research communications
a]pyridine-8-carboxylate
and Hirshfeld surface analysis of 2-oxo-2-phenylethyl 3-nitroso-2-phenylimidazo[1,2-aLaboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohammed I University, 60000 Oujda, Morocco, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139-Samsun, Turkey, cDepartment of Pharmacology, Faculty of Clinical Pharmacy, University of Medical and Applied Sciences, Yemen, and dLaboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
*Correspondence e-mail: cemle28baydere@hotmail.com, abdulmalikabudunia@gmail.com
The title compound, C22H15N3O4, is built up from a central imidazo[1,2-a]pyridine ring system connected to a nitroso group, a phenyl ring and a 2-oxo-2-phenylethyl acetate group. The imidazo[1,2-a] pyridine ring system is almost planar (r.m.s. deviation = 0.017 Å) and forms dihedral angles of 22.74 (5) and 45.37 (5)°, respectively, with the phenyl ring and the 2-oxo-2-phenylethyl acetate group. In the crystal, the molecules are linked into chains parallel to the b axis by C—H⋯O hydrogen bonds, generating R21 (5) and R44 (28) graph-set motifs. The chains are further linked into a three-dimensional network by C—H⋯π and π-stacking interactions. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (36.2%), H⋯C/C⋯H (20.5%), H⋯O/O⋯H (20.0%), C⋯O/O⋯C (6.5%), C⋯N/N⋯C (6.2%), H⋯N/N⋯H (4.5%) and C⋯C (4.3%) interactions.
CCDC reference: 2106558
1. Chemical context
Numerous drugs contain N-heterocycles as the core structure, including imidazo[1,2-a]pyridine and its derivatives, which are used in medicinal chemistry (Swainston Harrison & Keating, 2005; Deep et al., 2017) or that exhibit diverse biological properties, such as antibacterial (Mishra et al., 2021), antitubercular (Wang et al., 2019), tyrosinase inhibitory (Damghani et al., 2020), HIV inhibitory (Bode et al., 2011), antidiabetic (Saeedi et al., 2021), anti-inflammatory (Gundlewad et al., 2020) or anticancer activities (Yu et al., 2020; Sigalapalli et al., 2021). Encouraged by these features and in a continuation of our exploration of the synthesis, molecular structures and Hirshfeld surface analysis of new N-heterocyclic compounds (Daoui et al., 2021, 2022; El Kalai et al., 2021a,b), we report herein the and Hirshfeld surface analysis of 2-oxo-2-phenylethyl 3-nitroso-2-phenylimidazo[1,2-a]pyridine-8-carboxylate, C22H15N3O4 (I).
2. Structural commentary
The molecular structure of (I) is shown in Fig. 1. The imidazo[1,2-a] pyridine ring system is planar with an r.m.s deviation of 0.017 Å and a maximum deviation of 0.028 (1) Å for atom C11. The mean plane through the fused ring system makes dihedral angles of 22.74 (5) and 45.37 (5)° with the phenyl ring (C1–C6) and the 2-oxo-2-phenylethyl acetate group (C14–C22), respectively. The dihedral angle between the two aromatic rings (C1–C6 and C17–C22) is 59.63 (5)°. The molecular conformation is stabilized by two weak intramolecular C9—H9⋯O1 and C1—H1⋯N1 hydrogen bonds, generating S(6) ring motifs (Table 1, Fig. 1).
3. Supramolecular features
In the crystal, molecules are linked by C9—H9⋯O2iii and C10—H10⋯O2iii hydrogen bonds, forming chains that propagate parallel to the b axis and enclose (5) ring motifs (Table 1, Fig. 2). Additionally, intermolecular C15—H15A⋯O4i and C15—H15B⋯O1ii hydrogen bonds with (28) ring motifs are also present, generating a three-dimensional supramolecular network that also comprises a weak C22—H22⋯Cg4iv interaction (Cg4 is the centroid of the C17–C22 phenyl ring) as well as π–π stacking interactions involving the centroids (Cg1 and Cg2) of the N2/C13/N3/C7–C8 and N2/C9–C13 rings with a centroid-to-centroid distance Cg1⋯Cg2 (x, 1/2 − y, −1/2 + z) of 3.5750 (9) Å and a slippage of 0.685 Å (Fig. 2).
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.40, update of August 2019; Groom et al., 2016) using 2-phenylimidazo[1,2-a]pyridin-3-amine as the main skeleton revealed the presence of 54 structures with different substituents on the imidazo[1,2-a]pyridine ring. The two structures most similar to (I) are N-(2-phenylimidazo[1,2-a]pyridin-3-yl)acetamide (MIXZOJ; Anaflous et al., 2008) and 4-[(7-methyl-2-phenylimidazo[1,2-a]pyridin-3-yl)carbonoimidoyl]phenol (TUQCEP; Elaatiaoui et al., 2015). In MIXZOJ, C15H13N3O, the consists of molecular columns that are interconnected by N—H⋯N hydrogen bonds along the b-axis direction. The torsion angle between the imidazo[1,2-a]pyridine ring system and the phenyl ring is 9.04 (5)°. In TUQCEP, C21H17N3O, the fused ring system is almost planar (r.m.s. deviation = 0.031 Å) and forms dihedral angles of 64.97 (7) and 18.52 (6)° with the phenyl ring and the (iminomethyl)phenol group, respectively. In its crystal, molecules are linked by pairs of C—H⋯π interactions into centrosymmetric dimeric units, which are further connected by O—H⋯N hydrogen bonds, forming layers parallel to (101).
5. Hirshfeld surface analysis
Hirshfeld surface analysis was used to quantify the intermolecular contacts of the title compound, using Crystal Explorer (Turner et al., 2017). The Hirshfeld surface was generated with a standard (high) surface resolution and with the three-dimensional dnorm surface plotted over a fixed colour scale of −0.1706 (red) to 1.2371 (blue) a.u. (Fig. 3a). The shape-index map of the title molecule was generated in the range −1 to 1 Å (Fig. 3b), revealing the presence of red and blue triangles that are indicative of the presence of π–π stacking interactions. The curvedness map of the title complex was generated in the range −4.0 to 4.0 Å (Fig. 3c) and shows flat surface patches characteristic of planar stacking. The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯O/O⋯C, C⋯N/N⋯C, H⋯N/N⋯H and C⋯C interactions in Fig. 4a–g, respectively. The overall two-dimensional fingerprint plot is illustrated in Fig. 5a, with those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯O/O⋯C, C⋯N/N⋯C, H⋯N/N⋯H and C⋯C contacts associated with their relative contributions to the Hirshfeld surface in Fig. 5b–h, respectively. The most important intermolecular interaction is H⋯H, contributing 36.2% to the overall crystal packing (Fig. 5b). H⋯C/C⋯H contacts, with a 20.5% contribution to the Hirshfeld surface, indicate the presence of the weak C—H⋯π interaction (Table 1). Two pairs of characteristic wings in the fingerprint plot with pairs of tips at de + di ∼2.74 Å are present (Fig. 5c). H⋯O/O⋯H contacts arising from intermolecular C—H⋯O hydrogen bonding make a 20.0% contribution to the Hirshfeld surface and are represented by a pair of sharp spikes in the region de + di ∼2.34 Å (Fig. 5d). The C⋯C contacts are a measure of π–π stacking interactions and contribute 4.3% of the Hirshfeld surface (Fig. 5h). The contributions of the other contacts to the Hirshfeld surface are C⋯O/O⋯C of 6.5%, C⋯N/N⋯C of 6.2% and H⋯N/N⋯H of 4.5%.
6. Synthesis and crystallization
To a solution of 2-oxo-2-phenylethyl 2-phenylimidazo[1,2-a]pyridine-8-carboxylate (0.71 g, 2 mmol) in acetic acid (50 ml), sodium nitrite (1.4 g, 2 mmol) was added at room temperature. The resulting precipitate was washed with water and extracted with dichloromethane (3 × 20 ml). The combined dichloromethane extracts were dried over anhydrous sodium sulfate and filtered. The remaining solution was concentrated under reduced pressure. The residue was purified chromatographically on a neutral alumina gel column using dichloromethane as Single crystals were obtained by slow evaporation of a dichloromethane solution at room temperature (yield 80%).
7. Refinement
Crystal data, data collection and structure . Hydrogen atoms were fixed geometrically and treated as riding, with C—H = 0.97 Å for methylene [Uiso(H) = 1.5Ueq(C)], C—H = 0.93 Å for aromatic [Uiso(H) = 1.2Ueq(C)] and C—H = 0.98 Å for methine [Uiso(H) = 1.2Ueq(C)] H atoms.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2106558
https://doi.org/10.1107/S2056989022001517/wm5632sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022001517/wm5632Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022001517/wm5632Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2012); cell
X-AREA (Stoe & Cie, 2012); data reduction: X-RED (Stoe & Cie, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020), PLATON (Spek, 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL (Sheldrick, 2015b), PLATON (Spek, 2020) and publCIF (Westrip, 2010).C22H15N3O4 | F(000) = 800 |
Mr = 385.37 | Dx = 1.412 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.9256 (14) Å | Cell parameters from 18578 reflections |
b = 14.8256 (14) Å | θ = 1.9–32.8° |
c = 7.6787 (6) Å | µ = 0.10 mm−1 |
β = 90.566 (7)° | T = 296 K |
V = 1812.9 (3) Å3 | Rod, green |
Z = 4 | 0.56 × 0.38 × 0.15 mm |
Stoe IPDS 2 diffractometer | 6703 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 3040 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.070 |
Detector resolution: 6.67 pixels mm-1 | θmax = 32.9°, θmin = 2.6° |
rotation method scans | h = −24→24 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2012) | k = −22→22 |
Tmin = 0.946, Tmax = 0.969 | l = −10→11 |
27945 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.118 | w = 1/[σ2(Fo2) + (0.0506P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.92 | (Δ/σ)max < 0.001 |
6703 reflections | Δρmax = 0.15 e Å−3 |
262 parameters | Δρmin = −0.16 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O3 | 0.63005 (6) | 0.31601 (7) | 0.48667 (14) | 0.0542 (3) | |
O2 | 0.58609 (6) | 0.39797 (6) | 0.25605 (15) | 0.0595 (3) | |
N3 | 0.40012 (7) | 0.34790 (7) | 0.20621 (16) | 0.0441 (3) | |
N2 | 0.39287 (6) | 0.19477 (7) | 0.20006 (16) | 0.0435 (3) | |
O4 | 0.75836 (8) | 0.26469 (8) | 0.30406 (19) | 0.0788 (4) | |
O1 | 0.25639 (7) | 0.09653 (7) | 0.0672 (2) | 0.0780 (4) | |
N1 | 0.25076 (8) | 0.18024 (9) | 0.06361 (19) | 0.0599 (4) | |
C14 | 0.58089 (8) | 0.33230 (9) | 0.34708 (19) | 0.0416 (3) | |
C12 | 0.52135 (8) | 0.25563 (8) | 0.31845 (18) | 0.0414 (3) | |
C13 | 0.44102 (8) | 0.27009 (8) | 0.24261 (18) | 0.0404 (3) | |
C7 | 0.32472 (8) | 0.32353 (9) | 0.13986 (19) | 0.0441 (3) | |
C17 | 0.86457 (9) | 0.34187 (9) | 0.46238 (19) | 0.0464 (3) | |
C8 | 0.31681 (8) | 0.22879 (9) | 0.1315 (2) | 0.0465 (3) | |
C6 | 0.26278 (8) | 0.39215 (9) | 0.08286 (19) | 0.0459 (3) | |
C11 | 0.54667 (9) | 0.16813 (9) | 0.3493 (2) | 0.0483 (3) | |
H11 | 0.598339 | 0.157821 | 0.403177 | 0.058* | |
C16 | 0.77582 (9) | 0.32058 (9) | 0.4145 (2) | 0.0495 (3) | |
C15 | 0.70537 (8) | 0.36842 (9) | 0.5070 (2) | 0.0498 (3) | |
H15A | 0.719202 | 0.375040 | 0.629688 | 0.060* | |
H15B | 0.697194 | 0.428055 | 0.457752 | 0.060* | |
C18 | 0.88553 (9) | 0.40814 (10) | 0.5833 (2) | 0.0524 (4) | |
H18 | 0.843669 | 0.443252 | 0.632786 | 0.063* | |
C9 | 0.42025 (9) | 0.10793 (9) | 0.2257 (2) | 0.0508 (4) | |
H9 | 0.387103 | 0.059250 | 0.191712 | 0.061* | |
C10 | 0.49660 (9) | 0.09435 (9) | 0.3016 (2) | 0.0529 (4) | |
H10 | 0.515667 | 0.035964 | 0.321857 | 0.063* | |
C5 | 0.28989 (9) | 0.47829 (10) | 0.0411 (2) | 0.0537 (4) | |
H5 | 0.346539 | 0.492649 | 0.052027 | 0.064* | |
C4 | 0.23357 (10) | 0.54324 (11) | −0.0168 (2) | 0.0618 (4) | |
H4 | 0.252468 | 0.600751 | −0.044788 | 0.074* | |
C19 | 0.96856 (10) | 0.42184 (11) | 0.6299 (3) | 0.0645 (4) | |
H19 | 0.982383 | 0.465939 | 0.711376 | 0.077* | |
C3 | 0.14938 (11) | 0.52236 (12) | −0.0328 (2) | 0.0669 (5) | |
H3 | 0.111528 | 0.565477 | −0.073272 | 0.080* | |
C1 | 0.17725 (9) | 0.37247 (11) | 0.0689 (3) | 0.0633 (4) | |
H1 | 0.157736 | 0.315422 | 0.098519 | 0.076* | |
C22 | 0.92826 (10) | 0.29109 (11) | 0.3880 (2) | 0.0639 (4) | |
H22 | 0.914895 | 0.247016 | 0.306093 | 0.077* | |
C20 | 1.03132 (10) | 0.37028 (13) | 0.5559 (3) | 0.0719 (5) | |
H20 | 1.087105 | 0.379435 | 0.588214 | 0.086* | |
C2 | 0.12162 (10) | 0.43762 (13) | 0.0113 (3) | 0.0727 (5) | |
H2 | 0.064726 | 0.424057 | 0.002223 | 0.087* | |
C21 | 1.01088 (11) | 0.30541 (13) | 0.4343 (3) | 0.0736 (5) | |
H21 | 1.053005 | 0.271212 | 0.383457 | 0.088* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.0450 (5) | 0.0615 (6) | 0.0559 (7) | −0.0123 (4) | −0.0143 (5) | 0.0119 (5) |
O2 | 0.0558 (6) | 0.0431 (5) | 0.0792 (8) | −0.0076 (4) | −0.0223 (5) | 0.0138 (5) |
N3 | 0.0351 (5) | 0.0412 (5) | 0.0558 (7) | −0.0003 (4) | −0.0046 (5) | 0.0017 (5) |
N2 | 0.0354 (5) | 0.0418 (6) | 0.0534 (7) | −0.0037 (4) | −0.0030 (5) | 0.0028 (5) |
O4 | 0.0687 (7) | 0.0791 (8) | 0.0882 (9) | 0.0000 (6) | −0.0168 (7) | −0.0363 (7) |
O1 | 0.0631 (7) | 0.0515 (6) | 0.1188 (11) | −0.0111 (5) | −0.0220 (7) | −0.0053 (6) |
N1 | 0.0451 (7) | 0.0562 (7) | 0.0783 (10) | −0.0071 (6) | −0.0122 (6) | −0.0018 (7) |
C14 | 0.0327 (6) | 0.0428 (7) | 0.0492 (8) | 0.0027 (5) | −0.0041 (6) | 0.0002 (6) |
C12 | 0.0360 (6) | 0.0430 (7) | 0.0451 (8) | −0.0008 (5) | −0.0008 (6) | 0.0031 (6) |
C13 | 0.0362 (6) | 0.0389 (6) | 0.0461 (8) | −0.0031 (5) | 0.0003 (6) | 0.0024 (6) |
C7 | 0.0348 (6) | 0.0467 (7) | 0.0508 (8) | −0.0018 (5) | −0.0025 (6) | 0.0013 (6) |
C17 | 0.0450 (7) | 0.0460 (7) | 0.0481 (8) | −0.0002 (5) | −0.0044 (6) | 0.0044 (6) |
C8 | 0.0352 (6) | 0.0478 (7) | 0.0565 (9) | −0.0034 (5) | −0.0068 (6) | 0.0020 (6) |
C6 | 0.0382 (7) | 0.0485 (7) | 0.0511 (9) | 0.0024 (5) | −0.0056 (6) | −0.0015 (6) |
C11 | 0.0391 (7) | 0.0487 (7) | 0.0569 (9) | 0.0006 (6) | −0.0046 (6) | 0.0084 (6) |
C16 | 0.0525 (8) | 0.0448 (7) | 0.0511 (9) | −0.0020 (6) | −0.0115 (7) | 0.0009 (6) |
C15 | 0.0424 (7) | 0.0488 (7) | 0.0579 (9) | −0.0040 (6) | −0.0137 (6) | 0.0008 (7) |
C18 | 0.0424 (7) | 0.0526 (8) | 0.0621 (10) | −0.0019 (6) | −0.0039 (7) | −0.0011 (7) |
C9 | 0.0479 (8) | 0.0384 (7) | 0.0659 (10) | −0.0038 (6) | −0.0058 (7) | 0.0021 (6) |
C10 | 0.0482 (8) | 0.0385 (7) | 0.0719 (11) | 0.0012 (6) | −0.0054 (7) | 0.0077 (7) |
C5 | 0.0432 (7) | 0.0497 (8) | 0.0680 (11) | 0.0025 (6) | −0.0064 (7) | 0.0001 (7) |
C4 | 0.0622 (10) | 0.0507 (8) | 0.0727 (12) | 0.0089 (7) | −0.0027 (8) | 0.0057 (8) |
C19 | 0.0520 (9) | 0.0631 (9) | 0.0780 (12) | −0.0102 (7) | −0.0117 (8) | −0.0004 (9) |
C3 | 0.0594 (10) | 0.0706 (10) | 0.0704 (12) | 0.0231 (8) | −0.0138 (8) | 0.0037 (9) |
C1 | 0.0421 (8) | 0.0605 (9) | 0.0871 (13) | −0.0009 (7) | −0.0118 (8) | 0.0028 (8) |
C22 | 0.0569 (9) | 0.0647 (10) | 0.0702 (12) | 0.0109 (7) | −0.0026 (8) | −0.0061 (8) |
C20 | 0.0408 (8) | 0.0788 (11) | 0.0959 (15) | −0.0031 (8) | −0.0076 (8) | 0.0195 (11) |
C2 | 0.0422 (8) | 0.0765 (11) | 0.0990 (15) | 0.0076 (8) | −0.0172 (8) | −0.0003 (10) |
C21 | 0.0534 (9) | 0.0793 (12) | 0.0880 (15) | 0.0150 (9) | 0.0052 (9) | 0.0043 (10) |
O3—C14 | 1.3431 (16) | C15—H15A | 0.9700 |
O3—C15 | 1.4365 (16) | C15—H15B | 0.9700 |
O2—C14 | 1.2018 (16) | C18—C19 | 1.381 (2) |
N3—C7 | 1.3491 (16) | C18—H18 | 0.9300 |
N3—C13 | 1.3526 (16) | C9—C10 | 1.3581 (19) |
N2—C9 | 1.3729 (17) | C9—H9 | 0.9300 |
N2—C13 | 1.3918 (16) | C10—H10 | 0.9300 |
N2—C8 | 1.4092 (16) | C5—C4 | 1.386 (2) |
O4—C16 | 1.2157 (17) | C5—H5 | 0.9300 |
O1—N1 | 1.2446 (16) | C4—C3 | 1.380 (2) |
N1—C8 | 1.3732 (17) | C4—H4 | 0.9300 |
C14—C12 | 1.4951 (18) | C19—C20 | 1.385 (3) |
C12—C11 | 1.3783 (18) | C19—H19 | 0.9300 |
C12—C13 | 1.4166 (18) | C3—C2 | 1.375 (3) |
C7—C8 | 1.4115 (19) | C3—H3 | 0.9300 |
C7—C6 | 1.4803 (18) | C1—C2 | 1.381 (2) |
C17—C18 | 1.390 (2) | C1—H1 | 0.9300 |
C17—C22 | 1.391 (2) | C22—C21 | 1.376 (2) |
C17—C16 | 1.4907 (19) | C22—H22 | 0.9300 |
C6—C5 | 1.387 (2) | C20—C21 | 1.377 (3) |
C6—C1 | 1.396 (2) | C20—H20 | 0.9300 |
C11—C10 | 1.4002 (19) | C2—H2 | 0.9300 |
C11—H11 | 0.9300 | C21—H21 | 0.9300 |
C16—C15 | 1.511 (2) | ||
C14—O3—C15 | 117.98 (11) | H15A—C15—H15B | 108.4 |
C7—N3—C13 | 105.94 (10) | C19—C18—C17 | 119.98 (15) |
C9—N2—C13 | 123.04 (11) | C19—C18—H18 | 120.0 |
C9—N2—C8 | 131.29 (11) | C17—C18—H18 | 120.0 |
C13—N2—C8 | 105.67 (10) | C10—C9—N2 | 118.84 (12) |
O1—N1—C8 | 117.36 (12) | C10—C9—H9 | 120.6 |
O2—C14—O3 | 124.53 (12) | N2—C9—H9 | 120.6 |
O2—C14—C12 | 125.28 (12) | C9—C10—C11 | 120.11 (13) |
O3—C14—C12 | 110.15 (11) | C9—C10—H10 | 119.9 |
C11—C12—C13 | 118.33 (11) | C11—C10—H10 | 119.9 |
C11—C12—C14 | 120.41 (11) | C4—C5—C6 | 120.80 (14) |
C13—C12—C14 | 120.94 (11) | C4—C5—H5 | 119.6 |
N3—C13—N2 | 111.88 (10) | C6—C5—H5 | 119.6 |
N3—C13—C12 | 130.17 (11) | C3—C4—C5 | 119.83 (15) |
N2—C13—C12 | 117.93 (11) | C3—C4—H4 | 120.1 |
N3—C7—C8 | 111.24 (11) | C5—C4—H4 | 120.1 |
N3—C7—C6 | 121.04 (11) | C18—C19—C20 | 120.37 (16) |
C8—C7—C6 | 127.70 (11) | C18—C19—H19 | 119.8 |
C18—C17—C22 | 119.06 (13) | C20—C19—H19 | 119.8 |
C18—C17—C16 | 122.36 (13) | C2—C3—C4 | 119.82 (14) |
C22—C17—C16 | 118.53 (13) | C2—C3—H3 | 120.1 |
N1—C8—N2 | 127.33 (12) | C4—C3—H3 | 120.1 |
N1—C8—C7 | 127.34 (12) | C2—C1—C6 | 120.06 (16) |
N2—C8—C7 | 105.26 (10) | C2—C1—H1 | 120.0 |
C5—C6—C1 | 118.72 (13) | C6—C1—H1 | 120.0 |
C5—C6—C7 | 119.55 (12) | C21—C22—C17 | 120.64 (16) |
C1—C6—C7 | 121.73 (13) | C21—C22—H22 | 119.7 |
C12—C11—C10 | 121.69 (12) | C17—C22—H22 | 119.7 |
C12—C11—H11 | 119.2 | C21—C20—C19 | 119.80 (15) |
C10—C11—H11 | 119.2 | C21—C20—H20 | 120.1 |
O4—C16—C17 | 121.74 (14) | C19—C20—H20 | 120.1 |
O4—C16—C15 | 118.84 (13) | C3—C2—C1 | 120.74 (15) |
C17—C16—C15 | 119.41 (12) | C3—C2—H2 | 119.6 |
O3—C15—C16 | 108.54 (11) | C1—C2—H2 | 119.6 |
O3—C15—H15A | 110.0 | C22—C21—C20 | 120.14 (17) |
C16—C15—H15A | 110.0 | C22—C21—H21 | 119.9 |
O3—C15—H15B | 110.0 | C20—C21—H21 | 119.9 |
C16—C15—H15B | 110.0 | ||
C15—O3—C14—O2 | −14.9 (2) | C8—C7—C6—C1 | 23.0 (3) |
C15—O3—C14—C12 | 163.13 (11) | C13—C12—C11—C10 | 2.5 (2) |
O2—C14—C12—C11 | 141.14 (16) | C14—C12—C11—C10 | −171.16 (15) |
O3—C14—C12—C11 | −36.82 (19) | C18—C17—C16—O4 | 177.35 (15) |
O2—C14—C12—C13 | −32.3 (2) | C22—C17—C16—O4 | −5.1 (2) |
O3—C14—C12—C13 | 149.69 (13) | C18—C17—C16—C15 | −3.6 (2) |
C7—N3—C13—N2 | 0.14 (16) | C22—C17—C16—C15 | 173.89 (14) |
C7—N3—C13—C12 | −178.13 (15) | C14—O3—C15—C16 | −89.28 (14) |
C9—N2—C13—N3 | −179.58 (13) | O4—C16—C15—O3 | 19.49 (19) |
C8—N2—C13—N3 | 0.31 (16) | C17—C16—C15—O3 | −159.56 (12) |
C9—N2—C13—C12 | −1.1 (2) | C22—C17—C18—C19 | −1.0 (2) |
C8—N2—C13—C12 | 178.82 (12) | C16—C17—C18—C19 | 176.52 (14) |
C11—C12—C13—N3 | 176.84 (15) | C13—N2—C9—C10 | 2.4 (2) |
C14—C12—C13—N3 | −9.5 (2) | C8—N2—C9—C10 | −177.50 (15) |
C11—C12—C13—N2 | −1.3 (2) | N2—C9—C10—C11 | −1.2 (2) |
C14—C12—C13—N2 | 172.27 (13) | C12—C11—C10—C9 | −1.2 (3) |
C13—N3—C7—C8 | −0.56 (17) | C1—C6—C5—C4 | −1.3 (2) |
C13—N3—C7—C6 | −179.33 (13) | C7—C6—C5—C4 | 178.39 (15) |
O1—N1—C8—N2 | 2.6 (2) | C6—C5—C4—C3 | 0.2 (3) |
O1—N1—C8—C7 | 179.29 (16) | C17—C18—C19—C20 | 0.4 (2) |
C9—N2—C8—N1 | −3.5 (3) | C5—C4—C3—C2 | 1.0 (3) |
C13—N2—C8—N1 | 176.62 (15) | C5—C6—C1—C2 | 1.2 (3) |
C9—N2—C8—C7 | 179.26 (15) | C7—C6—C1—C2 | −178.44 (16) |
C13—N2—C8—C7 | −0.61 (15) | C18—C17—C22—C21 | 0.7 (2) |
N3—C7—C8—N1 | −176.49 (15) | C16—C17—C22—C21 | −176.95 (16) |
C6—C7—C8—N1 | 2.2 (3) | C18—C19—C20—C21 | 0.4 (3) |
N3—C7—C8—N2 | 0.74 (17) | C4—C3—C2—C1 | −1.0 (3) |
C6—C7—C8—N2 | 179.42 (14) | C6—C1—C2—C3 | −0.1 (3) |
N3—C7—C6—C5 | 21.9 (2) | C17—C22—C21—C20 | 0.2 (3) |
C8—C7—C6—C5 | −156.69 (16) | C19—C20—C21—C22 | −0.8 (3) |
N3—C7—C6—C1 | −158.46 (15) |
Cg4 is the centroid of the C17–C22 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15A···O4i | 0.97 | 2.54 | 3.1257 (19) | 119 |
C15—H15B···O1ii | 0.97 | 2.61 | 3.4841 (18) | 150 |
C9—H9···O2iii | 0.93 | 2.46 | 3.1176 (16) | 128 |
C10—H10···O2iii | 0.93 | 2.67 | 3.2243 (17) | 119 |
C9—H9···O1 | 0.93 | 2.35 | 2.8736 (18) | 116 |
C1—H1···N1 | 0.93 | 2.51 | 3.081 (2) | 120 |
C22—H22···Cg4iv | 0.93 | 2.80 | 3.657 (2) | 153 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) x, −y+1/2, z−1/2. |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). Authors' contributions are as follows. conceptualization, FE, CB, and ND; formal analysis, CB and ND; writing (original draft), CB and KK; writing (review and editing of the manuscript), CB and KK; resources, AA; supervision, NB and KK.
References
Anaflous, A., Albay, H., Benchat, N., El Bali, B., Dušek, M. & Fejfarová, K. (2008). Acta Cryst. E64, o926. CSD CrossRef IUCr Journals Google Scholar
Bode, M. L., Gravestock, D., Moleele, S. S., van der Westhuyzen, C. W., Pelly, S. C., Steenkamp, P. A., Hoppe, H. C., Khan, T. & Nkabinde, L. A. (2011). Bioorg. Med. Chem. 19, 4227–4237. Web of Science CrossRef CAS PubMed Google Scholar
Damghani, T., Hadaegh, S., Khoshneviszadeh, M., Pirhadi, S., Sabet, R., Khoshneviszadeh, M. & Edraki, N. (2020). J. Mol. Struct. 1222, 128876. CrossRef Google Scholar
Daoui, S., Cinar, E. B., Dege, N., Chelfi, T., El Kalai, F., Abudunia, A., Karrouchi, K. & Benchat, N. (2021). Acta Cryst. E77, 23–27. Web of Science CSD CrossRef IUCr Journals Google Scholar
Daoui, S., Muwafaq, I., Çınar, E. B., Abudunia, A., Dege, N., Benchat, N. & Karrouchi, K. (2022). Acta Cryst. E78, 8–11. CSD CrossRef IUCr Journals Google Scholar
Deep, A., Bhatia, R. K., Kaur, R., Kumar, S., Jain, U. K., Singh, H., Batra, S., Kaushik, D. & Deb, P. K. (2017). Curr. Top. Med. Chem. 17, 238–250. Web of Science CrossRef CAS PubMed Google Scholar
Elaatiaoui, A., Saddik, R., Benchat, N., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o803–o804. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gundlewad, G. B., Wagh, S. S. & Patil, B. R. (2020). Asia. J. Org. Med. Chem. 5, 221–226. CrossRef Google Scholar
El Kalai, F., Çınar, E. B., Lai, C. H., Daoui, S., Chelfi, T., Allali, M., Dege, N., Karrouchi, K. & Benchat, N. (2021a). J. Mol. Struct. 1228, 129435. Web of Science PubMed Google Scholar
El Kalai, F., Karrouchi, K., Baydere, C., Daoui, S., Allali, M., Dege, N., Benchat, N. & Brandán, S. A. (2021b). J. Mol. Struct. 1223, 129213. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mishra, N. P., Mohapatra, S., Sahoo, C. R., Raiguru, B. P., Nayak, S., Jena, S. & Padhy, R. N. (2021). J. Mol. Struct. 1246, 131183. CrossRef Google Scholar
Saeedi, M., Raeisi-Nafchi, M., Sobhani, S., Mirfazli, S. S., Zardkanlou, M., Mojtabavi, S., Faramarzi, M. A. & Akbarzadeh, T. (2021). Mol. Divers. 25, 2399–2409. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sigalapalli, D. K., Kiranmai, G., Parimala Devi, G., Tokala, R., Sana, S., Tripura, C., Jadhav, G. S., Kadagathur, M., Shankaraiah, N., Nagesh, N., Babu, B. N. & Tangellamudi, N. D. (2021). Bioorg. Med. Chem. 43, 116277. CrossRef PubMed Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2012). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Swainston Harrison, T. & Keating, G. M. (2005). CNS Drugs, 19, 65–89. CrossRef PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Wang, A., Lv, K., Li, L., Liu, H., Tao, Z., Wang, B., Liu, M., Ma, C., Ma, X., Han, B., Wang, A. & Lu, Y. (2019). Eur. J. Med. Chem. 178, 715–725. CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, Y. N., Han, Y., Zhang, F., Gao, Z., Zhu, T., Dong, S. & Ma, M. (2020). J. Med. Chem. 63, 3028–3046. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.