research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-oxo-2-phenyl­ethyl 3-nitroso-2-phenyl­imidazo[1,2-a]pyridine-8-carboxyl­ate

crossmark logo

aLaboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohammed I University, 60000 Oujda, Morocco, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139-Samsun, Turkey, cDepartment of Pharmacology, Faculty of Clinical Pharmacy, University of Medical and Applied Sciences, Yemen, and dLaboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
*Correspondence e-mail: cemle28baydere@hotmail.com, abdulmalikabudunia@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 December 2021; accepted 8 February 2022; online 15 February 2022)

The title compound, C22H15N3O4, is built up from a central imidazo[1,2-a]pyridine ring system connected to a nitroso group, a phenyl ring and a 2-oxo-2-phenyl­ethyl acetate group. The imidazo[1,2-a] pyridine ring system is almost planar (r.m.s. deviation = 0.017 Å) and forms dihedral angles of 22.74 (5) and 45.37 (5)°, respectively, with the phenyl ring and the 2-oxo-2-phenyl­ethyl acetate group. In the crystal, the mol­ecules are linked into chains parallel to the b axis by C—H⋯O hydrogen bonds, generating R21 (5) and R44 (28) graph-set motifs. The chains are further linked into a three-dimensional network by C—H⋯π and π-stacking inter­actions. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (36.2%), H⋯C/C⋯H (20.5%), H⋯O/O⋯H (20.0%), C⋯O/O⋯C (6.5%), C⋯N/N⋯C (6.2%), H⋯N/N⋯H (4.5%) and C⋯C (4.3%) inter­actions.

1. Chemical context

Numerous drugs contain N-heterocycles as the core structure, including imidazo[1,2-a]pyridine and its derivatives, which are used in medicinal chemistry (Swainston Harrison & Keating, 2005[Swainston Harrison, T. & Keating, G. M. (2005). CNS Drugs, 19, 65-89.]; Deep et al., 2017[Deep, A., Bhatia, R. K., Kaur, R., Kumar, S., Jain, U. K., Singh, H., Batra, S., Kaushik, D. & Deb, P. K. (2017). Curr. Top. Med. Chem. 17, 238-250.]) or that exhibit diverse biological properties, such as anti­bacterial (Mishra et al., 2021[Mishra, N. P., Mohapatra, S., Sahoo, C. R., Raiguru, B. P., Nayak, S., Jena, S. & Padhy, R. N. (2021). J. Mol. Struct. 1246, 131183.]), anti­tubercular (Wang et al., 2019[Wang, A., Lv, K., Li, L., Liu, H., Tao, Z., Wang, B., Liu, M., Ma, C., Ma, X., Han, B., Wang, A. & Lu, Y. (2019). Eur. J. Med. Chem. 178, 715-725.]), tyrosinase inhibitory (Damghani et al., 2020[Damghani, T., Hadaegh, S., Khoshneviszadeh, M., Pirhadi, S., Sabet, R., Khoshneviszadeh, M. & Edraki, N. (2020). J. Mol. Struct. 1222, 128876.]), HIV inhibitory (Bode et al., 2011[Bode, M. L., Gravestock, D., Moleele, S. S., van der Westhuyzen, C. W., Pelly, S. C., Steenkamp, P. A., Hoppe, H. C., Khan, T. & Nkabinde, L. A. (2011). Bioorg. Med. Chem. 19, 4227-4237.]), anti­diabetic (Saeedi et al., 2021[Saeedi, M., Raeisi-Nafchi, M., Sobhani, S., Mirfazli, S. S., Zardkanlou, M., Mojtabavi, S., Faramarzi, M. A. & Akbarzadeh, T. (2021). Mol. Divers. 25, 2399-2409.]), anti-inflammatory (Gundlewad et al., 2020[Gundlewad, G. B., Wagh, S. S. & Patil, B. R. (2020). Asia. J. Org. Med. Chem. 5, 221-226.]) or anti­cancer activities (Yu et al., 2020[Yu, Y. N., Han, Y., Zhang, F., Gao, Z., Zhu, T., Dong, S. & Ma, M. (2020). J. Med. Chem. 63, 3028-3046.]; Sigalapalli et al., 2021[Sigalapalli, D. K., Kiranmai, G., Parimala Devi, G., Tokala, R., Sana, S., Tripura, C., Jadhav, G. S., Kadagathur, M., Shankaraiah, N., Nagesh, N., Babu, B. N. & Tangellamudi, N. D. (2021). Bioorg. Med. Chem. 43, 116277.]). Encouraged by these features and in a continuation of our exploration of the synthesis, mol­ecular structures and Hirshfeld surface analysis of new N-heterocyclic compounds (Daoui et al., 2021[Daoui, S., Cinar, E. B., Dege, N., Chelfi, T., El Kalai, F., Abudunia, A., Karrouchi, K. & Benchat, N. (2021). Acta Cryst. E77, 23-27.], 2022[Daoui, S., Muwafaq, I., Çınar, E. B., Abudunia, A., Dege, N., Benchat, N. & Karrouchi, K. (2022). Acta Cryst. E78, 8-11.]; El Kalai et al., 2021a[El Kalai, F., Çınar, E. B., Lai, C. H., Daoui, S., Chelfi, T., Allali, M., Dege, N., Karrouchi, K. & Benchat, N. (2021a). J. Mol. Struct. 1228, 129435.],b[El Kalai, F., Karrouchi, K., Baydere, C., Daoui, S., Allali, M., Dege, N., Benchat, N. & Brandán, S. A. (2021b). J. Mol. Struct. 1223, 129213.]), we report herein the crystal structure and Hirshfeld surface analysis of 2-oxo-2-phenyl­ethyl 3-nitroso-2-phenyl­imidazo[1,2-a]pyridine-8-carboxyl­ate, C22H15N3O4 (I)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link]. The imidazo[1,2-a] pyridine ring system is planar with an r.m.s deviation of 0.017 Å and a maximum deviation of 0.028 (1) Å for atom C11. The mean plane through the fused ring system makes dihedral angles of 22.74 (5) and 45.37 (5)° with the phenyl ring (C1–C6) and the 2-oxo-2-phenyl­ethyl acetate group (C14–C22), respectively. The dihedral angle between the two aromatic rings (C1–C6 and C17–C22) is 59.63 (5)°. The mol­ecular conformation is stabilized by two weak intra­molecular C9—H9⋯O1 and C1—H1⋯N1 hydrogen bonds, generating S(6) ring motifs (Table 1[link], Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C17–C22 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O4i 0.97 2.54 3.1257 (19) 119
C15—H15B⋯O1ii 0.97 2.61 3.4841 (18) 150
C9—H9⋯O2iii 0.93 2.46 3.1176 (16) 128
C10—H10⋯O2iii 0.93 2.67 3.2243 (17) 119
C9—H9⋯O1 0.93 2.35 2.8736 (18) 116
C1—H1⋯N1 0.93 2.51 3.081 (2) 120
C22—H22⋯Cg4iv 0.93 2.80 3.657 (2) 153
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Intra­molecular hydrogen bonds are indicated by dashed lines.

3. Supra­molecular features

In the crystal, mol­ecules are linked by C9—H9⋯O2iii and C10—H10⋯O2iii hydrogen bonds, forming chains that propagate parallel to the b axis and enclose [R_{2}^{1}](5) ring motifs (Table 1[link], Fig. 2[link]). Additionally, inter­molecular C15—H15A⋯O4i and C15—H15B⋯O1ii hydrogen bonds with [R_{4}^{4}](28) ring motifs are also present, generating a three-dimensional supra­molecular network that also comprises a weak C22—H22⋯Cg4iv inter­action (Cg4 is the centroid of the C17–C22 phenyl ring) as well as ππ stacking inter­actions involving the centroids (Cg1 and Cg2) of the N2/C13/N3/C7–C8 and N2/C9–C13 rings with a centroid-to-centroid distance Cg1⋯Cg2 (x, 1/2 − y, −1/2 + z) of 3.5750 (9) Å and a slippage of 0.685 Å (Fig. 2[link]).

[Figure 2]
Figure 2
A view along the a axis of the crystal structure of (I)[link]. Blue, black, purple and orange dashed lines symbolize inter­molecular C15—H15A⋯O4i, C15—H15B⋯O1ii, C9—H9⋯O2iii and C10—H10⋯O2iii hydrogen bonds, respectively; ππ and C—H⋯π inter­actions are shown as green dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update of August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using 2-phenyl­imidazo[1,2-a]pyridin-3-amine as the main skeleton revealed the presence of 54 structures with different substit­uents on the imidazo[1,2-a]pyridine ring. The two structures most similar to (I)[link] are N-(2-phenyl­imidazo[1,2-a]pyridin-3-yl)acetamide (MIXZOJ; Anaflous et al., 2008[Anaflous, A., Albay, H., Benchat, N., El Bali, B., Dušek, M. & Fejfarová, K. (2008). Acta Cryst. E64, o926.]) and 4-[(7-methyl-2-phenyl­imidazo[1,2-a]pyridin-3-yl)carbonoimido­yl]phenol (TUQCEP; Elaatiaoui et al., 2015[Elaatiaoui, A., Saddik, R., Benchat, N., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o803-o804.]). In MIXZOJ, C15H13N3O, the crystal structure consists of mol­ecular columns that are inter­connected by N—H⋯N hydrogen bonds along the b-axis direction. The torsion angle between the imidazo[1,2-a]pyridine ring system and the phenyl ring is 9.04 (5)°. In TUQCEP, C21H17N3O, the fused ring system is almost planar (r.m.s. deviation = 0.031 Å) and forms dihedral angles of 64.97 (7) and 18.52 (6)° with the phenyl ring and the (imino­meth­yl)phenol group, respectively. In its crystal, mol­ecules are linked by pairs of C—H⋯π inter­actions into centrosymmetric dimeric units, which are further connected by O—H⋯N hydrogen bonds, forming layers parallel to (101).

5. Hirshfeld surface analysis

Hirshfeld surface analysis was used to qu­antify the inter­molecular contacts of the title compound, using Crystal Explorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]). The Hirshfeld surface was generated with a standard (high) surface resolution and with the three-dimensional dnorm surface plotted over a fixed colour scale of −0.1706 (red) to 1.2371 (blue) a.u. (Fig. 3[link]a). The shape-index map of the title mol­ecule was generated in the range −1 to 1 Å (Fig. 3[link]b), revealing the presence of red and blue triangles that are indicative of the presence of ππ stacking inter­actions. The curvedness map of the title complex was generated in the range −4.0 to 4.0 Å (Fig. 3[link]c) and shows flat surface patches characteristic of planar stacking. The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯O/O⋯C, C⋯N/N⋯C, H⋯N/N⋯H and C⋯C inter­actions in Fig. 4[link]a–g, respectively. The overall two-dimensional fingerprint plot is illustrated in Fig. 5[link]a, with those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯O/O⋯C, C⋯N/N⋯C, H⋯N/N⋯H and C⋯C contacts associated with their relative contributions to the Hirshfeld surface in Fig. 5[link]bh, respectively. The most important inter­molecular inter­action is H⋯H, contributing 36.2% to the overall crystal packing (Fig. 5[link]b). H⋯C/C⋯H contacts, with a 20.5% contribution to the Hirshfeld surface, indicate the presence of the weak C—H⋯π inter­action (Table 1[link]). Two pairs of characteristic wings in the fingerprint plot with pairs of tips at de + di ∼2.74 Å are present (Fig. 5[link]c). H⋯O/O⋯H contacts arising from inter­molecular C—H⋯O hydrogen bonding make a 20.0% contribution to the Hirshfeld surface and are represented by a pair of sharp spikes in the region de + di ∼2.34 Å (Fig. 5[link]d). The C⋯C contacts are a measure of ππ stacking inter­actions and contribute 4.3% of the Hirshfeld surface (Fig. 5[link]h). The contributions of the other contacts to the Hirshfeld surface are C⋯O/O⋯C of 6.5%, C⋯N/N⋯C of 6.2% and H⋯N/N⋯H of 4.5%.

[Figure 3]
Figure 3
(a) dnorm mapped on the Hirshfeld surface to visualize the inter­molecular inter­actions, (b) shape-index map of the title compound and (c) curvedness map of the title compound using a range from −4 to 4 Å.
[Figure 4]
Figure 4
The Hirshfeld surface representations of (I) with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯O/O⋯H, (d) C⋯O/O⋯C, (e) C⋯N/N⋯C, (f) H⋯N/N⋯H and (g) C⋯C inter­actions.
[Figure 5]
Figure 5
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/ O⋯H, (e) C⋯O/O⋯C, (f) C⋯N/N⋯C, (g) H⋯N/N⋯H and (h) C⋯C inter­actions, together with their relative contributions.

6. Synthesis and crystallization

To a solution of 2-oxo-2-phenyl­ethyl 2-phenyl­imidazo[1,2-a]pyridine-8-carboxyl­ate (0.71 g, 2 mmol) in acetic acid (50 ml), sodium nitrite (1.4 g, 2 mmol) was added at room temperature. The resulting precipitate was washed with water and extracted with di­chloro­methane (3 × 20 ml). The combined di­chloro­methane extracts were dried over anhydrous sodium sulfate and filtered. The remaining solution was concentrated under reduced pressure. The residue was purified chromatographically on a neutral alumina gel column using di­chloro­methane as eluent. Single crystals were obtained by slow evaporation of a di­chloro­methane solution at room temperature (yield 80%).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were fixed geometrically and treated as riding, with C—H = 0.97 Å for methyl­ene [Uiso(H) = 1.5Ueq(C)], C—H = 0.93 Å for aromatic [Uiso(H) = 1.2Ueq(C)] and C—H = 0.98 Å for methine [Uiso(H) = 1.2Ueq(C)] H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C22H15N3O4
Mr 385.37
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 15.9256 (14), 14.8256 (14), 7.6787 (6)
β (°) 90.566 (7)
V3) 1812.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.56 × 0.38 × 0.15
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2012[Stoe & Cie (2012). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.946, 0.969
No. of measured, independent and observed [I > 2σ(I)] reflections 27945, 6703, 3040
Rint 0.070
(sin θ/λ)max−1) 0.765
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.118, 0.92
No. of reflections 6703
No. of parameters 262
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.16
Computer programs: X-AREA and X-RED (Stoe & Cie, 2012[Stoe & Cie (2012). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2012); cell refinement: X-AREA (Stoe & Cie, 2012); data reduction: X-RED (Stoe & Cie, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020), PLATON (Spek, 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL (Sheldrick, 2015b), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

2-Oxo-2-phenylethyl 3-nitroso-2-phenylimidazo[1,2-a]pyridine-8-carboxylate top
Crystal data top
C22H15N3O4F(000) = 800
Mr = 385.37Dx = 1.412 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.9256 (14) ÅCell parameters from 18578 reflections
b = 14.8256 (14) Åθ = 1.9–32.8°
c = 7.6787 (6) ŵ = 0.10 mm1
β = 90.566 (7)°T = 296 K
V = 1812.9 (3) Å3Rod, green
Z = 40.56 × 0.38 × 0.15 mm
Data collection top
Stoe IPDS 2
diffractometer
6703 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3040 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.070
Detector resolution: 6.67 pixels mm-1θmax = 32.9°, θmin = 2.6°
rotation method scansh = 2424
Absorption correction: integration
(X-RED32; Stoe & Cie, 2012)
k = 2222
Tmin = 0.946, Tmax = 0.969l = 1011
27945 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0506P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
6703 reflectionsΔρmax = 0.15 e Å3
262 parametersΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.63005 (6)0.31601 (7)0.48667 (14)0.0542 (3)
O20.58609 (6)0.39797 (6)0.25605 (15)0.0595 (3)
N30.40012 (7)0.34790 (7)0.20621 (16)0.0441 (3)
N20.39287 (6)0.19477 (7)0.20006 (16)0.0435 (3)
O40.75836 (8)0.26469 (8)0.30406 (19)0.0788 (4)
O10.25639 (7)0.09653 (7)0.0672 (2)0.0780 (4)
N10.25076 (8)0.18024 (9)0.06361 (19)0.0599 (4)
C140.58089 (8)0.33230 (9)0.34708 (19)0.0416 (3)
C120.52135 (8)0.25563 (8)0.31845 (18)0.0414 (3)
C130.44102 (8)0.27009 (8)0.24261 (18)0.0404 (3)
C70.32472 (8)0.32353 (9)0.13986 (19)0.0441 (3)
C170.86457 (9)0.34187 (9)0.46238 (19)0.0464 (3)
C80.31681 (8)0.22879 (9)0.1315 (2)0.0465 (3)
C60.26278 (8)0.39215 (9)0.08286 (19)0.0459 (3)
C110.54667 (9)0.16813 (9)0.3493 (2)0.0483 (3)
H110.5983390.1578210.4031770.058*
C160.77582 (9)0.32058 (9)0.4145 (2)0.0495 (3)
C150.70537 (8)0.36842 (9)0.5070 (2)0.0498 (3)
H15A0.7192020.3750400.6296880.060*
H15B0.6971940.4280550.4577520.060*
C180.88553 (9)0.40814 (10)0.5833 (2)0.0524 (4)
H180.8436690.4432520.6327860.063*
C90.42025 (9)0.10793 (9)0.2257 (2)0.0508 (4)
H90.3871030.0592500.1917120.061*
C100.49660 (9)0.09435 (9)0.3016 (2)0.0529 (4)
H100.5156670.0359640.3218570.063*
C50.28989 (9)0.47829 (10)0.0411 (2)0.0537 (4)
H50.3465390.4926490.0520270.064*
C40.23357 (10)0.54324 (11)0.0168 (2)0.0618 (4)
H40.2524680.6007510.0447880.074*
C190.96856 (10)0.42184 (11)0.6299 (3)0.0645 (4)
H190.9823830.4659390.7113760.077*
C30.14938 (11)0.52236 (12)0.0328 (2)0.0669 (5)
H30.1115280.5654770.0732720.080*
C10.17725 (9)0.37247 (11)0.0689 (3)0.0633 (4)
H10.1577360.3154220.0985190.076*
C220.92826 (10)0.29109 (11)0.3880 (2)0.0639 (4)
H220.9148950.2470160.3060930.077*
C201.03132 (10)0.37028 (13)0.5559 (3)0.0719 (5)
H201.0871050.3794350.5882140.086*
C20.12162 (10)0.43762 (13)0.0113 (3)0.0727 (5)
H20.0647260.4240570.0022230.087*
C211.01088 (11)0.30541 (13)0.4343 (3)0.0736 (5)
H211.0530050.2712120.3834570.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0450 (5)0.0615 (6)0.0559 (7)0.0123 (4)0.0143 (5)0.0119 (5)
O20.0558 (6)0.0431 (5)0.0792 (8)0.0076 (4)0.0223 (5)0.0138 (5)
N30.0351 (5)0.0412 (5)0.0558 (7)0.0003 (4)0.0046 (5)0.0017 (5)
N20.0354 (5)0.0418 (6)0.0534 (7)0.0037 (4)0.0030 (5)0.0028 (5)
O40.0687 (7)0.0791 (8)0.0882 (9)0.0000 (6)0.0168 (7)0.0363 (7)
O10.0631 (7)0.0515 (6)0.1188 (11)0.0111 (5)0.0220 (7)0.0053 (6)
N10.0451 (7)0.0562 (7)0.0783 (10)0.0071 (6)0.0122 (6)0.0018 (7)
C140.0327 (6)0.0428 (7)0.0492 (8)0.0027 (5)0.0041 (6)0.0002 (6)
C120.0360 (6)0.0430 (7)0.0451 (8)0.0008 (5)0.0008 (6)0.0031 (6)
C130.0362 (6)0.0389 (6)0.0461 (8)0.0031 (5)0.0003 (6)0.0024 (6)
C70.0348 (6)0.0467 (7)0.0508 (8)0.0018 (5)0.0025 (6)0.0013 (6)
C170.0450 (7)0.0460 (7)0.0481 (8)0.0002 (5)0.0044 (6)0.0044 (6)
C80.0352 (6)0.0478 (7)0.0565 (9)0.0034 (5)0.0068 (6)0.0020 (6)
C60.0382 (7)0.0485 (7)0.0511 (9)0.0024 (5)0.0056 (6)0.0015 (6)
C110.0391 (7)0.0487 (7)0.0569 (9)0.0006 (6)0.0046 (6)0.0084 (6)
C160.0525 (8)0.0448 (7)0.0511 (9)0.0020 (6)0.0115 (7)0.0009 (6)
C150.0424 (7)0.0488 (7)0.0579 (9)0.0040 (6)0.0137 (6)0.0008 (7)
C180.0424 (7)0.0526 (8)0.0621 (10)0.0019 (6)0.0039 (7)0.0011 (7)
C90.0479 (8)0.0384 (7)0.0659 (10)0.0038 (6)0.0058 (7)0.0021 (6)
C100.0482 (8)0.0385 (7)0.0719 (11)0.0012 (6)0.0054 (7)0.0077 (7)
C50.0432 (7)0.0497 (8)0.0680 (11)0.0025 (6)0.0064 (7)0.0001 (7)
C40.0622 (10)0.0507 (8)0.0727 (12)0.0089 (7)0.0027 (8)0.0057 (8)
C190.0520 (9)0.0631 (9)0.0780 (12)0.0102 (7)0.0117 (8)0.0004 (9)
C30.0594 (10)0.0706 (10)0.0704 (12)0.0231 (8)0.0138 (8)0.0037 (9)
C10.0421 (8)0.0605 (9)0.0871 (13)0.0009 (7)0.0118 (8)0.0028 (8)
C220.0569 (9)0.0647 (10)0.0702 (12)0.0109 (7)0.0026 (8)0.0061 (8)
C200.0408 (8)0.0788 (11)0.0959 (15)0.0031 (8)0.0076 (8)0.0195 (11)
C20.0422 (8)0.0765 (11)0.0990 (15)0.0076 (8)0.0172 (8)0.0003 (10)
C210.0534 (9)0.0793 (12)0.0880 (15)0.0150 (9)0.0052 (9)0.0043 (10)
Geometric parameters (Å, º) top
O3—C141.3431 (16)C15—H15A0.9700
O3—C151.4365 (16)C15—H15B0.9700
O2—C141.2018 (16)C18—C191.381 (2)
N3—C71.3491 (16)C18—H180.9300
N3—C131.3526 (16)C9—C101.3581 (19)
N2—C91.3729 (17)C9—H90.9300
N2—C131.3918 (16)C10—H100.9300
N2—C81.4092 (16)C5—C41.386 (2)
O4—C161.2157 (17)C5—H50.9300
O1—N11.2446 (16)C4—C31.380 (2)
N1—C81.3732 (17)C4—H40.9300
C14—C121.4951 (18)C19—C201.385 (3)
C12—C111.3783 (18)C19—H190.9300
C12—C131.4166 (18)C3—C21.375 (3)
C7—C81.4115 (19)C3—H30.9300
C7—C61.4803 (18)C1—C21.381 (2)
C17—C181.390 (2)C1—H10.9300
C17—C221.391 (2)C22—C211.376 (2)
C17—C161.4907 (19)C22—H220.9300
C6—C51.387 (2)C20—C211.377 (3)
C6—C11.396 (2)C20—H200.9300
C11—C101.4002 (19)C2—H20.9300
C11—H110.9300C21—H210.9300
C16—C151.511 (2)
C14—O3—C15117.98 (11)H15A—C15—H15B108.4
C7—N3—C13105.94 (10)C19—C18—C17119.98 (15)
C9—N2—C13123.04 (11)C19—C18—H18120.0
C9—N2—C8131.29 (11)C17—C18—H18120.0
C13—N2—C8105.67 (10)C10—C9—N2118.84 (12)
O1—N1—C8117.36 (12)C10—C9—H9120.6
O2—C14—O3124.53 (12)N2—C9—H9120.6
O2—C14—C12125.28 (12)C9—C10—C11120.11 (13)
O3—C14—C12110.15 (11)C9—C10—H10119.9
C11—C12—C13118.33 (11)C11—C10—H10119.9
C11—C12—C14120.41 (11)C4—C5—C6120.80 (14)
C13—C12—C14120.94 (11)C4—C5—H5119.6
N3—C13—N2111.88 (10)C6—C5—H5119.6
N3—C13—C12130.17 (11)C3—C4—C5119.83 (15)
N2—C13—C12117.93 (11)C3—C4—H4120.1
N3—C7—C8111.24 (11)C5—C4—H4120.1
N3—C7—C6121.04 (11)C18—C19—C20120.37 (16)
C8—C7—C6127.70 (11)C18—C19—H19119.8
C18—C17—C22119.06 (13)C20—C19—H19119.8
C18—C17—C16122.36 (13)C2—C3—C4119.82 (14)
C22—C17—C16118.53 (13)C2—C3—H3120.1
N1—C8—N2127.33 (12)C4—C3—H3120.1
N1—C8—C7127.34 (12)C2—C1—C6120.06 (16)
N2—C8—C7105.26 (10)C2—C1—H1120.0
C5—C6—C1118.72 (13)C6—C1—H1120.0
C5—C6—C7119.55 (12)C21—C22—C17120.64 (16)
C1—C6—C7121.73 (13)C21—C22—H22119.7
C12—C11—C10121.69 (12)C17—C22—H22119.7
C12—C11—H11119.2C21—C20—C19119.80 (15)
C10—C11—H11119.2C21—C20—H20120.1
O4—C16—C17121.74 (14)C19—C20—H20120.1
O4—C16—C15118.84 (13)C3—C2—C1120.74 (15)
C17—C16—C15119.41 (12)C3—C2—H2119.6
O3—C15—C16108.54 (11)C1—C2—H2119.6
O3—C15—H15A110.0C22—C21—C20120.14 (17)
C16—C15—H15A110.0C22—C21—H21119.9
O3—C15—H15B110.0C20—C21—H21119.9
C16—C15—H15B110.0
C15—O3—C14—O214.9 (2)C8—C7—C6—C123.0 (3)
C15—O3—C14—C12163.13 (11)C13—C12—C11—C102.5 (2)
O2—C14—C12—C11141.14 (16)C14—C12—C11—C10171.16 (15)
O3—C14—C12—C1136.82 (19)C18—C17—C16—O4177.35 (15)
O2—C14—C12—C1332.3 (2)C22—C17—C16—O45.1 (2)
O3—C14—C12—C13149.69 (13)C18—C17—C16—C153.6 (2)
C7—N3—C13—N20.14 (16)C22—C17—C16—C15173.89 (14)
C7—N3—C13—C12178.13 (15)C14—O3—C15—C1689.28 (14)
C9—N2—C13—N3179.58 (13)O4—C16—C15—O319.49 (19)
C8—N2—C13—N30.31 (16)C17—C16—C15—O3159.56 (12)
C9—N2—C13—C121.1 (2)C22—C17—C18—C191.0 (2)
C8—N2—C13—C12178.82 (12)C16—C17—C18—C19176.52 (14)
C11—C12—C13—N3176.84 (15)C13—N2—C9—C102.4 (2)
C14—C12—C13—N39.5 (2)C8—N2—C9—C10177.50 (15)
C11—C12—C13—N21.3 (2)N2—C9—C10—C111.2 (2)
C14—C12—C13—N2172.27 (13)C12—C11—C10—C91.2 (3)
C13—N3—C7—C80.56 (17)C1—C6—C5—C41.3 (2)
C13—N3—C7—C6179.33 (13)C7—C6—C5—C4178.39 (15)
O1—N1—C8—N22.6 (2)C6—C5—C4—C30.2 (3)
O1—N1—C8—C7179.29 (16)C17—C18—C19—C200.4 (2)
C9—N2—C8—N13.5 (3)C5—C4—C3—C21.0 (3)
C13—N2—C8—N1176.62 (15)C5—C6—C1—C21.2 (3)
C9—N2—C8—C7179.26 (15)C7—C6—C1—C2178.44 (16)
C13—N2—C8—C70.61 (15)C18—C17—C22—C210.7 (2)
N3—C7—C8—N1176.49 (15)C16—C17—C22—C21176.95 (16)
C6—C7—C8—N12.2 (3)C18—C19—C20—C210.4 (3)
N3—C7—C8—N20.74 (17)C4—C3—C2—C11.0 (3)
C6—C7—C8—N2179.42 (14)C6—C1—C2—C30.1 (3)
N3—C7—C6—C521.9 (2)C17—C22—C21—C200.2 (3)
C8—C7—C6—C5156.69 (16)C19—C20—C21—C220.8 (3)
N3—C7—C6—C1158.46 (15)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C17–C22 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C15—H15A···O4i0.972.543.1257 (19)119
C15—H15B···O1ii0.972.613.4841 (18)150
C9—H9···O2iii0.932.463.1176 (16)128
C10—H10···O2iii0.932.673.2243 (17)119
C9—H9···O10.932.352.8736 (18)116
C1—H1···N10.932.513.081 (2)120
C22—H22···Cg4iv0.932.803.657 (2)153
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). Authors' contributions are as follows. conceptualization, FE, CB, and ND; formal analysis, CB and ND; writing (original draft), CB and KK; writing (review and editing of the manuscript), CB and KK; resources, AA; supervision, NB and KK.

References

First citationAnaflous, A., Albay, H., Benchat, N., El Bali, B., Dušek, M. & Fejfarová, K. (2008). Acta Cryst. E64, o926.  CSD CrossRef IUCr Journals Google Scholar
First citationBode, M. L., Gravestock, D., Moleele, S. S., van der Westhuyzen, C. W., Pelly, S. C., Steenkamp, P. A., Hoppe, H. C., Khan, T. & Nkabinde, L. A. (2011). Bioorg. Med. Chem. 19, 4227–4237.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDamghani, T., Hadaegh, S., Khoshneviszadeh, M., Pirhadi, S., Sabet, R., Khoshneviszadeh, M. & Edraki, N. (2020). J. Mol. Struct. 1222, 128876.  CrossRef Google Scholar
First citationDaoui, S., Cinar, E. B., Dege, N., Chelfi, T., El Kalai, F., Abudunia, A., Karrouchi, K. & Benchat, N. (2021). Acta Cryst. E77, 23–27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDaoui, S., Muwafaq, I., Çınar, E. B., Abudunia, A., Dege, N., Benchat, N. & Karrouchi, K. (2022). Acta Cryst. E78, 8–11.  CSD CrossRef IUCr Journals Google Scholar
First citationDeep, A., Bhatia, R. K., Kaur, R., Kumar, S., Jain, U. K., Singh, H., Batra, S., Kaushik, D. & Deb, P. K. (2017). Curr. Top. Med. Chem. 17, 238–250.  Web of Science CrossRef CAS PubMed Google Scholar
First citationElaatiaoui, A., Saddik, R., Benchat, N., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o803–o804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGundlewad, G. B., Wagh, S. S. & Patil, B. R. (2020). Asia. J. Org. Med. Chem. 5, 221–226.  CrossRef Google Scholar
First citationEl Kalai, F., Çınar, E. B., Lai, C. H., Daoui, S., Chelfi, T., Allali, M., Dege, N., Karrouchi, K. & Benchat, N. (2021a). J. Mol. Struct. 1228, 129435.  Web of Science PubMed Google Scholar
First citationEl Kalai, F., Karrouchi, K., Baydere, C., Daoui, S., Allali, M., Dege, N., Benchat, N. & Brandán, S. A. (2021b). J. Mol. Struct. 1223, 129213.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMishra, N. P., Mohapatra, S., Sahoo, C. R., Raiguru, B. P., Nayak, S., Jena, S. & Padhy, R. N. (2021). J. Mol. Struct. 1246, 131183.  CrossRef Google Scholar
First citationSaeedi, M., Raeisi-Nafchi, M., Sobhani, S., Mirfazli, S. S., Zardkanlou, M., Mojtabavi, S., Faramarzi, M. A. & Akbarzadeh, T. (2021). Mol. Divers. 25, 2399–2409.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSigalapalli, D. K., Kiranmai, G., Parimala Devi, G., Tokala, R., Sana, S., Tripura, C., Jadhav, G. S., Kadagathur, M., Shankaraiah, N., Nagesh, N., Babu, B. N. & Tangellamudi, N. D. (2021). Bioorg. Med. Chem. 43, 116277.  CrossRef PubMed Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2012). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationSwainston Harrison, T. & Keating, G. M. (2005). CNS Drugs, 19, 65–89.  CrossRef PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationWang, A., Lv, K., Li, L., Liu, H., Tao, Z., Wang, B., Liu, M., Ma, C., Ma, X., Han, B., Wang, A. & Lu, Y. (2019). Eur. J. Med. Chem. 178, 715–725.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Y. N., Han, Y., Zhang, F., Gao, Z., Zhu, T., Dong, S. & Ma, M. (2020). J. Med. Chem. 63, 3028–3046.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds