research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,1′,2,2′,4,4′-hexa­iso­propyl­magnesocene

crossmark logo

aSaarland University, Faculty of Natural Sciences and Technology, Department of Chemistry, Campus Saarbrücken, 66123 Saarbrücken, Germany
*Correspondence e-mail: andre.schaefer@uni-saarland.de

Edited by S. Parkin, University of Kentucky, USA (Received 5 January 2022; accepted 1 February 2022; online 3 February 2022)

The title compound, 3Cp2Mg or [Mg(C14H23)2], was synthesized from the cor­res­ponding triiso­propyl­cyclo­penta­diene by treatment with n-butyl-sec-butyl­magnesium. The structural characterization by single-crystal X-ray diffraction revealed that the compound crystallizes in the triclinic space group P[\overline{1}] with half a mol­ecule per asymmetric unit and a staggered arrangement of the cyclo­penta­dienide ligands.

1. Chemical context

Magnesocene (Cp2Mg) was initially reported by Wilkinson and Fischer and co-workers in 1954, just a few years after the discovery of ferrocene (Wilkinson & Cotton, 1954[Wilkinson, G. & Cotton, F. A. (1954). Chem. Ind. 307-308.]; Fischer & Hafner, 1954[Fischer, E. O. & Hafner, W. (1954). Z. Naturforsch. 9, 503-505.]). Although magnesocene exhibits distinctively different chemical properties, it is isostructural to ferrocene and marked the beginning of main-group metallocene chemistry. One of the key differences in reactivity between alkaline-earth metallocenes and ferrocenes is that the central atoms of the former exhibit Lewis acidic character. Therefore, many crystal structures of magnesocenes are actually of donor complexes, such as magnesocene mono- and bis­(tetra­hydro­furan) adduct, Cp2Mg·(thf) and Cp2Mg·(thf)2 (Lehmkuhl et al., 1986[Lehmkuhl, H., Mehler, K., Benn, R., Rufińska, A. & Krüger, C. (1986). Chem. Ber. 119, 1054-1069.]; Jaenschke et al., 2003[Jaenschke, A., Paap, J. & Behrens, U. (2003). Organometallics, 22, 1167-1169.]; Kim et al., 2007[Kim, D. Y., Yang, Y., Abelson, J. R. & Girolami, G. S. (2007). Inorg. Chem. 46, 9060-9066.]). Nevertheless, solvent-free crystal structures are also known, especially in case of highly substituted magnesocenes (Morley et al., 1987[Morley, C. P., Jutzi, P., Krueger, C. & Wallis, J. M. (1987). Organometallics, 6, 1084-1090.]; Gardiner et al., 1991[Gardiner, M. G., Raston, C. L. & Kennard, C. H. L. (1991). Organometallics, 10, 3680-3686.]; Weber et al., 2002[Weber, F., Sitzmann, H., Schultz, M., Sofield, C. D. & Andersen, R. A. (2002). Organometallics, 21, 3139-3146.]; Vollet et al., 2003[Vollet, J., Baum, E. & Schnöckel, H. (2003). Organometallics, 22, 2525-2527.]; Deacon et al., 2015[Deacon, G. B., Jaroschik, F., Junk, P. C. & Kelly, R. P. (2015). Organometallics, 34, 2369-2377.]; Müller et al., 2021[Müller, C., Warken, J., Huch, V., Morgenstern, B., Bischoff, I.-A., Zimmer, M. & Schäfer, A. (2021). Chem. Eur. J. 27, 6500-6510.]). Hanusa and coworkers had reported the synthesis of 1,1′,2,2′,4,4′-hexa­iso­propyl­magnesocene, 3Cp2Mg, -calcocene, 3Cp2Ca, -strontocene, 3Cp2Sr, and -barocene, 3Cp2Ba (the triiso­propyl­cyclo­penta­dienide ligand is commonly abbreviated as `3Cp'), via treatment of potassium 1,2,4-triiso­propyl­cyclo­penta­dienide, 3CpK, with the corresponding metal(II) bromide or iodide and described the magnesocene to be oily or waxy in composition (Burkey et al., 1993[Burkey, D. J., Williams, R. A. & Hanusa, T. P. (1993). Organometallics, 12, 1331-1337.], 1994[Burkey, D. J., Hanusa, T. P. & Huffman, J. C. (1994). Adv. Mater. Opt. Electron. 4, 1-8.]). Thus, no crystal structure was obtained of the title compound. We found that the title compound may also be obtained through treatment of an isomeric mixture of triiso­propyl­cyclo­penta­diene with n-butyl-sec-butyl­magnesium in hexane.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the triclinic space group P[\overline{1}] with half a mol­ecule per asymmetric unit, due to an inversion center at the magnesium atom position (Fig. 1[link]), resulting in C2h symmetry for the mol­ecule. Accordingly, the Cp rings adopt a staggered arrangement with the single isopropyl group at the C4 position facing the two isopropyl groups at the C1 and C2 positions and are perfectly coplanar to each other (Fig. 2[link]). The C—C bond lengths within the Cp ring are almost equal [C1—C2: 1.4237 (18) Å; C2—C3: 1.4268 (17) Å; C3—C4: 1.4172 (19) Å; C4—C5: 1.4220 (18) Å; C5—C1: 1.4277 (18) Å] implying a high degree of 6π electron aromaticity, and the Mg⋯Cpcentroid distance is 1.9852 (1) Å, which is within the normal range [e.g.: Cp2Mg: 1.9897 (5) Å] for magnesocenes (Bünder & Weiss, 1975[Bünder, W. & Weiss, E. (1975). J. Organomet. Chem. 92, 1-6.]).

[Figure 1]
Figure 1
Asymmetric unit of the title compound (displacement ellipsoids are drawn at the 50% probability level).
[Figure 2]
Figure 2
(a) Side view and (b) top view of the mol­ecular structure of the title compound in the crystal. Symmetry code: (') 1 − x, 1 − y, 1 − z. Displacement ellipsoids are drawn at the 50% probability level; H atoms omitted for clarity.

3. Supra­molecular features

The mol­ecules of the title compound are well separated from each other in the crystal structure, with one magnesocene mol­ecule per unit cell. Each mol­ecule has eight neighboring mol­ecules, forming a distorted hexa­gonal bipyramidal coordination geometry (Fig. 3[link]a and 3b), with distances of dmin (Mg1⋯Mg1i) = 8.7025 (4) Å, dmax (Mg1⋯Mg1iii) = 9.3031 (3) Å and daxial (Mg1⋯Mg1iv) = 9.2033 (4) Å [symmetry codes: (i) −1 + x, y, z; (iii) 1 + x, −1 + y, z; (iv) x, y, 1 + z]. The angles between the equatorial Mg atoms, the central magnesium atom and the axial magnesium atom are between θmin = 90.68° (Mg1iii—Mg1—Mg1iv) and θmax = 99.17° (Mg1ii—Mg1—Mg1iv).

[Figure 3]
Figure 3
(a) Supra­molecular coordination geometry of the title compound in the crystal and (b) the corresponding polyhedron. Symmetry codes: (i) −1 + x, y, z; (ii) x, −1 + y, z; (iii) 1 + x, −1 + y, z; (iv) x, y, 1 + z. H atoms and isopropyl groups are omitted for clarity.

Each 3Cp2Mg moiety has eight neighboring mol­ecules within the bc and ac planes (Fig. 4[link]a and 4b), but only six neighboring mol­ecules within the ab plane, forming an almost hexa­gonal layer (γ = 63.00°), but with the layers being congruent to each other (Fig. 4[link]c).

[Figure 4]
Figure 4
Arrangement of the layers of the title compound along the crystallographic a, b and c axes (H atoms and isopropyl groups omitted for clarity).

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) showed that 14 crystal structures of magnesocenes of the type (C5R5)2Mg had previously been reported. In this search, any type of donor complexes of magnesocenes of the form (C5R5)2Mg·Dn are not counted. The Mg⋯Cpcentroid bonding distances in these structures lie between 1.9562 (1) and 2.0628 (11) Å and the dihedral angles between the Cp planes are between 0° (co-planar geometry) and 17.892°. Thus, the bond distances and angles in the title compound are within normal ranges of known magnesocenes.

5. Synthesis and crystallization

Hanusa and coworkers had previously reported that 1,1′,2,2′,4,4′-hexa­iso­propyl­magnesocene, 3Cp2Mg, could be obtained by the reaction of potassium 1,2,4-triiso­propyl­cyclo­penta­dienide with magnesium(II) bromide. However, in this work, we utilized di­butyl­magnesium as a strong base to deprotonate the triiso­propyl­cyclo­penta­diene (Fig. 5[link]).

[Figure 5]
Figure 5
Reaction scheme for the formation of the title compound 3Cp2Mg.

To a solution of 4.00 g (20.8 mmol) of an isomeric mixture of triiso­propyl­cyclo­penta­diene in 100 mL of hexane were added 15.0 mL of a 0.7 M solution of n-butyl-sec-butyl­magnesium in hexane (10.5 mmol). The light-yellow reaction solution was stirred at 333 K overnight. Subsequently, all volatiles were removed in vacuo and a yellow oil was obtained, from which the title compound crystallized over the course of one day at ambient temperature. The crystallized material was washed with small portions of hexane and dried in vacuo to obtain the title compound as a pure, colorless, crystalline solid in 43% yield (1.83 g; 4.50 mmol).

In addition to a structural characterization by single-crystal X-ray diffraction, the title compound was also characterized by 1H and 13C NMR spectroscopy: 1H NMR (400 MHz, C6D6, 295 K): δ (in ppm) = 1.07 [d, J = 7Hz, 12H, CH(CH3)2], 1.28 [d, J = 7Hz, 12H, CH(CH3)2], 1.36 [d, J = 7Hz, 12H, CH(CH3)2], 2.82–2.92 [m, 6H, CH(CH3)2], 5.77 (s, 4H, Cp-H); 1H NMR (400 MHz, DMSO-D6, 294 K): δ (in ppm) = 1.06 [d, J = 7Hz, 36H, CH(CH3)2], 2.68 [sep, J = 7Hz, 2H, CH(CH3)2], 2.76 [sep, J = 7Hz, 2H, CH(CH3)2], 4.94 (s, 4H, Cp-H); 13C{1H} NMR (101 MHz, C6D6, 295 K): δ (in ppm) = 24.0 (iPr), 24.4 (iPr), 26.4 (iPr), 26.6 (iPr), 28.7 (iPr), 98.7 (Cp), 125.3 (Cp), 128.6 (Cp); 13C{1H} NMR (101 MHz, DMSO-D6, 294 K): δ (in ppm) = 25.9 (iPr), 26.8 (iPr), 27.0 (iPr), 29.1 (iPr), 94.6 (Cp), 119.4 (Cp), 120.9 (Cp).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All non H-atoms were located in the electron density maps and refined anisotropically. C-bound H atoms were placed in positions of optimized geometry and treated as riding atoms: C—H = 1.00 Å (CH), 0.98 Å (CH3), and with Uiso(H) = kUeq(C), where k = 1.2 for CH and 1.5 for CH3.

Table 1
Experimental details

Crystal data
Chemical formula [Mg(C14H23)2]
Mr 406.96
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 133
a, b, c (Å) 8.7025 (4), 9.0903 (4), 9.2033 (4)
α, β, γ (°) 80.829 (2), 81.151 (2), 63.004 (1)
V3) 637.68 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.27 × 0.20 × 0.07
 
Data collection
Diffractometer Bruker D8 Venture Photon II
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.712, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 24343, 2808, 2339
Rint 0.046
(sin θ/λ)max−1) 0.642
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.100, 1.06
No. of reflections 2808
No. of parameters 138
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.20
Computer programs: APEX3 and SAINT (Bruker, 2019[Bruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2019); cell refinement: SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b), shelXle (Hübschle et al., 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

1,1',2,2',4,4'-Hexaisopropylmagnesocene top
Crystal data top
[Mg(C14H23)2]Z = 1
Mr = 406.96F(000) = 226
Triclinic, P1Dx = 1.060 Mg m3
a = 8.7025 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.0903 (4) ÅCell parameters from 7985 reflections
c = 9.2033 (4) Åθ = 2.5–27.1°
α = 80.829 (2)°µ = 0.08 mm1
β = 81.151 (2)°T = 133 K
γ = 63.004 (1)°Plate, yellow
V = 637.68 (5) Å30.27 × 0.20 × 0.07 mm
Data collection top
Bruker D8 Venture Photon II
diffractometer
2339 reflections with I > 2σ(I)
Radiation source: INCOATEC IµS microfocus sealed tubeRint = 0.046
φ and ω scansθmax = 27.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.712, Tmax = 0.746k = 1111
24343 measured reflectionsl = 1111
2808 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0357P)2 + 0.2575P]
where P = (Fo2 + 2Fc2)/3
2808 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.5000000.5000000.5000000.02198 (16)
C10.58902 (16)0.29370 (15)0.34104 (14)0.0220 (3)
C20.68748 (15)0.38509 (15)0.29476 (14)0.0222 (3)
C30.78805 (16)0.36201 (16)0.41245 (14)0.0230 (3)
H30.8768990.4041010.4080930.028*
C40.75424 (15)0.25725 (15)0.53102 (14)0.0223 (3)
C50.63013 (16)0.21621 (15)0.48667 (14)0.0232 (3)
H50.5875590.1367170.5441190.028*
C60.47318 (17)0.27043 (16)0.24895 (15)0.0257 (3)
H60.4447360.3593480.1641880.031*
C70.30301 (19)0.2858 (2)0.33539 (19)0.0371 (4)
H7A0.2330300.2698000.2711250.056*
H7B0.3274260.2011560.4204340.056*
H7C0.2393260.3962730.3701100.056*
C80.5672 (2)0.10251 (19)0.18531 (18)0.0368 (4)
H8A0.4915310.0915960.1234870.055*
H8B0.5971740.0129970.2663710.055*
H8C0.6732190.0955030.1253460.055*
C90.69613 (17)0.47897 (17)0.14521 (15)0.0261 (3)
H90.5851230.5130650.1013940.031*
C100.7151 (2)0.6358 (2)0.15456 (18)0.0422 (4)
H10A0.7192120.6923890.0550760.063*
H10B0.8223000.6060890.1986290.063*
H10C0.6159860.7098290.2159710.063*
C110.8434 (2)0.3681 (2)0.04173 (17)0.0401 (4)
H11A0.8436210.4300010.0557150.060*
H11B0.8271460.2703360.0322390.060*
H11C0.9540600.3327690.0821400.060*
C120.82800 (17)0.20815 (17)0.68044 (15)0.0274 (3)
H120.7507290.2964590.7459890.033*
C131.00801 (19)0.1994 (2)0.66748 (18)0.0408 (4)
H13A1.0872520.1126490.6047240.061*
H13B1.0492050.1734740.7659450.061*
H13C1.0037080.3066020.6234000.061*
C140.8308 (3)0.0458 (2)0.75386 (19)0.0463 (4)
H14A0.7127550.0553380.7675660.069*
H14B0.8768450.0199840.8502390.069*
H14C0.9044400.0431970.6913240.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0202 (3)0.0207 (3)0.0236 (3)0.0070 (2)0.0002 (2)0.0067 (2)
C10.0213 (6)0.0189 (6)0.0243 (6)0.0064 (5)0.0012 (5)0.0066 (5)
C20.0195 (6)0.0222 (6)0.0227 (6)0.0066 (5)0.0004 (5)0.0063 (5)
C30.0183 (6)0.0259 (6)0.0246 (6)0.0088 (5)0.0004 (5)0.0064 (5)
C40.0191 (6)0.0209 (6)0.0238 (6)0.0049 (5)0.0011 (5)0.0065 (5)
C50.0247 (6)0.0196 (6)0.0247 (6)0.0089 (5)0.0015 (5)0.0040 (5)
C60.0281 (7)0.0234 (6)0.0278 (7)0.0116 (5)0.0063 (5)0.0040 (5)
C70.0287 (7)0.0408 (8)0.0478 (9)0.0168 (6)0.0016 (6)0.0174 (7)
C80.0358 (8)0.0375 (8)0.0415 (9)0.0151 (7)0.0044 (7)0.0184 (7)
C90.0246 (6)0.0300 (7)0.0236 (7)0.0123 (5)0.0010 (5)0.0027 (5)
C100.0609 (11)0.0354 (8)0.0335 (8)0.0274 (8)0.0068 (7)0.0033 (7)
C110.0467 (9)0.0395 (8)0.0274 (8)0.0156 (7)0.0090 (7)0.0075 (6)
C120.0268 (7)0.0270 (6)0.0246 (7)0.0071 (5)0.0034 (5)0.0059 (5)
C130.0298 (8)0.0566 (10)0.0338 (8)0.0146 (7)0.0090 (6)0.0067 (7)
C140.0652 (11)0.0427 (9)0.0356 (9)0.0270 (9)0.0204 (8)0.0085 (7)
Geometric parameters (Å, º) top
Mg1—C3i2.3136 (12)C7—H7B0.9800
Mg1—C32.3136 (12)C7—H7C0.9800
Mg1—C52.3148 (12)C8—H8A0.9800
Mg1—C5i2.3148 (12)C8—H8B0.9800
Mg1—C42.3253 (12)C8—H8C0.9800
Mg1—C4i2.3253 (12)C9—C111.5239 (19)
Mg1—C2i2.3355 (12)C9—C101.525 (2)
Mg1—C22.3355 (12)C9—H91.0000
Mg1—C1i2.3375 (12)C10—H10A0.9800
Mg1—C12.3376 (12)C10—H10B0.9800
C1—C21.4237 (18)C10—H10C0.9800
C1—C51.4277 (18)C11—H11A0.9800
C1—C61.5143 (17)C11—H11B0.9800
C2—C31.4268 (17)C11—H11C0.9800
C2—C91.5101 (18)C12—C141.514 (2)
C3—C41.4172 (19)C12—C131.519 (2)
C3—H31.0000C12—H121.0000
C4—C51.4220 (18)C13—H13A0.9800
C4—C121.5226 (18)C13—H13B0.9800
C5—H51.0000C13—H13C0.9800
C6—C71.527 (2)C14—H14A0.9800
C6—C81.5317 (18)C14—H14B0.9800
C6—H61.0000C14—H14C0.9800
C7—H7A0.9800
C3i—Mg1—C3180.0C5—C4—C12126.88 (12)
C3i—Mg1—C5121.04 (5)C3—C4—Mg171.76 (7)
C3—Mg1—C558.96 (5)C5—C4—Mg171.75 (7)
C3i—Mg1—C5i58.96 (5)C12—C4—Mg1118.67 (8)
C3—Mg1—C5i121.04 (5)C4—C5—C1109.12 (11)
C5—Mg1—C5i180.0C4—C5—Mg172.56 (7)
C3i—Mg1—C4144.42 (5)C1—C5—Mg173.00 (7)
C3—Mg1—C435.58 (5)C4—C5—H5125.3
C5—Mg1—C435.69 (4)C1—C5—H5125.3
C5i—Mg1—C4144.31 (4)Mg1—C5—H5125.3
C3i—Mg1—C4i35.58 (5)C1—C6—C7112.68 (11)
C3—Mg1—C4i144.42 (5)C1—C6—C8110.81 (11)
C5—Mg1—C4i144.31 (4)C7—C6—C8109.65 (12)
C5i—Mg1—C4i35.69 (4)C1—C6—H6107.8
C4—Mg1—C4i180.0C7—C6—H6107.8
C3i—Mg1—C2i35.74 (4)C8—C6—H6107.8
C3—Mg1—C2i144.26 (4)C6—C7—H7A109.5
C5—Mg1—C2i120.74 (5)C6—C7—H7B109.5
C5i—Mg1—C2i59.26 (5)H7A—C7—H7B109.5
C4—Mg1—C2i120.27 (4)C6—C7—H7C109.5
C4i—Mg1—C2i59.73 (4)H7A—C7—H7C109.5
C3i—Mg1—C2144.26 (4)H7B—C7—H7C109.5
C3—Mg1—C235.74 (4)C6—C8—H8A109.5
C5—Mg1—C259.26 (5)C6—C8—H8B109.5
C5i—Mg1—C2120.74 (5)H8A—C8—H8B109.5
C4—Mg1—C259.73 (4)C6—C8—H8C109.5
C4i—Mg1—C2120.27 (4)H8A—C8—H8C109.5
C2i—Mg1—C2180.0H8B—C8—H8C109.5
C3i—Mg1—C1i59.17 (4)C2—C9—C11110.83 (11)
C3—Mg1—C1i120.83 (4)C2—C9—C10112.69 (11)
C5—Mg1—C1i144.26 (4)C11—C9—C10109.89 (12)
C5i—Mg1—C1i35.74 (4)C2—C9—H9107.7
C4—Mg1—C1i120.28 (4)C11—C9—H9107.7
C4i—Mg1—C1i59.72 (4)C10—C9—H9107.7
C2i—Mg1—C1i35.48 (4)C9—C10—H10A109.5
C2—Mg1—C1i144.52 (4)C9—C10—H10B109.5
C3i—Mg1—C1120.83 (4)H10A—C10—H10B109.5
C3—Mg1—C159.17 (4)C9—C10—H10C109.5
C5—Mg1—C135.74 (4)H10A—C10—H10C109.5
C5i—Mg1—C1144.26 (4)H10B—C10—H10C109.5
C4—Mg1—C159.72 (4)C9—C11—H11A109.5
C4i—Mg1—C1120.28 (4)C9—C11—H11B109.5
C2i—Mg1—C1144.52 (4)H11A—C11—H11B109.5
C2—Mg1—C135.48 (4)C9—C11—H11C109.5
C1i—Mg1—C1180.0H11A—C11—H11C109.5
C2—C1—C5107.47 (11)H11B—C11—H11C109.5
C2—C1—C6126.57 (12)C14—C12—C13110.23 (13)
C5—C1—C6125.78 (12)C14—C12—C4112.14 (12)
C2—C1—Mg172.18 (7)C13—C12—C4111.48 (12)
C5—C1—Mg171.26 (7)C14—C12—H12107.6
C6—C1—Mg1125.75 (8)C13—C12—H12107.6
C1—C2—C3107.35 (11)C4—C12—H12107.6
C1—C2—C9126.99 (11)C12—C13—H13A109.5
C3—C2—C9125.51 (12)C12—C13—H13B109.5
C1—C2—Mg172.34 (7)H13A—C13—H13B109.5
C3—C2—Mg171.29 (7)C12—C13—H13C109.5
C9—C2—Mg1125.19 (8)H13A—C13—H13C109.5
C4—C3—C2109.38 (11)H13B—C13—H13C109.5
C4—C3—Mg172.66 (7)C12—C14—H14A109.5
C2—C3—Mg172.97 (7)C12—C14—H14B109.5
C4—C3—H3125.2H14A—C14—H14B109.5
C2—C3—H3125.2C12—C14—H14C109.5
Mg1—C3—H3125.2H14A—C14—H14C109.5
C3—C4—C5106.69 (11)H14B—C14—H14C109.5
C3—C4—C12126.32 (12)
C5—C1—C2—C30.18 (13)C2—C1—C5—C40.49 (13)
C6—C1—C2—C3175.17 (11)C6—C1—C5—C4174.90 (11)
Mg1—C1—C2—C363.12 (8)Mg1—C1—C5—C464.04 (8)
C5—C1—C2—C9175.90 (11)C2—C1—C5—Mg163.55 (8)
C6—C1—C2—C90.6 (2)C6—C1—C5—Mg1121.06 (12)
Mg1—C1—C2—C9121.16 (12)C2—C1—C6—C7138.10 (13)
C5—C1—C2—Mg162.94 (8)C5—C1—C6—C747.38 (17)
C6—C1—C2—Mg1121.71 (12)Mg1—C1—C6—C744.39 (16)
C1—C2—C3—C40.21 (14)C2—C1—C6—C898.62 (15)
C9—C2—C3—C4175.60 (11)C5—C1—C6—C875.90 (16)
Mg1—C2—C3—C464.02 (9)Mg1—C1—C6—C8167.68 (10)
C1—C2—C3—Mg163.81 (8)C1—C2—C9—C1190.94 (15)
C9—C2—C3—Mg1120.39 (12)C3—C2—C9—C1184.04 (16)
C2—C3—C4—C50.50 (13)Mg1—C2—C9—C11175.25 (10)
Mg1—C3—C4—C563.71 (8)C1—C2—C9—C10145.44 (13)
C2—C3—C4—C12176.84 (11)C3—C2—C9—C1039.58 (18)
Mg1—C3—C4—C12112.63 (12)Mg1—C2—C9—C1051.63 (15)
C2—C3—C4—Mg164.21 (8)C3—C4—C12—C14155.61 (13)
C3—C4—C5—C10.61 (13)C5—C4—C12—C1428.78 (18)
C12—C4—C5—C1176.92 (11)Mg1—C4—C12—C14116.73 (12)
Mg1—C4—C5—C164.33 (8)C3—C4—C12—C1331.46 (18)
C3—C4—C5—Mg163.71 (8)C5—C4—C12—C13152.93 (13)
C12—C4—C5—Mg1112.60 (12)Mg1—C4—C12—C13119.13 (11)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

Instrumentation and technical assistance for this work were provided by the Service Center X-ray Diffraction, with financial support from Saarland University and the German Science Foundation (INST 256/506–1).

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (Emmy Noether program No. SCHA1915/3-1).

References

First citationBruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBünder, W. & Weiss, E. (1975). J. Organomet. Chem. 92, 1–6.  Google Scholar
First citationBurkey, D. J., Hanusa, T. P. & Huffman, J. C. (1994). Adv. Mater. Opt. Electron. 4, 1–8.  CSD CrossRef CAS Google Scholar
First citationBurkey, D. J., Williams, R. A. & Hanusa, T. P. (1993). Organometallics, 12, 1331–1337.  CSD CrossRef CAS Web of Science Google Scholar
First citationDeacon, G. B., Jaroschik, F., Junk, P. C. & Kelly, R. P. (2015). Organometallics, 34, 2369–2377.  Web of Science CSD CrossRef CAS Google Scholar
First citationFischer, E. O. & Hafner, W. (1954). Z. Naturforsch. 9, 503–505.  CrossRef Web of Science Google Scholar
First citationGardiner, M. G., Raston, C. L. & Kennard, C. H. L. (1991). Organometallics, 10, 3680–3686.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJaenschke, A., Paap, J. & Behrens, U. (2003). Organometallics, 22, 1167–1169.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, D. Y., Yang, Y., Abelson, J. R. & Girolami, G. S. (2007). Inorg. Chem. 46, 9060–9066.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLehmkuhl, H., Mehler, K., Benn, R., Rufińska, A. & Krüger, C. (1986). Chem. Ber. 119, 1054–1069.  CSD CrossRef CAS Web of Science Google Scholar
First citationMorley, C. P., Jutzi, P., Krueger, C. & Wallis, J. M. (1987). Organometallics, 6, 1084–1090.  CSD CrossRef CAS Web of Science Google Scholar
First citationMüller, C., Warken, J., Huch, V., Morgenstern, B., Bischoff, I.-A., Zimmer, M. & Schäfer, A. (2021). Chem. Eur. J. 27, 6500–6510.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVollet, J., Baum, E. & Schnöckel, H. (2003). Organometallics, 22, 2525–2527.  Web of Science CSD CrossRef CAS Google Scholar
First citationWeber, F., Sitzmann, H., Schultz, M., Sofield, C. D. & Andersen, R. A. (2002). Organometallics, 21, 3139–3146.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilkinson, G. & Cotton, F. A. (1954). Chem. Ind. 307–308.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds