

Funding for this research was provided by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior e Brasil (CAPES) - Finance code 001; CNPq Process: 400400/2016-2; Fundação Araucária; Universidade Federal do Paraná.

References

First citationAn, Y., Oh, J., Chen, S., Lee, B., Lee, S. M., Han, D. & Yang, C. (2018). Polym. Chem. 9, 593–602.  Web of Science CrossRef CAS Google Scholar
First citationArsenyan, P., Paegle, E., Belyakov, S., Shestakova, I., Jaschenko, E., Domracheva, I. & Popelis, J. (2011). Eur. J. Med. Chem. 46, 3434–3443.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationArsenyan, P., Petrenko, A., Leitonas, K., Volyniuk, D., Simokaitiene, J., Klinavičius, T., Skuodis, E., Lee, J.-H. & Gražulevičius, J. V. (2019). Inorg. Chem. 58, 10174–10183.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAshraf, R. S., Meager, I., Nikolka, M., Kirkus, M., Planells, M., Schroeder, B. C., Holliday, S., Hurhangee, M., Nielsen, C. B., Sirringhaus, H. & McCulloch, L. (2015). J. Am. Chem. Soc. 137, 1314–1321.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, G., Liu, S., Xu, J., He, R., He, Z., Wu, H.-B., Yang, W., Zhang, B. & Cao, Y. (2017). ACS Appl. Mater. Interfaces. 9, 4778–4787.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhosh, T. & Lehmann, M. (2017). J. Mater. Chem. C. 5, 12308–12337.  Web of Science CrossRef CAS Google Scholar
First citationGrimsdale, A. C., Leok Chan, K., Martin, R. E., Jokisz, P. G. & Holmes, A. B. (2009). Chem. Rev. 109, 897–1091.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKeri, R. S., Chand, K., Budagumpi, S., Balappa Somappa, S., Patil, S. A. & Nagaraja, B. M. (2017). Eur. J. Med. Chem. 138, 1002–1033.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLee, S. M., Lee, H. R., Dutta, G., Lee, J., Oh, J. H. & Yang, G. (2019). Polym. Chem. 10, 2854–2862.  Web of Science CrossRef CAS Google Scholar
First citationLuz, E. Q., Silvério, G. L., Seckler, D., Lima, D. B., Santana, F. S., Barbosa, R. B., Montes D'Oca, C. R. & Rampon, D. S. (2021). Adv. Synth. Catal. 363, 2610–2618.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoud, A. B. A., Kirsch, G. & Peagle, E. (2017). Curr. Org. Synth. 14, 1091–1101.  Web of Science CrossRef Google Scholar
First citationMei, J., Diao, Y., Appleton, A. L., Fang, L. & Bao, Z. (2013). J. Am. Chem. Soc. 135, 6724–6746.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMukherjee, A., Zade, S., Singh, H. & Sunoj, R. (2010). Chem. Rev. 110, 4357–4416.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOstroverkhova, O. (2016). Chem. Rev. 116, 13279–13412.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPaegle, E., Domracheva, I., Turovska, B., Petrova, M., Kanepe-Lapsa, I., Gulbe, A., Liepinsh, E. & Arsenyan, P. (2016). Chem. Asian J. 11, 1929–1938.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRamesh, E., Shankar, M., Dana, S. & Sahoo, A. (2016). Org. Chem. Front. 3, 1126–1130.  Web of Science CSD CrossRef CAS Google Scholar
First citationShah, R. & Verma, P. K. (2018). Chem. Cent. J. 12, 1–22.  Web of Science CrossRef PubMed Google Scholar
First citationShahjad, A., Bhargav, R., Bhardwaj, D., Mishra, A. & Patra, A. (2017). Macromol. Chem. Phys. 218, 1700038–1700047.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTisovský, P., Gáplovský, A., Gmucová, K., Novota, M., Pavúk, M. & Weis, M. (2019). Org. Electron. 68, 121–128.  Google Scholar
First citationWei, J., Meng, D., Zhang, L. & Wang, Z. (2017). Chem. Asian J. 12, 1879–1882.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationXu, J., Yu, X., Yan, J. & Song, Q. (2017). Org. Lett. 19, 6292–6295.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYang, F., Cheng, S., Zhang, X., Ren, X., Li, R., Dong, H. & Hu, W. (2018). Adv. Mater. 30, 1702415–1702442.  Web of Science CrossRef Google Scholar
First citationZampetti, A., Minotto, A., Squeo, B. M., Gregoriou, V. G., Allard, S., Scherf, U., Chochos, C. L. & Cacialli, F. (2017). Sci. Rep. 7, 1–7.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZani, F., Vicini, P. & Incerti, M. (2004). Eur. J. Med. Chem. 39, 135–140.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds