research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two Co(NCS)2 urotropine coordination compounds with different Co coordinations

crossmark logo

aInstitute of Inorganic Chemistry, University of Kiel, Max-Eyth.-Str. 2, 24118 Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 19 January 2022; accepted 29 January 2022; online 3 February 2022)

The reaction of Co(NCS)2 with urotropine in ethanol leads to the formation of two different compounds, namely, bis­(ethanol-κO)bis­(hexa­methyl­ene­tetra­mine-κN)bis­(thio­cyanato-κN)cobalt(II)–di­aqua-κ2O-bis­(hexa­methyl­ene­tetra­mine-κN)bis­(thio­cyanato-κN)cobalt(II)–ethanol–hexa­methyl­ene­tetra­mine (1.2/0.8/1.6/4), [Co(NCS)2(C6H12N4)2(C2H6O)2]1.2·[Co(NCS)2(C6H12N4)2(H2O)2]0.8·1.6C2H6O·4C6H12N4, 1, and tris­(ethanol-κO)(hexa­methyl­ene­tetra­mine-κN)bis(thio­cyanato-κN)cobalt(II), [Co(NCS)2(C6H12N4)(C2H6O)3], 2. In the crystal structure of compound 1, two crystallographically independent discrete complexes are observed that are located on centres of inversion. In one of them, the Co cation is octa­hedrally coordinated to two terminal N-bonded thio­cyanate anions, two urotropine ligands and two ethanol mol­ecules, whereas in the second complex 80% of the coordinating ethanol is exchanged by water. Formally, compound 1 is a mixture of two different complexes, i.e. di­aqua­dithio­cyanato­bis­(urotropine)cobalt(II) and di­ethano­ldi­thio­cyanato­bis­(uro­trop­ine)cobalt(II), that contain additional ethanol and urotropine solvate mol­ecules leading to an overall composition of [Co(NCS)2(urotropine)2(ethanol)1.2(H2O)0.8·0.8ethanol·4urotropine. Both discrete complexes are linked by inter­molecular O—H⋯O and O—H⋯N hydrogen bonding and additional urotropine solvate mol­ecules into chains, which are further connected into layers. These layers combine into a three-dimensional network by pairs of centrosymmetric inter­molecular C—H⋯S hydrogen bonds. In the crystal structure of compound 2, di­thio­cyanato­(urotropine)tri­ethano­lcobalt(II), the cobalt cation is octa­hedrally coordinated to two terminal N-bonded thio­cyanate anions, one urotropine ligand and three ethanol mol­ecules into discrete complexes, which are located in general positions. These complexes are linked by inter­molecular O—H⋯N hydrogen bonding into layers, which are further connected into a three-dimensional network by inter­molecular C—H⋯S hydrogen bonding.

1. Chemical context

Recently, we reported the crystal structure of two new coordination compounds with the composition [Co(NCS)2(urotropine)2(ethanol)2] and [Co(NCS)2(ethanol)4](urotropine)2 (Krebs et al., 2022[Krebs, C., Jess, I., Ceglarska, M. & Näther, C. (2022). Acta Cryst. E78, 66-70.]). Both compounds consist of discrete complexes, in which the cobalt cations are octa­hedrally coordinated by two terminal N-bonded thio­cyanate anions and by four ethanol and two ethanol and two urotropine ligands, respectively. These investigations were performed to prepare precursors that on thermal decomposition transform into coordination polymers in which the cobalt cations are linked by μ-1,3 bridging thio­cyanate anions into chains or layers (Näther et al., 2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]). Several such compounds have been reported in the literature and they are of inter­est because they show ferromagnetic or anti­ferromagnetic ordering or a slow relaxation of the magnetization, which is indicative for single-chain magnetism (Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.]; Shi et al., 2006[Shi, J.-M., Chen, J.-N. & Liu, L.-D. (2006). Pol. J. Chem. 80, 1909-1913.]; Jin et al., 2007[Jin, Y., Che, Y. X. & Zheng, J. M. (2007). J. Coord. Chem. 60, 2067-2074.]; Jochim et al., 2020[Jochim, A., Rams, M., Böhme, M., Ceglarska, M., Plass, W. & Näther, C. (2020). Dalton Trans. 49, 15310-15322.]; Prananto et al., 2017[Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516-528.]; Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Rams et al., 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]; Ceglarska et al., 2021[Ceglarska, M., Böhme, M., Neumann, T., Plass, W., Näther, C. & Rams, M. (2021). Phys. Chem. Chem. Phys. 23, 10281-10289.]; Werner et al., 2014[Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333-17342.], 2015[Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015). Dalton Trans. 44, 14149-14158.]; Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.]; Wellm et al., 2020[Wellm, C., Majcher-Fitas, A., Rams, M. & Näther, C. (2020). Dalton Trans. 49, 16707-16714.]). In this context, urotropine as a coligand was of inter­est because this ligand is able to form networks (Czubacka et al., 2012[Czubacka, E., Kruszynski, R. & Sieranski, T. (2012). Struct. Chem. 23, 451-459.]; Li et al., 2012[Li, J., Meng, S., Zhang, J., Song, Y., Huang, Z., Zhao, H., Wei, H., Huang, W., Cifuentes, M. P., Humphrey, M. G. & Zhang, C. (2012). CrystEngComm, 14, 2787-2796.]), is magnetically silent and one compound with cadmium had already been reported in which the metal cations are linked by the anionic ligands into chains (Bai et al., 2009[Bai, Y., Shang, W.-L., Dang, D.-B., Sun, J.-D. & Gao, H. (2009). Spectrochim. Acta Part A, 72, 407-411.]).

[Scheme 1]

However, for the preparation of the two compounds mentioned above, cobalt thio­cyanate was reacted with urotropine in ethanol and X-ray powder measurements show that none of these compounds can be prepared as a pure crystalline phase. Either the desired compounds were obtained as the minor phase or the experimental powder patterns were completely different from the calculated one. These investigations indicate that additional compounds are present and that the desired compounds are not very stable and transform in solution. Therefore, additional crystallization experiments were performed, which lead to the formation of single crystals of two new compounds that were identified by single crystal X-ray diffraction. Even these compounds contain ethanol as a ligand but in one compound one coord­ination site is simultaneously occupied by ethanol and water, which might originate from some residual water in the solvent used in the synthesis, whereas in the second compound the cobalt cations are coordinated by only one urotropine and three ethanol ligands. All this indicates that, for this system, different species are in equilibrium in solution and some phase crystallizes, presumably by kinetic control, which means that the synthesis is difficult to control.

2. Structural commentary

The asymmetric unit of compound 1 consists of two crystallographically independent Co cations that are located on centres of inversion as well as two thio­cyanate anions, four urotropine ligands, three ethanol and one water mol­ecule that occupy general positions (Fig. 1[link]). One of the cobalt cations (Co1) is sixfold coordinated to two terminal N-bonded thio­cyanate anions, two urotropine ligands and two ethanol mol­ecules into discrete complexes (Fig. 1[link], top left). The methyl carbon atom of these ethanol mol­ecules is disordered in two positions and was refined using a split model. The second cobalt cation is also sixfold coordinated, forming discrete complexes, to two terminal N-bonded thio­cyanate anions, two urotropine ligands and two oxygen atoms, but the latter positions are mixed occupied by water and ethanol in a ratio of 8:2, leading to an overall composition for 1 of [Co(NCS)2(urotropine)2(ethanol)1.2(H2O)0.8·1.6ethanol·4urotropine. In the case where it is occupied by water, an ethanol mol­ecule is hydrogen bonded to this water mol­ecule; if it is occupied by ethanol, this ethanol solvate mol­ecule is not present (Fig. 1[link], top right). The position of the disordered O atoms of the water and ethanol mol­ecule was resolved and all O—H H atoms were clearly located in the difference map and refined isotropically with reasonable displacement parameters, using restraints for the O—H distances (see Refinement). The Co—N bond lengths to the thio­canate anions are similar in both complexes, which is also valid for the bond length to the urotropine ligands (Table 1[link]). In contrast, the Co—O bond length to the water mol­ecule is shorter than those to the ethanol mol­ecules (Table 1[link]), even if there might be some uncertainty in the distances because of the disorder.

Table 1
Selected bond lengths (Å) for 1[link]

Co1—N1 2.0590 (16) Co2—O2 2.029 (6)
Co1—O1 2.1388 (13) Co2—O4 2.21 (3)
Co1—N11 2.2834 (15) Co2—N21 2.2788 (16)
Co2—N2 2.0812 (16)    
[Figure 1]
Figure 1
Crystal structure of compound 1 with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry code for the generation of equivalent atoms: (i) −x + 1, −y + 1, −z + 2; (ii) −x + 2, −y + 1, −z + 1.

The asymmetric unit of compound 2 consists of one crystallographically independent cobalt cation, one urotropine ligand and three ethanol mol­ecules, all of them located in general positions (Fig. 2[link]). In this compound the cobalt cations are sixfold coordinated to two terminal N-bonded thio­cyanate anions, one urotropine ligand and three ethanol mol­ecules. The Co—N and Co—O bond lengths are comparable to those in compound 1 and to similar ethanol complexes retrieved from the literature (Krebs et al., 2021a, Table 2[link]). From the angles around the Co cations, it is obvious that in all compounds the octa­hedra are slightly distorted (see supporting information). It is noted that compound 2 completes the series of Co(NCS)2-urotropine compounds with ethanol as an additional ligand, because in this compound the cobalt cations are coordinated to one urotropine and three ethanol ligands, whereas in the other compounds reported recently the cobalt cations are either coordinated to two urotropine and two ethanol ligands or to four ethanol ligands (Krebs et al., 2021a).

Table 2
Selected bond lengths (Å) for 2[link]

Co1—N2 2.0615 (11) Co1—O31 2.1157 (9)
Co1—N1 2.0624 (11) Co1—O21 2.1314 (9)
Co1—O41 2.1021 (10) Co1—N11 2.2489 (11)
[Figure 2]
Figure 2
Crystal structure of compound 2 with labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal structure of the title compound, extensive hydrogen bonding is observed (Table 3[link]). The discrete complex around Co1 is linked to two urotropine solvate mol­ecules via inter­molecular O—H⋯N hydrogen bonding (Fig. 3[link] and Table 3[link]). For the Co2 complex, two different surroundings are observed. In the case where this cation is coordinated to water, this water mol­ecule is hydrogen bonded to two urotropine ligands and two ethanol mol­ecules (Fig. 4[link], top and Table 3[link]). There are two additional C—H⋯S hydrogen bonds, which are not shown for clarity. In the case where Co2 is coordinated to EtOH, the solvate ethanol mol­ecule is not present and the surrounding is similar to that around Co1 with only hydrogen bonding to two urotropine ligands (compare Fig. 3[link] and Fig. 4[link], bottom). Both crystallographically independent complexes are linked into chains via inter­molecular O—H⋯O and O—H⋯N hydrogen bonding (Fig. 5[link]). The chains are further connected into layers by inter­molecular C—H⋯O and C—H⋯N inter­actions. These layers are stacked onto each other and are linked by inter­molecular centrosymmetric pairs of C—H⋯S hydrogen bonds, in which only the discrete complex built up of Co2 is involved (Fig. 6[link] and Table 3[link]).

Table 3
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N31 0.88 (2) 1.92 (2) 2.793 (2) 170 (3)
C4′—H4′A⋯N43i 0.96 2.50 3.243 (14) 134
C4′—H4′C⋯N44ii 0.96 2.38 3.161 (10) 138
O2—H2A⋯N41 0.87 (2) 1.88 (2) 2.743 (7) 173 (7)
O2—H2B⋯O3 0.87 (2) 1.80 (2) 2.665 (4) 177 (5)
C5—H5A⋯S2iii 0.97 3.02 3.925 (3) 156
O3—H3⋯N34 0.87 (2) 1.97 (2) 2.821 (3) 167 (4)
O4—H4⋯N41 0.87 (2) 1.94 (5) 2.81 (3) 170 (19)
C11—H11A⋯O1ii 0.97 2.49 3.058 (2) 117
C11—H11B⋯N1 0.97 2.67 3.213 (2) 116
C12—H12B⋯N44 0.97 2.64 3.423 (3) 138
C13—H13A⋯N13iv 0.97 2.70 3.563 (2) 149
C13—H13B⋯S2iii 0.97 2.95 3.7150 (19) 136
C14—H14A⋯S2v 0.97 2.93 3.840 (2) 156
C15—H15B⋯O1 0.97 2.61 3.118 (2) 113
C22—H22B⋯N12vi 0.97 2.58 3.448 (2) 149
C25—H25A⋯O2vii 0.97 2.50 3.026 (7) 114
C25—H25A⋯O4vii 0.97 2.49 3.08 (3) 119
C25—H25B⋯N2 0.97 2.61 3.202 (3) 119
C26—H26A⋯S1ii 0.97 2.98 3.655 (2) 128
C26—H26B⋯N22viii 0.97 2.69 3.581 (3) 152
C33—H33A⋯N23 0.97 2.66 3.431 (3) 137
C45—H45A⋯S2vii 0.97 3.01 3.959 (3) 165
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+1, -y, -z+2]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x+1, -y, -z+1]; (v) [x, y-1, z]; (vi) x, y+1, z; (vii) [-x+2, -y+1, -z+1]; (viii) [-x+2, -y+1, -z+2].
[Figure 3]
Figure 3
View of the discrete complex in compound 1 built up of Co1, which is connected to two urotropine solvate mol­ecules via inter­molecular O—H⋯N hydrogen bonding (shown as dashed lines).
[Figure 4]
Figure 4
View of the two different coordinations of Co2 in compound 1 with H2O (top) and ethanol (bottom) with inter­molecular hydrogen bonding shown as dashed lines.
[Figure 5]
Figure 5
Part of the crystal structure of compound 1 showing the connection of the discrete complexes by the urotropine solvate mol­ecules via inter­molecular O—H⋯N hydrogen bonding (shown as dashed lines).
[Figure 6]
Figure 6
Crystal structure of compound 1 with a view along the crystallographic b axis and inter­molecular hydrogen bonding shown as dashed lines.

In the crystal structure of compound 2, the discrete complexes are linked by strong inter­molecular O—H⋯N hydrogen bonding between two of the three O—H hydrogen atoms of the ethanol ligands and two urotropine N atoms into layers that are parallel to the bc plane (Fig. 7[link] and Table 4[link]). These layers are further linked by inter­molecular O—H⋯S and C—H⋯S hydrogen bonding into a three-dimensional network (Table 4[link]). Some of the O—H⋯S and C—H⋯S angles are close to linearity, indicating that these are relatively strong inter­actions (Table 4[link]).

Table 4
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯S2i 0.99 2.87 3.6586 (13) 137
C12—H12B⋯S1ii 0.99 2.92 3.8813 (13) 164
C15—H15A⋯S1iii 0.99 2.99 3.9387 (13) 161
C15—H15B⋯S2iv 0.99 2.94 3.7110 (13) 135
C16—H16A⋯O21 0.99 2.54 3.1009 (16) 116
C16—H16B⋯N1 0.99 2.47 3.1083 (17) 122
O21—H21⋯N13ii 0.84 2.03 2.8424 (14) 161
C22—H22C⋯S1v 0.98 3.02 3.9559 (16) 161
O31—H31⋯N12vi 0.84 1.96 2.7969 (14) 172
O41—H41⋯S2vi 0.84 2.37 3.2080 (10) 174
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x-1, y, z]; (vi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 7]
Figure 7
Crystal structure of compound 2 with a view along the crystallographic a axis and inter­molecular O—H⋯N hydrogen bonding shown as dashed lines.

4. Database survey

In the Cambridge Structure Database (CSD version 5.42, last update November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) there are already several structures reported that contain cobalt thio­cyanate and urotropine as a ligand, but only one of them contains additional ethanol (Krebs et al., 2021a). Most of them contain water as a ligand or solvate mol­ecule. In [Co(NCS)2(H2O)4]·2urotropine (Refcode: XILXOG; Li et al., 2007[Li, X.-L., Niu, D.-Z. & Lu, Z.-S. (2007). Acta Cryst. E63, m2478.]), the cobalt cations are octa­hedrally coordinated by two thio­cyanate anions and four water ligands with two additional urotropine ligands acting as solvate mol­ecules. [Co(NCS)2(urotrop­ine)2(H2O)2][Co(NCS)2(H2O)4]·2H2O (Refcode: MOTNIS; Liu et al., 2002[Liu, Q., Xi, H.-T., Sun, X.-Q., Zhu, J.-F. & Yu, K.-B. (2002). Chin. J. Struct. Chem. 21, 355-359.], MOTNIS01; Zhang et al., 1999[Zhang, Y., Li, J., Xu, H., Hou, H., Nishiura, M. & Imamoto, T. (1999). J. Mol. Struct. 510, 191-196.], MOTNIS02; Chakraborty et al., 2006[Chakraborty, J., Samanta, B., Rosair, G., Gramlich, V., Salah El Fallah, M., Ribas, J., Matsushita, T. & Mitra, S. (2006). Polyhedron, 25, 3006-3016.], MOTNIS03; Lu et al., 2010[Lu, J., Liu, H.-T., Zhang, X.-X., Wang, D.-Q. & Niu, M.-J. (2010). Z. Anorg. Allg. Chem. 636, 641-647.]) consists of two crystallographically independent discrete complexes in which the cobalt cations are coordinated by two terminal N-bonded thio­cyanate anions and four water or two water and two urotropine ligands with additional water as solvate mol­ecules. There is also one complex with water and methanol as ligands with the composition [Co(NCS)2(urotropine)(CH3OH)2(H2O)] (Refcode: POFGAT; Shang et al., 2008[Shang, W.-L., Bai, Y., Ma, C.-Z. & Li, Z.-M. (2008). Acta Cryst. E64, m1184-m1185.]), in which the cobalt cations are octa­hedrally coordinated by the N atoms of two thio­cyanate anions, two methanol, one water and one urotropine ligand. Moreover, a compound with the composition [Co(NCS)2(urotropine)2(CH3CN)2] that also consists of discrete complexes has been reported (Krebs et al., 2021[Krebs, C., Jess, I. & Näther, C. (2021). Acta Cryst. E77, 1120-1125.]). It is noted that even with other metal cations only discrete complexes are reported, such as, for example, with nickel (Refcode: XILROA; Bai et al., 2007[Bai, Y., Shang, W.-L., Zhang, F.-L., Pan, X.-J. & Niu, X.-F. (2007). Acta Cryst. E63, m2628.], XILROA01; Lu et al., 2010[Lu, J., Liu, H.-T., Zhang, X.-X., Wang, D.-Q. & Niu, M.-J. (2010). Z. Anorg. Allg. Chem. 636, 641-647.]), or zinc (Refcode: SIMXIY; Kruszynski et al., 2018). Finally, a crystal structure is reported with cadmium in which the Cd cations are linked by pairs of thio­cyanate anions into chains, which are further linked by the urotropine ligand (Refcode: DOZZOI; Bai et al., 2009[Bai, Y., Shang, W.-L., Dang, D.-B., Sun, J.-D. & Gao, H. (2009). Spectrochim. Acta Part A, 72, 407-411.]).

5. Synthesis and crystallization

Synthesis Co(NCS)2 and urotropine were purchased from Merck. All chemicals were used without further purification.

Crystals of compound 1 suitable for single-crystal X-ray diffraction were obtained after one day by the reaction of 0.15 mmol of Co(NCS)2 (26.3 mg) with 0.60 mmol of urotropine (84.1 mg) in 1.0 mL of ethanol at room temperature. The reaction of 0.15 mmol of Co(NCS)2 (26.3 mg) with 0.15 mmol of urotropine (21.0 mg) in 2.0 mL of ethanol at room temperature led to the formation of single crystals of compound 2.

The data collection for single-crystal structure analysis was performed using an XtaLAB Synergy, Dualflex, HyPix diffractometer from Rigaku with Cu Kα radiation.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. All non-hydrogen atoms were refined anisotropically. The C—H hydrogen atoms were located in the difference map but positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropically with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) using a riding model. The O—H hydrogen atoms were located in the difference map and were refined with restraints for the O—H distance (DFIX) and varying isotropic displacement parameters in compound 1, whereas in compound 2 they were positioned with idealized geometry allowed to rotate but not to tip and were refined isotropically with Uiso(H) = 1.5Ueq(O) using a riding model. In compound 1, the methyl group of the EtOH mol­ecule coordinated to Co1 is disordered and was refined using a split model. In this compound, Co2 is either coordinated to water or to EtOH. In this case the O atoms occupy nearly the same crystallographic positions but finally both O atoms can be refined separately with anisotropic displacement parameters. In the case where Co2 is coordinated to water, it is hydrogen bonded to one EtOH solvate mol­ecule. If Co2 is coordinated to EtOH, the position of the EtOH solvate mol­ecule cannot be occupied. Therefore, the site occupation factor (sof) of the EtOH solvate mol­ecule must be identical to that of the coordinated water mol­ecule. In the beginning the sof was refined, leading to values close to 0.8 for the water and 0.2 for the coordinated EtOH mol­ecule but in the final refinements it was fixed at 0.8 and 0.2. The H-atom positions of both, water and EtOH, were clearly located and were refined with restraints and varying isotropic displacement parameters. This leads to comparable and reasonable values for the O—H distances as well as for the isotropic displacement parameters of the O—H hydrogen atoms.

Table 5
Experimental details

  1 2
Crystal data
Chemical formula [Co(NCS)2(C6H12N4)2(C2H6O)2]1.2·[Co(NCS)2(C6H12N4)2(H2O)2]0.8·1.6C2H6O·4C6H12N4 [Co(NCS)2(C6H12N4)(C2H6O)3]
Mr 1684.84 453.49
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 100 100
a, b, c (Å) 12.1536 (2), 12.9256 (3), 12.9374 (3) 11.1463 (1), 15.7705 (1), 12.1824 (1)
α, β, γ (°) 76.629 (2), 80.395 (2), 80.578 (2) 90, 103.886 (1), 90
V3) 1932.91 (7) 2078.87 (3)
Z 1 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 4.97 8.58
Crystal size (mm) 0.16 × 0.12 × 0.08 0.2 × 0.18 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.])
Tmin, Tmax 0.693, 1.000 0.427, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 25821, 8226, 7777 29441, 4431, 4373
Rint 0.024 0.027
(sin θ/λ)max−1) 0.639 0.635
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.103, 1.09 0.025, 0.068, 1.08
No. of reflections 8226 4431
No. of parameters 545 242
No. of restraints 10 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.82, −0.69 0.32, −0.31
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.]), SHELXT2014/4 and SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021). Program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a) for (1); SHELXT2014/4 (Sheldrick, 2015a) for (2). For both structures, program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b). Molecular graphics: DIAMOND (Brandenburg & Putz, 1999) for (1); OLEX2 (Dolomanov et al., 2009) for (2). Software used to prepare material for publication: publCIF (Westrip, 2010) for (1); OLEX2 (Dolomanov et al., 2009) for (2).

Bis(ethanol-κO)bis(hexamethylenetetramine-κN)bis(thiocyanato-κN)cobalt(II)–diaqua-κ2O-bis(hexamethylenetetramine-κN)bis(thiocyanato-κN)cobalt(II)–ethanol–hexamethylenetetramine (1.2/0.8/1.6/4) (1) top
Crystal data top
[Co(NCS)2(C6H12N4)2(C2H6O)2]1.2·[Co(NCS)2(C6H12N4)2(H2O)2]0.8·1.6C2H6O·4C6H12N4Z = 1
Mr = 1684.84F(000) = 898
Triclinic, P1Dx = 1.447 Mg m3
a = 12.1536 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 12.9256 (3) ÅCell parameters from 18138 reflections
c = 12.9374 (3) Åθ = 3.7–79.3°
α = 76.629 (2)°µ = 4.97 mm1
β = 80.395 (2)°T = 100 K
γ = 80.578 (2)°Plate, light colourless
V = 1932.91 (7) Å30.16 × 0.12 × 0.08 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
8226 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source7777 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.0000 pixels mm-1θmax = 80.1°, θmin = 3.5°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 1613
Tmin = 0.693, Tmax = 1.000l = 1616
25821 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0432P)2 + 1.7899P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.82 e Å3
8226 reflectionsΔρmin = 0.69 e Å3
545 parametersExtinction correction: SHELXL2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
10 restraintsExtinction coefficient: 0.00080 (10)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.5000000.0000001.0000000.01667 (10)
Co21.0000000.5000000.5000000.01929 (11)
N10.38177 (14)0.10448 (13)1.03166 (13)0.0209 (3)
C10.31474 (16)0.15722 (15)1.02515 (15)0.0219 (4)
S10.22329 (5)0.23250 (5)1.01546 (5)0.03988 (15)
N20.85107 (14)0.59836 (13)0.46671 (13)0.0238 (3)
C20.76974 (17)0.65684 (15)0.45319 (15)0.0226 (4)
S20.65758 (5)0.74450 (5)0.43091 (5)0.03506 (14)
O10.37719 (11)0.13161 (11)0.94616 (11)0.0216 (3)
H10.392 (3)0.1982 (16)0.927 (3)0.060 (10)*
C30.26483 (18)0.13151 (18)0.91942 (18)0.0294 (4)
H3AA0.2503420.0579230.9300340.044*0.8
H3AB0.2629320.1644170.8442160.044*0.8
H3BC0.2504310.1964440.8656920.044*0.2
H3BD0.2710290.0722250.8836220.044*0.2
C40.1725 (2)0.1909 (2)0.98618 (19)0.0200 (4)0.8
H4A0.1006860.1850710.9680340.030*0.8
H4B0.1831490.2650970.9719500.030*0.8
H4C0.1753240.1601031.0608580.030*0.8
C4'0.1630 (6)0.1249 (14)0.9957 (8)0.047 (3)0.2
H4'A0.1041130.1097150.9626110.071*0.2
H4'B0.1406820.1919651.0181120.071*0.2
H4'C0.1767930.0687081.0569350.071*0.2
O20.9172 (3)0.3693 (6)0.5467 (6)0.0215 (6)0.8
H2A0.939 (5)0.308 (3)0.588 (5)0.07 (3)*0.8
H2B0.8447 (17)0.372 (4)0.548 (4)0.077 (18)*0.8
O30.69673 (15)0.37997 (14)0.54414 (15)0.0275 (4)0.8
C50.6645 (2)0.2810 (2)0.5350 (2)0.0267 (5)0.8
H5A0.5862600.2919500.5232150.032*0.8
H5B0.6722750.2280690.6009490.032*0.8
C60.7380 (2)0.2411 (2)0.4427 (2)0.0298 (5)0.8
H6A0.7318360.2947230.3780490.045*0.8
H6B0.7141640.1764710.4348370.045*0.8
H6C0.8148050.2268090.4565170.045*0.8
H30.656 (3)0.406 (3)0.597 (2)0.054 (11)*0.8
O40.8970 (16)0.367 (3)0.543 (3)0.0215 (6)0.2
C70.7799 (8)0.3562 (8)0.5603 (9)0.026 (2)0.2
H7A0.7368560.4269930.5464720.032*0.2
H7B0.7591330.3230600.6348380.032*0.2
C80.7500 (9)0.2899 (8)0.4899 (8)0.030 (2)0.2
H8A0.7627680.3263820.4162130.046*0.2
H8B0.6721940.2796290.5089260.046*0.2
H8C0.7960950.2214860.4996880.046*0.2
H40.930 (14)0.306 (9)0.574 (17)0.02 (5)*0.2
N110.53970 (13)0.04050 (12)0.83394 (12)0.0169 (3)
N120.59878 (13)0.18558 (13)0.73316 (12)0.0199 (3)
N130.46941 (13)0.02933 (13)0.66262 (12)0.0201 (3)
N140.66683 (13)0.01109 (12)0.66326 (12)0.0189 (3)
C110.57045 (16)0.15859 (14)0.83915 (14)0.0193 (4)
H11A0.6342850.1843090.8785160.023*
H11B0.5078090.1953640.8783630.023*
C120.63690 (15)0.01248 (15)0.77084 (14)0.0189 (4)
H12A0.6187610.0894430.7642920.023*
H12B0.7015330.0110120.8094140.023*
C130.56767 (16)0.02352 (15)0.60617 (15)0.0213 (4)
H13A0.5864130.0076410.5351220.026*
H13B0.5482050.1005660.5977930.026*
C140.50120 (16)0.14575 (16)0.67457 (15)0.0220 (4)
H14A0.5188130.1630340.6040760.026*
H14B0.4377460.1819830.7125540.026*
C150.44349 (16)0.00438 (15)0.76983 (15)0.0205 (4)
H15A0.3789510.0386740.8083070.025*
H15B0.4231920.0724710.7625940.025*
C160.69351 (16)0.12818 (15)0.67461 (15)0.0208 (4)
H16A0.7585270.1531840.7124550.025*
H16B0.7130100.1448660.6039340.025*
N210.96389 (13)0.53277 (12)0.66888 (12)0.0185 (3)
N221.03238 (14)0.51130 (13)0.84249 (13)0.0209 (3)
N230.83260 (14)0.50888 (13)0.83676 (13)0.0211 (3)
N240.91408 (14)0.67678 (13)0.77182 (13)0.0207 (3)
C210.86158 (16)0.48569 (15)0.72915 (15)0.0206 (4)
H21A0.7985870.5140690.6891480.025*
H21B0.8744160.4085960.7351160.025*
C220.81436 (16)0.62564 (15)0.82683 (16)0.0221 (4)
H22A0.7949560.6416180.8978070.027*
H22B0.7513250.6557970.7873140.027*
C231.00907 (16)0.62886 (15)0.83182 (16)0.0226 (4)
H23A0.9925550.6452410.9027160.027*
H23B1.0757750.6607370.7954450.027*
C241.05778 (16)0.48863 (15)0.73384 (15)0.0201 (4)
H24A1.0730040.4116400.7393780.024*
H24B1.1251190.5193340.6973370.024*
C250.94127 (16)0.65112 (14)0.66518 (15)0.0205 (4)
H25A1.0070660.6839510.6277310.025*
H25B0.8790880.6818400.6246860.025*
C260.92924 (16)0.46570 (15)0.89559 (15)0.0217 (4)
H26A0.9426900.3884520.9027830.026*
H26B0.9112200.4805130.9670890.026*
N310.41819 (13)0.34324 (13)0.86223 (13)0.0213 (3)
N320.34067 (15)0.51211 (14)0.75097 (14)0.0266 (4)
N330.47210 (17)0.51353 (15)0.87450 (15)0.0325 (4)
N340.53923 (15)0.44041 (15)0.71314 (14)0.0289 (4)
C310.31950 (17)0.40495 (16)0.81169 (17)0.0266 (4)
H31A0.2994730.3653070.7639320.032*
H31B0.2559720.4119110.8671260.032*
C320.3720 (2)0.56912 (17)0.82560 (18)0.0329 (5)
H32A0.3863490.6405670.7873390.040*
H32B0.3093710.5765430.8818080.040*
C330.56536 (19)0.50044 (19)0.78861 (19)0.0349 (5)
H33A0.6315730.4627730.8201770.042*
H33B0.5827280.5706730.7492630.042*
C340.51269 (18)0.33500 (16)0.77563 (16)0.0272 (4)
H34A0.5787770.2959330.8065220.033*
H34B0.4940520.2944470.7279820.033*
C350.43694 (18)0.49921 (17)0.66807 (17)0.0291 (4)
H35A0.4529070.5694710.6275540.035*
H35B0.4174500.4607850.6189720.035*
C360.44831 (19)0.40664 (17)0.93320 (16)0.0275 (4)
H36A0.3867110.4136270.9904390.033*
H36B0.5140130.3687150.9654900.033*
N410.98222 (14)0.16814 (13)0.66156 (13)0.0236 (3)
N421.07891 (16)0.00576 (15)0.62924 (17)0.0350 (4)
N431.09861 (17)0.05352 (15)0.79123 (17)0.0379 (5)
N440.92004 (15)0.00149 (14)0.77178 (14)0.0276 (4)
C411.04120 (19)0.10589 (18)0.58097 (18)0.0316 (5)
H41A0.9909630.1072140.5296290.038*
H41B1.1058880.1398500.5423560.038*
C421.15409 (19)0.00508 (19)0.7069 (2)0.0420 (6)
H42A1.2196610.0280260.6693080.050*
H42B1.1796670.0784430.7402490.050*
C430.9988 (2)0.00220 (19)0.84575 (19)0.0358 (5)
H43A1.0228830.0710330.8806250.043*
H43B0.9604810.0401290.9008040.043*
C440.88530 (17)0.11291 (16)0.71995 (17)0.0260 (4)
H44A0.8457180.1515960.7739860.031*
H44B0.8335550.1139010.6700810.031*
C451.0595 (2)0.16406 (17)0.7394 (2)0.0348 (5)
H45A1.1240330.1994170.7028690.042*
H45B1.0214020.2028570.7938620.042*
C460.98007 (19)0.05437 (17)0.68850 (19)0.0326 (5)
H46A0.9289050.0545780.6384820.039*
H46B1.0037040.1283580.7214150.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0194 (2)0.0162 (2)0.0148 (2)0.00317 (15)0.00286 (15)0.00303 (15)
Co20.0223 (2)0.0144 (2)0.0185 (2)0.00176 (16)0.00397 (16)0.00022 (16)
N10.0246 (8)0.0200 (7)0.0189 (7)0.0060 (6)0.0018 (6)0.0045 (6)
C10.0258 (9)0.0193 (9)0.0184 (9)0.0004 (7)0.0006 (7)0.0029 (7)
S10.0345 (3)0.0400 (3)0.0532 (4)0.0172 (2)0.0012 (3)0.0224 (3)
N20.0247 (8)0.0206 (8)0.0232 (8)0.0042 (6)0.0050 (6)0.0025 (6)
C20.0267 (10)0.0226 (9)0.0199 (9)0.0029 (8)0.0031 (7)0.0075 (7)
S20.0283 (3)0.0407 (3)0.0403 (3)0.0136 (2)0.0156 (2)0.0217 (2)
O10.0244 (7)0.0192 (6)0.0222 (6)0.0027 (5)0.0082 (5)0.0030 (5)
C30.0272 (10)0.0309 (11)0.0322 (11)0.0013 (8)0.0083 (8)0.0091 (9)
C40.0190 (11)0.0222 (12)0.0184 (11)0.0034 (10)0.0006 (8)0.0044 (10)
C4'0.042 (7)0.059 (10)0.040 (7)0.022 (7)0.012 (6)0.006 (7)
O20.0187 (17)0.0192 (8)0.0251 (10)0.0002 (16)0.0061 (15)0.0012 (7)
O30.0245 (10)0.0260 (9)0.0324 (10)0.0041 (7)0.0003 (7)0.0087 (7)
C50.0244 (13)0.0246 (12)0.0298 (13)0.0041 (10)0.0060 (10)0.0004 (10)
C60.0291 (13)0.0293 (13)0.0308 (14)0.0040 (11)0.0050 (11)0.0052 (11)
O40.0187 (17)0.0192 (8)0.0251 (10)0.0002 (16)0.0061 (15)0.0012 (7)
C70.013 (5)0.028 (5)0.035 (5)0.003 (4)0.002 (4)0.008 (4)
C80.032 (6)0.024 (5)0.028 (5)0.001 (4)0.006 (4)0.007 (4)
N110.0173 (7)0.0173 (7)0.0149 (7)0.0003 (6)0.0035 (5)0.0016 (6)
N120.0233 (8)0.0198 (7)0.0168 (7)0.0004 (6)0.0046 (6)0.0051 (6)
N130.0207 (8)0.0226 (8)0.0175 (7)0.0011 (6)0.0057 (6)0.0060 (6)
N140.0203 (7)0.0204 (8)0.0154 (7)0.0004 (6)0.0030 (6)0.0041 (6)
C110.0247 (9)0.0165 (8)0.0163 (8)0.0009 (7)0.0039 (7)0.0033 (7)
C120.0204 (9)0.0208 (9)0.0152 (8)0.0024 (7)0.0023 (7)0.0033 (7)
C130.0233 (9)0.0225 (9)0.0165 (8)0.0017 (7)0.0057 (7)0.0022 (7)
C140.0227 (9)0.0242 (9)0.0214 (9)0.0016 (7)0.0064 (7)0.0076 (7)
C150.0193 (9)0.0237 (9)0.0188 (9)0.0012 (7)0.0044 (7)0.0067 (7)
C160.0194 (9)0.0222 (9)0.0199 (9)0.0026 (7)0.0042 (7)0.0053 (7)
N210.0185 (7)0.0153 (7)0.0200 (7)0.0003 (6)0.0041 (6)0.0004 (6)
N220.0226 (8)0.0189 (7)0.0209 (8)0.0001 (6)0.0060 (6)0.0031 (6)
N230.0215 (8)0.0212 (8)0.0197 (8)0.0026 (6)0.0032 (6)0.0024 (6)
N240.0226 (8)0.0186 (7)0.0198 (8)0.0002 (6)0.0033 (6)0.0032 (6)
C210.0208 (9)0.0192 (9)0.0210 (9)0.0024 (7)0.0036 (7)0.0023 (7)
C220.0197 (9)0.0217 (9)0.0232 (9)0.0012 (7)0.0032 (7)0.0041 (7)
C230.0232 (9)0.0202 (9)0.0251 (9)0.0020 (7)0.0073 (7)0.0041 (7)
C240.0192 (8)0.0188 (8)0.0210 (9)0.0008 (7)0.0044 (7)0.0028 (7)
C250.0246 (9)0.0154 (8)0.0197 (9)0.0004 (7)0.0031 (7)0.0014 (7)
C260.0239 (9)0.0197 (9)0.0196 (9)0.0017 (7)0.0049 (7)0.0003 (7)
N310.0206 (8)0.0206 (8)0.0227 (8)0.0029 (6)0.0045 (6)0.0032 (6)
N320.0251 (8)0.0217 (8)0.0312 (9)0.0001 (7)0.0056 (7)0.0025 (7)
N330.0441 (11)0.0273 (9)0.0303 (9)0.0127 (8)0.0096 (8)0.0056 (7)
N340.0246 (8)0.0307 (9)0.0258 (9)0.0009 (7)0.0019 (7)0.0022 (7)
C310.0219 (9)0.0241 (10)0.0332 (11)0.0022 (8)0.0071 (8)0.0027 (8)
C320.0431 (13)0.0203 (10)0.0345 (11)0.0020 (9)0.0035 (9)0.0068 (8)
C330.0317 (11)0.0337 (11)0.0385 (12)0.0148 (9)0.0111 (9)0.0056 (9)
C340.0277 (10)0.0249 (10)0.0251 (10)0.0040 (8)0.0026 (8)0.0031 (8)
C350.0299 (11)0.0288 (10)0.0247 (10)0.0005 (8)0.0057 (8)0.0007 (8)
C360.0343 (11)0.0281 (10)0.0221 (9)0.0087 (8)0.0045 (8)0.0054 (8)
N410.0239 (8)0.0223 (8)0.0236 (8)0.0054 (6)0.0049 (6)0.0000 (6)
N420.0301 (10)0.0273 (9)0.0417 (11)0.0018 (7)0.0013 (8)0.0037 (8)
N430.0397 (11)0.0287 (10)0.0452 (11)0.0112 (8)0.0241 (9)0.0100 (8)
N440.0273 (9)0.0219 (8)0.0310 (9)0.0063 (7)0.0025 (7)0.0009 (7)
C410.0304 (11)0.0307 (11)0.0281 (10)0.0011 (9)0.0019 (8)0.0010 (9)
C420.0240 (11)0.0309 (12)0.0623 (17)0.0016 (9)0.0088 (10)0.0084 (11)
C430.0447 (13)0.0295 (11)0.0302 (11)0.0087 (10)0.0126 (10)0.0075 (9)
C440.0246 (10)0.0231 (9)0.0276 (10)0.0028 (8)0.0034 (8)0.0004 (8)
C450.0420 (13)0.0243 (10)0.0404 (12)0.0122 (9)0.0219 (10)0.0056 (9)
C460.0343 (11)0.0199 (10)0.0434 (13)0.0050 (8)0.0042 (10)0.0059 (9)
Geometric parameters (Å, º) top
Co1—N1i2.0590 (16)C16—H16B0.9700
Co1—N12.0590 (16)N21—C211.493 (2)
Co1—O1i2.1388 (13)N21—C241.490 (2)
Co1—O12.1388 (13)N21—C251.500 (2)
Co1—N11i2.2834 (15)N22—C231.478 (2)
Co1—N112.2834 (15)N22—C241.474 (2)
Co2—N2ii2.0812 (16)N22—C261.469 (2)
Co2—N22.0812 (16)N23—C211.465 (2)
Co2—O22.029 (6)N23—C221.468 (2)
Co2—O2ii2.029 (6)N23—C261.469 (2)
Co2—O4ii2.21 (3)N24—C221.473 (2)
Co2—O42.21 (3)N24—C231.470 (2)
Co2—N212.2788 (16)N24—C251.465 (2)
Co2—N21ii2.2788 (16)C21—H21A0.9700
N1—C11.169 (3)C21—H21B0.9700
C1—S11.629 (2)C22—H22A0.9700
N2—C21.154 (3)C22—H22B0.9700
C2—S21.643 (2)C23—H23A0.9700
O1—H10.880 (18)C23—H23B0.9700
O1—C31.464 (2)C24—H24A0.9700
C3—H3AA0.9700C24—H24B0.9700
C3—H3AB0.9700C25—H25A0.9700
C3—H3BC0.9700C25—H25B0.9700
C3—H3BD0.9700C26—H26A0.9700
C3—C41.515 (3)C26—H26B0.9700
C3—C4'1.4495 (10)N31—C311.486 (2)
C4—H4A0.9600N31—C341.474 (3)
C4—H4B0.9600N31—C361.486 (2)
C4—H4C0.9600N32—C311.466 (3)
C4'—H4'A0.9600N32—C321.471 (3)
C4'—H4'B0.9600N32—C351.465 (3)
C4'—H4'C0.9600N33—C321.469 (3)
O2—H2A0.872 (19)N33—C331.467 (3)
O2—H2B0.871 (19)N33—C361.463 (3)
O3—C51.433 (3)N34—C331.480 (3)
O3—H30.871 (19)N34—C341.470 (3)
C5—H5A0.9700N34—C351.480 (3)
C5—H5B0.9700C31—H31A0.9700
C5—C61.505 (4)C31—H31B0.9700
C6—H6A0.9600C32—H32A0.9700
C6—H6B0.9600C32—H32B0.9700
C6—H6C0.9600C33—H33A0.9700
O4—C71.427 (17)C33—H33B0.9700
O4—H40.87 (2)C34—H34A0.9700
C7—H7A0.9700C34—H34B0.9700
C7—H7B0.9700C35—H35A0.9700
C7—C81.507 (13)C35—H35B0.9700
C8—H8A0.9600C36—H36A0.9700
C8—H8B0.9600C36—H36B0.9700
C8—H8C0.9600N41—C411.483 (3)
N11—C111.499 (2)N41—C441.482 (2)
N11—C121.488 (2)N41—C451.475 (3)
N11—C151.496 (2)N42—C411.465 (3)
N12—C111.465 (2)N42—C421.469 (3)
N12—C141.472 (2)N42—C461.464 (3)
N12—C161.476 (2)N43—C421.479 (4)
N13—C131.474 (2)N43—C431.473 (3)
N13—C141.470 (2)N43—C451.469 (3)
N13—C151.468 (2)N44—C431.465 (3)
N14—C121.467 (2)N44—C441.467 (3)
N14—C131.472 (2)N44—C461.463 (3)
N14—C161.473 (2)C41—H41A0.9700
C11—H11A0.9700C41—H41B0.9700
C11—H11B0.9700C42—H42A0.9700
C12—H12A0.9700C42—H42B0.9700
C12—H12B0.9700C43—H43A0.9700
C13—H13A0.9700C43—H43B0.9700
C13—H13B0.9700C44—H44A0.9700
C14—H14A0.9700C44—H44B0.9700
C14—H14B0.9700C45—H45A0.9700
C15—H15A0.9700C45—H45B0.9700
C15—H15B0.9700C46—H46A0.9700
C16—H16A0.9700C46—H46B0.9700
N1i—Co1—N1180.0N14—C16—H16A109.1
N1—Co1—O1i89.16 (6)N14—C16—H16B109.1
N1i—Co1—O189.16 (6)H16A—C16—H16B107.9
N1—Co1—O190.84 (6)C21—N21—Co2110.79 (11)
N1i—Co1—O1i90.84 (6)C21—N21—C25106.97 (14)
N1i—Co1—N1193.90 (6)C24—N21—Co2113.66 (11)
N1—Co1—N1186.10 (6)C24—N21—C21107.30 (14)
N1—Co1—N11i93.90 (6)C24—N21—C25107.16 (14)
N1i—Co1—N11i86.10 (6)C25—N21—Co2110.66 (11)
O1—Co1—O1i180.00 (7)C24—N22—C23108.01 (14)
O1i—Co1—N11i91.57 (5)C26—N22—C23107.79 (15)
O1—Co1—N1191.57 (5)C26—N22—C24108.16 (15)
O1—Co1—N11i88.43 (5)C21—N23—C22108.62 (14)
O1i—Co1—N1188.43 (5)C21—N23—C26108.13 (15)
N11—Co1—N11i180.0C22—N23—C26107.86 (15)
N2—Co2—N2ii180.0C23—N24—C22108.30 (14)
N2—Co2—O485.7 (7)C25—N24—C22107.77 (15)
N2ii—Co2—O4ii85.7 (7)C25—N24—C23107.98 (15)
N2—Co2—O4ii94.3 (7)N21—C21—H21A109.1
N2ii—Co2—O494.3 (7)N21—C21—H21B109.1
N2—Co2—N21ii91.78 (6)N23—C21—N21112.54 (15)
N2ii—Co2—N21ii88.22 (6)N23—C21—H21A109.1
N2ii—Co2—N2191.78 (6)N23—C21—H21B109.1
N2—Co2—N2188.22 (6)H21A—C21—H21B107.8
O2ii—Co2—N289.20 (16)N23—C22—N24112.53 (15)
O2—Co2—N2ii89.20 (16)N23—C22—H22A109.1
O2ii—Co2—N2ii90.80 (16)N23—C22—H22B109.1
O2—Co2—N290.80 (16)N24—C22—H22A109.1
O2ii—Co2—O2180.0N24—C22—H22B109.1
O2—Co2—O4ii174.6 (9)H22A—C22—H22B107.8
O2ii—Co2—O4ii5.4 (9)N22—C23—H23A109.1
O2—Co2—N2191.3 (2)N22—C23—H23B109.1
O2—Co2—N21ii88.7 (2)N24—C23—N22112.47 (15)
O2ii—Co2—N21ii91.3 (2)N24—C23—H23A109.1
O2ii—Co2—N2188.7 (2)N24—C23—H23B109.1
O4ii—Co2—O4180.0H23A—C23—H23B107.8
O4ii—Co2—N21ii92.9 (9)N21—C24—H24A109.1
O4—Co2—N2192.9 (9)N21—C24—H24B109.1
O4ii—Co2—N2187.1 (9)N22—C24—N21112.52 (15)
O4—Co2—N21ii87.1 (9)N22—C24—H24A109.1
N21ii—Co2—N21180.0N22—C24—H24B109.1
C1—N1—Co1164.85 (15)H24A—C24—H24B107.8
N1—C1—S1178.89 (18)N21—C25—H25A109.0
C2—N2—Co2175.29 (16)N21—C25—H25B109.0
N2—C2—S2177.31 (19)N24—C25—N21112.98 (14)
Co1—O1—H1122 (2)N24—C25—H25A109.0
C3—O1—Co1129.84 (12)N24—C25—H25B109.0
C3—O1—H1107 (2)H25A—C25—H25B107.8
O1—C3—H3AA109.0N22—C26—H26A109.0
O1—C3—H3AB109.0N22—C26—H26B109.0
O1—C3—H3BC106.0N23—C26—N22112.80 (15)
O1—C3—H3BD106.0N23—C26—H26A109.0
O1—C3—C4113.01 (18)N23—C26—H26B109.0
H3AA—C3—H3AB107.8H26A—C26—H26B107.8
H3BC—C3—H3BD106.3C34—N31—C31107.28 (15)
C4—C3—H3AA109.0C34—N31—C36107.97 (16)
C4—C3—H3AB109.0C36—N31—C31107.86 (16)
C4'—C3—O1125.1 (6)C31—N32—C32107.40 (17)
C4'—C3—H3BC106.0C35—N32—C31107.85 (16)
C4'—C3—H3BD106.0C35—N32—C32108.44 (17)
C3—C4—H4A109.5C33—N33—C32108.52 (17)
C3—C4—H4B109.5C36—N33—C32108.32 (17)
C3—C4—H4C109.5C36—N33—C33108.01 (18)
H4A—C4—H4B109.5C34—N34—C33107.50 (16)
H4A—C4—H4C109.5C34—N34—C35108.18 (16)
H4B—C4—H4C109.5C35—N34—C33107.51 (17)
C3—C4'—H4'A109.5N31—C31—H31A109.0
C3—C4'—H4'B109.5N31—C31—H31B109.0
C3—C4'—H4'C109.5N32—C31—N31112.86 (16)
H4'A—C4'—H4'B109.5N32—C31—H31A109.0
H4'A—C4'—H4'C109.5N32—C31—H31B109.0
H4'B—C4'—H4'C109.5H31A—C31—H31B107.8
Co2—O2—H2A127 (4)N32—C32—H32A109.1
Co2—O2—H2B123 (3)N32—C32—H32B109.1
H2A—O2—H2B106 (4)N33—C32—N32112.59 (17)
C5—O3—H3112 (3)N33—C32—H32A109.1
O3—C5—H5A109.8N33—C32—H32B109.1
O3—C5—H5B109.8H32A—C32—H32B107.8
O3—C5—C6109.6 (2)N33—C33—N34112.55 (17)
H5A—C5—H5B108.2N33—C33—H33A109.1
C6—C5—H5A109.8N33—C33—H33B109.1
C6—C5—H5B109.8N34—C33—H33A109.1
C5—C6—H6A109.5N34—C33—H33B109.1
C5—C6—H6B109.5H33A—C33—H33B107.8
C5—C6—H6C109.5N31—C34—H34A109.1
H6A—C6—H6B109.5N31—C34—H34B109.1
H6A—C6—H6C109.5N34—C34—N31112.62 (16)
H6B—C6—H6C109.5N34—C34—H34A109.1
Co2—O4—H4115 (10)N34—C34—H34B109.1
C7—O4—Co2137 (2)H34A—C34—H34B107.8
C7—O4—H4106 (10)N32—C35—N34112.61 (16)
O4—C7—H7A109.1N32—C35—H35A109.1
O4—C7—H7B109.1N32—C35—H35B109.1
O4—C7—C8112.4 (15)N34—C35—H35A109.1
H7A—C7—H7B107.9N34—C35—H35B109.1
C8—C7—H7A109.1H35A—C35—H35B107.8
C8—C7—H7B109.1N31—C36—H36A109.2
C7—C8—H8A109.5N31—C36—H36B109.2
C7—C8—H8B109.5N33—C36—N31111.87 (16)
C7—C8—H8C109.5N33—C36—H36A109.2
H8A—C8—H8B109.5N33—C36—H36B109.2
H8A—C8—H8C109.5H36A—C36—H36B107.9
H8B—C8—H8C109.5C44—N41—C41107.46 (16)
C11—N11—Co1112.38 (10)C45—N41—C41108.17 (18)
C12—N11—Co1110.45 (11)C45—N41—C44107.65 (16)
C12—N11—C11106.96 (14)C41—N42—C42107.76 (19)
C12—N11—C15106.95 (13)C46—N42—C41107.89 (17)
C15—N11—Co1112.93 (11)C46—N42—C42107.80 (19)
C15—N11—C11106.83 (14)C43—N43—C42107.73 (19)
C11—N12—C14108.22 (14)C45—N43—C42108.42 (19)
C11—N12—C16108.09 (14)C45—N43—C43107.79 (19)
C14—N12—C16108.03 (14)C43—N44—C44108.03 (17)
C14—N13—C13107.97 (15)C46—N44—C43108.19 (18)
C15—N13—C13107.82 (14)C46—N44—C44107.81 (16)
C15—N13—C14108.50 (14)N41—C41—H41A109.1
C12—N14—C13108.45 (14)N41—C41—H41B109.1
C12—N14—C16108.30 (14)N42—C41—N41112.64 (17)
C13—N14—C16107.44 (14)N42—C41—H41A109.1
N11—C11—H11A109.0N42—C41—H41B109.1
N11—C11—H11B109.0H41A—C41—H41B107.8
N12—C11—N11113.01 (14)N42—C42—N43112.48 (18)
N12—C11—H11A109.0N42—C42—H42A109.1
N12—C11—H11B109.0N42—C42—H42B109.1
H11A—C11—H11B107.8N43—C42—H42A109.1
N11—C12—H12A109.0N43—C42—H42B109.1
N11—C12—H12B109.0H42A—C42—H42B107.8
N14—C12—N11112.97 (15)N43—C43—H43A109.1
N14—C12—H12A109.0N43—C43—H43B109.1
N14—C12—H12B109.0N44—C43—N43112.46 (18)
H12A—C12—H12B107.8N44—C43—H43A109.1
N13—C13—H13A109.1N44—C43—H43B109.1
N13—C13—H13B109.1H43A—C43—H43B107.8
N14—C13—N13112.61 (14)N41—C44—H44A109.1
N14—C13—H13A109.1N41—C44—H44B109.1
N14—C13—H13B109.1N44—C44—N41112.30 (16)
H13A—C13—H13B107.8N44—C44—H44A109.1
N12—C14—H14A109.1N44—C44—H44B109.1
N12—C14—H14B109.1H44A—C44—H44B107.9
N13—C14—N12112.35 (15)N41—C45—H45A109.2
N13—C14—H14A109.1N41—C45—H45B109.2
N13—C14—H14B109.1N43—C45—N41112.17 (17)
H14A—C14—H14B107.9N43—C45—H45A109.2
N11—C15—H15A109.0N43—C45—H45B109.2
N11—C15—H15B109.0H45A—C45—H45B107.9
N13—C15—N11112.95 (14)N42—C46—H46A108.9
N13—C15—H15A109.0N42—C46—H46B108.9
N13—C15—H15B109.0N44—C46—N42113.21 (17)
H15A—C15—H15B107.8N44—C46—H46A108.9
N12—C16—H16A109.1N44—C46—H46B108.9
N12—C16—H16B109.1H46A—C46—H46B107.7
N14—C16—N12112.42 (15)
Co1—O1—C3—C4121.56 (18)C26—N22—C23—N2457.6 (2)
Co1—O1—C3—C4'85.5 (9)C26—N22—C24—N2157.87 (19)
Co1—N11—C11—N12178.62 (11)C26—N23—C21—N2158.52 (19)
Co1—N11—C12—N14179.71 (11)C26—N23—C22—N2458.1 (2)
Co1—N11—C15—N13179.36 (12)C31—N31—C34—N3457.9 (2)
Co2—O4—C7—C8125 (2)C31—N31—C36—N3357.3 (2)
Co2—N21—C21—N23177.58 (11)C31—N32—C32—N3358.9 (2)
Co2—N21—C24—N22179.79 (11)C31—N32—C35—N3458.0 (2)
Co2—N21—C25—N24178.24 (12)C32—N32—C31—N3158.1 (2)
C11—N11—C12—N1457.12 (18)C32—N32—C35—N3458.0 (2)
C11—N11—C15—N1356.60 (19)C32—N33—C33—N3457.9 (2)
C11—N12—C14—N1358.77 (19)C32—N33—C36—N3158.5 (2)
C11—N12—C16—N1458.43 (18)C33—N33—C32—N3257.4 (2)
C12—N11—C11—N1257.24 (19)C33—N33—C36—N3158.9 (2)
C12—N11—C15—N1357.65 (19)C33—N34—C34—N3157.9 (2)
C12—N14—C13—N1358.23 (19)C33—N34—C35—N3258.0 (2)
C12—N14—C16—N1258.46 (19)C34—N31—C31—N3258.4 (2)
C13—N13—C14—N1258.01 (19)C34—N31—C36—N3358.3 (2)
C13—N13—C15—N1158.61 (19)C34—N34—C33—N3358.4 (2)
C13—N14—C12—N1157.91 (19)C34—N34—C35—N3257.8 (2)
C13—N14—C16—N1258.50 (19)C35—N32—C31—N3158.6 (2)
C14—N12—C11—N1158.54 (19)C35—N32—C32—N3357.4 (2)
C14—N12—C16—N1458.45 (19)C35—N34—C33—N3357.9 (2)
C14—N13—C13—N1458.58 (19)C35—N34—C34—N3158.0 (2)
C14—N13—C15—N1158.09 (19)C36—N31—C31—N3257.7 (2)
C15—N11—C11—N1257.00 (19)C36—N31—C34—N3458.1 (2)
C15—N11—C12—N1457.03 (18)C36—N33—C32—N3259.6 (2)
C15—N13—C13—N1458.46 (19)C36—N33—C33—N3459.3 (2)
C15—N13—C14—N1258.6 (2)C41—N41—C44—N4458.1 (2)
C16—N12—C11—N1158.22 (19)C41—N41—C45—N4357.3 (2)
C16—N12—C14—N1358.04 (19)C41—N42—C42—N4358.4 (2)
C16—N14—C12—N1158.39 (19)C41—N42—C46—N4458.3 (2)
C16—N14—C13—N1358.63 (19)C42—N42—C41—N4158.4 (2)
C21—N21—C24—N2257.37 (19)C42—N42—C46—N4457.9 (2)
C21—N21—C25—N2457.47 (19)C42—N43—C43—N4458.0 (2)
C21—N23—C22—N2458.9 (2)C42—N43—C45—N4157.5 (2)
C21—N23—C26—N2258.7 (2)C43—N43—C42—N4258.1 (2)
C22—N23—C21—N2158.28 (19)C43—N43—C45—N4158.8 (3)
C22—N23—C26—N2258.6 (2)C43—N44—C44—N4158.3 (2)
C22—N24—C23—N2257.5 (2)C43—N44—C46—N4257.9 (2)
C22—N24—C25—N2158.47 (19)C44—N41—C41—N4257.8 (2)
C23—N22—C24—N2158.54 (19)C44—N41—C45—N4358.5 (2)
C23—N22—C26—N2358.2 (2)C44—N44—C43—N4358.6 (2)
C23—N24—C22—N2357.9 (2)C44—N44—C46—N4258.7 (2)
C23—N24—C25—N2158.31 (19)C45—N41—C41—N4258.1 (2)
C24—N21—C21—N2357.83 (19)C45—N41—C44—N4458.2 (2)
C24—N21—C25—N2457.34 (19)C45—N43—C42—N4258.3 (2)
C24—N22—C23—N2459.1 (2)C45—N43—C43—N4458.8 (3)
C24—N22—C26—N2358.31 (19)C46—N42—C41—N4157.7 (2)
C25—N21—C21—N2356.89 (18)C46—N42—C42—N4357.8 (2)
C25—N21—C24—N2257.21 (19)C46—N44—C43—N4357.8 (2)
C25—N24—C22—N2358.72 (19)C46—N44—C44—N4158.4 (2)
C25—N24—C23—N2258.9 (2)
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N310.88 (2)1.92 (2)2.793 (2)170 (3)
C4—H4A···N43iii0.962.503.243 (14)134
C4—H4C···N44i0.962.383.161 (10)138
O2—H2A···N410.87 (2)1.88 (2)2.743 (7)173 (7)
O2—H2B···O30.87 (2)1.80 (2)2.665 (4)177 (5)
C5—H5A···S2iv0.973.023.925 (3)156
O3—H3···N340.87 (2)1.97 (2)2.821 (3)167 (4)
O4—H4···N410.87 (2)1.94 (5)2.81 (3)170 (19)
C11—H11A···O1i0.972.493.058 (2)117
C11—H11B···N10.972.673.213 (2)116
C12—H12B···N440.972.643.423 (3)138
C13—H13A···N13v0.972.703.563 (2)149
C13—H13B···S2iv0.972.953.7150 (19)136
C14—H14A···S2vi0.972.933.840 (2)156
C15—H15B···O10.972.613.118 (2)113
C22—H22B···N12vii0.972.583.448 (2)149
C25—H25A···O2ii0.972.503.026 (7)114
C25—H25A···O4ii0.972.493.08 (3)119
C25—H25B···N20.972.613.202 (3)119
C26—H26A···S1i0.972.983.655 (2)128
C26—H26B···N22viii0.972.693.581 (3)152
C33—H33A···N230.972.663.431 (3)137
C45—H45A···S2ii0.973.013.959 (3)165
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y+1, z+1; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x, y1, z; (vii) x, y+1, z; (viii) x+2, y+1, z+2.
\ Tris(ethanol-κO)(hexamethylenetetramine-κN)bis(thiocyanato-\ κN)cobalt(II) (2) top
Crystal data top
[Co(NCS)2(C6H12N4)(C2H6O)3]F(000) = 956
Mr = 453.49Dx = 1.449 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 11.1463 (1) ÅCell parameters from 23697 reflections
b = 15.7705 (1) Åθ = 4.7–78.0°
c = 12.1824 (1) ŵ = 8.57 mm1
β = 103.886 (1)°T = 100 K
V = 2078.87 (3) Å3Block, intense orange
Z = 40.2 × 0.18 × 0.03 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
4431 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source4373 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.0000 pixels mm-1θmax = 78.2°, θmin = 4.7°
ω scansh = 1413
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 2018
Tmin = 0.427, Tmax = 1.000l = 1415
29441 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.8765P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068(Δ/σ)max = 0.002
S = 1.08Δρmax = 0.32 e Å3
4431 reflectionsΔρmin = 0.31 e Å3
242 parametersExtinction correction: SHELXL2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00065 (9)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.51335 (2)0.27266 (2)0.57458 (2)0.01059 (7)
N10.67247 (10)0.34371 (7)0.62465 (9)0.0153 (2)
C10.76466 (12)0.38035 (8)0.65618 (11)0.0141 (2)
S10.89474 (3)0.43141 (2)0.70092 (3)0.02407 (10)
N20.35462 (10)0.20093 (7)0.52823 (9)0.0153 (2)
C20.25674 (12)0.17255 (8)0.49267 (11)0.0134 (2)
S20.11817 (3)0.13335 (2)0.44031 (3)0.01552 (8)
N110.48544 (9)0.32562 (7)0.39886 (9)0.0110 (2)
N120.35142 (10)0.34740 (7)0.20867 (9)0.0131 (2)
N130.49385 (10)0.45980 (7)0.29661 (9)0.0127 (2)
N140.57416 (10)0.32908 (7)0.23263 (9)0.0137 (2)
C110.36212 (11)0.30856 (8)0.32095 (10)0.0123 (2)
H11A0.3497340.2465460.3120450.015*
H11B0.2964010.3314400.3546860.015*
C120.37105 (12)0.44001 (8)0.22303 (11)0.0140 (2)
H12A0.3636390.4665310.1480440.017*
H12B0.3061010.4644310.2564870.017*
C130.58915 (12)0.42110 (8)0.24547 (11)0.0147 (2)
H13A0.5838350.4469000.1703750.018*
H13B0.6721360.4336810.2937830.018*
C140.58124 (11)0.29098 (8)0.34359 (11)0.0130 (2)
H14A0.6642600.3016340.3930630.016*
H14B0.5703160.2288500.3347570.016*
C150.45097 (12)0.31188 (8)0.15994 (11)0.0147 (2)
H15A0.4393580.2498530.1503050.018*
H15B0.4450470.3370460.0843740.018*
C160.50169 (12)0.41931 (8)0.40684 (11)0.0126 (2)
H16A0.4373570.4437590.4410620.015*
H16B0.5831930.4322920.4576050.015*
O210.41718 (8)0.37678 (6)0.62519 (8)0.01481 (19)
H210.4587500.4190510.6542340.022*
C210.31119 (12)0.36740 (9)0.67299 (12)0.0174 (3)
H21A0.3209430.4046000.7400120.021*
H21B0.3061260.3080480.6979660.021*
C220.19389 (14)0.39014 (12)0.58774 (14)0.0295 (3)
H22A0.1818050.3512330.5232850.044*
H22B0.1997420.4484050.5615610.044*
H22C0.1237330.3855780.6228690.044*
O310.62924 (8)0.17312 (6)0.54561 (8)0.01390 (18)
H310.6959850.1723500.5954610.021*
C310.59743 (13)0.08809 (8)0.50586 (12)0.0172 (3)
H31A0.5088100.0859950.4663740.021*
H31B0.6105880.0490760.5713340.021*
C320.67444 (14)0.05882 (9)0.42600 (12)0.0210 (3)
H32A0.6586340.0957740.3593990.032*
H32B0.6522060.0003530.4023200.032*
H32C0.7622640.0613980.4646400.032*
O410.54084 (10)0.22913 (6)0.74187 (8)0.0173 (2)
H410.5644360.2619970.7970940.026*
C410.51429 (13)0.14737 (9)0.78184 (12)0.0197 (3)
H41A0.5911140.1231020.8297040.024*
H41B0.4854470.1091280.7163720.024*
C420.41750 (15)0.15144 (12)0.84905 (16)0.0344 (4)
H42A0.3396470.1719590.8005910.052*
H42B0.4447630.1902620.9129930.052*
H42C0.4050420.0947520.8773470.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.00865 (11)0.01120 (12)0.01104 (12)0.00058 (7)0.00060 (8)0.00032 (7)
N10.0121 (5)0.0164 (5)0.0155 (5)0.0011 (4)0.0003 (4)0.0007 (4)
C10.0149 (6)0.0116 (6)0.0154 (6)0.0034 (5)0.0029 (5)0.0009 (5)
S10.01192 (16)0.01850 (17)0.0400 (2)0.00438 (12)0.00274 (14)0.00662 (14)
N20.0143 (5)0.0149 (5)0.0157 (5)0.0015 (4)0.0016 (4)0.0008 (4)
C20.0157 (6)0.0123 (6)0.0122 (5)0.0019 (5)0.0035 (5)0.0015 (4)
S20.01174 (15)0.01751 (16)0.01595 (15)0.00302 (11)0.00064 (11)0.00024 (11)
N110.0099 (5)0.0110 (5)0.0114 (5)0.0007 (4)0.0014 (4)0.0008 (4)
N120.0133 (5)0.0133 (5)0.0117 (5)0.0004 (4)0.0015 (4)0.0004 (4)
N130.0117 (5)0.0125 (5)0.0132 (5)0.0006 (4)0.0018 (4)0.0005 (4)
N140.0135 (5)0.0143 (5)0.0137 (5)0.0003 (4)0.0038 (4)0.0003 (4)
C110.0101 (5)0.0146 (6)0.0111 (6)0.0015 (4)0.0006 (4)0.0010 (4)
C120.0117 (6)0.0128 (6)0.0156 (6)0.0005 (4)0.0003 (5)0.0017 (5)
C130.0126 (6)0.0150 (6)0.0169 (6)0.0014 (5)0.0044 (5)0.0002 (5)
C140.0116 (6)0.0145 (6)0.0134 (6)0.0029 (5)0.0037 (5)0.0006 (5)
C150.0157 (6)0.0157 (6)0.0127 (6)0.0009 (5)0.0037 (5)0.0018 (5)
C160.0131 (6)0.0115 (6)0.0124 (5)0.0006 (4)0.0017 (5)0.0010 (4)
O210.0123 (4)0.0142 (4)0.0191 (5)0.0019 (3)0.0062 (4)0.0027 (3)
C210.0156 (6)0.0202 (7)0.0183 (6)0.0013 (5)0.0078 (5)0.0025 (5)
C220.0155 (7)0.0410 (9)0.0313 (8)0.0045 (6)0.0044 (6)0.0042 (7)
O310.0114 (4)0.0129 (4)0.0148 (4)0.0013 (3)0.0020 (3)0.0017 (3)
C310.0169 (6)0.0139 (6)0.0190 (6)0.0001 (5)0.0007 (5)0.0031 (5)
C320.0215 (7)0.0214 (7)0.0175 (6)0.0063 (5)0.0008 (5)0.0041 (5)
O410.0230 (5)0.0156 (5)0.0122 (4)0.0048 (3)0.0022 (4)0.0001 (3)
C410.0209 (7)0.0159 (6)0.0192 (6)0.0026 (5)0.0011 (5)0.0040 (5)
C420.0219 (8)0.0392 (9)0.0434 (10)0.0028 (7)0.0103 (7)0.0176 (8)
Geometric parameters (Å, º) top
Co1—N22.0615 (11)C14—H14B0.9900
Co1—N12.0624 (11)C15—H15A0.9900
Co1—O412.1021 (10)C15—H15B0.9900
Co1—O312.1157 (9)C16—H16A0.9900
Co1—O212.1314 (9)C16—H16B0.9900
Co1—N112.2489 (11)O21—C211.4446 (15)
N1—C11.1610 (18)O21—H210.8400
C1—S11.6335 (13)C21—C221.505 (2)
N2—C21.1625 (18)C21—H21A0.9900
C2—S21.6437 (13)C21—H21B0.9900
N11—C161.4889 (16)C22—H22A0.9800
N11—C111.4955 (15)C22—H22B0.9800
N11—C141.4957 (15)C22—H22C0.9800
N12—C111.4771 (15)O31—C311.4409 (16)
N12—C121.4810 (16)O31—H310.8400
N12—C151.4878 (16)C31—C321.5157 (19)
N13—C161.4705 (16)C31—H31A0.9900
N13—C121.4783 (16)C31—H31B0.9900
N13—C131.4855 (16)C32—H32A0.9800
N14—C141.4640 (16)C32—H32B0.9800
N14—C131.4648 (17)C32—H32C0.9800
N14—C151.4695 (16)O41—C411.4339 (16)
C11—H11A0.9900O41—H410.8400
C11—H11B0.9900C41—C421.504 (2)
C12—H12A0.9900C41—H41A0.9900
C12—H12B0.9900C41—H41B0.9900
C13—H13A0.9900C42—H42A0.9800
C13—H13B0.9900C42—H42B0.9800
C14—H14A0.9900C42—H42C0.9800
N2—Co1—N1178.73 (4)N14—C15—N12111.62 (10)
N2—Co1—O4190.12 (4)N14—C15—H15A109.3
N1—Co1—O4188.61 (4)N12—C15—H15A109.3
N2—Co1—O3193.75 (4)N14—C15—H15B109.3
N1—Co1—O3186.35 (4)N12—C15—H15B109.3
O41—Co1—O3188.09 (4)H15A—C15—H15B108.0
N2—Co1—O2192.51 (4)N13—C16—N11113.06 (10)
N1—Co1—O2187.27 (4)N13—C16—H16A109.0
O41—Co1—O2186.42 (4)N11—C16—H16A109.0
O31—Co1—O21171.68 (4)N13—C16—H16B109.0
N2—Co1—N1191.69 (4)N11—C16—H16B109.0
N1—Co1—N1189.57 (4)H16A—C16—H16B107.8
O41—Co1—N11177.25 (4)C21—O21—Co1123.67 (8)
O31—Co1—N1193.85 (4)C21—O21—H21109.5
O21—Co1—N1191.43 (4)Co1—O21—H21117.9
C1—N1—Co1176.60 (11)O21—C21—C22110.89 (12)
N1—C1—S1179.67 (14)O21—C21—H21A109.5
C2—N2—Co1168.63 (11)C22—C21—H21A109.5
N2—C2—S2179.00 (12)O21—C21—H21B109.5
C16—N11—C11107.39 (9)C22—C21—H21B109.5
C16—N11—C14107.64 (10)H21A—C21—H21B108.0
C11—N11—C14107.18 (10)C21—C22—H22A109.5
C16—N11—Co1108.63 (7)C21—C22—H22B109.5
C11—N11—Co1115.68 (7)H22A—C22—H22B109.5
C14—N11—Co1110.02 (7)C21—C22—H22C109.5
C11—N12—C12108.83 (10)H22A—C22—H22C109.5
C11—N12—C15108.14 (10)H22B—C22—H22C109.5
C12—N12—C15108.38 (10)C31—O31—Co1129.48 (8)
C16—N13—C12107.78 (10)C31—O31—H31109.5
C16—N13—C13108.23 (10)Co1—O31—H31111.1
C12—N13—C13108.07 (10)O31—C31—C32111.56 (11)
C14—N14—C13109.17 (10)O31—C31—H31A109.3
C14—N14—C15108.43 (10)C32—C31—H31A109.3
C13—N14—C15108.26 (10)O31—C31—H31B109.3
N12—C11—N11111.76 (10)C32—C31—H31B109.3
N12—C11—H11A109.3H31A—C31—H31B108.0
N11—C11—H11A109.3C31—C32—H32A109.5
N12—C11—H11B109.3C31—C32—H32B109.5
N11—C11—H11B109.3H32A—C32—H32B109.5
H11A—C11—H11B107.9C31—C32—H32C109.5
N13—C12—N12111.64 (10)H32A—C32—H32C109.5
N13—C12—H12A109.3H32B—C32—H32C109.5
N12—C12—H12A109.3C41—O41—Co1128.97 (8)
N13—C12—H12B109.3C41—O41—H41109.5
N12—C12—H12B109.3Co1—O41—H41121.3
H12A—C12—H12B108.0O41—C41—C42112.33 (13)
N14—C13—N13112.16 (10)O41—C41—H41A109.1
N14—C13—H13A109.2C42—C41—H41A109.1
N13—C13—H13A109.2O41—C41—H41B109.1
N14—C13—H13B109.2C42—C41—H41B109.1
N13—C13—H13B109.2H41A—C41—H41B107.9
H13A—C13—H13B107.9C41—C42—H42A109.5
N14—C14—N11112.31 (10)C41—C42—H42B109.5
N14—C14—H14A109.1H42A—C42—H42B109.5
N11—C14—H14A109.1C41—C42—H42C109.5
N14—C14—H14B109.1H42A—C42—H42C109.5
N11—C14—H14B109.1H42B—C42—H42C109.5
H14A—C14—H14B107.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···S2i0.992.873.6586 (13)137
C12—H12B···S1ii0.992.923.8813 (13)164
C15—H15A···S1iii0.992.993.9387 (13)161
C15—H15B···S2iv0.992.943.7110 (13)135
C16—H16A···O210.992.543.1009 (16)116
C16—H16B···N10.992.473.1083 (17)122
O21—H21···N13ii0.842.032.8424 (14)161
C22—H22C···S1v0.983.023.9559 (16)161
O31—H31···N12vi0.841.962.7969 (14)172
O41—H41···S2vi0.842.373.2080 (10)174
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z1/2; (v) x1, y, z; (vi) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This project was supported by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft.

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. NA720/5-2).

References

First citationBai, Y., Shang, W.-L., Dang, D.-B., Sun, J.-D. & Gao, H. (2009). Spectrochim. Acta Part A, 72, 407–411.  Web of Science CSD CrossRef Google Scholar
First citationBai, Y., Shang, W.-L., Zhang, F.-L., Pan, X.-J. & Niu, X.-F. (2007). Acta Cryst. E63, m2628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBöhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325–5338.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCeglarska, M., Böhme, M., Neumann, T., Plass, W., Näther, C. & Rams, M. (2021). Phys. Chem. Chem. Phys. 23, 10281–10289.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChakraborty, J., Samanta, B., Rosair, G., Gramlich, V., Salah El Fallah, M., Ribas, J., Matsushita, T. & Mitra, S. (2006). Polyhedron, 25, 3006–3016.  Web of Science CSD CrossRef CAS Google Scholar
First citationCzubacka, E., Kruszynski, R. & Sieranski, T. (2012). Struct. Chem. 23, 451–459.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJin, Y., Che, Y. X. & Zheng, J. M. (2007). J. Coord. Chem. 60, 2067–2074.  Web of Science CSD CrossRef CAS Google Scholar
First citationJochim, A., Rams, M., Böhme, M., Ceglarska, M., Plass, W. & Näther, C. (2020). Dalton Trans. 49, 15310–15322.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrebs, C., Jess, I., Ceglarska, M. & Näther, C. (2022). Acta Cryst. E78, 66–70.  CSD CrossRef IUCr Journals Google Scholar
First citationKrebs, C., Jess, I. & Näther, C. (2021). Acta Cryst. E77, 1120–1125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J., Meng, S., Zhang, J., Song, Y., Huang, Z., Zhao, H., Wei, H., Huang, W., Cifuentes, M. P., Humphrey, M. G. & Zhang, C. (2012). CrystEngComm, 14, 2787–2796.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X.-L., Niu, D.-Z. & Lu, Z.-S. (2007). Acta Cryst. E63, m2478.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Q., Xi, H.-T., Sun, X.-Q., Zhu, J.-F. & Yu, K.-B. (2002). Chin. J. Struct. Chem. 21, 355–359.  CAS Google Scholar
First citationLu, J., Liu, H.-T., Zhang, X.-X., Wang, D.-Q. & Niu, M.-J. (2010). Z. Anorg. Allg. Chem. 636, 641–647.  Web of Science CSD CrossRef CAS Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationNäther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714.  Google Scholar
First citationPrananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516–528.  Web of Science CSD CrossRef CAS Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.  Google Scholar
First citationShang, W.-L., Bai, Y., Ma, C.-Z. & Li, Z.-M. (2008). Acta Cryst. E64, m1184–m1185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J.-M., Chen, J.-N. & Liu, L.-D. (2006). Pol. J. Chem. 80, 1909–1913.  CAS Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWellm, C., Majcher-Fitas, A., Rams, M. & Näther, C. (2020). Dalton Trans. 49, 16707–16714.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015). Dalton Trans. 44, 14149–14158.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Li, J., Xu, H., Hou, H., Nishiura, M. & Imamoto, T. (1999). J. Mol. Struct. 510, 191–196.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds