research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two dioxomolybdenum complexes stabilized by salan ligands featuring phenyl and cyclo­hexyl backbones

crossmark logo

aChemistry & Biochemistry Department, California State Polytechnic University, Pomona, 3801 W. Temple Ave., Pomona, CA 91768, USA
*Correspondence e-mail: ajohn@cpp.edu

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 20 December 2021; accepted 13 January 2022; online 1 February 2022)

Two cis-dioxomolybdenum complexes based on salan ligands with different backbones are reported. The first complex, dioxido{2,2′-[l,2-phenyl­enebis(imino­methyl­ene)]bis­(phenolato)}molybdenum(VI) di­methyl­formamide disolvate, [Mo(C20H18N2O2)O2]·2C3H7NO (PhLMoO2, 1b), features a phenyl backbone, while the second complex, (6,6′-{[(cyclo­hexane-1,2-di­yl)bis(aza­nedi­yl)]bis­(methyl­ene)}bis­(2,4-di-tert-butyl­phenolato))dioxidomolybdenum(VI) methanol disolvate, [Mo(C36H56N2O2)O2]·2CH3OH (CyLMoO2, 2b), is based on a cyclo­hexyl backbone. These complexes crystallized as solvated species, 1b·2DMF and 2b·2MeOH. The salan ligands PhLH2 (1a) and CyLH2 (2a) coordinate to the molybdenum center in these complexes 1b and 2b in a κ2N,κ2O fashion, forming a distorted octa­hedral geometry. The Mo—N and Mo—O distances are 2.3475 (16) and 1.9567 (16) Å, respectively, in 1b while the corresponding measurements are Mo—N = 2.3412 (12) Å, and Mo—O = 1.9428 (10) Å for 2b. A key geometrical feature is that the N—Mo—N angle of 72.40 (4)° in CyLMoO2 is slightly less than that of the PhLMoO2 angle of 75.18 (6)°, which is attributed to the flexibility of the cyclo­hexane ring between the nitro­gen as compared to the rigid phenyl ring in the PhLMoO2.

1. Chemical context

Molybdenum centers are present in the active sites of various enzymes including nitro­genases, sulfite oxidase, xanthine oxidase, and DMSO reductase that catalyze two-electron redox processes (Hille et al., 2014[Hille, R., Hall, J. & Basu, P. (2014). Chem. Rev. 114, 3963-4038.]; Enemark et al., 2004[Enemark, J. H., Cooney, J. J. A., Wang, J.-J. & Holm, R. H. (2004). Chem. Rev. 104, 1175-1200.]; Hille, 1996[Hille, R. (1996). Chem. Rev. 96, 2757-2816.]). This is attributed to the large number of stable oxidation states and coordination environments that can be achieved, as well as the solubility of molybdate salts in water. A majority of these enzymes are referred to as oxo-molybdenum enzymes due to the presence of at least one Mo=O moiety in the active site. The sulfite oxidase family of enzymes contains a cis-dioxo molybdenum(VI) (LnMoO2) center in its active site (Hille et al., 2014[Hille, R., Hall, J. & Basu, P. (2014). Chem. Rev. 114, 3963-4038.]). Apart from being studied as models to understand biological systems, oxomolybdenum complexes have also found utility in processes such as olefin metathesis, olefin epoxidation, cytotoxic studies, and cyclic ester polymerizations (Hossain et al. 2020[Hossain, M. K., Köhntopp, A., Haukka, M., Richmond, M. G., Lehtonen, A. & Nordlander, E. (2020). Polyhedron, 178, 114312.]; Mayilmurugan et al. 2013[Mayilmurugan, R., Traar, P., Schachner, J. A., Volpe, M. & Mösch-Zanetti, N. C. (2013). Eur. J. Inorg. Chem. 3644-3670.]; Yang et al. 2007[Yang, H., Wang, H. & Zhu, C. (2007). J. Org. Chem. 72, 10029-10034.]). Mononuclear molybdenum complexes are generally distinguished by stretching frequencies {u(O=Mo=O)} in the 910–950 cm−1 and 890–925 cm−1 regions, which are characteristic of a cis-MoO2 fragment (Chakravarthy & Chand, 2011[Chakravarthy, R. D. & Chand, D. K. (2011). J. Chem. Sci. 123, 187-199.]). A variety of ligand architectures have been successful in stabilizing the oxomol­yb­denum core in these complexes (Ziegler et al. 2009[Ziegler, J. E., Du, G., Fanwick, P. E. & Abu-Omar, M. M. (2009). Inorg. Chem. 48, 11290-11296.]; Subramanian et al. 1984[Subramanian, P., Spence, J. T., Ortega, R. & Enemark, J. H. (1984). Inorg. Chem. 23, 2564-2572.]; Rajan et al. 1983[Rajan, O. A., Spence, J. T., Leman, C., Minelli, M., Sato, M., Enemark, J. H., Kroneck, P. M. H. & Sulger, K. (1983). Inorg. Chem. 22, 3065-3072.]). Dioxomolybdenum complexes stabilized by salan ligands have been used extensively for various applications (Roy et al., 2017[Roy, S., Mohanty, M., Pasayat, S., Majumder, S., Senthilguru, K., Banerjee, I., Reichelt, M., Reuter, H., Sinn, E. & Dinda, R. (2017). J. Inorg. Biochem. 172, 110-121.]; Whiteoak et al., 2009[Whiteoak, C. J., Britovsek, G. J. P., Gibson, V. C. & White, A. J. P. (2009). Dalton Trans. pp. 2337-2344.]). The modular nature for the synthesis of salan ligands allows for incorporation of steric and electronic variations in the ligand framework to tune the reactivity of the molybdenum center. We are exploring the utility of dioxomolybdenum complexes in catalyzing the de­oxy­dehydration (DODH) reaction with a focus on understanding ligand effects on catalytic activity. This work reports synthesis and crystal structures of two molybdenum complexes including a crystallographically uncharacterized complex, dioxido[2,2′-{l,2-phenyl­enebis(imino­methyl­ene)bis­(phenolato)]molyb­den­um(VI), PhLMoO2 (1b) (Rajan et al. 1983[Rajan, O. A., Spence, J. T., Leman, C., Minelli, M., Sato, M., Enemark, J. H., Kroneck, P. M. H. & Sulger, K. (1983). Inorg. Chem. 22, 3065-3072.]). The second is a known complex with a new unit cell, (Ziegler et al., 2009[Ziegler, J. E., Du, G., Fanwick, P. E. & Abu-Omar, M. M. (2009). Inorg. Chem. 48, 11290-11296.]), 6,6′-{[(cyclo­hexane-1,2-di­yl)bis­(aza­nedi­yl)]bis­(methyl­ene)}bis­(2,4-di-tert-butyl­phenolato))dioxidomolybdenum(VI), CyLMoO2 (2b).

[Scheme 1]

2. Structural commentary

The asymmetric unit of PhLMoO2 (1b) contains two mol­ecules of PhLMoO2 and four mol­ecules of di­methyl­formamide (DMF), as shown in Fig. 1[link]. Fig. 2[link] shows one mol­ecule of PhLMoO2 with hydrogen atoms and solvent removed for clarity. In this system, the salan ligand PhLH2 (1a) coordinates to the molybdenum center in a κ2N,κ2O fashion, forming a distorted octa­hedral geometry. The angles formed around the molybdenum core are 80.23 (6)° for O1—Mo01—N1, 157.78 (6)° for O1—Mo01—O2, 75.18 (6)° for N1—Mo01—N2, and 109.80 (7)° for O3—Mo01—O4. These angles are consistent with a system that is significantly distorted from octa­hedral geometry with bond angles resulting from the salan ligand ranging from 75.18 (6) to 84.38 (7)°, while the angle between the `oxo' oxygens of 109.80 (7)° is close to the ideal tetra­hedral angle of 109.5°. Analogous bond angles in the second molecule in the unit cell are the same within 0.01 Å. The bond distances between the molybdenum center and ligand atoms for Mo01—N1 and Mo01—O1 are 2.3475 (16) and 1.9567 (16) Å, respectively. The notable bond distances from the salan ligand are O1—C1 at 1.377 (2) Å, N1—C7 at 1.486 (3) Å, C2—C7 at 1.515 (3) Å, N1—C8 at 1.389 (8) Å, and C8—C13 at 1.419 (3) Å. Analogous bond distances in the second molecule in the unit cell are the same within 0.01 Å as distances for O1—C1 and N1—C8, respectively. The other bond distances have variations of 0.2–0.3 Å, with N3—C27 at 1.519 (3) Å, C26—C27 at 1.490 (3) Å, and C28—C33 at 1.392 (3) Å.

[Figure 1]
Figure 1
View of 2[PhLMoO2]·4[DMF] (1b) with 50% probability ellipsoids.
[Figure 2]
Figure 2
View of one mol­ecule of PhLMoO2 (1b) with 50% probability ellipsoids. The DMF mol­ecule and H atoms are omitted for clarity.

The asymmetric unit of CyLMoO2 (2b) contains one mol­ecule of CyLMoO2 and two mol­ecules of methanol (MeOH) (Fig. 3[link]). The salan ligand CyLH2 (2a) binds in the same κ2N,κ2O fashion that complex 1b does. Fig. 4[link] shows CyLMoO2 with the hydrogen atoms removed for clarity. The complex also has a distorted octa­hedral geometry with angles of O3—Mo01—O1 at 96.36 (5)°, O1—Mo01—N1 at 76.73 (4)°, N1—Mo01—N2 at 72.40 (4)°, N2—Mo01—O2 at 78.91 (4)°, O2—Mo01—O4 at 100.19 (5)°, O2—Mo01—O3 at 94.58 (5)°. These angles are between 5 and 10° of the ideal 90° for octa­hedral geometry. The N1—Mo01—N2 angle at 72.40 (4)° is slightly less than that of the PhLMoO2 angle of 75.81 (6)°, which is attributed to the flexibility of the cyclo­hexane ring between the nitro­gen atoms compared to the rigid phenyl ring in the PhLMoO2. Metal–ligand bond distances are found for Mo01—O1 at 1.9428 (10) Å, Mo01—O2 at 1.9484 (10) Å, Mo01—O3 at 1.7125 (10) Å, Mo01—O4 at 1.7226 (11) Å, Mo01—N1 at 2.3412 (12) Å, and Mo01—N2 at 2.3384 (12) Å. Other ligand distances and bond lengths within the phenyl rings are consistent with analagous distances in PhLMoO2 (1b). The cylohexane bond distances are consistent with single C—C bonds. The bond lengths observed are not statistically different than those reported by Ziegler et al. (2009[Ziegler, J. E., Du, G., Fanwick, P. E. & Abu-Omar, M. M. (2009). Inorg. Chem. 48, 11290-11296.]). There are a few statistically different angles, specifically around the molybdenum center where Table 1[link] shows the correlating bond angles. These bond-angle differences are most likely due to improved R1 of 2.78% as compared to the previously reported R1 of 5.5% and higher solvent disorder in the reported structure.

Table 1
Comparison of bond angles (°) between CyLMoO2 (2b) with R1 of 2.78% and reported structure from Ziegler et al. (2009[Subramanian, P., Spence, J. T., Ortega, R. & Enemark, J. H. (1984). Inorg. Chem. 23, 2564-2572.]) with R1 of 5.5%

2b Angle Reporteda Angle
O4—Mo01—O2 100.19 (5) O2—Mo1—O62 94.3 (2)
O2—Mo01—N2 78.91 (4) O62—Mo1—N2 86.4 (2)
N1—Mo01—N2 72.40 (4) N5—Mo1—N2 72.0 (2)
O1—Mo01—N1 76.73 (4) N5—Mo1—O12 82.7 (2)
O3—Mo01—O1 96.36 (5) O12—Mo1—O1 93.8 (2)
O3—Mo01—O4 108.55 (5) O2—Mo1—O1 107.6 (2)
Note: (a) Ziegler et al. (2009[Subramanian, P., Spence, J. T., Ortega, R. & Enemark, J. H. (1984). Inorg. Chem. 23, 2564-2572.]).
[Figure 3]
Figure 3
View of one mol­ecule of cyLMoO2·2MeOH (2b) with 50% probability ellipsoids.
[Figure 4]
Figure 4
View of one mol­ecule of cyLMoO2 (2b) with 50% probability ellipsoids. The MeOH mol­ecules and H atoms are omitted for clarity.

3. Supra­molecular features

PhLMoO2 (1b): A single mol­ecule of PhLMoO2 is hydrogen bonded to one disordered DMF mol­ecule, as shown in Fig. 5[link], with a distance of 2.03 Å for O11⋯H008 (Table 2[link]). A second hydrogen bond interaction is between O9—H00D with a distance of 2.16 (3) Å. Corresponding hydrogen bond distances in the second molecule in the unit cell are similar. There are three formula units within the contents of the unit cell. Perpendic­ular π-stacking between PhLMoO2 mol­ecules is observed between C5 and the aryl ring centroid (C35–C39) with a distance of 4.597 Å.

Table 2
Hydrogen-bond geometry (Å, °) for 1b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H008⋯O11 1.00 2.03 2.958 (2) 154
N4—H009⋯O10 1.00 1.99 2.924 (3) 154
N1—H00D⋯O12 0.85 (3) 2.15 (3) 2.949 (3) 157 (2)
N3—H00E⋯O9 0.79 (3) 2.16 (3) 2.885 (3) 154 (3)
[Figure 5]
Figure 5
View of six mol­ecules of PhLMoO2 and five mol­ecules of DMF in the unit cell with 50% probability ellipsoids, highlighting inter­molecular distances. Distances between H atoms are listed without standard deviations because the H atoms were positionally fixed..

CyLMoO2 (2b): There are four mol­ecules of CyLMoO2 in the unit cell of this system and the complex is stabilized via hydrogen bonding to the solvent MeOH mol­ecule (1.94 Å for O4⋯H5A and 2.00 Å for O5⋯H2; Table 3[link]), as seen in Fig. 6[link]. There is no indication that there are π-stacking inter­actions between the two mol­ecules. In comparing the hydrogen bonding with the previously reported structure, the main difference is the formation of hydrogen-bonded tetra­mers containing two mol­ecules of 2b and two mol­ecules of methanol in the current structure. The previously reported structure had one resolved mol­ecule of methanol and one disordered oxygen atom, which form a hydrogen-bonded trimer with one mol­ecule of CyLMoO2 (Ziegler et al., 2009[Ziegler, J. E., Du, G., Fanwick, P. E. & Abu-Omar, M. M. (2009). Inorg. Chem. 48, 11290-11296.]).

Table 3
Hydrogen-bond geometry (Å, °) for 2b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O5i 1.00 2.00 2.9319 (16) 153
O5—H5A⋯O4 0.84 1.94 2.7837 (16) 177
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 6]
Figure 6
View of four mol­ecules of cyLMoO2 and six mol­ecules of methanol in the unit cell with 50% probability ellipsoids, highlighting inter­molecular distances. Distances between H atoms are listed without standard deviations because the H atoms were positionally fixed.

4. Database survey

A database search of the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) (webCSD accessed September 22, 2021) and SciFinder (SciFinder, 2021[SciFinder (2021). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed September 22, 2021).]) did not yield any exact matches to the crystal structure for PhLMoO2 (1b). There was a similar crystal structure found with the imine form of the ligand (Salen)MoO2. A search for CyLMoO2 (2b) in the CSD (webCSD accessed September 22, 2021) shows that there is a known structure of the mol­ecule with a different unit cell with accession code HUWGOW (Ziegler et al., 2009[Ziegler, J. E., Du, G., Fanwick, P. E. & Abu-Omar, M. M. (2009). Inorg. Chem. 48, 11290-11296.]). The SciFinder search resulted in the same sources being found. The current structure for CyLMoO2 (2b) was solved in space group P 21/n compared with P31 for HUWGOW. The primary additional differences in the structures is an improved R1 of 2.78% and more clearly resolved methanol solvent, as compared to the previously reported R1 of 5.5% and more disordered methanol solvent (Ziegler et al., 2009[Ziegler, J. E., Du, G., Fanwick, P. E. & Abu-Omar, M. M. (2009). Inorg. Chem. 48, 11290-11296.]).

5. Synthesis and crystallization

The salan ligands used for stabilizing [MoO2]2+ in the complexes PhLMoO2 (1b) (Rajan et al. 1983[Rajan, O. A., Spence, J. T., Leman, C., Minelli, M., Sato, M., Enemark, J. H., Kroneck, P. M. H. & Sulger, K. (1983). Inorg. Chem. 22, 3065-3072.]) and CyLMoO2 (2b) (Ziegler et al., 2009[Ziegler, J. E., Du, G., Fanwick, P. E. & Abu-Omar, M. M. (2009). Inorg. Chem. 48, 11290-11296.]) were synthesized by the reductive amination of the corresponding salicyl­aldehyde and di­amine. The ligands PhLH2 (1a) and CyLH2 (2a) were synthesized as off-white solids in 86% and 58% yields, respectively. The reaction scheme is shown in Fig. 7[link]. Both ligands were successfully characterized by NMR and IR spectroscopy. A salient feature in the 1H NMR spectra of both ligands as compared to the precursor salen compounds was the disappearance of the aldimine peak (∼8.50 ppm) and the appearance of the benzylic resonances ∼4.00 ppm. The molybdenum complexes PhLMoO2 (1b) and CyLMoO2 (2b) were synthesized in 86% and 42% yields, respectively, by the reaction of the corresponding ligands with MoO2(acac)2 in methanol or aceto­nitrile as solvent. Complexes 1b and 2b were also characterized by NMR and IR spectroscopy. Both complexes exhibited stretches {[(Mo=O) = 916 and 876 cm −1(1b); 903 and 875 cm−1 (2b)] characteristic of a cis-dioxo molybdenum core in the IR spectrum.

[Figure 7]
Figure 7
Synthesis of the dioxomolybdenum complexes 1b and 2b.

Procedure for synthesis of ligands

PhLH2 (1a): To a solution of 1,2-phenyl­enedi­amine (0.764 g, 7.20 mmol) in methanol (ca 7 ml) was added a solution of salicyl­aldehyde (1.76 ml, 14.9 mmol) in methanol (ca 8 ml). The mixture was stirred for 6 h at room temperature. The orange precipitate that formed during this period was filtered and washed with methanol, then dried under high vacuum to yield the salophen product as an orange solid (2.19 g, 98%).1H NMR (CDCl3, 400 MHz, 300 K) δ 13.0 (s, 2H), 8.63 (s, 2H), 7.38 (d, 3JHH = 8 Hz, 2H), 7.35–7.33 (m, 2H), 7.26–7.22 (m, 2H), 7.05 (d, 3JHH = 8 Hz, 2H), 6.92 (t, 3JHH = 8 Hz, 2H).

To a mixture of methanol (ca. 8 ml) and diethyl ether (ca 8 ml), was added salophen (1.52 g, 4.81 mmol) followed by NaBH4 (1.67 g, 44.4 mmol), and the reaction mixture was stirred at room temperature for 1 h. When the yellow color of the solution changed to colorless, it was transferred into a separatory funnel and DI H2O (ca 15 ml) was added followed by ethyl acetate (2 × ca 15 ml) for extraction. The organic solution was separated and combined, then washed with saturated NaCl solution (ca 20 ml). The organic layer was dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under vacuum to give a light-yellow solid, which was dried under high vacuum. The color of the solid changed to light brown after 2 h under high vacuum to yield the product (1.32 g, 86%).1H NMR (CDCl3, 400 MHz, 301 K) δ 7.24–7.19 (m, 4H), 6.96–6.94 (m, 4H), 6.89 (t, 3JHH = 8 Hz, 2H), 6.86 (t, 3JHH = 8 Hz, 2H), 4.40 (s, 4H).

CyLH2 (2a): A 100mL round-bottom flask was charged with trans-1,2-di­amino­cyclo­hexane (0.448 g, 4.38 mmol), methanol (ca. 16 mL), and 3,5-di-tert-butyl­salicyl­aldehyde (2.05 g, 17.5 mmol). The solution was stirred for 24 h at room temperature. The solution resulted in a bright-yellow precipitate. The precipitate was then collected by gravity filtration and washed with cold methanol. The precipitate was dried under high vacuum to remove any residual solvent and yield the salen product (3.85 g, 81%). 1H NMR (CDCl3, 400 MHz, 301 K) δ 13.6 (br, 2H), 8.33 (s, 2H), 7.34 (s, 2H), 7.02 (s, 2H), 3.37 (br, 2H), 1.98–1.77 (m, 4H), 1.40 (s, 18H), 1.33–1.29 (m, 4H), 1.24 (s, 18H).

A 100mL round-bottom flask was charged with the salen product (1.00 g, 2.00 mmol), methanol (ca 3 mL), and THF (ca 25 mL). NaBH4 (9 equivalents) was slowly added into the reaction mixture until the solution was colorless. The reaction was quenched with DI water (ca 20 mL), and the product was extracted with ethyl acetate (2 × ca 10 ml) using a separatory funnel. The combined organic layers were dried using anhydrous Na2SO4 and was concentrated under vacuum using the rotary evaporator. The product was then put under high vacuum overnight to ensure it was completely dry (0.577 g, 58%). 1H NMR (CDCl3, 400 MHz, 301 K) δ 7.22 (d, 4JHH = 4 Hz, 2H), 6.87 (d, 4JHH = 4 Hz, 2H), 4.05 (d, 2JHH = 16 Hz, 2H), 3.90 (d, 2JHH = 16 Hz, 2H), 2.51 (br, 2H), 2.19 (br, 2H), 1.72 (br, 2H), 1.44–1.41 (m, 2H), 1.38 (s, 18H), 1.28 (s, 18H), 1.23–1.20 (m, 4H).

Procedure for synthesis of molybdenum complexes

Dioxido[2,2′-{l,2-phenyl­enebis(imino­methyl­ene)}bis­(phen­o­lato)]molybdenum(VI) (PhLMoO2, 1b): To a solution of 1a (1.04 g, 3.29 mmol) in aceto­nitrile (ca 20 ml) was added MoO2(acac)2 (1.07 g, 3.30 mmol) and the mixture was stirred at room temperature for 10 min. The yellow precipitate that formed was filtered and then dried under vacuum to yield the complex as yellow solid (1.24 g, 86%).1H NMR (DMSO-d6, 400 MHz, 301 K) δ 7.55 (d, 3JHH = 8 Hz, 1H), 7.37–7.35 (m, 1H), 7.19–7.10 (m, 4H), 7.07–7.05 (m, 1H), 7.02–6.98 (m, 2H), 6.91 (d, 3JHH = 8 Hz, 1H), 6.85–6.83 (m, 1H), 6.80 (d, 3JHH = 8 Hz, 1H), 6.76–6.68 (m, 2H), 6.63 (d, 3JHH = 8 Hz, 1H), 6.59 (d, 3JHH = 8 Hz, 1H), 6.42 (d, 2JHH = 12 Hz, 1H), 5.24 (d, 2JHH = 16 Hz, 1H), 5.16 (d, 2JHH = 16 Hz, 1H), 4.94 (d, 2JHH = 16 Hz, 1H), 4.20 (d, 2JHH = 12 Hz, 1H). 13C{1H} NMR (DMSO-d6, 100 MHz, 301 K) δ 163.0, 160.2, 155.6, 148.0, 141.1, 130.5, 129.1, 129.0, 128.9, 128.0, 127.9, 125.9, 124.3, 122.9, 120.1, 119.2, 119.1, 118.9, 117.8, 115.3, 111.1, 53.7, 53.6. Selected IR (cm−1): 3127 υ(2° N—H); 916, 876 υ(Mo=O).

Crystals of PhLMoO2, 1b were grown by forming a supersaturated solution of the complex in DMF and layering with hexa­nes. The solution was placed in a refrigerator at 268 K for 1.5 months. Orange–yellow crystals were observed to grow and were collected for structural determination.

(6,6′-{[(Cyclo­hexane-1,2-di­yl)bis­(aza­nedi­yl)]bis­(methyl­ene)}bis­(2,4-di-tert-butyl­phenolato))dioxidomolybdenum(VI) (CyLMoO2, 2b): A round-bottom flask equipped with a magnetic stirring bar was charged with MoO2(acac)2 (0.165 g, 0.506 mmol) and methanol (ca. 10 mL). The solution was stirred, and 2a (0.27 g, 0.51 mmol) was added to the MoO2(acac)2 dissolved in methanol. The solution was stirred overnight when it turned orange. The solution was filtered, and the solvent removed by evaporation under vacuum to obtain an orange precipitate. The precipitate was triturated with methanol, producing an orange solid, which was separated by gravity filtration and was washed twice with cold methanol (0.108 g, 42%). 1H NMR (CDCl3, 400 MHz, 301 K) δ 7.26 (s, 2H), 6.86 (s, 2H), 5.28 (d, 2JHH = 16 Hz, 2H), 4.18 (d, 2JHH = 12 Hz, 2H), 2.34–2.28 (m, 4H), 1.43 (s, 18H), 1.30 (s, 18H), 1.19–1.17 (m, 4H), 0.88–0.85 (m, 4H). 13C{1H} NMR (CDCl3, 100 MHz, 301 K) δ 157.1, 152.1, 142.8, 142.3, 142.0, 138.0, 137.7, 137.6, 125.7, 125.4, 124.1, 124.0, 123.0, 122.9, 120.0, 119.6, 65.19, 58.9, 57.6, 53.4, 50.9, 50.5, 35.2, 35.1, 34.3, 34.2, 33.0, 31.6, 31.6, 31.5, 29.9, 29.9, 28.9, 24.5, 24.3, 24.1. Selected IR (cm−1): 903, 875 υ(Mo=O).

Crystals of CyLMoO2, 2b were grown by using a supersaturated solution of the complex dissolved in methanol and allowed to undergo slow evaporation over 2 d. A similar vial was also refrigerated where crystals were seen to form as well. The crystals from the slow evaporation set up were cropped and the orange–yellow crystals were used for structure determination.

6. Refinement

Crystal data, data collection, and refinement details are listed in Table 4[link]. Hydrogen atoms were placed at ideal positions with C—H distances at 0.95 for CH and 0.99 Å for sp3 CH2 and CH3 using HFIX commands, and refined using a riding model with Uiso(H) = 1.2Ueq(C) for CH, CH2, and CH3. The structure for PhMoO2 (1b) was initially refined in the trigonal crystal system P3221; however, this resulted in the solvent DMF having a high level of disorder with many checkCIF errors.

Table 4
Experimental details

  1b 2b
Crystal data
Chemical formula [Mo(C20H18N2O2)O2]·2C3H7NO [Mo(C36H56N2O2)O2]·2CH4O
Mr 592.49 740.84
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 100 105
a, b, c (Å) 9.601, 12.860, 21.428 18.4889 (14), 10.9722 (8), 19.1517 (14)
α, β, γ (°) 91.44, 91.49, 93.22 90, 94.035 (2), 90
V3) 2639.8 3875.6 (5)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.54 0.38
Crystal size (mm) 0.34 × 0.29 × 0.29 0.2 × 0.18 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.664, 0.737 0.672, 0.750
No. of measured, independent and observed [I > 2σ(I)] reflections 146655, 7625, 6364 29075, 9532, 8724
Rint 0.056 0.026
(sin θ/λ)max−1) 0.641 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.065, 1.06 0.028, 0.070, 1.07
No. of reflections 7625 9532
No. of parameters 683 440
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.38 0.52, −0.52
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(6,6'-{[(Cyclohexane-1,2-diyl)bis(azanediyl)]bis(methylene)}bis(2,4-di-tert-butylphenolato))dioxidomolybdenum(VI) methanol disolvate (2b) top
Crystal data top
[Mo(C36H56N2O2)O2]·2CH4OF(000) = 1584
Mr = 740.84Dx = 1.270 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 18.4889 (14) ÅCell parameters from 9945 reflections
b = 10.9722 (8) Åθ = 5.3–51.4°
c = 19.1517 (14) ŵ = 0.38 mm1
β = 94.035 (2)°T = 105 K
V = 3875.6 (5) Å3Prism, clear yellow
Z = 40.2 × 0.18 × 0.1 mm
Data collection top
Bruker APEXII CCD
diffractometer
8724 reflections with I > 2σ(I)
φ and ω scansRint = 0.026
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 28.3°, θmin = 5.3°
Tmin = 0.672, Tmax = 0.750h = 2424
29075 measured reflectionsk = 1414
9532 independent reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0277P)2 + 2.9594P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
9532 reflectionsΔρmax = 0.52 e Å3
440 parametersΔρmin = 0.52 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo010.59832 (2)0.45373 (2)0.68071 (2)0.00996 (4)
O10.67906 (5)0.43892 (9)0.62159 (5)0.01218 (19)
O30.64642 (6)0.52033 (10)0.75027 (6)0.0154 (2)
O20.51926 (5)0.39987 (10)0.73535 (5)0.01299 (19)
O40.55503 (6)0.56653 (10)0.63112 (6)0.0166 (2)
N20.54408 (6)0.30514 (11)0.60679 (6)0.0124 (2)
H20.5624520.3178770.5594590.015*
N10.64967 (6)0.26557 (11)0.71382 (6)0.0108 (2)
H10.6216810.2331320.7525920.013*
O50.44789 (6)0.68127 (12)0.54536 (6)0.0239 (3)
H5A0.4811260.6466910.5701270.036*
C220.46379 (8)0.32549 (14)0.59954 (7)0.0142 (3)
H22A0.4423080.2768310.5597820.017*
H22B0.4537890.4125660.5893330.017*
C30.84869 (7)0.31009 (13)0.70189 (7)0.0111 (3)
H30.8643140.2558290.7385590.013*
C50.87410 (7)0.43712 (13)0.60581 (7)0.0121 (3)
H50.9084050.4724820.5771810.015*
C240.46022 (7)0.32631 (13)0.73127 (7)0.0119 (3)
C10.75049 (7)0.41320 (13)0.63556 (7)0.0102 (2)
C250.43157 (7)0.28483 (13)0.79316 (7)0.0126 (3)
C20.77461 (7)0.33656 (13)0.69077 (7)0.0108 (2)
C330.46569 (8)0.32001 (14)0.86602 (7)0.0142 (3)
C40.89997 (7)0.36090 (13)0.66085 (7)0.0118 (3)
C260.36957 (8)0.21086 (14)0.78600 (8)0.0146 (3)
H260.3488500.1840920.8273360.017*
C230.42907 (8)0.28965 (14)0.66554 (7)0.0142 (3)
C90.74008 (9)0.66304 (14)0.55600 (9)0.0201 (3)
H9A0.6972460.6412070.5806700.030*
H9B0.7256310.7164100.5164250.030*
H9C0.7750580.7056360.5881840.030*
C60.80076 (7)0.46405 (12)0.59066 (7)0.0111 (2)
C150.72567 (7)0.28252 (13)0.74267 (7)0.0110 (2)
H15A0.7454940.2025820.7585230.013*
H15B0.7258790.3365330.7840940.013*
C70.77512 (8)0.54657 (13)0.52888 (7)0.0128 (3)
C100.83846 (8)0.58516 (15)0.48592 (8)0.0170 (3)
H10A0.8201310.6363330.4466330.025*
H10B0.8617150.5124550.4679480.025*
H10C0.8739250.6312770.5157880.025*
C160.64240 (8)0.17496 (13)0.65555 (7)0.0141 (3)
H160.6727050.2025040.6172890.017*
C210.66673 (8)0.04744 (13)0.67866 (8)0.0160 (3)
H21A0.6421440.0241970.7209760.019*
H21B0.7196280.0478990.6910190.019*
C270.33673 (8)0.17452 (14)0.72175 (8)0.0157 (3)
C280.36837 (8)0.21471 (14)0.66180 (8)0.0162 (3)
H280.3477970.1900930.6171740.019*
C110.98156 (7)0.33692 (13)0.67445 (7)0.0129 (3)
C360.54757 (8)0.29016 (15)0.87359 (8)0.0194 (3)
H36A0.5551130.2052080.8600750.029*
H36B0.5659910.3021780.9223470.029*
H36C0.5735250.3441700.8431650.029*
C190.56900 (10)0.04481 (15)0.59694 (9)0.0219 (3)
H19A0.5399440.0683130.6362940.026*
H19B0.5594500.1047650.5587770.026*
C200.64927 (9)0.04664 (15)0.62109 (9)0.0224 (3)
H20A0.6783640.0290620.5808070.027*
H20B0.6627030.1288710.6388970.027*
C141.02015 (9)0.45629 (15)0.69599 (9)0.0222 (3)
H14A1.0121810.5163510.6583650.033*
H14B1.0722470.4411110.7046170.033*
H14C1.0006770.4876510.7387590.033*
C340.43001 (10)0.25202 (16)0.92482 (8)0.0229 (3)
H34A0.3783090.2724080.9231670.034*
H34B0.4533060.2763400.9702300.034*
H34C0.4356620.1639730.9185390.034*
C120.99721 (8)0.24308 (14)0.73274 (8)0.0161 (3)
H12A0.9797530.2740880.7765030.024*
H12B1.0495660.2285560.7390320.024*
H12C0.9723420.1665470.7200040.024*
C80.72060 (9)0.47859 (16)0.47828 (8)0.0193 (3)
H8A0.6772740.4580880.5025410.029*
H8B0.7429170.4036230.4621370.029*
H8C0.7069200.5308100.4379850.029*
C350.45589 (9)0.45675 (14)0.87842 (8)0.0205 (3)
H35A0.4760470.5026930.8404400.031*
H35B0.4812070.4797420.9231600.031*
H35C0.4041400.4752930.8796110.031*
C170.56291 (8)0.17702 (14)0.62828 (8)0.0144 (3)
H170.5333040.1557190.6682820.017*
C131.01268 (8)0.28886 (15)0.60759 (8)0.0186 (3)
H13A0.9875370.2135760.5927700.028*
H13B1.0645510.2721950.6168230.028*
H13C1.0058540.3500830.5704540.028*
C180.54628 (9)0.08268 (15)0.57084 (8)0.0193 (3)
H18A0.5727110.1037410.5292920.023*
H18B0.4937120.0832630.5568140.023*
C290.26833 (8)0.09489 (15)0.71510 (9)0.0185 (3)
C300.28065 (10)0.01727 (16)0.66956 (10)0.0261 (4)
H30A0.2903960.0090750.6222400.039*
H30B0.2372520.0687850.6673490.039*
H30C0.3221760.0637250.6900210.039*
C370.40015 (9)0.74080 (18)0.58931 (9)0.0263 (4)
H37A0.3565030.7670750.5613400.039*
H37B0.4244560.8120340.6110860.039*
H37C0.3865580.6843540.6258220.039*
C320.24605 (10)0.04964 (19)0.78619 (10)0.0299 (4)
H32A0.2859860.0030250.8095340.045*
H32B0.2031720.0026370.7791720.045*
H32C0.2347250.1195930.8153060.045*
C310.20611 (9)0.17193 (17)0.68148 (12)0.0314 (4)
H31A0.2001840.2454720.7095430.047*
H31B0.1611390.1243900.6793870.047*
H31C0.2172240.1951830.6339990.047*
O0AA0.78475 (9)0.15803 (16)0.53746 (9)0.0475 (4)
H0AA0.7534570.1349590.5063340.071*
C380.83042 (13)0.0590 (2)0.55795 (13)0.0447 (5)
H38A0.8095610.0167050.5382740.067*
H38B0.8348670.0532700.6091400.067*
H38C0.8784660.0718520.5406440.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo010.00740 (6)0.01008 (6)0.01251 (6)0.00059 (4)0.00143 (4)0.00055 (4)
O10.0078 (4)0.0146 (5)0.0143 (5)0.0017 (4)0.0018 (4)0.0034 (4)
O30.0134 (5)0.0137 (5)0.0190 (5)0.0010 (4)0.0010 (4)0.0023 (4)
O20.0102 (4)0.0154 (5)0.0135 (5)0.0020 (4)0.0023 (4)0.0009 (4)
O40.0135 (5)0.0168 (5)0.0197 (5)0.0044 (4)0.0030 (4)0.0037 (4)
N20.0099 (5)0.0152 (6)0.0119 (5)0.0022 (5)0.0000 (4)0.0012 (4)
N10.0079 (5)0.0117 (5)0.0127 (5)0.0015 (4)0.0006 (4)0.0002 (4)
O50.0216 (6)0.0340 (7)0.0158 (5)0.0087 (5)0.0007 (4)0.0025 (5)
C220.0102 (6)0.0187 (7)0.0133 (6)0.0004 (5)0.0014 (5)0.0016 (5)
C30.0104 (6)0.0096 (6)0.0131 (6)0.0002 (5)0.0002 (5)0.0003 (5)
C50.0101 (6)0.0122 (6)0.0144 (6)0.0018 (5)0.0029 (5)0.0005 (5)
C240.0072 (6)0.0128 (6)0.0156 (6)0.0009 (5)0.0004 (5)0.0007 (5)
C10.0077 (6)0.0100 (6)0.0131 (6)0.0003 (5)0.0013 (5)0.0009 (5)
C250.0104 (6)0.0125 (6)0.0148 (6)0.0023 (5)0.0006 (5)0.0009 (5)
C20.0094 (6)0.0099 (6)0.0131 (6)0.0020 (5)0.0014 (5)0.0002 (5)
C330.0157 (7)0.0140 (7)0.0130 (6)0.0010 (5)0.0022 (5)0.0004 (5)
C40.0090 (6)0.0114 (6)0.0150 (6)0.0002 (5)0.0010 (5)0.0013 (5)
C260.0113 (6)0.0144 (7)0.0185 (7)0.0013 (5)0.0042 (5)0.0029 (5)
C230.0115 (6)0.0178 (7)0.0133 (6)0.0002 (5)0.0001 (5)0.0022 (5)
C90.0236 (8)0.0144 (7)0.0231 (7)0.0052 (6)0.0068 (6)0.0051 (6)
C60.0108 (6)0.0097 (6)0.0129 (6)0.0004 (5)0.0018 (5)0.0004 (5)
C150.0083 (6)0.0126 (6)0.0120 (6)0.0017 (5)0.0004 (5)0.0018 (5)
C70.0116 (6)0.0133 (6)0.0135 (6)0.0002 (5)0.0019 (5)0.0028 (5)
C100.0149 (7)0.0197 (7)0.0166 (7)0.0022 (6)0.0035 (5)0.0055 (6)
C160.0140 (6)0.0130 (7)0.0150 (6)0.0000 (5)0.0013 (5)0.0017 (5)
C210.0157 (7)0.0118 (7)0.0197 (7)0.0019 (5)0.0041 (5)0.0005 (5)
C270.0093 (6)0.0157 (7)0.0219 (7)0.0005 (5)0.0003 (5)0.0025 (6)
C280.0123 (6)0.0189 (7)0.0169 (7)0.0008 (6)0.0028 (5)0.0014 (6)
C110.0077 (6)0.0140 (7)0.0169 (6)0.0000 (5)0.0006 (5)0.0010 (5)
C360.0177 (7)0.0221 (8)0.0177 (7)0.0026 (6)0.0039 (6)0.0001 (6)
C190.0274 (8)0.0155 (7)0.0218 (7)0.0022 (6)0.0057 (6)0.0017 (6)
C200.0258 (8)0.0136 (7)0.0269 (8)0.0028 (6)0.0046 (6)0.0039 (6)
C140.0144 (7)0.0178 (7)0.0336 (9)0.0045 (6)0.0042 (6)0.0005 (6)
C340.0301 (9)0.0251 (8)0.0138 (7)0.0048 (7)0.0042 (6)0.0027 (6)
C120.0118 (6)0.0191 (7)0.0175 (7)0.0027 (6)0.0011 (5)0.0035 (6)
C80.0168 (7)0.0261 (8)0.0145 (7)0.0049 (6)0.0012 (5)0.0026 (6)
C350.0274 (8)0.0161 (7)0.0183 (7)0.0028 (6)0.0031 (6)0.0010 (6)
C170.0141 (6)0.0133 (7)0.0156 (7)0.0007 (5)0.0006 (5)0.0005 (5)
C130.0134 (7)0.0242 (8)0.0185 (7)0.0046 (6)0.0033 (5)0.0037 (6)
C180.0236 (8)0.0161 (7)0.0171 (7)0.0005 (6)0.0068 (6)0.0025 (6)
C290.0103 (6)0.0180 (7)0.0270 (8)0.0030 (6)0.0014 (6)0.0012 (6)
C300.0221 (8)0.0218 (8)0.0345 (9)0.0053 (7)0.0031 (7)0.0032 (7)
C370.0202 (8)0.0358 (10)0.0230 (8)0.0026 (7)0.0027 (6)0.0067 (7)
C320.0226 (8)0.0354 (10)0.0324 (9)0.0141 (8)0.0084 (7)0.0008 (8)
C310.0135 (7)0.0230 (9)0.0563 (12)0.0015 (7)0.0078 (8)0.0031 (8)
O0AA0.0424 (9)0.0457 (9)0.0550 (10)0.0012 (8)0.0073 (7)0.0082 (8)
C380.0409 (12)0.0465 (13)0.0479 (13)0.0002 (10)0.0118 (10)0.0003 (10)
Geometric parameters (Å, º) top
Mo01—O11.9428 (10)C27—C281.396 (2)
Mo01—O31.7125 (10)C27—C291.535 (2)
Mo01—O21.9484 (10)C28—H280.9500
Mo01—O41.7226 (11)C11—C141.534 (2)
Mo01—N22.3384 (12)C11—C121.531 (2)
Mo01—N12.3412 (12)C11—C131.534 (2)
O1—C11.3586 (16)C36—H36A0.9800
O2—C241.3554 (17)C36—H36B0.9800
N2—H21.0000C36—H36C0.9800
N2—C221.4979 (18)C19—H19A0.9900
N2—C171.4989 (19)C19—H19B0.9900
N1—H11.0000C19—C201.523 (2)
N1—C151.4850 (17)C19—C181.534 (2)
N1—C161.4935 (18)C20—H20A0.9900
O5—H5A0.8400C20—H20B0.9900
O5—C371.421 (2)C14—H14A0.9800
C22—H22A0.9900C14—H14B0.9800
C22—H22B0.9900C14—H14C0.9800
C22—C231.510 (2)C34—H34A0.9800
C3—H30.9500C34—H34B0.9800
C3—C21.4016 (18)C34—H34C0.9800
C3—C41.3902 (19)C12—H12A0.9800
C5—H50.9500C12—H12B0.9800
C5—C41.4029 (19)C12—H12C0.9800
C5—C61.3982 (19)C8—H8A0.9800
C24—C251.407 (2)C8—H8B0.9800
C24—C231.4057 (19)C8—H8C0.9800
C1—C21.3992 (19)C35—H35A0.9800
C1—C61.4238 (19)C35—H35B0.9800
C25—C331.5396 (19)C35—H35C0.9800
C25—C261.403 (2)C17—H171.0000
C2—C151.5117 (18)C17—C181.526 (2)
C33—C361.546 (2)C13—H13A0.9800
C33—C341.538 (2)C13—H13B0.9800
C33—C351.532 (2)C13—H13C0.9800
C4—C111.5353 (19)C18—H18A0.9900
C26—H260.9500C18—H18B0.9900
C26—C271.391 (2)C29—C301.535 (2)
C23—C281.389 (2)C29—C321.533 (2)
C9—H9A0.9800C29—C311.532 (2)
C9—H9B0.9800C30—H30A0.9800
C9—H9C0.9800C30—H30B0.9800
C9—C71.539 (2)C30—H30C0.9800
C6—C71.5380 (19)C37—H37A0.9800
C15—H15A0.9900C37—H37B0.9800
C15—H15B0.9900C37—H37C0.9800
C7—C101.537 (2)C32—H32A0.9800
C7—C81.541 (2)C32—H32B0.9800
C10—H10A0.9800C32—H32C0.9800
C10—H10B0.9800C31—H31A0.9800
C10—H10C0.9800C31—H31B0.9800
C16—H161.0000C31—H31C0.9800
C16—C211.526 (2)O0AA—H0AA0.8400
C16—C171.5250 (19)O0AA—C381.415 (3)
C21—H21A0.9900C38—H38A0.9800
C21—H21B0.9900C38—H38B0.9800
C21—C201.528 (2)C38—H38C0.9800
O1—Mo01—O2157.49 (4)C23—C28—H28119.1
O1—Mo01—N284.45 (4)C27—C28—H28119.1
O1—Mo01—N176.73 (4)C14—C11—C4109.40 (12)
O3—Mo01—O196.36 (5)C12—C11—C4111.84 (12)
O3—Mo01—O294.58 (5)C12—C11—C14108.51 (12)
O3—Mo01—O4108.55 (5)C12—C11—C13108.34 (12)
O3—Mo01—N2161.00 (5)C13—C11—C4109.83 (11)
O3—Mo01—N189.26 (5)C13—C11—C14108.87 (13)
O2—Mo01—N278.91 (4)C33—C36—H36A109.5
O2—Mo01—N183.82 (4)C33—C36—H36B109.5
O4—Mo01—O194.88 (5)C33—C36—H36C109.5
O4—Mo01—O2100.19 (5)H36A—C36—H36B109.5
O4—Mo01—N290.24 (5)H36A—C36—H36C109.5
O4—Mo01—N1161.21 (5)H36B—C36—H36C109.5
N2—Mo01—N172.40 (4)H19A—C19—H19B108.1
C1—O1—Mo01132.75 (9)C20—C19—H19A109.6
C24—O2—Mo01141.38 (9)C20—C19—H19B109.6
Mo01—N2—H2107.0C20—C19—C18110.46 (13)
C22—N2—Mo01109.40 (9)C18—C19—H19A109.6
C22—N2—H2107.0C18—C19—H19B109.6
C22—N2—C17112.01 (11)C21—C20—H20A109.4
C17—N2—Mo01113.97 (8)C21—C20—H20B109.4
C17—N2—H2107.0C19—C20—C21111.22 (14)
Mo01—N1—H1107.1C19—C20—H20A109.4
C15—N1—Mo01110.21 (8)C19—C20—H20B109.4
C15—N1—H1107.1H20A—C20—H20B108.0
C15—N1—C16113.23 (11)C11—C14—H14A109.5
C16—N1—Mo01111.79 (8)C11—C14—H14B109.5
C16—N1—H1107.1C11—C14—H14C109.5
C37—O5—H5A109.5H14A—C14—H14B109.5
N2—C22—H22A109.4H14A—C14—H14C109.5
N2—C22—H22B109.4H14B—C14—H14C109.5
N2—C22—C23111.14 (11)C33—C34—H34A109.5
H22A—C22—H22B108.0C33—C34—H34B109.5
C23—C22—H22A109.4C33—C34—H34C109.5
C23—C22—H22B109.4H34A—C34—H34B109.5
C2—C3—H3119.0H34A—C34—H34C109.5
C4—C3—H3119.0H34B—C34—H34C109.5
C4—C3—C2121.94 (13)C11—C12—H12A109.5
C4—C5—H5118.1C11—C12—H12B109.5
C6—C5—H5118.1C11—C12—H12C109.5
C6—C5—C4123.81 (13)H12A—C12—H12B109.5
O2—C24—C25119.56 (12)H12A—C12—H12C109.5
O2—C24—C23119.97 (13)H12B—C12—H12C109.5
C23—C24—C25120.45 (13)C7—C8—H8A109.5
O1—C1—C2121.83 (12)C7—C8—H8B109.5
O1—C1—C6117.81 (12)C7—C8—H8C109.5
C2—C1—C6120.33 (12)H8A—C8—H8B109.5
C24—C25—C33121.85 (13)H8A—C8—H8C109.5
C26—C25—C24117.26 (13)H8B—C8—H8C109.5
C26—C25—C33120.89 (13)C33—C35—H35A109.5
C3—C2—C15116.27 (12)C33—C35—H35B109.5
C1—C2—C3119.70 (12)C33—C35—H35C109.5
C1—C2—C15123.98 (12)H35A—C35—H35B109.5
C25—C33—C36111.60 (12)H35A—C35—H35C109.5
C34—C33—C25111.87 (12)H35B—C35—H35C109.5
C34—C33—C36107.23 (13)N2—C17—C16107.91 (12)
C35—C33—C25109.93 (12)N2—C17—H17107.5
C35—C33—C36108.59 (13)N2—C17—C18114.02 (12)
C35—C33—C34107.46 (13)C16—C17—H17107.5
C3—C4—C5116.99 (12)C16—C17—C18112.17 (13)
C3—C4—C11122.44 (12)C18—C17—H17107.5
C5—C4—C11120.57 (12)C11—C13—H13A109.5
C25—C26—H26118.2C11—C13—H13B109.5
C27—C26—C25123.69 (13)C11—C13—H13C109.5
C27—C26—H26118.2H13A—C13—H13B109.5
C24—C23—C22120.24 (13)H13A—C13—H13C109.5
C28—C23—C22120.05 (13)H13B—C13—H13C109.5
C28—C23—C24119.62 (13)C19—C18—H18A109.6
H9A—C9—H9B109.5C19—C18—H18B109.6
H9A—C9—H9C109.5C17—C18—C19110.30 (12)
H9B—C9—H9C109.5C17—C18—H18A109.6
C7—C9—H9A109.5C17—C18—H18B109.6
C7—C9—H9B109.5H18A—C18—H18B108.1
C7—C9—H9C109.5C30—C29—C27110.44 (13)
C5—C6—C1117.17 (12)C32—C29—C27112.47 (13)
C5—C6—C7121.74 (12)C32—C29—C30107.76 (14)
C1—C6—C7121.09 (12)C31—C29—C27108.10 (13)
N1—C15—C2113.51 (11)C31—C29—C30109.91 (14)
N1—C15—H15A108.9C31—C29—C32108.13 (15)
N1—C15—H15B108.9C29—C30—H30A109.5
C2—C15—H15A108.9C29—C30—H30B109.5
C2—C15—H15B108.9C29—C30—H30C109.5
H15A—C15—H15B107.7H30A—C30—H30B109.5
C9—C7—C8109.99 (13)H30A—C30—H30C109.5
C6—C7—C9110.08 (12)H30B—C30—H30C109.5
C6—C7—C8110.57 (12)O5—C37—H37A109.5
C10—C7—C9107.85 (12)O5—C37—H37B109.5
C10—C7—C6111.63 (12)O5—C37—H37C109.5
C10—C7—C8106.62 (12)H37A—C37—H37B109.5
C7—C10—H10A109.5H37A—C37—H37C109.5
C7—C10—H10B109.5H37B—C37—H37C109.5
C7—C10—H10C109.5C29—C32—H32A109.5
H10A—C10—H10B109.5C29—C32—H32B109.5
H10A—C10—H10C109.5C29—C32—H32C109.5
H10B—C10—H10C109.5H32A—C32—H32B109.5
N1—C16—H16108.7H32A—C32—H32C109.5
N1—C16—C21112.61 (11)H32B—C32—H32C109.5
N1—C16—C17106.26 (11)C29—C31—H31A109.5
C21—C16—H16108.7C29—C31—H31B109.5
C17—C16—H16108.7C29—C31—H31C109.5
C17—C16—C21111.73 (12)H31A—C31—H31B109.5
C16—C21—H21A109.3H31A—C31—H31C109.5
C16—C21—H21B109.3H31B—C31—H31C109.5
C16—C21—C20111.54 (12)C38—O0AA—H0AA109.5
H21A—C21—H21B108.0O0AA—C38—H38A109.5
C20—C21—H21A109.3O0AA—C38—H38B109.5
C20—C21—H21B109.3O0AA—C38—H38C109.5
C26—C27—C28117.04 (13)H38A—C38—H38B109.5
C26—C27—C29122.83 (14)H38A—C38—H38C109.5
C28—C27—C29120.13 (13)H38B—C38—H38C109.5
C23—C28—C27121.89 (14)
Mo01—O1—C1—C231.67 (19)C1—C6—C7—C10177.16 (13)
Mo01—O1—C1—C6150.18 (10)C1—C6—C7—C858.64 (17)
Mo01—O2—C24—C25158.74 (11)C25—C24—C23—C22174.72 (13)
Mo01—O2—C24—C2319.8 (2)C25—C24—C23—C281.8 (2)
Mo01—N2—C22—C2373.12 (13)C25—C26—C27—C280.2 (2)
Mo01—N2—C17—C1638.13 (13)C25—C26—C27—C29179.20 (14)
Mo01—N2—C17—C18163.45 (10)C2—C3—C4—C52.2 (2)
Mo01—N1—C15—C261.41 (13)C2—C3—C4—C11177.34 (13)
Mo01—N1—C16—C21172.68 (9)C2—C1—C6—C52.0 (2)
Mo01—N1—C16—C1750.05 (12)C2—C1—C6—C7178.87 (13)
O1—C1—C2—C3178.24 (12)C33—C25—C26—C27179.11 (14)
O1—C1—C2—C154.4 (2)C4—C3—C2—C12.1 (2)
O1—C1—C6—C5179.79 (12)C4—C3—C2—C15175.52 (13)
O1—C1—C6—C70.69 (19)C4—C5—C6—C11.9 (2)
O2—C24—C25—C330.4 (2)C4—C5—C6—C7178.97 (13)
O2—C24—C25—C26178.78 (13)C26—C25—C33—C36127.48 (15)
O2—C24—C23—C223.8 (2)C26—C25—C33—C347.33 (19)
O2—C24—C23—C28179.71 (13)C26—C25—C33—C35111.97 (16)
N2—C22—C23—C2445.68 (19)C26—C27—C28—C231.3 (2)
N2—C22—C23—C28130.82 (14)C26—C27—C29—C30126.65 (16)
N2—C17—C18—C19178.60 (13)C26—C27—C29—C326.2 (2)
N1—C16—C21—C20172.29 (13)C26—C27—C29—C31113.07 (17)
N1—C16—C17—N256.94 (14)C23—C24—C25—C33178.13 (13)
N1—C16—C17—C18176.64 (12)C23—C24—C25—C262.7 (2)
C22—N2—C17—C16163.01 (11)C6—C5—C4—C30.1 (2)
C22—N2—C17—C1871.67 (16)C6—C5—C4—C11179.40 (13)
C22—C23—C28—C27176.79 (14)C6—C1—C2—C30.1 (2)
C3—C2—C15—N1154.63 (12)C6—C1—C2—C15177.52 (13)
C3—C4—C11—C14114.88 (15)C15—N1—C16—C2162.12 (15)
C3—C4—C11—C125.36 (19)C15—N1—C16—C17175.25 (11)
C3—C4—C11—C13125.68 (14)C16—N1—C15—C264.63 (15)
C5—C4—C11—C1464.61 (17)C16—C21—C20—C1955.27 (18)
C5—C4—C11—C12175.14 (13)C16—C17—C18—C1955.56 (18)
C5—C4—C11—C1354.82 (17)C21—C16—C17—N2179.87 (11)
C5—C6—C7—C9115.97 (15)C21—C16—C17—C1853.46 (17)
C5—C6—C7—C103.78 (19)C28—C27—C29—C3053.95 (19)
C5—C6—C7—C8122.30 (14)C28—C27—C29—C32174.37 (15)
C24—C25—C33—C3653.41 (18)C28—C27—C29—C3166.33 (19)
C24—C25—C33—C34173.56 (13)C20—C19—C18—C1757.38 (18)
C24—C25—C33—C3567.14 (17)C17—N2—C22—C2354.25 (15)
C24—C25—C26—C271.7 (2)C17—C16—C21—C2052.79 (17)
C24—C23—C28—C270.3 (2)C18—C19—C20—C2157.58 (18)
C1—C2—C15—N127.90 (19)C29—C27—C28—C23178.18 (14)
C1—C6—C7—C963.09 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O5i1.002.002.9319 (16)153
O5—H5A···O40.841.942.7837 (16)177
Symmetry code: (i) x+1, y+1, z+1.
Dioxido{2,2'-[l,2-phenylenebis(iminomethylene)]bis(phenolato)}molybdenum(VI) dimethylformamide disolvate (1b) top
Crystal data top
[Mo(C20H18N2O2)O2]·2C3H7NOZ = 4
Mr = 592.49F(000) = 1224
Triclinic, P1Dx = 1.491 Mg m3
a = 9.601 ÅMo Kα radiation, λ = 0.71073 Å
b = 12.860 ÅCell parameters from 9515 reflections
c = 21.428 Åθ = 2.3–49.3°
α = 91.44°µ = 0.54 mm1
β = 91.49°T = 100 K
γ = 93.22°Plate, yellow
V = 2639.8 Å30.34 × 0.29 × 0.29 mm
Data collection top
Bruker APEXII CCD
diffractometer
6364 reflections with I > 2σ(I)
φ and ω scansRint = 0.056
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 27.1°, θmin = 2.7°
Tmin = 0.664, Tmax = 0.737h = 1212
146655 measured reflectionsk = 1616
7625 independent reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0214P)2 + 0.638P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
7625 reflectionsΔρmax = 0.35 e Å3
683 parametersΔρmin = 0.38 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo010.90908 (2)0.88143 (2)0.23791 (2)0.01047 (6)
Mo020.40906 (2)0.38140 (2)0.26211 (2)0.01045 (6)
O50.36926 (14)0.42698 (12)0.17689 (7)0.0135 (3)
O10.86930 (14)0.92696 (12)0.32311 (7)0.0134 (3)
O31.00613 (14)0.98497 (13)0.21447 (8)0.0165 (3)
O80.51765 (15)0.28410 (13)0.23806 (8)0.0152 (3)
O70.50605 (15)0.48499 (13)0.28555 (8)0.0169 (3)
N20.72468 (16)0.77486 (14)0.26078 (8)0.0098 (3)
H0080.7365670.7556800.3054600.012*
N40.22457 (16)0.27483 (14)0.23925 (9)0.0103 (4)
H0090.2311990.2524230.1944500.012*
O41.01781 (15)0.78420 (13)0.26191 (8)0.0152 (3)
O20.87093 (14)0.83127 (13)0.15364 (7)0.0141 (3)
O60.37087 (14)0.33128 (13)0.34638 (7)0.0141 (3)
N10.71375 (17)0.97852 (14)0.21773 (9)0.0101 (3)
N30.21399 (17)0.47869 (14)0.28219 (9)0.0101 (3)
O90.2105 (3)0.59956 (16)0.39734 (9)0.0395 (5)
O100.29034 (18)0.15986 (15)0.12529 (8)0.0235 (4)
O110.79013 (18)0.65963 (14)0.37463 (8)0.0234 (4)
O120.7110 (3)1.09959 (16)0.10270 (9)0.0388 (5)
C400.2694 (2)0.27959 (17)0.37595 (10)0.0133 (4)
C330.09199 (19)0.32526 (16)0.24527 (10)0.0097 (4)
N60.2294 (2)0.00745 (18)0.07856 (10)0.0229 (4)
C130.59214 (19)0.82531 (17)0.25477 (10)0.0100 (4)
N70.7296 (2)0.50764 (18)0.42150 (10)0.0231 (5)
C20.6928 (2)1.05716 (17)0.32295 (11)0.0132 (4)
C440.2062 (2)0.0933 (2)0.11184 (11)0.0201 (5)
H00P0.1141080.1010890.1257310.024*
C200.7691 (2)0.77942 (17)0.12402 (10)0.0138 (4)
C260.1928 (2)0.55726 (17)0.17703 (11)0.0133 (4)
C350.1970 (2)0.20156 (17)0.34516 (11)0.0138 (4)
C320.0270 (2)0.27625 (17)0.22922 (10)0.0124 (4)
H00T0.0283820.2091590.2095380.015*
C210.2697 (2)0.48024 (18)0.14646 (11)0.0140 (4)
N50.2261 (2)0.77472 (17)0.40850 (10)0.0223 (4)
C470.7060 (2)0.5934 (2)0.38822 (11)0.0196 (5)
H00W0.6125680.6013500.3743160.024*
N80.7263 (2)1.27474 (17)0.09144 (10)0.0223 (4)
C120.4730 (2)0.77623 (17)0.27093 (10)0.0125 (4)
H00Y0.4736250.7106320.2903190.015*
C390.2388 (2)0.3050 (2)0.43809 (11)0.0201 (5)
H00Z0.2914770.3608860.4589640.024*
C80.58707 (19)0.92488 (16)0.22796 (10)0.0091 (4)
C290.0390 (2)0.47127 (17)0.28501 (10)0.0123 (4)
H0110.0374980.5385910.3043930.015*
C190.7389 (2)0.8050 (2)0.06185 (12)0.0203 (5)
H0120.7915900.8593810.0425630.024*
C150.6965 (2)0.70132 (17)0.15474 (11)0.0142 (4)
C280.08690 (19)0.42482 (17)0.27184 (10)0.0091 (4)
C410.1618 (3)0.6874 (2)0.39361 (12)0.0283 (6)
H0150.0682630.6895410.3783040.034*
C90.4611 (2)0.97132 (17)0.21493 (10)0.0125 (4)
H0160.4607851.0373360.1960260.015*
C10.7697 (2)0.98025 (18)0.35362 (11)0.0138 (4)
C50.6467 (3)1.0132 (2)0.44922 (12)0.0256 (6)
H0180.6306120.9986540.4917580.031*
C340.2286 (2)0.17687 (17)0.27776 (11)0.0134 (4)
H01G0.1589990.1233700.2604340.016*
H01H0.3220410.1484000.2754570.016*
C230.1469 (3)0.5132 (2)0.05077 (12)0.0258 (6)
H01I0.1302290.4984640.0074710.031*
C60.7459 (2)0.9580 (2)0.41654 (12)0.0204 (5)
H01B0.7961070.9062420.4367740.024*
C500.6613 (3)1.1871 (2)0.10638 (12)0.0282 (6)
H3AA0.5691311.1903640.1211610.034*
C250.0929 (2)0.61129 (19)0.14338 (11)0.0189 (5)
H01J0.0411270.6620130.1641000.023*
C520.6615 (3)1.3763 (2)0.09717 (13)0.0289 (6)
H4AA0.6552441.4073930.0559830.043*
H0.7186931.4229430.1256060.043*
HA0.5677041.3656430.1137000.043*
C30.5933 (2)1.11153 (19)0.35649 (12)0.0194 (5)
H01F0.5417261.1624790.3362150.023*
C360.0928 (2)0.1508 (2)0.37725 (12)0.0227 (5)
H01K0.0383070.0960250.3562640.027*
C430.1617 (3)0.8762 (2)0.40289 (13)0.0286 (6)
H01V0.0666080.8648360.3853350.043*
H01X0.2171850.9208180.3753610.043*
H010.1585830.9100860.4442760.043*
C140.7286 (2)0.67698 (17)0.22211 (11)0.0132 (4)
H01A0.6587770.6241670.2368080.016*
H01C0.8220340.6485510.2259450.016*
C70.7171 (2)1.07799 (17)0.25468 (11)0.0132 (4)
H01D0.6439801.1222120.2383630.016*
H01E0.8087271.1160050.2504370.016*
C270.2171 (2)0.57802 (17)0.24528 (11)0.0134 (4)
H01L0.1445560.6231350.2608180.016*
H01M0.3088830.6161180.2522870.016*
C220.2461 (2)0.4580 (2)0.08324 (11)0.0201 (5)
H01Q0.2961600.4064160.0624090.024*
C380.1364 (3)0.2525 (2)0.46952 (12)0.0268 (6)
H01S0.1181530.2702420.5117130.032*
C180.6362 (3)0.7523 (2)0.03063 (12)0.0273 (6)
H01N0.6140820.7672390.0115610.033*
C160.5928 (2)0.6508 (2)0.12279 (12)0.0221 (5)
H01O0.5384270.5973380.1421170.027*
C170.5624 (3)0.6753 (2)0.06102 (13)0.0294 (6)
H01P0.4878210.6373010.0391900.035*
C370.0627 (3)0.1754 (2)0.43895 (13)0.0293 (6)
H01T0.0100640.1373420.4591580.035*
C40.5703 (3)1.0908 (2)0.41929 (12)0.0278 (6)
H01R0.5042341.1279990.4418100.033*
C460.3651 (3)0.0174 (2)0.05437 (13)0.0305 (6)
H1AA0.3575580.0264730.0088340.046*
HB0.3944880.0820070.0726970.046*
HC0.4341790.0395250.0653710.046*
C240.0704 (3)0.5906 (2)0.08077 (12)0.0271 (6)
H01U0.0044130.6276540.0576860.032*
C420.3670 (3)0.7719 (2)0.43037 (14)0.0314 (6)
H0AA0.3728460.7893650.4751800.047*
HD0.4255370.8225570.4079030.047*
HE0.3996680.7019120.4230920.047*
C510.8669 (3)1.2720 (2)0.06964 (14)0.0310 (6)
H5AA0.9021161.2031250.0768740.046*
HF0.9267241.3252640.0923670.046*
HG0.8675361.2857450.0248690.046*
C110.3464 (2)0.82277 (18)0.25892 (11)0.0153 (4)
H01W0.2616480.7878860.2706390.018*
C480.6238 (4)0.4321 (3)0.43236 (16)0.0491 (9)
H2AA0.6131100.4250940.4774410.074*
HH0.6478810.3651900.4138540.074*
HI0.5359370.4528150.4133970.074*
C300.1581 (2)0.42067 (18)0.27025 (11)0.0157 (5)
H01Y0.2444890.4496570.2791090.019*
C310.1535 (2)0.32303 (18)0.24115 (11)0.0156 (5)
H01Z0.2388720.2864020.2288210.019*
C490.8649 (3)0.4826 (2)0.44569 (13)0.0300 (6)
H02D0.9336050.5393770.4371600.045*
H02E0.8925500.4179880.4254680.045*
H02F0.8606190.4733400.4908670.045*
C450.1239 (4)0.0683 (3)0.06749 (17)0.0505 (9)
H02A0.1490700.1330150.0870060.076*
H02B0.1100780.0805950.0223770.076*
H02C0.0373580.0452700.0852250.076*
C100.3417 (2)0.92073 (18)0.22967 (11)0.0158 (5)
H0220.2547800.9497110.2207610.019*
H00D0.711 (3)0.996 (2)0.1797 (14)0.024 (8)*
H00E0.207 (3)0.493 (2)0.3179 (14)0.015 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo010.00439 (8)0.00933 (10)0.01750 (10)0.00061 (6)0.00009 (6)0.00087 (7)
Mo020.00428 (8)0.00942 (10)0.01748 (10)0.00056 (6)0.00076 (6)0.00006 (7)
O50.0091 (6)0.0138 (8)0.0178 (8)0.0011 (6)0.0010 (6)0.0020 (6)
O10.0087 (6)0.0138 (8)0.0175 (8)0.0013 (6)0.0016 (6)0.0029 (6)
O30.0082 (6)0.0153 (8)0.0254 (9)0.0046 (6)0.0021 (6)0.0019 (7)
O80.0081 (6)0.0142 (8)0.0235 (8)0.0008 (6)0.0000 (6)0.0017 (7)
O70.0084 (6)0.0169 (8)0.0248 (9)0.0037 (6)0.0035 (6)0.0011 (7)
N20.0056 (7)0.0088 (9)0.0148 (9)0.0011 (7)0.0022 (6)0.0003 (7)
N40.0060 (7)0.0090 (9)0.0158 (9)0.0001 (7)0.0017 (6)0.0022 (7)
O40.0076 (6)0.0140 (8)0.0237 (8)0.0006 (6)0.0014 (6)0.0030 (7)
O20.0093 (6)0.0152 (8)0.0175 (8)0.0041 (6)0.0021 (6)0.0007 (6)
O60.0085 (6)0.0155 (8)0.0175 (8)0.0043 (6)0.0038 (6)0.0003 (6)
N10.0086 (7)0.0100 (9)0.0115 (9)0.0008 (7)0.0018 (6)0.0010 (7)
N30.0084 (7)0.0092 (9)0.0123 (9)0.0013 (7)0.0025 (7)0.0028 (7)
O90.0747 (15)0.0213 (10)0.0206 (10)0.0087 (11)0.0054 (10)0.0046 (8)
O100.0253 (8)0.0227 (9)0.0220 (9)0.0024 (8)0.0047 (7)0.0052 (7)
O110.0260 (8)0.0214 (9)0.0221 (9)0.0029 (7)0.0064 (7)0.0034 (7)
O120.0738 (15)0.0221 (10)0.0194 (10)0.0091 (10)0.0019 (10)0.0024 (8)
C400.0110 (8)0.0126 (10)0.0165 (11)0.0010 (8)0.0008 (8)0.0035 (8)
C330.0077 (8)0.0099 (10)0.0117 (10)0.0008 (8)0.0009 (7)0.0004 (8)
N60.0258 (10)0.0234 (11)0.0184 (11)0.0088 (9)0.0065 (8)0.0060 (9)
C130.0089 (8)0.0097 (10)0.0114 (10)0.0014 (8)0.0011 (7)0.0011 (8)
N70.0264 (10)0.0230 (11)0.0185 (11)0.0091 (9)0.0071 (8)0.0041 (9)
C20.0099 (8)0.0101 (10)0.0189 (11)0.0033 (8)0.0023 (8)0.0040 (8)
C440.0218 (10)0.0233 (13)0.0155 (11)0.0008 (10)0.0039 (9)0.0011 (10)
C200.0105 (9)0.0123 (10)0.0184 (11)0.0015 (8)0.0010 (8)0.0046 (8)
C260.0108 (8)0.0094 (10)0.0193 (11)0.0032 (8)0.0011 (8)0.0030 (8)
C350.0109 (8)0.0099 (10)0.0206 (11)0.0000 (8)0.0007 (8)0.0034 (8)
C320.0093 (8)0.0088 (10)0.0185 (11)0.0033 (8)0.0011 (8)0.0006 (8)
C210.0075 (8)0.0148 (11)0.0198 (11)0.0011 (8)0.0017 (8)0.0048 (9)
N50.0251 (10)0.0215 (11)0.0201 (11)0.0007 (9)0.0033 (8)0.0015 (9)
C470.0215 (10)0.0227 (13)0.0142 (11)0.0004 (10)0.0039 (9)0.0015 (10)
N80.0252 (10)0.0211 (11)0.0207 (11)0.0001 (9)0.0031 (8)0.0006 (9)
C120.0098 (9)0.0094 (10)0.0178 (11)0.0034 (8)0.0002 (8)0.0019 (8)
C390.0203 (10)0.0224 (12)0.0171 (12)0.0001 (9)0.0017 (9)0.0001 (10)
C80.0065 (8)0.0087 (10)0.0118 (10)0.0016 (7)0.0003 (7)0.0011 (8)
C290.0104 (8)0.0101 (10)0.0163 (11)0.0009 (8)0.0005 (8)0.0008 (8)
C190.0210 (10)0.0209 (12)0.0189 (12)0.0006 (9)0.0003 (9)0.0007 (10)
C150.0107 (8)0.0102 (10)0.0216 (11)0.0003 (8)0.0002 (8)0.0039 (9)
C280.0051 (8)0.0103 (10)0.0114 (10)0.0023 (7)0.0014 (7)0.0004 (8)
C410.0408 (14)0.0288 (15)0.0138 (12)0.0106 (12)0.0012 (11)0.0015 (11)
C90.0096 (8)0.0105 (10)0.0174 (11)0.0012 (8)0.0016 (8)0.0002 (8)
C10.0077 (8)0.0137 (11)0.0193 (11)0.0017 (8)0.0018 (8)0.0044 (9)
C50.0227 (11)0.0393 (16)0.0147 (12)0.0034 (11)0.0009 (9)0.0032 (11)
C340.0107 (8)0.0086 (10)0.0206 (11)0.0002 (8)0.0011 (8)0.0003 (9)
C230.0234 (11)0.0392 (16)0.0148 (12)0.0030 (11)0.0003 (9)0.0014 (11)
C60.0162 (10)0.0263 (13)0.0185 (12)0.0020 (9)0.0047 (9)0.0004 (10)
C500.0402 (14)0.0292 (15)0.0138 (12)0.0104 (12)0.0003 (11)0.0013 (11)
C250.0140 (9)0.0187 (12)0.0248 (13)0.0034 (9)0.0043 (9)0.0065 (10)
C520.0312 (13)0.0275 (15)0.0292 (14)0.0091 (12)0.0037 (11)0.0028 (12)
C30.0146 (9)0.0185 (12)0.0247 (12)0.0035 (9)0.0047 (9)0.0071 (10)
C360.0204 (11)0.0192 (12)0.0281 (13)0.0040 (9)0.0011 (10)0.0060 (10)
C430.0304 (12)0.0271 (14)0.0286 (14)0.0083 (12)0.0035 (11)0.0032 (11)
C140.0109 (8)0.0079 (10)0.0208 (11)0.0000 (8)0.0007 (8)0.0002 (8)
C70.0102 (8)0.0072 (10)0.0219 (11)0.0015 (8)0.0005 (8)0.0007 (8)
C270.0105 (8)0.0076 (10)0.0218 (11)0.0011 (8)0.0003 (8)0.0005 (8)
C220.0171 (10)0.0254 (13)0.0178 (12)0.0025 (9)0.0028 (9)0.0017 (10)
C380.0296 (12)0.0329 (15)0.0179 (12)0.0003 (11)0.0042 (10)0.0028 (11)
C180.0309 (12)0.0313 (15)0.0188 (12)0.0002 (11)0.0055 (10)0.0051 (11)
C160.0185 (10)0.0188 (12)0.0281 (13)0.0041 (9)0.0002 (9)0.0065 (10)
C170.0278 (12)0.0337 (16)0.0249 (14)0.0030 (12)0.0078 (11)0.0119 (12)
C370.0288 (12)0.0344 (16)0.0253 (14)0.0025 (12)0.0078 (11)0.0125 (12)
C40.0217 (11)0.0379 (16)0.0242 (13)0.0118 (11)0.0006 (10)0.0115 (12)
C460.0319 (13)0.0318 (15)0.0278 (14)0.0052 (12)0.0051 (11)0.0110 (12)
C240.0222 (11)0.0377 (16)0.0230 (13)0.0120 (11)0.0008 (10)0.0114 (12)
C420.0288 (13)0.0324 (16)0.0326 (15)0.0062 (12)0.0088 (11)0.0059 (12)
C510.0274 (12)0.0325 (16)0.0341 (15)0.0052 (12)0.0079 (11)0.0056 (12)
C110.0069 (8)0.0103 (11)0.0280 (13)0.0050 (8)0.0018 (8)0.0036 (9)
C480.0536 (19)0.051 (2)0.0385 (19)0.0346 (17)0.0143 (16)0.0156 (16)
C300.0081 (8)0.0162 (11)0.0231 (12)0.0023 (8)0.0027 (8)0.0029 (9)
C310.0074 (8)0.0113 (11)0.0275 (13)0.0050 (8)0.0029 (8)0.0022 (9)
C490.0310 (13)0.0319 (15)0.0276 (14)0.0049 (12)0.0063 (11)0.0108 (12)
C450.0540 (19)0.050 (2)0.043 (2)0.0335 (18)0.0155 (16)0.0181 (16)
C100.0081 (8)0.0165 (11)0.0224 (12)0.0014 (8)0.0033 (8)0.0035 (9)
Geometric parameters (Å, º) top
Mo01—O11.9567 (16)C29—C301.311 (3)
Mo01—O31.6769 (16)C19—H0120.9500
Mo01—N22.2493 (17)C19—C181.322 (4)
Mo01—O41.7518 (14)C15—C141.512 (3)
Mo01—O21.9213 (16)C15—C161.324 (3)
Mo01—N12.3475 (16)C41—H0150.9500
Mo02—O51.9665 (15)C9—H0160.9500
Mo02—O81.7493 (15)C9—C101.335 (3)
Mo02—O71.6423 (17)C1—C61.407 (3)
Mo02—N42.2145 (18)C5—H0180.9500
Mo02—O61.9692 (15)C5—C61.410 (3)
Mo02—N32.3529 (16)C5—C41.426 (4)
O5—C211.368 (2)C34—H01G0.9900
O1—C11.377 (2)C34—H01H0.9900
N2—H0081.0000C23—H01I0.9500
N2—C131.465 (2)C23—C221.401 (3)
N2—C141.492 (3)C23—C241.420 (4)
N4—H0091.0000C6—H01B0.9500
N4—C331.468 (2)C50—H3AA0.9500
N4—C341.525 (3)C25—H01J0.9500
O2—C201.295 (3)C25—C241.370 (4)
O6—C401.332 (3)C52—H4AA0.9800
N1—C81.389 (3)C52—H0.9800
N1—C71.486 (3)C52—HA0.9800
N1—H00D0.85 (3)C3—H01F0.9500
N3—C281.379 (3)C3—C41.399 (4)
N3—C271.519 (3)C36—H01K0.9500
N3—H00E0.79 (3)C36—C371.393 (4)
O9—C411.250 (4)C43—H01V0.9800
O10—C441.169 (3)C43—H01X0.9800
O11—C471.187 (3)C43—H010.9800
O12—C501.249 (4)C14—H01A0.9900
C40—C351.338 (3)C14—H01C0.9900
C40—C391.405 (3)C7—H01D0.9900
C33—C321.307 (3)C7—H01E0.9900
C33—C281.392 (3)C27—H01L0.9900
N6—C441.332 (3)C27—H01M0.9900
N6—C461.464 (3)C22—H01Q0.9500
N6—C451.377 (4)C38—H01S0.9500
C13—C121.333 (3)C38—C371.333 (4)
C13—C81.419 (3)C18—H01N0.9500
N7—C471.355 (3)C18—C171.372 (4)
N7—C481.394 (4)C16—H01O0.9500
N7—C491.443 (3)C16—C171.396 (4)
C2—C11.430 (3)C17—H01P0.9500
C2—C31.415 (3)C37—H01T0.9500
C2—C71.515 (3)C4—H01R0.9500
C44—H00P0.9500C46—H1AA0.9800
C20—C191.407 (3)C46—HB0.9800
C20—C151.380 (3)C46—HC0.9800
C26—C211.425 (3)C24—H01U0.9500
C26—C251.410 (3)C42—H0AA0.9800
C26—C271.490 (3)C42—HD0.9800
C35—C341.513 (3)C42—HE0.9800
C35—C361.373 (3)C51—H5AA0.9800
C32—H00T0.9500C51—HF0.9800
C32—C311.412 (3)C51—HG0.9800
C21—C221.388 (3)C11—H01W0.9500
N5—C411.280 (4)C11—C101.424 (3)
N5—C431.482 (3)C48—H2AA0.9800
N5—C421.423 (3)C48—HH0.9800
C47—H00W0.9500C48—HI0.9800
N8—C501.308 (3)C30—H01Y0.9500
N8—C521.481 (3)C30—C311.391 (3)
N8—C511.442 (3)C31—H01Z0.9500
C12—H00Y0.9500C49—H02D0.9800
C12—C111.405 (3)C49—H02E0.9800
C39—H00Z0.9500C49—H02F0.9800
C39—C381.364 (4)C45—H02A0.9800
C8—C91.403 (2)C45—H02B0.9800
C29—H0110.9500C45—H02C0.9800
C29—C281.410 (2)C10—H0220.9500
O1—Mo01—N277.65 (7)O1—C1—C6118.21 (19)
O1—Mo01—N180.23 (6)C6—C1—C2120.4 (2)
O3—Mo01—O1100.51 (8)C6—C5—H018119.6
O3—Mo01—N2161.90 (6)C6—C5—C4120.9 (2)
O3—Mo01—O4109.80 (7)C4—C5—H018119.6
O3—Mo01—O292.51 (8)N4—C34—H01G109.6
O3—Mo01—N186.75 (6)N4—C34—H01H109.6
N2—Mo01—N175.18 (6)C35—C34—N4110.35 (17)
O4—Mo01—O194.14 (7)C35—C34—H01G109.6
O4—Mo01—N288.30 (6)C35—C34—H01H109.6
O4—Mo01—O298.32 (7)H01G—C34—H01H108.1
O4—Mo01—N1163.31 (7)C22—C23—H01I119.1
O2—Mo01—O1157.78 (6)C22—C23—C24121.9 (2)
O2—Mo01—N284.38 (7)C24—C23—H01I119.1
O2—Mo01—N182.63 (6)C1—C6—C5119.3 (2)
O5—Mo02—N481.39 (7)C1—C6—H01B120.4
O5—Mo02—O6158.10 (6)C5—C6—H01B120.4
O5—Mo02—N381.07 (6)O12—C50—N8125.0 (3)
O8—Mo02—O594.30 (7)O12—C50—H3AA117.5
O8—Mo02—N489.52 (7)N8—C50—H3AA117.5
O8—Mo02—O698.33 (7)C26—C25—H01J120.0
O8—Mo02—N3163.76 (7)C24—C25—C26120.0 (2)
O7—Mo02—O596.96 (8)C24—C25—H01J120.0
O7—Mo02—O8109.00 (7)N8—C52—H4AA109.5
O7—Mo02—N4161.48 (7)N8—C52—H109.5
O7—Mo02—O695.73 (8)N8—C52—HA109.5
O7—Mo02—N387.08 (7)H4AA—C52—H109.5
N4—Mo02—N374.43 (6)H4AA—C52—HA109.5
O6—Mo02—N480.91 (7)H—C52—HA109.5
O6—Mo02—N381.84 (6)C2—C3—H01F119.8
C21—O5—Mo02137.80 (14)C4—C3—C2120.5 (2)
C1—O1—Mo01138.48 (14)C4—C3—H01F119.8
Mo01—N2—H008107.3C35—C36—H01K118.3
C13—N2—Mo01112.59 (12)C35—C36—C37123.5 (3)
C13—N2—H008107.3C37—C36—H01K118.3
C13—N2—C14113.36 (16)N5—C43—H01V109.5
C14—N2—Mo01108.75 (12)N5—C43—H01X109.5
C14—N2—H008107.3N5—C43—H01109.5
Mo02—N4—H009107.0H01V—C43—H01X109.5
C33—N4—Mo02113.03 (13)H01V—C43—H01109.5
C33—N4—H009107.0H01X—C43—H01109.5
C33—N4—C34111.85 (15)N2—C14—C15108.70 (16)
C34—N4—Mo02110.51 (12)N2—C14—H01A109.9
C34—N4—H009107.0N2—C14—H01C109.9
C20—O2—Mo01136.10 (14)C15—C14—H01A109.9
C40—O6—Mo02138.81 (13)C15—C14—H01C109.9
Mo01—N1—H00D110.7 (19)H01A—C14—H01C108.3
C8—N1—Mo01113.88 (13)N1—C7—C2110.47 (17)
C8—N1—C7107.69 (16)N1—C7—H01D109.6
C8—N1—H00D106 (2)N1—C7—H01E109.6
C7—N1—Mo01112.87 (12)C2—C7—H01D109.6
C7—N1—H00D105 (2)C2—C7—H01E109.6
Mo02—N3—H00E113.0 (19)H01D—C7—H01E108.1
C28—N3—Mo02114.65 (13)N3—C27—H01L109.1
C28—N3—C27109.21 (16)N3—C27—H01M109.1
C28—N3—H00E99 (2)C26—C27—N3112.45 (18)
C27—N3—Mo02111.45 (12)C26—C27—H01L109.1
C27—N3—H00E109 (2)C26—C27—H01M109.1
O6—C40—C35118.3 (2)H01L—C27—H01M107.8
O6—C40—C39121.4 (2)C21—C22—C23118.6 (2)
C35—C40—C39120.3 (2)C21—C22—H01Q120.7
C32—C33—N4121.34 (19)C23—C22—H01Q120.7
C32—C33—C28117.14 (18)C39—C38—H01S121.2
C28—C33—N4121.41 (18)C37—C38—C39117.7 (2)
C44—N6—C46124.5 (2)C37—C38—H01S121.2
C44—N6—C45120.4 (2)C19—C18—H01N121.0
C45—N6—C46115.0 (3)C19—C18—C17118.0 (2)
C12—C13—N2120.75 (18)C17—C18—H01N121.0
C12—C13—C8118.66 (17)C15—C16—H01O119.6
C8—C13—N2120.47 (17)C15—C16—C17120.7 (3)
C47—N7—C48121.9 (2)C17—C16—H01O119.6
C47—N7—C49124.1 (2)C18—C17—C16122.5 (3)
C48—N7—C49113.9 (2)C18—C17—H01P118.8
C1—C2—C7119.57 (18)C16—C17—H01P118.8
C3—C2—C1119.5 (2)C36—C37—H01T120.1
C3—C2—C7120.89 (19)C38—C37—C36119.7 (2)
O10—C44—N6125.1 (2)C38—C37—H01T120.1
O10—C44—H00P117.5C5—C4—H01R120.3
N6—C44—H00P117.5C3—C4—C5119.5 (2)
O2—C20—C19118.2 (2)C3—C4—H01R120.3
O2—C20—C15118.5 (2)N6—C46—H1AA109.5
C15—C20—C19123.3 (2)N6—C46—HB109.5
C21—C26—C27119.07 (18)N6—C46—HC109.5
C25—C26—C21120.4 (2)H1AA—C46—HB109.5
C25—C26—C27120.5 (2)H1AA—C46—HC109.5
C40—C35—C34119.71 (19)HB—C46—HC109.5
C40—C35—C36116.4 (2)C23—C24—H01U120.4
C36—C35—C34123.8 (2)C25—C24—C23119.3 (2)
C33—C32—H00T120.0C25—C24—H01U120.4
C33—C32—C31120.0 (2)N5—C42—H0AA109.5
C31—C32—H00T120.0N5—C42—HD109.5
O5—C21—C26122.5 (2)N5—C42—HE109.5
O5—C21—C22117.6 (2)H0AA—C42—HD109.5
C22—C21—C26119.91 (19)H0AA—C42—HE109.5
C41—N5—C43123.2 (2)HD—C42—HE109.5
C41—N5—C42117.1 (2)N8—C51—H5AA109.5
C42—N5—C43119.7 (2)N8—C51—HF109.5
O11—C47—N7126.7 (2)N8—C51—HG109.5
O11—C47—H00W116.6H5AA—C51—HF109.5
N7—C47—H00W116.6H5AA—C51—HG109.5
C50—N8—C52122.4 (2)HF—C51—HG109.5
C50—N8—C51118.5 (2)C12—C11—H01W119.1
C51—N8—C52119.1 (2)C12—C11—C10121.85 (19)
C13—C12—H00Y120.4C10—C11—H01W119.1
C13—C12—C11119.15 (19)N7—C48—H2AA109.5
C11—C12—H00Y120.4N7—C48—HH109.5
C40—C39—H00Z118.8N7—C48—HI109.5
C38—C39—C40122.4 (3)H2AA—C48—HH109.5
C38—C39—H00Z118.8H2AA—C48—HI109.5
N1—C8—C13117.13 (16)HH—C48—HI109.5
N1—C8—C9120.23 (18)C29—C30—H01Y121.2
C9—C8—C13122.55 (18)C29—C30—C31117.66 (19)
C28—C29—H011120.3C31—C30—H01Y121.2
C30—C29—H011120.3C32—C31—H01Z118.7
C30—C29—C28119.4 (2)C30—C31—C32122.6 (2)
C20—C19—H012120.4C30—C31—H01Z118.7
C18—C19—C20119.1 (2)N7—C49—H02D109.5
C18—C19—H012120.4N7—C49—H02E109.5
C20—C15—C14122.4 (2)N7—C49—H02F109.5
C16—C15—C20116.4 (2)H02D—C49—H02E109.5
C16—C15—C14121.2 (2)H02D—C49—H02F109.5
N3—C28—C33115.73 (17)H02E—C49—H02F109.5
N3—C28—C29121.04 (19)N6—C45—H02A109.5
C33—C28—C29123.17 (19)N6—C45—H02B109.5
O9—C41—N5126.1 (3)N6—C45—H02C109.5
O9—C41—H015117.0H02A—C45—H02B109.5
N5—C41—H015117.0H02A—C45—H02C109.5
C8—C9—H016120.7H02B—C45—H02C109.5
C10—C9—C8118.57 (19)C9—C10—C11119.12 (18)
C10—C9—H016120.7C9—C10—H022120.4
O1—C1—C2121.4 (2)C11—C10—H022120.4
Mo01—O1—C1—C228.3 (3)C12—C13—C8—C93.3 (3)
Mo01—O1—C1—C6152.37 (19)C12—C11—C10—C92.1 (4)
Mo01—N2—C13—C12175.03 (17)C39—C40—C35—C34178.42 (19)
Mo01—N2—C13—C88.9 (2)C39—C40—C35—C360.9 (3)
Mo01—N2—C14—C1569.85 (16)C39—C38—C37—C360.5 (4)
Mo01—O2—C20—C19144.35 (18)C8—N1—C7—C255.7 (2)
Mo01—O2—C20—C1536.3 (3)C8—C13—C12—C112.2 (3)
Mo01—N1—C8—C136.3 (2)C8—C9—C10—C111.1 (3)
Mo01—N1—C8—C9176.91 (16)C29—C30—C31—C322.2 (3)
Mo01—N1—C7—C270.89 (17)C19—C20—C15—C14178.5 (2)
Mo02—O5—C21—C2628.4 (3)C19—C20—C15—C161.0 (3)
Mo02—O5—C21—C22152.48 (18)C19—C18—C17—C160.5 (4)
Mo02—N4—C33—C32174.91 (17)C15—C20—C19—C180.0 (3)
Mo02—N4—C33—C289.1 (2)C15—C16—C17—C180.6 (4)
Mo02—N4—C34—C3572.40 (16)C28—N3—C27—C2658.0 (2)
Mo02—O6—C40—C3537.3 (3)C28—C33—C32—C312.3 (3)
Mo02—O6—C40—C39143.20 (19)C28—C29—C30—C310.9 (3)
Mo02—N3—C28—C336.2 (2)C1—C2—C3—C40.2 (4)
Mo02—N3—C28—C29176.63 (15)C1—C2—C7—N148.1 (3)
Mo02—N3—C27—C2669.68 (18)C34—N4—C33—C3259.6 (3)
O5—C21—C22—C23178.6 (2)C34—N4—C33—C28116.4 (2)
O1—C1—C6—C5178.5 (2)C34—C35—C36—C37178.7 (2)
N2—C13—C12—C11173.9 (2)C6—C5—C4—C30.5 (4)
N2—C13—C8—N110.4 (3)C25—C26—C21—O5178.9 (2)
N2—C13—C8—C9172.8 (2)C25—C26—C21—C220.1 (3)
N4—C33—C32—C31173.9 (2)C25—C26—C27—N3130.2 (2)
N4—C33—C28—N310.4 (3)C52—N8—C50—O12179.7 (3)
N4—C33—C28—C29172.52 (19)C3—C2—C1—O1178.8 (2)
O2—C20—C19—C18179.4 (2)C3—C2—C1—C60.6 (3)
O2—C20—C15—C142.2 (3)C3—C2—C7—N1130.8 (2)
O2—C20—C15—C16179.62 (19)C36—C35—C34—N4124.9 (2)
O6—C40—C35—C342.1 (3)C43—N5—C41—O9180.0 (3)
O6—C40—C35—C36179.60 (18)C14—N2—C13—C1261.0 (3)
O6—C40—C39—C38179.3 (2)C14—N2—C13—C8115.1 (2)
N1—C8—C9—C10175.1 (2)C14—C15—C16—C17178.7 (2)
C40—C35—C34—N452.4 (2)C7—N1—C8—C13119.7 (2)
C40—C35—C36—C371.3 (3)C7—N1—C8—C957.1 (2)
C40—C39—C38—C370.9 (4)C7—C2—C1—O12.3 (3)
C33—N4—C34—C3554.5 (2)C7—C2—C1—C6178.3 (2)
C33—C32—C31—C300.5 (3)C7—C2—C3—C4179.1 (2)
C13—N2—C14—C1556.2 (2)C27—N3—C28—C33119.63 (19)
C13—C12—C11—C100.3 (3)C27—N3—C28—C2957.5 (3)
C13—C8—C9—C101.6 (3)C27—C26—C21—O52.5 (3)
C2—C1—C6—C50.8 (4)C27—C26—C21—C22178.4 (2)
C2—C3—C4—C50.8 (4)C27—C26—C25—C24179.3 (2)
C20—C19—C18—C170.8 (4)C22—C23—C24—C250.8 (4)
C20—C15—C14—N253.3 (2)C16—C15—C14—N2124.0 (2)
C20—C15—C16—C171.3 (3)C4—C5—C6—C10.3 (4)
C26—C21—C22—C230.5 (4)C46—N6—C44—O100.9 (4)
C26—C25—C24—C231.1 (4)C24—C23—C22—C210.1 (4)
C35—C40—C39—C380.2 (3)C42—N5—C41—O91.1 (4)
C35—C36—C37—C380.6 (4)C51—N8—C50—O120.8 (4)
C32—C33—C28—N3173.44 (19)C48—N7—C47—O11177.0 (3)
C32—C33—C28—C293.6 (3)C30—C29—C28—N3174.9 (2)
C21—C26—C25—C240.7 (4)C30—C29—C28—C332.0 (3)
C21—C26—C27—N348.4 (3)C49—N7—C47—O110.7 (4)
C12—C13—C8—N1173.4 (2)C45—N6—C44—O10177.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H008···O111.002.032.958 (2)154
N4—H009···O101.001.992.924 (3)154
N1—H00D···O120.85 (3)2.15 (3)2.949 (3)157 (2)
N3—H00E···O90.79 (3)2.16 (3)2.885 (3)154 (3)
Comparison of bond angles (°) between CyLMoO2 (2b) with R1 of 2.78% and reported structure from Ziegler et al. (2009) with R1 of 5.5%. top
2bAngleReportedaAngle
O4—Mo01—O2100.19 (5)O2—Mo1—O6294.3 (2)
O2—Mo01—N278.91 (4)O62—Mo1—N286.4 (2)
N1—Mo01—N272.40 (4)N5—Mo1—N272.0 (2)
O1—Mo01—N176.73 (4)N5—Mo1—O1282.7 (2)
O3—Mo01—O196.36 (5)O12—Mo1—O193.8 (2)
O3—Mo01—O4108.55 (5)O2—Mo1—O1107.6 (2)
Note: (a) Ziegler et al. (2009).
 

Acknowledgements

Experimental work was carried out in the Chemistry & Biochemistry Department, College of Science at California State Polytechnic University in Pomona. AJ and SCES would like to acknowledge the Provost's Teacher–Scholar award for facilitating research activities.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. 1800605 to Alex John; grant No. 1847926 to S. Chantal E. Stieber); US Department of Defense (grant No. W911NF-17-1- 0537 to S. Chantal E. Stieber); MENTORES PPOHA (scholarship to Jacob P. Brannon).

References

First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakravarthy, R. D. & Chand, D. K. (2011). J. Chem. Sci. 123, 187–199.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEnemark, J. H., Cooney, J. J. A., Wang, J.-J. & Holm, R. H. (2004). Chem. Rev. 104, 1175–1200.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHille, R. (1996). Chem. Rev. 96, 2757–2816.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHille, R., Hall, J. & Basu, P. (2014). Chem. Rev. 114, 3963–4038.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHossain, M. K., Köhntopp, A., Haukka, M., Richmond, M. G., Lehtonen, A. & Nordlander, E. (2020). Polyhedron, 178, 114312.  Web of Science CSD CrossRef Google Scholar
First citationMayilmurugan, R., Traar, P., Schachner, J. A., Volpe, M. & Mösch-Zanetti, N. C. (2013). Eur. J. Inorg. Chem. 3644–3670.  Google Scholar
First citationRajan, O. A., Spence, J. T., Leman, C., Minelli, M., Sato, M., Enemark, J. H., Kroneck, P. M. H. & Sulger, K. (1983). Inorg. Chem. 22, 3065–3072.  CSD CrossRef CAS Web of Science Google Scholar
First citationRoy, S., Mohanty, M., Pasayat, S., Majumder, S., Senthilguru, K., Banerjee, I., Reichelt, M., Reuter, H., Sinn, E. & Dinda, R. (2017). J. Inorg. Biochem. 172, 110–121.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSciFinder (2021). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed September 22, 2021).  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSubramanian, P., Spence, J. T., Ortega, R. & Enemark, J. H. (1984). Inorg. Chem. 23, 2564–2572.  CSD CrossRef CAS Web of Science Google Scholar
First citationWhiteoak, C. J., Britovsek, G. J. P., Gibson, V. C. & White, A. J. P. (2009). Dalton Trans. pp. 2337–2344.  Web of Science CSD CrossRef Google Scholar
First citationYang, H., Wang, H. & Zhu, C. (2007). J. Org. Chem. 72, 10029–10034.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZiegler, J. E., Du, G., Fanwick, P. E. & Abu-Omar, M. M. (2009). Inorg. Chem. 48, 11290–11296.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds