research communications
of 1,1′,2,2′,4,4′-hexaisopropylmagnesocene
aSaarland University, Faculty of Natural Sciences and Technology, Department of Chemistry, Campus Saarbrücken, 66123 Saarbrücken, Germany
*Correspondence e-mail: andre.schaefer@uni-saarland.de
The title compound, 3Cp2Mg or [Mg(C14H23)2], was synthesized from the corresponding triisopropylcyclopentadiene by treatment with n-butyl-sec-butylmagnesium. The structural characterization by single-crystal X-ray diffraction revealed that the compound crystallizes in the triclinic P with half a molecule per and a staggered arrangement of the cyclopentadienide ligands.
Keywords: crystal structure; magnesocene; cyclopentadienide.
CCDC reference: 2149608
1. Chemical context
Magnesocene (Cp2Mg) was initially reported by Wilkinson and Fischer and co-workers in 1954, just a few years after the discovery of ferrocene (Wilkinson & Cotton, 1954; Fischer & Hafner, 1954). Although magnesocene exhibits distinctively different chemical properties, it is isostructural to ferrocene and marked the beginning of main-group metallocene chemistry. One of the key differences in reactivity between alkaline-earth and ferrocenes is that the central atoms of the former exhibit Lewis acidic character. Therefore, many crystal structures of magnesocenes are actually of donor complexes, such as magnesocene mono- and bis(tetrahydrofuran) adduct, Cp2Mg·(thf) and Cp2Mg·(thf)2 (Lehmkuhl et al., 1986; Jaenschke et al., 2003; Kim et al., 2007). Nevertheless, solvent-free crystal structures are also known, especially in case of highly substituted magnesocenes (Morley et al., 1987; Gardiner et al., 1991; Weber et al., 2002; Vollet et al., 2003; Deacon et al., 2015; Müller et al., 2021). Hanusa and coworkers had reported the synthesis of 1,1′,2,2′,4,4′-hexaisopropylmagnesocene, 3Cp2Mg, -calcocene, 3Cp2Ca, -strontocene, 3Cp2Sr, and -barocene, 3Cp2Ba (the triisopropylcyclopentadienide ligand is commonly abbreviated as `3Cp'), via treatment of potassium 1,2,4-triisopropylcyclopentadienide, 3CpK, with the corresponding metal(II) bromide or iodide and described the magnesocene to be oily or waxy in composition (Burkey et al., 1993, 1994). Thus, no was obtained of the title compound. We found that the title compound may also be obtained through treatment of an isomeric mixture of triisopropylcyclopentadiene with n-butyl-sec-butylmagnesium in hexane.
2. Structural commentary
The title compound crystallizes in the triclinic P with half a molecule per due to an inversion center at the magnesium atom position (Fig. 1), resulting in C2h symmetry for the molecule. Accordingly, the Cp rings adopt a staggered arrangement with the single isopropyl group at the C4 position facing the two isopropyl groups at the C1 and C2 positions and are perfectly coplanar to each other (Fig. 2). The C—C bond lengths within the Cp ring are almost equal [C1—C2: 1.4237 (18) Å; C2—C3: 1.4268 (17) Å; C3—C4: 1.4172 (19) Å; C4—C5: 1.4220 (18) Å; C5—C1: 1.4277 (18) Å] implying a high degree of 6π electron aromaticity, and the Mg⋯Cpcentroid distance is 1.9852 (1) Å, which is within the normal range [e.g.: Cp2Mg: 1.9897 (5) Å] for magnesocenes (Bünder & Weiss, 1975).
3. Supramolecular features
The molecules of the title compound are well separated from each other in the a and 3b), with distances of dmin (Mg1⋯Mg1i) = 8.7025 (4) Å, dmax (Mg1⋯Mg1iii) = 9.3031 (3) Å and daxial (Mg1⋯Mg1iv) = 9.2033 (4) Å [symmetry codes: (i) −1 + x, y, z; (iii) 1 + x, −1 + y, z; (iv) x, y, 1 + z]. The angles between the equatorial Mg atoms, the central magnesium atom and the axial magnesium atom are between θmin = 90.68° (Mg1iii—Mg1—Mg1iv) and θmax = 99.17° (Mg1ii—Mg1—Mg1iv).
with one magnesocene molecule per Each molecule has eight neighboring molecules, forming a distorted hexagonal bipyramidal coordination geometry (Fig. 3Each 3Cp2Mg moiety has eight neighboring molecules within the bc and ac planes (Fig. 4a and 4b), but only six neighboring molecules within the ab plane, forming an almost hexagonal layer (γ = 63.00°), but with the layers being congruent to each other (Fig. 4c).
4. Database survey
A search in the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) showed that 14 crystal structures of magnesocenes of the type (C5R5)2Mg had previously been reported. In this search, any type of donor complexes of magnesocenes of the form (C5R5)2Mg·Dn are not counted. The Mg⋯Cpcentroid bonding distances in these structures lie between 1.9562 (1) and 2.0628 (11) Å and the dihedral angles between the Cp planes are between 0° (co-planar geometry) and 17.892°. Thus, the bond distances and angles in the title compound are within normal ranges of known magnesocenes.
5. Synthesis and crystallization
Hanusa and coworkers had previously reported that 1,1′,2,2′,4,4′-hexaisopropylmagnesocene, 3Cp2Mg, could be obtained by the reaction of potassium 1,2,4-triisopropylcyclopentadienide with magnesium(II) bromide. However, in this work, we utilized dibutylmagnesium as a strong base to deprotonate the triisopropylcyclopentadiene (Fig. 5).
To a solution of 4.00 g (20.8 mmol) of an isomeric mixture of triisopropylcyclopentadiene in 100 mL of hexane were added 15.0 mL of a 0.7 M solution of n-butyl-sec-butylmagnesium in hexane (10.5 mmol). The light-yellow reaction solution was stirred at 333 K overnight. Subsequently, all volatiles were removed in vacuo and a yellow oil was obtained, from which the title compound crystallized over the course of one day at ambient temperature. The crystallized material was washed with small portions of hexane and dried in vacuo to obtain the title compound as a pure, colorless, crystalline solid in 43% yield (1.83 g; 4.50 mmol).
In addition to a structural characterization by single-crystal X-ray diffraction, the title compound was also characterized by 1H and 13C NMR spectroscopy: 1H NMR (400 MHz, C6D6, 295 K): δ (in ppm) = 1.07 [d, J = 7Hz, 12H, CH(CH3)2], 1.28 [d, J = 7Hz, 12H, CH(CH3)2], 1.36 [d, J = 7Hz, 12H, CH(CH3)2], 2.82–2.92 [m, 6H, CH(CH3)2], 5.77 (s, 4H, Cp-H); 1H NMR (400 MHz, DMSO-D6, 294 K): δ (in ppm) = 1.06 [d, J = 7Hz, 36H, CH(CH3)2], 2.68 [sep, J = 7Hz, 2H, CH(CH3)2], 2.76 [sep, J = 7Hz, 2H, CH(CH3)2], 4.94 (s, 4H, Cp-H); 13C{1H} NMR (101 MHz, C6D6, 295 K): δ (in ppm) = 24.0 (iPr), 24.4 (iPr), 26.4 (iPr), 26.6 (iPr), 28.7 (iPr), 98.7 (Cp), 125.3 (Cp), 128.6 (Cp); 13C{1H} NMR (101 MHz, DMSO-D6, 294 K): δ (in ppm) = 25.9 (iPr), 26.8 (iPr), 27.0 (iPr), 29.1 (iPr), 94.6 (Cp), 119.4 (Cp), 120.9 (Cp).
6. Refinement
Crystal data, data collection and structure . All non H-atoms were located in the electron density maps and refined anisotropically. C-bound H atoms were placed in positions of optimized geometry and treated as riding atoms: C—H = 1.00 Å (CH), 0.98 Å (CH3), and with Uiso(H) = kUeq(C), where k = 1.2 for CH and 1.5 for CH3.
details are summarized in Table 1Supporting information
CCDC reference: 2149608
https://doi.org/10.1107/S2056989022001189/pk2661sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022001189/pk2661Isup2.hkl
Data collection: APEX3 (Bruker, 2019); cell
SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b), shelXle (Hübschle et al., 2011); software used to prepare material for publication: publCIF (Westrip, 2010).[Mg(C14H23)2] | Z = 1 |
Mr = 406.96 | F(000) = 226 |
Triclinic, P1 | Dx = 1.060 Mg m−3 |
a = 8.7025 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.0903 (4) Å | Cell parameters from 7985 reflections |
c = 9.2033 (4) Å | θ = 2.5–27.1° |
α = 80.829 (2)° | µ = 0.08 mm−1 |
β = 81.151 (2)° | T = 133 K |
γ = 63.004 (1)° | Plate, yellow |
V = 637.68 (5) Å3 | 0.27 × 0.20 × 0.07 mm |
Bruker D8 Venture Photon II diffractometer | 2339 reflections with I > 2σ(I) |
Radiation source: INCOATEC IµS microfocus sealed tube | Rint = 0.046 |
φ and ω scans | θmax = 27.1°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −11→11 |
Tmin = 0.712, Tmax = 0.746 | k = −11→11 |
24343 measured reflections | l = −11→11 |
2808 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0357P)2 + 0.2575P] where P = (Fo2 + 2Fc2)/3 |
2808 reflections | (Δ/σ)max < 0.001 |
138 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Mg1 | 0.500000 | 0.500000 | 0.500000 | 0.02198 (16) | |
C1 | 0.58902 (16) | 0.29370 (15) | 0.34104 (14) | 0.0220 (3) | |
C2 | 0.68748 (15) | 0.38509 (15) | 0.29476 (14) | 0.0222 (3) | |
C3 | 0.78805 (16) | 0.36201 (16) | 0.41245 (14) | 0.0230 (3) | |
H3 | 0.876899 | 0.404101 | 0.408093 | 0.028* | |
C4 | 0.75424 (15) | 0.25725 (15) | 0.53102 (14) | 0.0223 (3) | |
C5 | 0.63013 (16) | 0.21621 (15) | 0.48667 (14) | 0.0232 (3) | |
H5 | 0.587559 | 0.136717 | 0.544119 | 0.028* | |
C6 | 0.47318 (17) | 0.27043 (16) | 0.24895 (15) | 0.0257 (3) | |
H6 | 0.444736 | 0.359348 | 0.164188 | 0.031* | |
C7 | 0.30301 (19) | 0.2858 (2) | 0.33539 (19) | 0.0371 (4) | |
H7A | 0.233030 | 0.269800 | 0.271125 | 0.056* | |
H7B | 0.327426 | 0.201156 | 0.420434 | 0.056* | |
H7C | 0.239326 | 0.396273 | 0.370110 | 0.056* | |
C8 | 0.5672 (2) | 0.10251 (19) | 0.18531 (18) | 0.0368 (4) | |
H8A | 0.491531 | 0.091596 | 0.123487 | 0.055* | |
H8B | 0.597174 | 0.012997 | 0.266371 | 0.055* | |
H8C | 0.673219 | 0.095503 | 0.125346 | 0.055* | |
C9 | 0.69613 (17) | 0.47897 (17) | 0.14521 (15) | 0.0261 (3) | |
H9 | 0.585123 | 0.513065 | 0.101394 | 0.031* | |
C10 | 0.7151 (2) | 0.6358 (2) | 0.15456 (18) | 0.0422 (4) | |
H10A | 0.719212 | 0.692389 | 0.055076 | 0.063* | |
H10B | 0.822300 | 0.606089 | 0.198629 | 0.063* | |
H10C | 0.615986 | 0.709829 | 0.215971 | 0.063* | |
C11 | 0.8434 (2) | 0.3681 (2) | 0.04173 (17) | 0.0401 (4) | |
H11A | 0.843621 | 0.430001 | −0.055715 | 0.060* | |
H11B | 0.827146 | 0.270336 | 0.032239 | 0.060* | |
H11C | 0.954060 | 0.332769 | 0.082140 | 0.060* | |
C12 | 0.82800 (17) | 0.20815 (17) | 0.68044 (15) | 0.0274 (3) | |
H12 | 0.750729 | 0.296459 | 0.745989 | 0.033* | |
C13 | 1.00801 (19) | 0.1994 (2) | 0.66748 (18) | 0.0408 (4) | |
H13A | 1.087252 | 0.112649 | 0.604724 | 0.061* | |
H13B | 1.049205 | 0.173474 | 0.765945 | 0.061* | |
H13C | 1.003708 | 0.306602 | 0.623400 | 0.061* | |
C14 | 0.8308 (3) | 0.0458 (2) | 0.75386 (19) | 0.0463 (4) | |
H14A | 0.712755 | 0.055338 | 0.767566 | 0.069* | |
H14B | 0.876845 | 0.019984 | 0.850239 | 0.069* | |
H14C | 0.904440 | −0.043197 | 0.691324 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mg1 | 0.0202 (3) | 0.0207 (3) | 0.0236 (3) | −0.0070 (2) | 0.0002 (2) | −0.0067 (2) |
C1 | 0.0213 (6) | 0.0189 (6) | 0.0243 (6) | −0.0064 (5) | −0.0012 (5) | −0.0066 (5) |
C2 | 0.0195 (6) | 0.0222 (6) | 0.0227 (6) | −0.0066 (5) | 0.0004 (5) | −0.0063 (5) |
C3 | 0.0183 (6) | 0.0259 (6) | 0.0246 (6) | −0.0088 (5) | −0.0004 (5) | −0.0064 (5) |
C4 | 0.0191 (6) | 0.0209 (6) | 0.0238 (6) | −0.0049 (5) | −0.0011 (5) | −0.0065 (5) |
C5 | 0.0247 (6) | 0.0196 (6) | 0.0247 (6) | −0.0089 (5) | −0.0015 (5) | −0.0040 (5) |
C6 | 0.0281 (7) | 0.0234 (6) | 0.0278 (7) | −0.0116 (5) | −0.0063 (5) | −0.0040 (5) |
C7 | 0.0287 (7) | 0.0408 (8) | 0.0478 (9) | −0.0168 (6) | −0.0016 (6) | −0.0174 (7) |
C8 | 0.0358 (8) | 0.0375 (8) | 0.0415 (9) | −0.0151 (7) | −0.0044 (7) | −0.0184 (7) |
C9 | 0.0246 (6) | 0.0300 (7) | 0.0236 (7) | −0.0123 (5) | −0.0010 (5) | −0.0027 (5) |
C10 | 0.0609 (11) | 0.0354 (8) | 0.0335 (8) | −0.0274 (8) | 0.0068 (7) | −0.0033 (7) |
C11 | 0.0467 (9) | 0.0395 (8) | 0.0274 (8) | −0.0156 (7) | 0.0090 (7) | −0.0075 (6) |
C12 | 0.0268 (7) | 0.0270 (6) | 0.0246 (7) | −0.0071 (5) | −0.0034 (5) | −0.0059 (5) |
C13 | 0.0298 (8) | 0.0566 (10) | 0.0338 (8) | −0.0146 (7) | −0.0090 (6) | −0.0067 (7) |
C14 | 0.0652 (11) | 0.0427 (9) | 0.0356 (9) | −0.0270 (9) | −0.0204 (8) | 0.0085 (7) |
Mg1—C3i | 2.3136 (12) | C7—H7B | 0.9800 |
Mg1—C3 | 2.3136 (12) | C7—H7C | 0.9800 |
Mg1—C5 | 2.3148 (12) | C8—H8A | 0.9800 |
Mg1—C5i | 2.3148 (12) | C8—H8B | 0.9800 |
Mg1—C4 | 2.3253 (12) | C8—H8C | 0.9800 |
Mg1—C4i | 2.3253 (12) | C9—C11 | 1.5239 (19) |
Mg1—C2i | 2.3355 (12) | C9—C10 | 1.525 (2) |
Mg1—C2 | 2.3355 (12) | C9—H9 | 1.0000 |
Mg1—C1i | 2.3375 (12) | C10—H10A | 0.9800 |
Mg1—C1 | 2.3376 (12) | C10—H10B | 0.9800 |
C1—C2 | 1.4237 (18) | C10—H10C | 0.9800 |
C1—C5 | 1.4277 (18) | C11—H11A | 0.9800 |
C1—C6 | 1.5143 (17) | C11—H11B | 0.9800 |
C2—C3 | 1.4268 (17) | C11—H11C | 0.9800 |
C2—C9 | 1.5101 (18) | C12—C14 | 1.514 (2) |
C3—C4 | 1.4172 (19) | C12—C13 | 1.519 (2) |
C3—H3 | 1.0000 | C12—H12 | 1.0000 |
C4—C5 | 1.4220 (18) | C13—H13A | 0.9800 |
C4—C12 | 1.5226 (18) | C13—H13B | 0.9800 |
C5—H5 | 1.0000 | C13—H13C | 0.9800 |
C6—C7 | 1.527 (2) | C14—H14A | 0.9800 |
C6—C8 | 1.5317 (18) | C14—H14B | 0.9800 |
C6—H6 | 1.0000 | C14—H14C | 0.9800 |
C7—H7A | 0.9800 | ||
C3i—Mg1—C3 | 180.0 | C5—C4—C12 | 126.88 (12) |
C3i—Mg1—C5 | 121.04 (5) | C3—C4—Mg1 | 71.76 (7) |
C3—Mg1—C5 | 58.96 (5) | C5—C4—Mg1 | 71.75 (7) |
C3i—Mg1—C5i | 58.96 (5) | C12—C4—Mg1 | 118.67 (8) |
C3—Mg1—C5i | 121.04 (5) | C4—C5—C1 | 109.12 (11) |
C5—Mg1—C5i | 180.0 | C4—C5—Mg1 | 72.56 (7) |
C3i—Mg1—C4 | 144.42 (5) | C1—C5—Mg1 | 73.00 (7) |
C3—Mg1—C4 | 35.58 (5) | C4—C5—H5 | 125.3 |
C5—Mg1—C4 | 35.69 (4) | C1—C5—H5 | 125.3 |
C5i—Mg1—C4 | 144.31 (4) | Mg1—C5—H5 | 125.3 |
C3i—Mg1—C4i | 35.58 (5) | C1—C6—C7 | 112.68 (11) |
C3—Mg1—C4i | 144.42 (5) | C1—C6—C8 | 110.81 (11) |
C5—Mg1—C4i | 144.31 (4) | C7—C6—C8 | 109.65 (12) |
C5i—Mg1—C4i | 35.69 (4) | C1—C6—H6 | 107.8 |
C4—Mg1—C4i | 180.0 | C7—C6—H6 | 107.8 |
C3i—Mg1—C2i | 35.74 (4) | C8—C6—H6 | 107.8 |
C3—Mg1—C2i | 144.26 (4) | C6—C7—H7A | 109.5 |
C5—Mg1—C2i | 120.74 (5) | C6—C7—H7B | 109.5 |
C5i—Mg1—C2i | 59.26 (5) | H7A—C7—H7B | 109.5 |
C4—Mg1—C2i | 120.27 (4) | C6—C7—H7C | 109.5 |
C4i—Mg1—C2i | 59.73 (4) | H7A—C7—H7C | 109.5 |
C3i—Mg1—C2 | 144.26 (4) | H7B—C7—H7C | 109.5 |
C3—Mg1—C2 | 35.74 (4) | C6—C8—H8A | 109.5 |
C5—Mg1—C2 | 59.26 (5) | C6—C8—H8B | 109.5 |
C5i—Mg1—C2 | 120.74 (5) | H8A—C8—H8B | 109.5 |
C4—Mg1—C2 | 59.73 (4) | C6—C8—H8C | 109.5 |
C4i—Mg1—C2 | 120.27 (4) | H8A—C8—H8C | 109.5 |
C2i—Mg1—C2 | 180.0 | H8B—C8—H8C | 109.5 |
C3i—Mg1—C1i | 59.17 (4) | C2—C9—C11 | 110.83 (11) |
C3—Mg1—C1i | 120.83 (4) | C2—C9—C10 | 112.69 (11) |
C5—Mg1—C1i | 144.26 (4) | C11—C9—C10 | 109.89 (12) |
C5i—Mg1—C1i | 35.74 (4) | C2—C9—H9 | 107.7 |
C4—Mg1—C1i | 120.28 (4) | C11—C9—H9 | 107.7 |
C4i—Mg1—C1i | 59.72 (4) | C10—C9—H9 | 107.7 |
C2i—Mg1—C1i | 35.48 (4) | C9—C10—H10A | 109.5 |
C2—Mg1—C1i | 144.52 (4) | C9—C10—H10B | 109.5 |
C3i—Mg1—C1 | 120.83 (4) | H10A—C10—H10B | 109.5 |
C3—Mg1—C1 | 59.17 (4) | C9—C10—H10C | 109.5 |
C5—Mg1—C1 | 35.74 (4) | H10A—C10—H10C | 109.5 |
C5i—Mg1—C1 | 144.26 (4) | H10B—C10—H10C | 109.5 |
C4—Mg1—C1 | 59.72 (4) | C9—C11—H11A | 109.5 |
C4i—Mg1—C1 | 120.28 (4) | C9—C11—H11B | 109.5 |
C2i—Mg1—C1 | 144.52 (4) | H11A—C11—H11B | 109.5 |
C2—Mg1—C1 | 35.48 (4) | C9—C11—H11C | 109.5 |
C1i—Mg1—C1 | 180.0 | H11A—C11—H11C | 109.5 |
C2—C1—C5 | 107.47 (11) | H11B—C11—H11C | 109.5 |
C2—C1—C6 | 126.57 (12) | C14—C12—C13 | 110.23 (13) |
C5—C1—C6 | 125.78 (12) | C14—C12—C4 | 112.14 (12) |
C2—C1—Mg1 | 72.18 (7) | C13—C12—C4 | 111.48 (12) |
C5—C1—Mg1 | 71.26 (7) | C14—C12—H12 | 107.6 |
C6—C1—Mg1 | 125.75 (8) | C13—C12—H12 | 107.6 |
C1—C2—C3 | 107.35 (11) | C4—C12—H12 | 107.6 |
C1—C2—C9 | 126.99 (11) | C12—C13—H13A | 109.5 |
C3—C2—C9 | 125.51 (12) | C12—C13—H13B | 109.5 |
C1—C2—Mg1 | 72.34 (7) | H13A—C13—H13B | 109.5 |
C3—C2—Mg1 | 71.29 (7) | C12—C13—H13C | 109.5 |
C9—C2—Mg1 | 125.19 (8) | H13A—C13—H13C | 109.5 |
C4—C3—C2 | 109.38 (11) | H13B—C13—H13C | 109.5 |
C4—C3—Mg1 | 72.66 (7) | C12—C14—H14A | 109.5 |
C2—C3—Mg1 | 72.97 (7) | C12—C14—H14B | 109.5 |
C4—C3—H3 | 125.2 | H14A—C14—H14B | 109.5 |
C2—C3—H3 | 125.2 | C12—C14—H14C | 109.5 |
Mg1—C3—H3 | 125.2 | H14A—C14—H14C | 109.5 |
C3—C4—C5 | 106.69 (11) | H14B—C14—H14C | 109.5 |
C3—C4—C12 | 126.32 (12) | ||
C5—C1—C2—C3 | 0.18 (13) | C2—C1—C5—C4 | −0.49 (13) |
C6—C1—C2—C3 | −175.17 (11) | C6—C1—C5—C4 | 174.90 (11) |
Mg1—C1—C2—C3 | 63.12 (8) | Mg1—C1—C5—C4 | −64.04 (8) |
C5—C1—C2—C9 | 175.90 (11) | C2—C1—C5—Mg1 | 63.55 (8) |
C6—C1—C2—C9 | 0.6 (2) | C6—C1—C5—Mg1 | −121.06 (12) |
Mg1—C1—C2—C9 | −121.16 (12) | C2—C1—C6—C7 | −138.10 (13) |
C5—C1—C2—Mg1 | −62.94 (8) | C5—C1—C6—C7 | 47.38 (17) |
C6—C1—C2—Mg1 | 121.71 (12) | Mg1—C1—C6—C7 | −44.39 (16) |
C1—C2—C3—C4 | 0.21 (14) | C2—C1—C6—C8 | 98.62 (15) |
C9—C2—C3—C4 | −175.60 (11) | C5—C1—C6—C8 | −75.90 (16) |
Mg1—C2—C3—C4 | 64.02 (9) | Mg1—C1—C6—C8 | −167.68 (10) |
C1—C2—C3—Mg1 | −63.81 (8) | C1—C2—C9—C11 | −90.94 (15) |
C9—C2—C3—Mg1 | 120.39 (12) | C3—C2—C9—C11 | 84.04 (16) |
C2—C3—C4—C5 | −0.50 (13) | Mg1—C2—C9—C11 | 175.25 (10) |
Mg1—C3—C4—C5 | 63.71 (8) | C1—C2—C9—C10 | 145.44 (13) |
C2—C3—C4—C12 | −176.84 (11) | C3—C2—C9—C10 | −39.58 (18) |
Mg1—C3—C4—C12 | −112.63 (12) | Mg1—C2—C9—C10 | 51.63 (15) |
C2—C3—C4—Mg1 | −64.21 (8) | C3—C4—C12—C14 | −155.61 (13) |
C3—C4—C5—C1 | 0.61 (13) | C5—C4—C12—C14 | 28.78 (18) |
C12—C4—C5—C1 | 176.92 (11) | Mg1—C4—C12—C14 | 116.73 (12) |
Mg1—C4—C5—C1 | 64.33 (8) | C3—C4—C12—C13 | −31.46 (18) |
C3—C4—C5—Mg1 | −63.71 (8) | C5—C4—C12—C13 | 152.93 (13) |
C12—C4—C5—Mg1 | 112.60 (12) | Mg1—C4—C12—C13 | −119.13 (11) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
Instrumentation and technical assistance for this work were provided by the Service Center X-ray Diffraction, with financial support from Saarland University and the German Science Foundation (INST 256/506–1).
Funding information
Funding for this research was provided by: Deutsche Forschungsgemeinschaft (Emmy Noether program No. SCHA1915/3-1).
References
Bruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bünder, W. & Weiss, E. (1975). J. Organomet. Chem. 92, 1–6. Google Scholar
Burkey, D. J., Hanusa, T. P. & Huffman, J. C. (1994). Adv. Mater. Opt. Electron. 4, 1–8. CSD CrossRef CAS Google Scholar
Burkey, D. J., Williams, R. A. & Hanusa, T. P. (1993). Organometallics, 12, 1331–1337. CSD CrossRef CAS Web of Science Google Scholar
Deacon, G. B., Jaroschik, F., Junk, P. C. & Kelly, R. P. (2015). Organometallics, 34, 2369–2377. Web of Science CSD CrossRef CAS Google Scholar
Fischer, E. O. & Hafner, W. (1954). Z. Naturforsch. 9, 503–505. CrossRef Web of Science Google Scholar
Gardiner, M. G., Raston, C. L. & Kennard, C. H. L. (1991). Organometallics, 10, 3680–3686. CSD CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Jaenschke, A., Paap, J. & Behrens, U. (2003). Organometallics, 22, 1167–1169. Web of Science CSD CrossRef CAS Google Scholar
Kim, D. Y., Yang, Y., Abelson, J. R. & Girolami, G. S. (2007). Inorg. Chem. 46, 9060–9066. Web of Science CSD CrossRef PubMed CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lehmkuhl, H., Mehler, K., Benn, R., Rufińska, A. & Krüger, C. (1986). Chem. Ber. 119, 1054–1069. CSD CrossRef CAS Web of Science Google Scholar
Morley, C. P., Jutzi, P., Krueger, C. & Wallis, J. M. (1987). Organometallics, 6, 1084–1090. CSD CrossRef CAS Web of Science Google Scholar
Müller, C., Warken, J., Huch, V., Morgenstern, B., Bischoff, I.-A., Zimmer, M. & Schäfer, A. (2021). Chem. Eur. J. 27, 6500–6510. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Vollet, J., Baum, E. & Schnöckel, H. (2003). Organometallics, 22, 2525–2527. Web of Science CSD CrossRef CAS Google Scholar
Weber, F., Sitzmann, H., Schultz, M., Sofield, C. D. & Andersen, R. A. (2002). Organometallics, 21, 3139–3146. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wilkinson, G. & Cotton, F. A. (1954). Chem. Ind. 307–308. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.