research communications
Crystal structures of 3-halo-2-organochalcogenylbenzo[b]chalcogenophenes
aLaboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry, Federal University of Paraná-UFPR, PO Box 19061, Curitiba, PR, 81531-980, Brazil, bDepartment of Chemistry, Federal University of Paraná-UFPR, PO Box 19061, Curitiba, PR, 81531-980, Brazil, cDepartment of Biology, East Carolina University, Greenville, North Carolina, USA, dIOTO USA – 1997N Greene Street – Greenville, NC 27834, USA, eDepartment of Chemistry and Biology, Federal University of Technology - Paraná, Rua Deputado Heitor de Alencar Furtado, 5000, 81280-340, Curitiba, Brazil, and fIOTO INTERNATIONAL - Rodovia Gumercindo Boza 20088 – Campo Magro – PR, 83535-000, Brazil
*Correspondence e-mail: danielrampon@ufpr.br
The structure of the title compounds 3-bromo-2-(phenylsulfanyl)benzo[b]thiophene (C14H9BrS2; 1), 3-iodo-2-(phenylsulfanyl)benzo[b]thiophene (C14H9IS2; 2), 3-bromo-2-(phenylselanyl)benzo[b]selenophene (C14H9BrSe2; 3), and 3-iodo-2-(phenylselanyl)benzo[b]selenophene (C14H9ISe2; 4) were determined by single-crystal X-ray diffraction; all structures presented monoclinic (P21/c) symmetry. The phenyl group is distant from the halogen atom to minimize the repulsion for all structures. Moreover, the structures of 3 and 4 show an almost linear alignment of halogen–selenium–carbon atoms arising from the intramolecular orbital interaction between a lone pair of electrons on the halogen atom and the antibonding σ*Se–C orbital (nhalogen→σ*Se–C). This interaction leads to significant differences in the three-dimensional packing of the molecules, which are assembled through π–π and C—H⋯π interactions. These data provide a better comprehension of the intermolecular packing in benzo[b]chalcogenophenes, which is relevant for optoelectronic applications.
1. Chemical context
Chalcogenophenes derivatives are an attractive synthetic class of compounds with a wide range of relevant applications in medicinal chemistry (Keri et al., 2017; Mahmoud et al., 2017; Paegle et al., 2016), electrochemistry (Wei et al., 2017; Shahjad et al., 2017), agrochemistry (Zani et al., 2004) and as organic semiconductors (Yang et al., 2018; Ostroverkhova, 2016). π-extended benzo[b]chalcogenophenes derivatives have been widely studied as improved materials for optoelectronic devices such as organic photovoltaic cells (OPVs) (Ashraf et al., 2015; An et al., 2018; Chen et al., 2017), liquid-crystal displays (LCD) (Ghosh & Lehmann, 2017; Mei et al., 2013), organic light-emitting diodes (OLEDs) (Grimsdale et al., 2009; Zampetti et al., 2017; Arsenyan et al., 2019), and in organic field-effect transistors (OFETs) (Lee et al., 2019; Tisovský et al., 2019). Benzo[b]chalcogenophenes derivatives also show relevant biological activities as anti-tumor (Arsenyan et al., 2011) and anti-inflammatory agents (Shah et al., 2018). As part of our continuing work on benzo[b]chalcogenophenes (Luz et al., 2021), we report herein the crystallographic structural comparison of four 3-halo-2-(organochalcogenyl)benzo[b]chalcogenophene derivatives.
2. Structural commentary
The four organic compounds crystallize in the monoclinic P21/c and all atoms occupy unique positions. Compounds 1 and 2 are isostructural containing an identical 3-halo-2-(phenysulfanyl)benzo[b]thiophene unit with bromine (1) or iodine (2) at the C3 position of the benzo[b]thiophene ring (Figs. 1 and 2). The isostructural compounds 3 and 4 also contain identical 3-halo-2-(phenylselanyl)benzo[b]selenophene units with bromine (3) or iodine (4) at the C3 position of the benzo[b]selenophene ring (Figs. 3 and 4). The respective benzo[b]chalcogenophene rings and the phenylsulfanyl and phenyselanyl groups are planar. As expected, the carbon–selenium bonds in molecules 3 and 4 are longer than the respective carbon–sulfur bonds in molecules 1 and 2.
Conformational changes are observed when we compare molecules 1 and 2 containing sulfur atoms with molecules 3 and 4 containing selenium atoms, as described below. In molecules 1 and 2, the benzo[b]thiophene ring is twisted away from the plane of phenylsulfanyl group showing interplanar angles of 88.9 (8) and 87.9 (6)°, respectively (Figs. 5 and 6). Additionally, for 1 and 2 the S1—C2—S10—C11 torsion angles are −97.56 (14) and 98.17 (15)°, respectively. Molecules 3 and 4 also show the benzo[b]selenophene ring twisted away from the plane of the phenylselanyl group with interplanar angles of 80.4 (8) and 79.7 (7)°, respectively (Figs. 7 and 8). Conversely, the torsion angles (Se1—C2—Se10—C11) in molecules 3 and 4 are 1.9 (3) and −4.0 (3)°, respectively, quite different than the S1—C2—S10—C11 torsion angles in molecules 1 and 2. It is clear that the coplanarity between the phenyl and benzo[b]chalcogenophene rings is avoided in both pairs of molecules to minimize This structural arrangement is reinforced by the presence of the halogen atom at the C3 position of the benzo[b]chalcogenophene ring (Figs. 1, 2, 3 and 4). Nevertheless, there is an almost linear alignment between the atoms Br1—Se10—C11 (3) and I1—Se10—C11 (4), which cannot be explained by steric factors alone. For instance, if we consider merely the higher between the phenyl and benzo[b]selenophene rings arising from the lower intrinsic C11—Se10–C2 angle directing the conformation of molecules 3 and 4, the almost linear alignment between the atoms Br1—Se10—C11 (3) and I1—Se10—C11 (4) is still not fully understood. We have observed that the interatomic distances between the chalcogen and the halogen atoms [S10⋯Br1 (1) = 3.5061 (8) Å, S10⋯I1 (2) = 3.6310 (7) Å, Se10⋯Br (3) = 3.4196 (7) Å, Se10⋯-I (4) = 3.5260 (7) Å] are 0.14, 0.15, 0.33 and 0.35 Å shorter than the sum of the van der Waals radii of the respective two atoms in molecules 1, 2, 3, and 4, respectively (Bondi, 1964). The shorter interatomic distances Se10⋯Br and Se10⋯I and the remarkably almost linear alignment of the atoms in 3 [C11—Se10⋯Br1 = 152.95 (9)°] and in 4 [C11—Se10⋯I1 = 156.52 (1)°] when compared to molecules 1 [C11—S10⋯Br1 = 93.01 (7)°] and 2 [C11—S10⋯I1 = 91.35 (7)°] indicate a stabilizing intramolecular orbital interaction (3-center-4-electrons, 3c–4e) between a lone pair of electrons of the halogen atom and the antibonding σ*Se–C11 orbital (nhalogen→σ*Se–C11) (Mukherjee, 2010). The lower energy of the antibonding σ*Se–C11 orbital makes it a better acceptor when compared to the higher energy antibonding σ*S–C11 orbital, therefore making the intramolecular nhalogen→σ*Se–C11 orbital interaction in molecules 3 and 4 strong enough to change their molecular conformation.
3. Supramolecular features
The crystals of organic compounds 1 and 2 are related by an inversion center and assembled through C—H⋯π intermolecular interactions along the b-axis direction (Fig. 9). The weak C—H⋯π interactions are between the H5 atom and the centroid formed by atoms C11–C16 of the phenylsulfanyl group. The distances and angles comprising these contacts are 2.97 (2) Å, 137.1 (2)° for 1 and 2.93 (3) Å, 138.4 (2)° for 2. The structures 1 and 2 also show π–π stacking interactions between adjacent benzo[b]thiophene rings along the c-axis direction with centroid–centroid distances of 3.7166 (2) and 3.7602 (4) Å for 1 and 2, respectively (Fig. 9, for 1). On the other hand, in compounds 3 and 4 C—H⋯π interactions are not present. However, π–π stacking interactions involving adjacent benzo[b]thiophene rings are present along the a-axis direction, with centroid–centroid distances of 3.8139 (3) Å and 3.8772 (1) Å, respectively. Furthermore, π–π stacking interactions are observed along the b-axis direction between phenylsulfanyl groups related by an inversion center, with centroid–centroid distances of 3.6644 (2) and 3.7351 (1) Å for 3 and 4, respectively (Fig. 10, for 3).
4. Database survey
Several crystal structures of benzo[b]chalcogenophenes derivatives have been published. To the best of our knowledge, there are no studies about chalcogen atoms attached directly at position 2 of the benzo[b]chalcogenophene ring. With regard to benzo[b]thiophenes, Xu et al. (2017) described the structure of 3-(arylsulfonyl)benzo[b]thiophene obtained by single-crystal X-ray diffraction. Additionally, Ramesh et al. (2016) reported the structures of 6-fluoro-2,2-(diphenyl)benzo[b]thiophene and 6-isopropyl-2,2-(diphenyl)benzo[b]thiophene obtained by single-crystal X-ray diffraction studies.
5. Synthesis and crystallization
The structures reported here were obtained by the one-pot synthesis of 3-halo-2-organochalcogenylbenzo[b]chalcogenophenes from 1-(2,2-dibromovinyl)-2-organochalcogenylbenzenes. By this method, a series of 2,3-disubstituted benzo[b]chalcogenophenes were prepared in yields of ca 80% (Luz et al., 2021). The title compounds were prepared as follows:
3-Bromo-2-(phenylsulfanyl)benzo[b]thiophene (1)
To a Schlenk tube containing 1-(2,2-dibromovinyl)-2-butylsulfanylbenzene (0.25 mmol, 1.0 equiv.), diphenyl disulfide (0.125 mmol, 1.0 equiv.) was added in dry dimethyl sulfoxide (2.0 mL) followed by the addition of cesium carbonate (0.244 g, 0.75 mmol, 3.0 equiv.). The reaction system was heated to 383 K and stirred for 1.5 h. Then, the reaction mixture was cooled to room temperature and 2.5 equivalents of NBS (N-bromosuccinimide) in 2 mL of dichloromethane were slowly added (2.0 min) into the system. The reaction mixture was stirred at room temperature for 2 h. After this, the reaction solution was diluted in saturated thiosulfate solution (20 mL) and washed with ethyl acetate (3 × 10 mL). The organic phase was dried over magnesium sulfate and concentrated under reduced pressure. The product was further purified by flash using hexane as Colorless needle-shaped single crystals of 1 suitable for X-ray analysis were grown by slow evaporation of a concentrated ethyl acetate solution over several days at room temperature. Yield: 0.066 g (82%); withe solid, m.p. 337–340 K. 1H NMR (CDCl3, 400 MHz) δ (ppm) = 7.77–7.75 (m, 1 H); 7.70–7.68 (m, 1H); 7.58–7.55 (m, 2H); 7.44–7.40 (m, 1H); 7.36–7.30 (m, 4H). 13C{1H} NMR (CDCl3, 100 MHz) δ (ppm) = 141.1, 138.5, 135.9, 133.1, 129.5, 128.3, 126.4, 125.4, 125.2, 123.3, 121.9, 114.4. MS (Rel. Int.) m/z: 321 (84.0), 241 (100), 210 (63.4), 77 (54.8) HRMS: Calculated mass for C14H10BrS2 [M]+: 321.9302, found: 321.9310.
3-Iodo-2-(phenylsulfanyl)benzo[b]thiophene (2)
The first step for obtaining 2 was analogous to that described for 1. The reaction mixture was cooled to room temperature and 1.5 equivalents of I2 in 2 mL of dichloromethane were slowly added (2.0 min) into the system. The reaction mixture was stirred at room temperature for 3.5 h. After this, the reaction solution was diluted in saturated sodium thiosulfate solution (20 mL) and washed with ethyl acetate (3 × 10 mL). The organic phase was dried over magnesium sulfate and concentrated under reduced pressure. The product was further purified by flash using hexane as Colorless needle-shaped single crystals of 2 were obtained in the same way of 1. Yield: 0.073 g (79%); yellow solid, m.p. 325–327K. 1H NMR (CDCl3, 400 MHz) δ (ppm) = 7.72 (d, J = 8.0 Hz, 1 H); 7.66 (d, J = 7.6 Hz, 1 H); 7.44–7.40 (m, 2H); 7.34–7.21 (m, 5H). 13C{1H} NMR (CDCl3, 100 MHz) δ (ppm) = 141.5, 141.2, 136.5, 134.7, 130.3, 129.3, 127.7, 126.2, 126.0, 125.5, 122.1, 90.3. MS (Rel. Int.) m/z: 368 (94.3), 240 (100), 120 (50.3), 77 (10.5). HRMS: Calculated mass for C14H9IS2 [M]+: 367.9185, found: 367.9188.
3-Bromo-2-(phenylselnyl)benzo[b]selenophene (3)
To a Schlenk tube containing 1-(2,2-dibromovinyl)-2-butylselanylbenzene (0.25 mmol, 1.0 equiv.), diphenyl diselenide (0.125 mmol, 1.0 equiv.) was added in dry dimethyl sulfoxide (2.0 mL) followed by the addition of cesium carbonate (0.244 g, 0.75 mmol, 3.0 equiv.). The reaction system was heated to 384 K and stirred for 0.5 h. Then, the reaction mixture was cooled to room temperature and 2.5 equivalents of NBS (N-bromosuccinimide) in 2 mL of dichloromethane were slowly added (2.0 min) into the system. The reaction mixture was stirred at room temperature for 1 h. After this, the reaction solution was diluted in saturated sodium thiosulfate solution (20 mL) and washed with ethyl acetate (3 × 10 mL). The organic phase was dried over magnesium sulfate and concentrated under reduced pressure. The product were further purified by flash using hexane as Colorless needle-shaped single crystals of 3 were obtained in the same way as 1. Yield: 0.081 g (79%); yellow oil. 1H NMR (CDCl3, 400 MHz) δ (ppm) = 7.76 (dd, J = 8.1 and 1.0 Hz, 1H); 7.69–7.66 (m, 3H); 7.41–7.32 (m, 4H); 7.24 (ddd, J = 8.2, 7.3 and 1.3 Hz, 1H). 13C{1H} NMR (CDCl3, 100 MHz) δ (ppm) = 141.1, 140.6, 134.4, 129.6, 129.5, 129.4, 129.0, 125.4, 125.1, 125.0, 124.9, 112.9. MS (Rel. Int.) m/z: 416 (96.8), 336 (100), 256 (42.4), 77 (62.0).
3-Iodo-2-(phenylselanyl)benzo[b]selenophene (4)
The first step for obtaining 4 was similar to that described for 3. The reaction mixture was cooled to room temperature and 1.5 equivalents of I2 in 2 mL of dichloromethane were slowly added (2.0 min) into the system. The reaction was stirred at room temperature for 1 h. After this, the reaction solution was diluted in saturated sodium thiosulfate solution (20 mL) and washed with ethyl acetate (3 × 10 mL). The organic phase was dried over magnesium sulfate and concentrated under reduced pressure. The product was further purified by flash using hexane as Colorless needle single crystals of 4 were obtained in the same way of (1). Yield: 0.090 g (78%); Orange solid, m.p. 329–331 K. 1H NMR (CDCl3, 400 MHz) δ (ppm) = 7.73–7.64 (m, 4H); 7.41–7.33 (m, 4H); 7.23–7.20 (m, 1H). 13C{1H} NMR (CDCl3, 100 MHz) δ (ppm) = 143.9, 142.2, 134.9, 134.7, 129.8, 129.7, 129.1, 127.6, 125.7, 125.1, 88.9. MS (Rel. Int.) m/z: 464 (48.2), 334 (47.0), 256 (51.4), 77 (53.2), 51 (100).
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms of 1, 2 and 4 were located in difference-Fourier maps and were refined freely; the hydrogen atoms of 3 were included in idealized positions with aromatic C—H distances set to 0.93 Å and refined using a riding model Uiso(H) = 1.2Ueq(C).
details are summarized in Table 1Supporting information
https://doi.org/10.1107/S2056989022000962/jy2015sup1.cif
contains datablocks 1, 2, 3, 4, shelx. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989022000962/jy20151sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989022000962/jy20152sup3.hkl
Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S2056989022000962/jy20153sup4.hkl
Structure factors: contains datablock 4. DOI: https://doi.org/10.1107/S2056989022000962/jy20154sup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022000962/jy20151sup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989022000962/jy20152sup7.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989022000962/jy20153sup8.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989022000962/jy20154sup9.cml
For all structures, data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012).C14H9BrS2 | F(000) = 640 |
Mr = 321.24 | Dx = 1.669 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2471 (8) Å | Cell parameters from 9946 reflections |
b = 9.9562 (8) Å | θ = 2.6–28.0° |
c = 15.7601 (14) Å | µ = 3.51 mm−1 |
β = 98.967 (3)° | T = 296 K |
V = 1278.2 (2) Å3 | Parallelepiped, colourless |
Z = 4 | 0.28 × 0.21 × 0.14 mm |
Bruker D8 Venture/Photon 100 CMOS diffractometer | 3078 independent reflections |
Radiation source: fine-focus sealed tube | 2559 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 28.0°, θmin = 3.2° |
φ and ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −13→13 |
Tmin = 0.628, Tmax = 0.746 | l = −20→20 |
55020 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.073 | All H-atom parameters refined |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0347P)2 + 0.7059P] where P = (Fo2 + 2Fc2)/3 |
3078 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.76 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C2 | 0.1651 (3) | 0.3373 (2) | 0.41693 (14) | 0.0405 (5) | |
C3 | 0.2308 (2) | 0.4295 (2) | 0.47529 (13) | 0.0361 (4) | |
C4 | 0.1731 (2) | 0.56405 (19) | 0.45645 (12) | 0.0315 (4) | |
C5 | 0.2140 (3) | 0.6832 (2) | 0.50152 (14) | 0.0399 (4) | |
C6 | 0.1421 (3) | 0.8012 (2) | 0.47034 (16) | 0.0460 (5) | |
C7 | 0.0310 (3) | 0.8041 (2) | 0.39437 (16) | 0.0468 (5) | |
C8 | −0.0120 (3) | 0.6888 (2) | 0.34898 (14) | 0.0426 (5) | |
C9 | 0.0599 (2) | 0.56820 (19) | 0.38079 (12) | 0.0325 (4) | |
C11 | 0.3783 (3) | 0.1481 (2) | 0.36842 (14) | 0.0392 (4) | |
C12 | 0.4614 (3) | 0.0261 (2) | 0.38205 (16) | 0.0487 (5) | |
C13 | 0.6017 (3) | 0.0046 (3) | 0.34629 (17) | 0.0562 (6) | |
C14 | 0.6591 (3) | 0.1024 (3) | 0.29691 (18) | 0.0578 (6) | |
C15 | 0.5762 (3) | 0.2225 (3) | 0.28289 (16) | 0.0512 (6) | |
C16 | 0.4356 (3) | 0.2460 (2) | 0.31852 (14) | 0.0435 (5) | |
Br1 | 0.38366 (3) | 0.38960 (3) | 0.57285 (2) | 0.05735 (10) | |
S1 | 0.02548 (7) | 0.41026 (6) | 0.33534 (4) | 0.04409 (13) | |
S10 | 0.19752 (8) | 0.16429 (6) | 0.41634 (5) | 0.05842 (19) | |
H5 | 0.289 (3) | 0.680 (2) | 0.5496 (15) | 0.042 (6)* | |
H6 | 0.172 (3) | 0.880 (3) | 0.4980 (17) | 0.053 (7)* | |
H7 | −0.009 (4) | 0.887 (3) | 0.3766 (18) | 0.060 (8)* | |
H8 | −0.089 (3) | 0.691 (3) | 0.2997 (17) | 0.055 (7)* | |
H12 | 0.429 (3) | −0.039 (3) | 0.4186 (17) | 0.056 (7)* | |
H13 | 0.660 (4) | −0.081 (3) | 0.3556 (18) | 0.065 (8)* | |
H14 | 0.751 (4) | 0.092 (3) | 0.278 (2) | 0.073 (9)* | |
H15 | 0.613 (3) | 0.286 (3) | 0.2530 (18) | 0.058 (8)* | |
H16 | 0.379 (3) | 0.325 (3) | 0.3084 (17) | 0.058 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0426 (11) | 0.0318 (9) | 0.0515 (12) | 0.0038 (8) | 0.0207 (9) | 0.0049 (9) |
C3 | 0.0300 (9) | 0.0371 (10) | 0.0432 (10) | 0.0039 (7) | 0.0116 (8) | 0.0087 (8) |
C4 | 0.0281 (8) | 0.0343 (9) | 0.0337 (9) | 0.0004 (7) | 0.0100 (7) | 0.0047 (7) |
C5 | 0.0368 (10) | 0.0437 (11) | 0.0389 (11) | −0.0035 (8) | 0.0049 (8) | −0.0012 (9) |
C6 | 0.0514 (13) | 0.0329 (10) | 0.0562 (13) | −0.0040 (9) | 0.0160 (10) | −0.0046 (10) |
C7 | 0.0511 (13) | 0.0332 (10) | 0.0583 (14) | 0.0064 (9) | 0.0157 (10) | 0.0122 (10) |
C8 | 0.0433 (11) | 0.0431 (11) | 0.0405 (11) | 0.0038 (9) | 0.0038 (9) | 0.0130 (9) |
C9 | 0.0339 (9) | 0.0331 (9) | 0.0321 (9) | −0.0002 (7) | 0.0097 (7) | 0.0025 (7) |
C11 | 0.0416 (11) | 0.0342 (10) | 0.0429 (11) | −0.0005 (8) | 0.0103 (8) | −0.0054 (8) |
C12 | 0.0587 (14) | 0.0356 (11) | 0.0536 (13) | 0.0060 (10) | 0.0147 (11) | −0.0019 (10) |
C13 | 0.0590 (15) | 0.0477 (13) | 0.0632 (15) | 0.0141 (12) | 0.0134 (12) | −0.0077 (12) |
C14 | 0.0489 (14) | 0.0706 (17) | 0.0573 (15) | 0.0079 (12) | 0.0186 (11) | −0.0125 (13) |
C15 | 0.0492 (13) | 0.0611 (15) | 0.0452 (12) | −0.0055 (11) | 0.0135 (10) | 0.0010 (11) |
C16 | 0.0439 (11) | 0.0415 (11) | 0.0455 (12) | 0.0020 (9) | 0.0083 (9) | 0.0024 (9) |
Br1 | 0.03881 (13) | 0.06510 (17) | 0.06559 (17) | 0.00695 (10) | 0.00017 (10) | 0.02733 (12) |
S1 | 0.0519 (3) | 0.0402 (3) | 0.0404 (3) | −0.0055 (2) | 0.0080 (2) | −0.0061 (2) |
S10 | 0.0637 (4) | 0.0289 (3) | 0.0928 (5) | 0.0022 (2) | 0.0440 (4) | 0.0058 (3) |
C2—C3 | 1.352 (3) | C8—H8 | 0.92 (3) |
C2—S10 | 1.744 (2) | C9—S1 | 1.733 (2) |
C2—S1 | 1.745 (2) | C11—C16 | 1.381 (3) |
C3—C4 | 1.437 (3) | C11—C12 | 1.395 (3) |
C3—Br1 | 1.873 (2) | C11—S10 | 1.781 (2) |
C4—C9 | 1.396 (3) | C12—C13 | 1.380 (3) |
C4—C5 | 1.397 (3) | C12—H12 | 0.93 (3) |
C5—C6 | 1.373 (3) | C13—C14 | 1.376 (4) |
C5—H5 | 0.90 (2) | C13—H13 | 0.98 (3) |
C6—C7 | 1.390 (4) | C14—C15 | 1.377 (4) |
C6—H6 | 0.91 (3) | C14—H14 | 0.87 (3) |
C7—C8 | 1.369 (3) | C15—C16 | 1.385 (3) |
C7—H7 | 0.92 (3) | C15—H15 | 0.87 (3) |
C8—C9 | 1.397 (3) | C16—H16 | 0.91 (3) |
C3—C2—S10 | 128.98 (18) | C4—C9—S1 | 111.78 (14) |
C3—C2—S1 | 111.54 (15) | C8—C9—S1 | 126.76 (16) |
S10—C2—S1 | 119.44 (14) | C16—C11—C12 | 119.9 (2) |
C2—C3—C4 | 114.06 (18) | C16—C11—S10 | 124.14 (17) |
C2—C3—Br1 | 124.17 (16) | C12—C11—S10 | 115.92 (17) |
C4—C3—Br1 | 121.76 (15) | C13—C12—C11 | 119.7 (2) |
C9—C4—C5 | 119.07 (18) | C13—C12—H12 | 118.7 (16) |
C9—C4—C3 | 111.10 (17) | C11—C12—H12 | 121.4 (17) |
C5—C4—C3 | 129.82 (18) | C14—C13—C12 | 120.3 (2) |
C6—C5—C4 | 119.2 (2) | C14—C13—H13 | 120.0 (17) |
C6—C5—H5 | 122.1 (16) | C12—C13—H13 | 119.7 (17) |
C4—C5—H5 | 118.6 (16) | C13—C14—C15 | 119.9 (2) |
C5—C6—C7 | 121.1 (2) | C13—C14—H14 | 121 (2) |
C5—C6—H6 | 119.9 (17) | C15—C14—H14 | 119 (2) |
C7—C6—H6 | 118.9 (17) | C14—C15—C16 | 120.5 (2) |
C8—C7—C6 | 121.0 (2) | C14—C15—H15 | 120.8 (18) |
C8—C7—H7 | 123.0 (18) | C16—C15—H15 | 118.7 (18) |
C6—C7—H7 | 116.0 (18) | C11—C16—C15 | 119.6 (2) |
C7—C8—C9 | 118.2 (2) | C11—C16—H16 | 119.7 (18) |
C7—C8—H8 | 120.6 (18) | C15—C16—H16 | 120.7 (18) |
C9—C8—H8 | 121.2 (18) | C9—S1—C2 | 91.51 (10) |
C4—C9—C8 | 121.46 (19) | C2—S10—C11 | 103.35 (10) |
S10—C2—C3—C4 | −178.52 (15) | C7—C8—C9—S1 | 179.94 (17) |
S1—C2—C3—C4 | −0.7 (2) | C16—C11—C12—C13 | 0.7 (4) |
S10—C2—C3—Br1 | 1.5 (3) | S10—C11—C12—C13 | 179.2 (2) |
S1—C2—C3—Br1 | 179.28 (10) | C11—C12—C13—C14 | −0.4 (4) |
C2—C3—C4—C9 | 0.2 (2) | C12—C13—C14—C15 | −0.1 (4) |
Br1—C3—C4—C9 | −179.83 (13) | C13—C14—C15—C16 | 0.3 (4) |
C2—C3—C4—C5 | −179.69 (19) | C12—C11—C16—C15 | −0.5 (3) |
Br1—C3—C4—C5 | 0.3 (3) | S10—C11—C16—C15 | −178.85 (18) |
C9—C4—C5—C6 | 0.0 (3) | C14—C15—C16—C11 | 0.0 (4) |
C3—C4—C5—C6 | 179.8 (2) | C4—C9—S1—C2 | −0.72 (15) |
C4—C5—C6—C7 | −0.7 (3) | C8—C9—S1—C2 | 179.07 (19) |
C5—C6—C7—C8 | 1.0 (4) | C3—C2—S1—C9 | 0.82 (16) |
C6—C7—C8—C9 | −0.5 (3) | S10—C2—S1—C9 | 178.86 (13) |
C5—C4—C9—C8 | 0.5 (3) | C3—C2—S10—C11 | −84.8 (2) |
C3—C4—C9—C8 | −179.35 (18) | S1—C2—S10—C11 | 97.56 (14) |
C5—C4—C9—S1 | −179.67 (14) | C16—C11—S10—C2 | −19.9 (2) |
C3—C4—C9—S1 | 0.5 (2) | C12—C11—S10—C2 | 161.70 (18) |
C7—C8—C9—C4 | −0.3 (3) |
C14H9IS2 | F(000) = 712 |
Mr = 368.23 | Dx = 1.863 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.4872 (3) Å | Cell parameters from 9841 reflections |
b = 9.9629 (4) Å | θ = 2.6–27.5° |
c = 15.6485 (7) Å | µ = 2.73 mm−1 |
β = 97.052 (1)° | T = 294 K |
V = 1313.18 (9) Å3 | Parallelepiped, colourless |
Z = 4 | 0.16 × 0.13 × 0.05 mm |
Bruker D8 Venture/Photon 100 CMOS diffractometer | 3001 independent reflections |
Radiation source: fine-focus sealed tube | 2585 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 27.5°, θmin = 2.6° |
φ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −12→12 |
Tmin = 0.690, Tmax = 0.746 | l = −20→20 |
56046 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.051 | All H-atom parameters refined |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0218P)2 + 0.8146P] where P = (Fo2 + 2Fc2)/3 |
3001 reflections | (Δ/σ)max = 0.001 |
190 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.85 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C2 | 0.6667 (3) | 0.8425 (2) | −0.08322 (15) | 0.0350 (5) | |
C3 | 0.7271 (2) | 0.9337 (2) | −0.02410 (14) | 0.0308 (4) | |
C4 | 0.6724 (2) | 1.0681 (2) | −0.04289 (13) | 0.0279 (4) | |
C5 | 0.7097 (3) | 1.1876 (2) | 0.00262 (15) | 0.0351 (5) | |
C6 | 0.6420 (3) | 1.3057 (2) | −0.02866 (17) | 0.0415 (5) | |
C7 | 0.5388 (3) | 1.3091 (2) | −0.10526 (17) | 0.0434 (6) | |
C8 | 0.5000 (3) | 1.1942 (2) | −0.15099 (15) | 0.0397 (5) | |
C9 | 0.5672 (2) | 1.0732 (2) | −0.11926 (13) | 0.0306 (4) | |
C11 | 0.8796 (3) | 0.6562 (2) | −0.13223 (14) | 0.0359 (5) | |
C12 | 0.9622 (3) | 0.5360 (2) | −0.11839 (17) | 0.0459 (6) | |
C13 | 1.1021 (3) | 0.5172 (3) | −0.15346 (19) | 0.0547 (7) | |
C14 | 1.1602 (3) | 0.6167 (3) | −0.20217 (19) | 0.0539 (7) | |
C15 | 1.0784 (3) | 0.7353 (3) | −0.21568 (17) | 0.0466 (6) | |
C16 | 0.9382 (3) | 0.7558 (2) | −0.18094 (16) | 0.0408 (5) | |
S1 | 0.53633 (8) | 0.91592 (6) | −0.16492 (4) | 0.04052 (14) | |
S10 | 0.69891 (8) | 0.66946 (6) | −0.08560 (5) | 0.04924 (16) | |
I1 | 0.88517 (2) | 0.88685 (2) | 0.08375 (2) | 0.04613 (7) | |
H5 | 0.779 (3) | 1.183 (3) | 0.0538 (17) | 0.047 (7)* | |
H6 | 0.667 (3) | 1.387 (3) | −0.0011 (18) | 0.048 (8)* | |
H7 | 0.502 (3) | 1.394 (3) | −0.1290 (19) | 0.059 (9)* | |
H8 | 0.434 (3) | 1.196 (3) | −0.2021 (17) | 0.049 (7)* | |
H12 | 0.924 (3) | 0.471 (3) | −0.0845 (17) | 0.049 (7)* | |
H13 | 1.162 (3) | 0.435 (3) | −0.1465 (19) | 0.061 (8)* | |
H14 | 1.251 (4) | 0.604 (3) | −0.229 (2) | 0.071 (10)* | |
H15 | 1.116 (3) | 0.797 (3) | −0.2450 (17) | 0.043 (7)* | |
H16 | 0.882 (3) | 0.829 (3) | −0.1901 (18) | 0.053 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0372 (11) | 0.0290 (11) | 0.0406 (12) | 0.0014 (9) | 0.0124 (9) | 0.0018 (9) |
C3 | 0.0288 (10) | 0.0313 (10) | 0.0331 (11) | 0.0020 (8) | 0.0070 (8) | 0.0060 (8) |
C4 | 0.0265 (9) | 0.0296 (10) | 0.0286 (10) | −0.0001 (8) | 0.0083 (8) | 0.0024 (8) |
C5 | 0.0355 (11) | 0.0351 (12) | 0.0347 (12) | −0.0020 (9) | 0.0036 (9) | −0.0015 (9) |
C6 | 0.0468 (13) | 0.0287 (12) | 0.0501 (14) | −0.0016 (10) | 0.0104 (11) | −0.0024 (10) |
C7 | 0.0490 (14) | 0.0316 (12) | 0.0501 (14) | 0.0057 (10) | 0.0089 (11) | 0.0110 (10) |
C8 | 0.0425 (12) | 0.0415 (13) | 0.0345 (12) | 0.0017 (10) | 0.0020 (10) | 0.0118 (10) |
C9 | 0.0330 (10) | 0.0313 (10) | 0.0281 (10) | −0.0021 (8) | 0.0066 (8) | 0.0019 (8) |
C11 | 0.0447 (12) | 0.0290 (10) | 0.0344 (11) | −0.0015 (9) | 0.0058 (9) | −0.0068 (9) |
C12 | 0.0600 (16) | 0.0310 (13) | 0.0482 (15) | 0.0038 (11) | 0.0125 (12) | −0.0003 (11) |
C13 | 0.0622 (17) | 0.0407 (14) | 0.0622 (18) | 0.0121 (13) | 0.0111 (14) | −0.0098 (13) |
C14 | 0.0503 (15) | 0.0624 (18) | 0.0507 (16) | 0.0050 (13) | 0.0131 (12) | −0.0176 (14) |
C15 | 0.0530 (15) | 0.0495 (15) | 0.0386 (13) | −0.0092 (12) | 0.0100 (11) | −0.0004 (12) |
C16 | 0.0479 (13) | 0.0340 (13) | 0.0406 (13) | 0.0002 (11) | 0.0052 (10) | 0.0022 (10) |
S1 | 0.0494 (3) | 0.0374 (3) | 0.0340 (3) | −0.0051 (2) | 0.0024 (2) | −0.0054 (2) |
S10 | 0.0561 (4) | 0.0257 (3) | 0.0708 (4) | −0.0024 (3) | 0.0276 (3) | 0.0005 (3) |
I1 | 0.03649 (9) | 0.04740 (10) | 0.05267 (11) | 0.00385 (7) | −0.00193 (6) | 0.01649 (7) |
C2—C3 | 1.353 (3) | C8—H8 | 0.92 (3) |
C2—S1 | 1.745 (2) | C9—S1 | 1.728 (2) |
C2—S10 | 1.746 (2) | C11—C16 | 1.381 (3) |
C3—C4 | 1.436 (3) | C11—C12 | 1.391 (3) |
C3—I1 | 2.076 (2) | C11—S10 | 1.782 (2) |
C4—C9 | 1.402 (3) | C12—C13 | 1.380 (4) |
C4—C5 | 1.403 (3) | C12—H12 | 0.92 (3) |
C5—C6 | 1.374 (3) | C13—C14 | 1.378 (4) |
C5—H5 | 0.93 (3) | C13—H13 | 0.96 (3) |
C6—C7 | 1.395 (4) | C14—C15 | 1.374 (4) |
C6—H6 | 0.93 (3) | C14—H14 | 0.93 (3) |
C7—C8 | 1.369 (4) | C15—C16 | 1.383 (4) |
C7—H7 | 0.96 (3) | C15—H15 | 0.85 (3) |
C8—C9 | 1.399 (3) | C16—H16 | 0.87 (3) |
C3—C2—S1 | 111.84 (17) | C8—C9—S1 | 126.88 (17) |
C3—C2—S10 | 129.12 (18) | C4—C9—S1 | 111.62 (15) |
S1—C2—S10 | 119.02 (14) | C16—C11—C12 | 119.7 (2) |
C2—C3—C4 | 113.64 (19) | C16—C11—S10 | 123.96 (19) |
C2—C3—I1 | 123.89 (16) | C12—C11—S10 | 116.29 (19) |
C4—C3—I1 | 122.46 (16) | C13—C12—C11 | 119.8 (3) |
C9—C4—C5 | 118.87 (19) | C13—C12—H12 | 120.7 (17) |
C9—C4—C3 | 111.34 (19) | C11—C12—H12 | 119.5 (17) |
C5—C4—C3 | 129.8 (2) | C14—C13—C12 | 120.4 (3) |
C6—C5—C4 | 119.2 (2) | C14—C13—H13 | 117.1 (18) |
C6—C5—H5 | 122.5 (17) | C12—C13—H13 | 122.5 (18) |
C4—C5—H5 | 118.3 (17) | C15—C14—C13 | 119.7 (3) |
C5—C6—C7 | 121.2 (2) | C15—C14—H14 | 118 (2) |
C5—C6—H6 | 121.4 (17) | C13—C14—H14 | 122 (2) |
C7—C6—H6 | 117.3 (17) | C14—C15—C16 | 120.7 (3) |
C8—C7—C6 | 120.9 (2) | C14—C15—H15 | 119.1 (18) |
C8—C7—H7 | 119.3 (18) | C16—C15—H15 | 120.2 (18) |
C6—C7—H7 | 119.5 (18) | C11—C16—C15 | 119.7 (2) |
C7—C8—C9 | 118.3 (2) | C11—C16—H16 | 117.6 (19) |
C7—C8—H8 | 121.6 (18) | C15—C16—H16 | 122.6 (19) |
C9—C8—H8 | 120.0 (18) | C9—S1—C2 | 91.54 (11) |
C8—C9—C4 | 121.5 (2) | C2—S10—C11 | 103.12 (11) |
S1—C2—C3—C4 | −0.9 (2) | C3—C4—C9—S1 | 0.7 (2) |
S10—C2—C3—C4 | −179.35 (17) | C16—C11—C12—C13 | 0.0 (4) |
S1—C2—C3—I1 | 179.47 (11) | S10—C11—C12—C13 | 179.1 (2) |
S10—C2—C3—I1 | 1.0 (3) | C11—C12—C13—C14 | −0.1 (4) |
C2—C3—C4—C9 | 0.1 (3) | C12—C13—C14—C15 | 0.1 (4) |
I1—C3—C4—C9 | 179.77 (14) | C13—C14—C15—C16 | 0.0 (4) |
C2—C3—C4—C5 | −179.4 (2) | C12—C11—C16—C15 | 0.1 (4) |
I1—C3—C4—C5 | 0.2 (3) | S10—C11—C16—C15 | −178.93 (19) |
C9—C4—C5—C6 | 0.2 (3) | C14—C15—C16—C11 | −0.1 (4) |
C3—C4—C5—C6 | 179.7 (2) | C8—C9—S1—C2 | 178.9 (2) |
C4—C5—C6—C7 | −0.9 (4) | C4—C9—S1—C2 | −1.01 (17) |
C5—C6—C7—C8 | 0.9 (4) | C3—C2—S1—C9 | 1.09 (17) |
C6—C7—C8—C9 | −0.3 (4) | S10—C2—S1—C9 | 179.73 (14) |
C7—C8—C9—C4 | −0.3 (3) | C3—C2—S10—C11 | −83.5 (2) |
C7—C8—C9—S1 | 179.78 (19) | S1—C2—S10—C11 | 98.17 (15) |
C5—C4—C9—C8 | 0.4 (3) | C16—C11—S10—C2 | −20.5 (2) |
C3—C4—C9—C8 | −179.2 (2) | C12—C11—S10—C2 | 160.48 (19) |
C5—C4—C9—S1 | −179.70 (16) |
C14H9BrSe2 | F(000) = 784 |
Mr = 415.04 | Dx = 2.021 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.3864 (11) Å | Cell parameters from 9947 reflections |
b = 13.6816 (11) Å | θ = 2.9–27.1° |
c = 8.0982 (6) Å | µ = 8.33 mm−1 |
β = 96.398 (3)° | T = 297 K |
V = 1363.82 (19) Å3 | Parallelepiped, colourless |
Z = 4 | 0.17 × 0.17 × 0.12 mm |
Bruker D8 Venture/Photon 100 CMOS diffractometer | 2976 independent reflections |
Radiation source: fine-focus sealed tube | 2208 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.060 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 27.0°, θmin = 3.0° |
φ and ω scans | h = −15→15 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −17→17 |
Tmin = 0.543, Tmax = 0.746 | l = −10→10 |
43875 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.069 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0201P)2 + 2.3843P] where P = (Fo2 + 2Fc2)/3 |
2976 reflections | (Δ/σ)max = 0.001 |
154 parameters | Δρmax = 0.93 e Å−3 |
0 restraints | Δρmin = −0.90 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.27259 (4) | 0.68913 (3) | −0.08792 (6) | 0.06404 (14) | |
C2 | 0.2358 (3) | 0.5151 (2) | 0.0834 (5) | 0.0433 (8) | |
C3 | 0.2903 (3) | 0.5551 (3) | −0.0323 (5) | 0.0451 (8) | |
C4 | 0.3618 (3) | 0.4929 (3) | −0.1127 (4) | 0.0465 (9) | |
C5 | 0.4294 (3) | 0.5160 (4) | −0.2330 (5) | 0.0632 (12) | |
H5 | 0.431618 | 0.579335 | −0.274038 | 0.076* | |
C6 | 0.4933 (4) | 0.4437 (5) | −0.2911 (5) | 0.0795 (16) | |
H6 | 0.540102 | 0.459228 | −0.369395 | 0.095* | |
C7 | 0.4887 (4) | 0.3486 (5) | −0.2344 (6) | 0.0819 (16) | |
H7 | 0.531156 | 0.300749 | −0.277171 | 0.098* | |
C8 | 0.4225 (4) | 0.3237 (4) | −0.1160 (6) | 0.0700 (13) | |
H8 | 0.419621 | 0.259777 | −0.077799 | 0.084* | |
C9 | 0.3605 (3) | 0.3961 (3) | −0.0552 (5) | 0.0496 (9) | |
Se1 | 0.26699 (4) | 0.38117 (3) | 0.11070 (6) | 0.05761 (13) | |
Se10 | 0.13853 (4) | 0.58065 (3) | 0.21047 (6) | 0.06282 (15) | |
C11 | 0.1055 (3) | 0.4715 (2) | 0.3458 (4) | 0.0422 (8) | |
C12 | 0.1734 (4) | 0.4475 (3) | 0.4854 (5) | 0.0616 (11) | |
H12 | 0.236377 | 0.483315 | 0.515093 | 0.074* | |
C13 | 0.1472 (5) | 0.3698 (4) | 0.5807 (6) | 0.0723 (14) | |
H13 | 0.193489 | 0.352550 | 0.674522 | 0.087* | |
C14 | 0.0552 (4) | 0.3181 (3) | 0.5402 (6) | 0.0653 (13) | |
H14 | 0.038533 | 0.265737 | 0.606089 | 0.078* | |
C15 | −0.0132 (4) | 0.3424 (3) | 0.4031 (6) | 0.0611 (11) | |
H15 | −0.076485 | 0.306615 | 0.375672 | 0.073* | |
C16 | 0.0109 (3) | 0.4202 (3) | 0.3041 (5) | 0.0475 (9) | |
H16 | −0.036003 | 0.437373 | 0.210910 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0617 (3) | 0.0504 (2) | 0.0805 (3) | −0.0051 (2) | 0.0103 (2) | 0.0238 (2) |
C2 | 0.043 (2) | 0.0332 (17) | 0.054 (2) | −0.0027 (15) | 0.0087 (17) | −0.0002 (15) |
C3 | 0.043 (2) | 0.0412 (19) | 0.051 (2) | −0.0057 (16) | 0.0034 (17) | 0.0038 (16) |
C4 | 0.036 (2) | 0.063 (2) | 0.0385 (19) | −0.0047 (18) | −0.0016 (16) | −0.0023 (17) |
C5 | 0.045 (2) | 0.098 (4) | 0.045 (2) | −0.002 (2) | −0.0015 (19) | 0.001 (2) |
C6 | 0.052 (3) | 0.145 (5) | 0.042 (2) | 0.007 (3) | 0.008 (2) | −0.008 (3) |
C7 | 0.070 (3) | 0.117 (5) | 0.057 (3) | 0.027 (3) | 0.001 (3) | −0.026 (3) |
C8 | 0.070 (3) | 0.075 (3) | 0.063 (3) | 0.016 (2) | −0.001 (2) | −0.021 (2) |
C9 | 0.045 (2) | 0.057 (2) | 0.046 (2) | 0.0023 (18) | 0.0009 (17) | −0.0117 (18) |
Se1 | 0.0678 (3) | 0.0342 (2) | 0.0741 (3) | 0.00042 (18) | 0.0227 (2) | 0.00167 (18) |
Se10 | 0.0762 (3) | 0.0350 (2) | 0.0840 (3) | 0.00590 (19) | 0.0385 (3) | 0.00663 (19) |
C11 | 0.046 (2) | 0.0352 (18) | 0.048 (2) | 0.0015 (16) | 0.0148 (17) | −0.0002 (15) |
C12 | 0.051 (3) | 0.061 (3) | 0.070 (3) | 0.000 (2) | −0.008 (2) | −0.002 (2) |
C13 | 0.089 (4) | 0.066 (3) | 0.058 (3) | 0.023 (3) | −0.009 (3) | 0.012 (2) |
C14 | 0.095 (4) | 0.045 (2) | 0.060 (3) | 0.017 (2) | 0.030 (3) | 0.015 (2) |
C15 | 0.063 (3) | 0.049 (2) | 0.075 (3) | −0.012 (2) | 0.024 (2) | −0.006 (2) |
C16 | 0.046 (2) | 0.051 (2) | 0.045 (2) | −0.0014 (18) | 0.0037 (17) | −0.0043 (17) |
Br1—C3 | 1.895 (4) | C8—H8 | 0.9300 |
C2—C3 | 1.333 (5) | C9—Se1 | 1.881 (4) |
C2—Se1 | 1.881 (3) | Se10—C11 | 1.923 (3) |
C2—Se10 | 1.894 (3) | C11—C12 | 1.372 (5) |
C3—C4 | 1.435 (5) | C11—C16 | 1.375 (5) |
C4—C5 | 1.391 (5) | C12—C13 | 1.374 (6) |
C4—C9 | 1.404 (6) | C12—H12 | 0.9300 |
C5—C6 | 1.381 (7) | C13—C14 | 1.350 (7) |
C5—H5 | 0.9300 | C13—H13 | 0.9300 |
C6—C7 | 1.383 (8) | C14—C15 | 1.361 (6) |
C6—H6 | 0.9300 | C14—H14 | 0.9300 |
C7—C8 | 1.372 (7) | C15—C16 | 1.385 (5) |
C7—H7 | 0.9300 | C15—H15 | 0.9300 |
C8—C9 | 1.378 (6) | C16—H16 | 0.9300 |
C3—C2—Se1 | 111.6 (3) | C8—C9—Se1 | 126.1 (4) |
C3—C2—Se10 | 126.2 (3) | C4—C9—Se1 | 111.7 (3) |
Se1—C2—Se10 | 122.15 (18) | C9—Se1—C2 | 86.85 (16) |
C2—C3—C4 | 117.5 (3) | C2—Se10—C11 | 97.51 (14) |
C2—C3—Br1 | 120.7 (3) | C12—C11—C16 | 120.5 (4) |
C4—C3—Br1 | 121.8 (3) | C12—C11—Se10 | 120.4 (3) |
C5—C4—C9 | 118.4 (4) | C16—C11—Se10 | 119.1 (3) |
C5—C4—C3 | 129.3 (4) | C11—C12—C13 | 119.2 (4) |
C9—C4—C3 | 112.3 (3) | C11—C12—H12 | 120.4 |
C6—C5—C4 | 119.3 (5) | C13—C12—H12 | 120.4 |
C6—C5—H5 | 120.3 | C14—C13—C12 | 121.0 (4) |
C4—C5—H5 | 120.3 | C14—C13—H13 | 119.5 |
C5—C6—C7 | 120.9 (5) | C12—C13—H13 | 119.5 |
C5—C6—H6 | 119.5 | C13—C14—C15 | 120.1 (4) |
C7—C6—H6 | 119.5 | C13—C14—H14 | 119.9 |
C8—C7—C6 | 121.0 (5) | C15—C14—H14 | 119.9 |
C8—C7—H7 | 119.5 | C14—C15—C16 | 120.4 (4) |
C6—C7—H7 | 119.5 | C14—C15—H15 | 119.8 |
C7—C8—C9 | 118.1 (5) | C16—C15—H15 | 119.8 |
C7—C8—H8 | 120.9 | C11—C16—C15 | 118.9 (4) |
C9—C8—H8 | 120.9 | C11—C16—H16 | 120.5 |
C8—C9—C4 | 122.2 (4) | C15—C16—H16 | 120.5 |
Se1—C2—C3—C4 | −0.7 (5) | C5—C4—C9—Se1 | 178.4 (3) |
Se10—C2—C3—C4 | 178.9 (3) | C3—C4—C9—Se1 | −0.9 (4) |
Se1—C2—C3—Br1 | 179.03 (19) | C8—C9—Se1—C2 | 179.9 (4) |
Se10—C2—C3—Br1 | −1.4 (5) | C4—C9—Se1—C2 | 0.5 (3) |
C2—C3—C4—C5 | −178.2 (4) | C3—C2—Se1—C9 | 0.1 (3) |
Br1—C3—C4—C5 | 2.1 (6) | Se10—C2—Se1—C9 | −179.5 (2) |
C2—C3—C4—C9 | 1.1 (5) | C3—C2—Se10—C11 | −177.6 (4) |
Br1—C3—C4—C9 | −178.6 (3) | Se1—C2—Se10—C11 | 1.9 (3) |
C9—C4—C5—C6 | −0.4 (6) | C16—C11—C12—C13 | 1.7 (6) |
C3—C4—C5—C6 | 178.8 (4) | Se10—C11—C12—C13 | 179.3 (3) |
C4—C5—C6—C7 | 1.7 (7) | C11—C12—C13—C14 | −1.0 (7) |
C5—C6—C7—C8 | −1.6 (8) | C12—C13—C14—C15 | 0.1 (7) |
C6—C7—C8—C9 | 0.1 (7) | C13—C14—C15—C16 | 0.0 (7) |
C7—C8—C9—C4 | 1.2 (6) | C12—C11—C16—C15 | −1.5 (6) |
C7—C8—C9—Se1 | −178.2 (3) | Se10—C11—C16—C15 | −179.2 (3) |
C5—C4—C9—C8 | −1.0 (6) | C14—C15—C16—C11 | 0.7 (6) |
C3—C4—C9—C8 | 179.6 (4) |
C14H9ISe2 | F(000) = 856 |
Mr = 462.03 | Dx = 2.175 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.9606 (6) Å | Cell parameters from 9830 reflections |
b = 13.5999 (7) Å | θ = 3.0–27.9° |
c = 8.0448 (4) Å | µ = 7.40 mm−1 |
β = 95.585 (2)° | T = 292 K |
V = 1411.27 (12) Å3 | Parallelepiped, colourless |
Z = 4 | 0.51 × 0.47 × 0.24 mm |
Bruker D8 Venture/Photon 100 CMOS diffractometer | 3391 independent reflections |
Radiation source: fine-focus sealed tube | 2702 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 28.0°, θmin = 3.0° |
φ and ω scans | h = −17→17 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −17→17 |
Tmin = 0.390, Tmax = 0.746 | l = −10→10 |
54241 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.083 | All H-atom parameters refined |
S = 1.04 | w = 1/[σ2(Fo2) + (0.030P)2 + 4.781P] where P = (Fo2 + 2Fc2)/3 |
3391 reflections | (Δ/σ)max = 0.001 |
190 parameters | Δρmax = 1.14 e Å−3 |
0 restraints | Δρmin = −1.82 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C2 | 0.7614 (3) | 0.4907 (3) | 0.4123 (5) | 0.0348 (9) | |
C3 | 0.7104 (3) | 0.4513 (3) | 0.5349 (5) | 0.0353 (9) | |
C4 | 0.6366 (3) | 0.5137 (4) | 0.6061 (5) | 0.0395 (10) | |
C5 | 0.5726 (4) | 0.4915 (5) | 0.7306 (6) | 0.0511 (13) | |
C6 | 0.5065 (4) | 0.5634 (6) | 0.7810 (7) | 0.0655 (18) | |
C7 | 0.5049 (5) | 0.6563 (6) | 0.7130 (8) | 0.0693 (19) | |
C8 | 0.5669 (5) | 0.6814 (5) | 0.5885 (7) | 0.0587 (15) | |
C9 | 0.6321 (4) | 0.6082 (4) | 0.5366 (6) | 0.0447 (11) | |
C11 | 0.8883 (3) | 0.5295 (3) | 0.1453 (5) | 0.0354 (9) | |
C12 | 0.9754 (4) | 0.5864 (4) | 0.1749 (6) | 0.0407 (10) | |
C13 | 0.9950 (4) | 0.6605 (4) | 0.0638 (7) | 0.0512 (13) | |
C14 | 0.9290 (5) | 0.6751 (4) | −0.0757 (7) | 0.0569 (15) | |
C15 | 0.8411 (6) | 0.6181 (5) | −0.1068 (8) | 0.0673 (17) | |
C16 | 0.8210 (5) | 0.5442 (5) | 0.0037 (8) | 0.0566 (14) | |
I1 | 0.74197 (2) | 0.30752 (2) | 0.61759 (4) | 0.04627 (11) | |
Se1 | 0.72215 (4) | 0.62182 (4) | 0.36770 (7) | 0.05061 (15) | |
Se10 | 0.86334 (4) | 0.42591 (4) | 0.29872 (7) | 0.04875 (15) | |
H5 | 0.575 (4) | 0.430 (4) | 0.777 (6) | 0.033 (12)* | |
H6 | 0.465 (5) | 0.541 (5) | 0.859 (8) | 0.08 (2)* | |
H8 | 0.571 (5) | 0.750 (5) | 0.540 (8) | 0.069 (19)* | |
H7 | 0.459 (5) | 0.703 (5) | 0.757 (8) | 0.08 (2)* | |
H12 | 1.022 (4) | 0.576 (4) | 0.263 (7) | 0.052 (16)* | |
H13 | 1.057 (5) | 0.701 (5) | 0.085 (8) | 0.068 (18)* | |
H14 | 0.941 (6) | 0.724 (6) | −0.147 (9) | 0.09 (2)* | |
H15 | 0.793 (6) | 0.631 (5) | −0.196 (9) | 0.09 (2)* | |
H16 | 0.768 (5) | 0.507 (5) | −0.015 (8) | 0.08 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.035 (2) | 0.028 (2) | 0.041 (2) | −0.0025 (17) | 0.0056 (18) | −0.0003 (17) |
C3 | 0.033 (2) | 0.036 (2) | 0.037 (2) | −0.0010 (17) | 0.0029 (17) | −0.0001 (18) |
C4 | 0.034 (2) | 0.050 (3) | 0.034 (2) | −0.0012 (19) | −0.0009 (17) | −0.0065 (19) |
C5 | 0.041 (3) | 0.072 (4) | 0.039 (3) | 0.004 (2) | 0.003 (2) | −0.007 (3) |
C6 | 0.044 (3) | 0.111 (6) | 0.042 (3) | 0.007 (3) | 0.008 (2) | −0.015 (3) |
C7 | 0.062 (4) | 0.090 (5) | 0.054 (3) | 0.033 (3) | 0.000 (3) | −0.024 (3) |
C8 | 0.064 (3) | 0.059 (4) | 0.051 (3) | 0.023 (3) | −0.006 (3) | −0.014 (3) |
C9 | 0.040 (2) | 0.050 (3) | 0.043 (3) | 0.007 (2) | 0.000 (2) | −0.009 (2) |
C11 | 0.037 (2) | 0.032 (2) | 0.039 (2) | 0.0015 (17) | 0.0112 (18) | −0.0031 (17) |
C12 | 0.040 (2) | 0.042 (3) | 0.040 (2) | −0.004 (2) | 0.008 (2) | −0.003 (2) |
C13 | 0.054 (3) | 0.039 (3) | 0.064 (3) | −0.012 (2) | 0.021 (3) | −0.004 (2) |
C14 | 0.079 (4) | 0.038 (3) | 0.057 (3) | 0.008 (3) | 0.025 (3) | 0.014 (2) |
C15 | 0.076 (4) | 0.070 (4) | 0.054 (3) | 0.013 (3) | −0.008 (3) | 0.007 (3) |
C16 | 0.052 (3) | 0.055 (3) | 0.061 (3) | −0.009 (3) | −0.006 (3) | 0.001 (3) |
I1 | 0.04859 (18) | 0.04025 (18) | 0.05068 (19) | −0.00477 (13) | 0.00843 (13) | 0.01099 (13) |
Se1 | 0.0609 (3) | 0.0314 (3) | 0.0616 (3) | 0.0050 (2) | 0.0163 (2) | 0.0066 (2) |
Se10 | 0.0558 (3) | 0.0320 (3) | 0.0628 (3) | 0.0051 (2) | 0.0282 (2) | 0.0073 (2) |
C2—C3 | 1.351 (6) | C8—H8 | 1.01 (7) |
C2—Se1 | 1.880 (4) | C9—Se1 | 1.885 (5) |
C2—Se10 | 1.895 (4) | C11—C12 | 1.370 (6) |
C3—C4 | 1.438 (6) | C11—C16 | 1.380 (7) |
C3—I1 | 2.093 (4) | C11—Se10 | 1.921 (4) |
C4—C5 | 1.393 (7) | C12—C13 | 1.387 (7) |
C4—C9 | 1.402 (7) | C12—H12 | 0.90 (6) |
C5—C6 | 1.386 (8) | C13—C14 | 1.358 (9) |
C5—H5 | 0.92 (5) | C13—H13 | 0.97 (6) |
C6—C7 | 1.377 (10) | C14—C15 | 1.381 (9) |
C6—H6 | 0.92 (7) | C14—H14 | 0.90 (7) |
C7—C8 | 1.386 (10) | C15—C16 | 1.383 (9) |
C7—H7 | 0.96 (7) | C15—H15 | 0.92 (7) |
C8—C9 | 1.396 (7) | C16—H16 | 0.86 (7) |
C3—C2—Se1 | 111.9 (3) | C8—C9—Se1 | 125.5 (5) |
C3—C2—Se10 | 125.6 (3) | C4—C9—Se1 | 111.9 (3) |
Se1—C2—Se10 | 122.5 (2) | C12—C11—C16 | 120.4 (5) |
C2—C3—C4 | 116.7 (4) | C12—C11—Se10 | 119.3 (4) |
C2—C3—I1 | 120.5 (3) | C16—C11—Se10 | 120.3 (4) |
C4—C3—I1 | 122.8 (3) | C11—C12—C13 | 119.8 (5) |
C5—C4—C9 | 118.7 (5) | C11—C12—H12 | 122 (4) |
C5—C4—C3 | 128.6 (5) | C13—C12—H12 | 118 (4) |
C9—C4—C3 | 112.7 (4) | C14—C13—C12 | 119.9 (5) |
C6—C5—C4 | 119.1 (6) | C14—C13—H13 | 120 (4) |
C6—C5—H5 | 122 (3) | C12—C13—H13 | 120 (4) |
C4—C5—H5 | 119 (3) | C13—C14—C15 | 120.7 (5) |
C7—C6—C5 | 121.1 (6) | C13—C14—H14 | 120 (5) |
C7—C6—H6 | 127 (4) | C15—C14—H14 | 119 (5) |
C5—C6—H6 | 112 (5) | C14—C15—C16 | 119.7 (6) |
C6—C7—C8 | 121.8 (5) | C14—C15—H15 | 121 (5) |
C6—C7—H7 | 117 (4) | C16—C15—H15 | 119 (5) |
C8—C7—H7 | 122 (4) | C11—C16—C15 | 119.5 (5) |
C7—C8—C9 | 116.8 (6) | C11—C16—H16 | 119 (5) |
C7—C8—H8 | 124 (4) | C15—C16—H16 | 121 (5) |
C9—C8—H8 | 119 (4) | C2—Se1—C9 | 86.8 (2) |
C8—C9—C4 | 122.5 (5) | C2—Se10—C11 | 97.92 (18) |
Se1—C2—C3—C4 | 0.8 (5) | C5—C4—C9—Se1 | −178.7 (4) |
Se10—C2—C3—C4 | 179.3 (3) | C3—C4—C9—Se1 | 1.6 (5) |
Se1—C2—C3—I1 | −177.8 (2) | C16—C11—C12—C13 | 1.4 (7) |
Se10—C2—C3—I1 | 0.7 (6) | Se10—C11—C12—C13 | 179.1 (4) |
C2—C3—C4—C5 | 178.7 (5) | C11—C12—C13—C14 | −1.3 (8) |
I1—C3—C4—C5 | −2.7 (7) | C12—C13—C14—C15 | 1.2 (9) |
C2—C3—C4—C9 | −1.6 (6) | C13—C14—C15—C16 | −1.1 (10) |
I1—C3—C4—C9 | 177.0 (3) | C12—C11—C16—C15 | −1.3 (8) |
C9—C4—C5—C6 | 0.3 (7) | Se10—C11—C16—C15 | −178.9 (5) |
C3—C4—C5—C6 | 180.0 (5) | C14—C15—C16—C11 | 1.1 (10) |
C4—C5—C6—C7 | −1.5 (8) | C3—C2—Se1—C9 | 0.1 (3) |
C5—C6—C7—C8 | 1.8 (9) | Se10—C2—Se1—C9 | −178.5 (3) |
C6—C7—C8—C9 | −0.8 (9) | C8—C9—Se1—C2 | 179.7 (5) |
C7—C8—C9—C4 | −0.5 (8) | C4—C9—Se1—C2 | −1.0 (4) |
C7—C8—C9—Se1 | 178.8 (4) | C3—C2—Se10—C11 | 177.6 (4) |
C5—C4—C9—C8 | 0.7 (7) | Se1—C2—Se10—C11 | −4.0 (3) |
C3—C4—C9—C8 | −179.1 (5) |
Acknowledgements
ELQ and DSR thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for fellowships.
Funding information
Funding for this research was provided by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior e Brasil (CAPES) - Finance code 001; CNPq Process: 400400/2016-2; Fundação Araucária; Universidade Federal do Paraná.
References
An, Y., Oh, J., Chen, S., Lee, B., Lee, S. M., Han, D. & Yang, C. (2018). Polym. Chem. 9, 593–602. Web of Science CrossRef CAS Google Scholar
Arsenyan, P., Paegle, E., Belyakov, S., Shestakova, I., Jaschenko, E., Domracheva, I. & Popelis, J. (2011). Eur. J. Med. Chem. 46, 3434–3443. Web of Science CSD CrossRef CAS PubMed Google Scholar
Arsenyan, P., Petrenko, A., Leitonas, K., Volyniuk, D., Simokaitiene, J., Klinavičius, T., Skuodis, E., Lee, J.-H. & Gražulevičius, J. V. (2019). Inorg. Chem. 58, 10174–10183. Web of Science CrossRef CAS PubMed Google Scholar
Ashraf, R. S., Meager, I., Nikolka, M., Kirkus, M., Planells, M., Schroeder, B. C., Holliday, S., Hurhangee, M., Nielsen, C. B., Sirringhaus, H. & McCulloch, L. (2015). J. Am. Chem. Soc. 137, 1314–1321. Web of Science CrossRef CAS PubMed Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2015). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, G., Liu, S., Xu, J., He, R., He, Z., Wu, H.-B., Yang, W., Zhang, B. & Cao, Y. (2017). ACS Appl. Mater. Interfaces. 9, 4778–4787. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ghosh, T. & Lehmann, M. (2017). J. Mater. Chem. C. 5, 12308–12337. Web of Science CrossRef CAS Google Scholar
Grimsdale, A. C., Leok Chan, K., Martin, R. E., Jokisz, P. G. & Holmes, A. B. (2009). Chem. Rev. 109, 897–1091. Web of Science CrossRef PubMed CAS Google Scholar
Keri, R. S., Chand, K., Budagumpi, S., Balappa Somappa, S., Patil, S. A. & Nagaraja, B. M. (2017). Eur. J. Med. Chem. 138, 1002–1033. Web of Science CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lee, S. M., Lee, H. R., Dutta, G., Lee, J., Oh, J. H. & Yang, G. (2019). Polym. Chem. 10, 2854–2862. Web of Science CrossRef CAS Google Scholar
Luz, E. Q., Silvério, G. L., Seckler, D., Lima, D. B., Santana, F. S., Barbosa, R. B., Montes D'Oca, C. R. & Rampon, D. S. (2021). Adv. Synth. Catal. 363, 2610–2618. Web of Science CSD CrossRef CAS Google Scholar
Mahmoud, A. B. A., Kirsch, G. & Peagle, E. (2017). Curr. Org. Synth. 14, 1091–1101. Web of Science CrossRef Google Scholar
Mei, J., Diao, Y., Appleton, A. L., Fang, L. & Bao, Z. (2013). J. Am. Chem. Soc. 135, 6724–6746. Web of Science CrossRef CAS PubMed Google Scholar
Mukherjee, A., Zade, S., Singh, H. & Sunoj, R. (2010). Chem. Rev. 110, 4357–4416. Web of Science CrossRef CAS PubMed Google Scholar
Ostroverkhova, O. (2016). Chem. Rev. 116, 13279–13412. Web of Science CrossRef CAS PubMed Google Scholar
Paegle, E., Domracheva, I., Turovska, B., Petrova, M., Kanepe-Lapsa, I., Gulbe, A., Liepinsh, E. & Arsenyan, P. (2016). Chem. Asian J. 11, 1929–1938. Web of Science CrossRef CAS PubMed Google Scholar
Ramesh, E., Shankar, M., Dana, S. & Sahoo, A. (2016). Org. Chem. Front. 3, 1126–1130. Web of Science CSD CrossRef CAS Google Scholar
Shah, R. & Verma, P. K. (2018). Chem. Cent. J. 12, 1–22. Web of Science CrossRef PubMed Google Scholar
Shahjad, A., Bhargav, R., Bhardwaj, D., Mishra, A. & Patra, A. (2017). Macromol. Chem. Phys. 218, 1700038–1700047. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tisovský, P., Gáplovský, A., Gmucová, K., Novota, M., Pavúk, M. & Weis, M. (2019). Org. Electron. 68, 121–128. Google Scholar
Wei, J., Meng, D., Zhang, L. & Wang, Z. (2017). Chem. Asian J. 12, 1879–1882. Web of Science CSD CrossRef CAS PubMed Google Scholar
Xu, J., Yu, X., Yan, J. & Song, Q. (2017). Org. Lett. 19, 6292–6295. Web of Science CSD CrossRef CAS PubMed Google Scholar
Yang, F., Cheng, S., Zhang, X., Ren, X., Li, R., Dong, H. & Hu, W. (2018). Adv. Mater. 30, 1702415–1702442. Web of Science CrossRef Google Scholar
Zampetti, A., Minotto, A., Squeo, B. M., Gregoriou, V. G., Allard, S., Scherf, U., Chochos, C. L. & Cacialli, F. (2017). Sci. Rep. 7, 1–7. Web of Science CrossRef CAS PubMed Google Scholar
Zani, F., Vicini, P. & Incerti, M. (2004). Eur. J. Med. Chem. 39, 135–140. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.