research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tris­­(4,7-di­phenyl-1,10-phenanthroline-κ2N,N′)cobalt(III) tris­­(hexa­fluoro­phosphate) monohydrate

crossmark logo

aCarthage University, National Institute of Applied Sciences and Technology, EcoChimie Laboratory, Tunis, Tunisia, bChimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and, Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France, and cDepartment of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
*Correspondence e-mail: olivier.blacque@chem.uzh.ch

Edited by M. Weil, Vienna University of Technology, Austria (Received 17 January 2022; accepted 3 February 2022; online 10 February 2022)

The title compound, [Co(C72H48N6)](PF6)3·H2O, crystallizes with one tripositive complex mol­ecule, three hexa­fluoro­phosphate anions and one solvent mol­ecule of water in the asymmetric unit. The N6 coordination set around the central CoIII atom defines a distorted octa­hedral environment. Four fluorine atoms of one hexa­fluoro­phosphate anion are disordered over two sets of positions with site-occupancy factors of 0.697 (5) and 0.303 (5). In the crystal, inter­molecular ππ stacking inter­actions, C—H⋯π, C—H⋯F and O—H⋯F and inter­actions are present.

1. Chemical context

Over the years, metal complexes with polypyridyl ligands have been investigated as photosensitizers in photodynamic therapy (PDT) against cancer. RuII remains undoubtedly the most studied metal for this purpose due to its tunable photophysical properties (Caspar et al., 2006[Caspar, R., Cordier, C., Waern, J. B., Guyard-Duhayon, C., Gruselle, M., Le Floch, P. & Amouri, H. (2006). Inorg. Chem. 45, 4071-4078.]; Howerton et al., 2012[Howerton, B. S., Heidary, D. K. & Glazer, E. C. (2012). J. Am. Chem. Soc. 134, 8324-8327.]; Heinemann et al., 2017[Heinemann, F., Karges, J. & Gasser, G. (2017). Acc. Chem. Res. 50, 2727-2736.]; Monro et al., 2019[Monro, S., Colón, K. L., Yin, H., Roque, J., Konda, P., Gujar, S., Thummel, R. P., Lilge, L., Cameron, C. G. & McFarland, S. A. (2019). Chem. Rev. 119, 797-828.]; McFarland et al., 2020[McFarland, S. A., Mandel, A., Dumoulin-White, R. & Gasser, G. (2020). Curr. Opin. Chem. Biol. 56, 23-27.]).

[Scheme 1]

Inspired by the exciting results reported with RuII, we were motivated to develop new metal-based complexes with similar structures. Among the transition metals, cobalt is commonly known for its potential to coordinate with chelate ligands like amino-acid compounds (Otter & Hartshorn, 2004[Otter, C. A. & Hartshorn, R. M. (2004). Dalton Trans. pp. 150-156.]) and polypyridyl derivative ligands. The resulting compounds were used in different fields of research. A series of CoIII complexes based on substituted 3-(pyridine-2-yl)-triazine ligands (Wang et al., 2004[Wang, X.-L., Chao, H., Li, H., Hong, X.-L., Liu, Y.-J., Tan, L.-F. & Ji, L.-N. (2004). J. Inorg. Biochem. 98, 1143-1150.]), or bis­(1,10-phenanthroline), bis­(2,2′-bi­pyridine) and derivatized imidazole-phenanthroline ligands were developed (Nagababu et al., 2008[Nagababu, P., Shilpa, M., Satyanarayana, S., Latha, J. N. L., Karthikeyan, K. S. & Rajesh, M. (2008). Transition Met. Chem. 33, 1027-1033.]). These compounds were found to cleave calf thymus DNA (Zhang et al., 2001[Zhang, Q.-L., Liu, J.-G., Chao, H., Xue, G.-Q. & Ji, L.-N. (2001). J. Inorg. Biochem. 83, 49-55.]).

Cobalt complexes are not only used for biological purposes. For example, a series of substituted polypyridine ligands, acting in a bidentate or tridentate manner, coordinating to CoII were investigated as electron-transfer mediators in dye-sensitized solar cells (Sapp et al., 2002[Sapp, S. A., Elliott, C. M., Contado, C., Caramori, S. & Bignozzi, C. A. (2002). J. Am. Chem. Soc. 124, 11215-11222.]). Tris(2,2′-bipyrid­yl)-based ligands were also used to design redox stable CoII/III complexes for redox flow batteries (Yang et al., 2018[Yang, C., Nikiforidis, G., Park, J. Y., Choi, J., Luo, Y., Zhang, L., Wang, S.-C., Chan, Y.-T., Lim, J., Hou, Z., Baik, M.-H., Lee, Y. & Byon, H. R. (2018). Adv. Energy Mater. 8, 1702897.]).

Encouraged by these results, our team aimed at developing new cobalt complexes. Here we report on the synthesis and crystal structure of [tris­(4,7-diphenyl-1,10-phenanthroline) cobalt(III)] tris (hexa­fluoro­phosphate) monohydrate, [CoIII(C72H48N6)]3+(PF6)3·H2O.

2. Structural commentary

The shape of the cobalt complex in the title compound is pseudo­octa­hedral (Fig. 1[link]). The cobalt(III) atom is coordinated by six nitro­gen atoms from three dip ligands (dip = 4,7-diphenyl-1,10-phenanthroline). The Co—N bond lengths are in the range 1.934 (3)–1.954 (3) Å (Table 1[link]) and correlate well with literature values observed for CoIII species. Indeed, the average Co—N bond length is 2.128 Å in CoI cations (three hits in the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), 2.115 Å in CoII cations (106 hits), and 1.952 Å in CoIII cations (28 hits) in reported Co(phen)3n+ (phen = phenanthroline) species. The bond angles between the axially bound ligand atoms are in the range 175.62 (13)–176.52 (13)° while the equatorial bond angles fall in the range 83.36 (12)–94.01 (13)°. The phenanthroline moieties (14 non-hydrogen atoms) of the dip ligands are almost planar according to the r.m.s. deviations calculated as 0.026 (N1^N2 moiety), 0.057 (N5^N6) and 0.106 (N3^N4) Å. As expected, the dihedral angles between the mean planes of the dip ligands are relatively close to 90° being 78.97 (5), 81.30 (4) and 86.09 (5)°. The phenyl rings substituting each phenanthroline ligand in para positions to the nitro­gen atoms exhibit an inter­mediate orientation (45–60°) relative to the mean plane of the phenanthroline ring. The dihedral angles between the mean planes are 65.91 (13) and 46.44 (13)° within the N1^N2 ligand, 50.37 (12) and 60.35 (14)° within the N3^N4 ligand, and 54.66 (14) and 42.35 (14)° within the N5^N6 ligand.

Table 1
Selected geometric parameters (Å, °)

Co1—N1 1.950 (3) Co1—N4 1.942 (3)
Co1—N2 1.954 (3) Co1—N5 1.941 (3)
Co1—N3 1.934 (3) Co1—N6 1.940 (3)
       
Cg1⋯Cg2i 3.707 (3)    
       
N1—Co1—N2 83.72 (13) N5—Co1—N1 88.67 (13)
N3—Co1—N1 175.62 (13) N5—Co1—N2 93.26 (12)
N3—Co1—N2 92.66 (13) N5—Co1—N4 176.52 (13)
N3—Co1—N4 84.01 (13) N6—Co1—N1 93.44 (13)
N3—Co1—N5 94.01 (13) N6—Co1—N2 175.65 (13)
N3—Co1—N6 90.31 (13) N6—Co1—N4 93.77 (13)
N4—Co1—N1 93.48 (13) N6—Co1—N5 83.36 (12)
N4—Co1—N2 89.70 (13)    
Symmetry code: (i) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the tris­(4,7-diphenyl-1,10-phenanthroline)cobalt(III) cation of the title compound with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

3. Supra­molecular features

In the crystal, the complex cationic species inter­act with each other through ππ stacking inter­actions, forming chains extending perpendicular to the the b axis [Cg1⋯Cg2(1 + x, [{3\over 2}] − y, [{1\over 2}] + z) centroid-to-centroid distance of 3.707 (3) Å with Cg1 being the centroid of atoms C19–C24 and Cg2 the centroid of atoms C67–C72; Fig. 2[link], Table 2[link]] and C—H⋯π inter­actions, forming layers parallel to the bc plane (Fig. 3[link], Table 2[link]). Weak C—H⋯F and classical O—H⋯F inter­molecular hydrogen bonds link the anionic hexa­fluoro­phosphate species (acceptors) to the tricationic mol­ecules and to the solvent water mol­ecules (donors). These inter­actions form chains along the a axis (Fig. 4[link]). The most significant inter­actions for which C⋯F < 3.35 Å and C—H⋯F > 125°, and O⋯F < 3.00 Å and O–H⋯F > 125° are complied in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of atoms C19–C24, C67–C72, C37–C42 and N5/C49–C53, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯F7ii 0.95 2.46 3.300 (5) 148
C10—H10⋯F9ii 0.95 2.33 3.173 (5) 148
C25—H25⋯F1 0.95 2.45 3.204 (5) 136
C42—H42⋯F15Biii 0.95 2.36 3.096 (7) 134
C48—H48⋯F7 0.95 2.39 3.328 (6) 172
C49—H49⋯F18Aii 0.95 2.13 2.850 (9) 132
C58—H58⋯F12 0.95 2.26 2.963 (5) 130
O1—H1A⋯F17A 0.87 (1) 2.25 (7) 2.965 (17) 139 (9)
O1—H1A⋯F17B 0.87 (1) 2.19 (8) 2.817 (10) 128 (8)
O1—H1B⋯F11 0.87 (1) 2.28 (7) 2.977 (7) 137 (8)
C17—H17⋯Cg3iv 0.95 2.80 3.525 (6) 134
C46—H46⋯Cg4iii 0.95 2.72 3.670 (6) 177
C63—H63⋯Cg5v 0.95 2.59 3.466 (5) 154
Symmetry codes: (ii) x+1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
A view of the crystal packing showing ππ stacking inter­actions forming chains extending perpendicular to the b axis.
[Figure 3]
Figure 3
A view of the crystal packing along the a axis. The C—H⋯π hydrogen bonds are shown as dashed lines.
[Figure 4]
Figure 4
A view of the crystal packing showing C—H⋯F and O—H⋯F inter­molecular hydrogen bonds forming chains along the a axis. For clarity, only the major occupancy component of the disordered PF6 anion is shown.

3.1. Database survey

A search of the CSD (version 5.43, last updated November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar M(dip)3n+ compounds gave three hits: two compounds with RuII as the central metal cation (n = 2; CSD refcodes LAKCIN: Alatrash & Macdonnell, 2020[Alatrash, N. & Macdonnell, F. (2020). CSD Communication (refcode: LAKCIN). CCDC, Cambridge, England.]; DOWREM: Goldstein et al., 1986[Goldstein, B. M., Barton, J. K. & Berman, H. M. (1986). Inorg. Chem. 25, 842-847.]) and one compound with NiII (n = 2; refcode EYAHUI: Hadadzadeh et al., 2011[Hadadzadeh, H., Mansouri, G., Rezvani, A., Khavasi, H. R., Skelton, B. W., Makha, M. & Charati, F. R. (2011). Polyhedron, 30, 2535-2543.]).

4. Synthesis and crystallization

[Tris(4,7-diphenyl-1,10-phenanthroline)cobalt(III)] tris(hexa­fluoro­phosphate) was obtained following the proc­edure previously described (McLaurin et al., 2009[McLaurin, E. J., Greytak, A. B., Bawendi, M. G. & Nocera, D. G. (2009). J. Am. Chem. Soc. 131, 12994-13001.]). The experimental protocol used for the synthesis has two steps: Firstly, the synthesis of the [bis­(4,7-diphenyl-1,10-phenanthroline)cobalt(III) dichloride] chloride was carried out by the reaction of (4,7-diphenyl-1,10-phenanthroline) with cobalt(II) dichlor­ide in methanol at reflux. The obtained compound was oxidized with chlorine gas made in situ to convert CoII to CoIII. Finally, the substitution of the dichloride group for the bidentate ligand (4,7-diphenyl-1,10-phenanthroline) was performed in ethyl­ene glycol at reflux. After cooling to room temperature, ammonium hexa­fluoro­phosphate was added to obtain a dark-brown precipitate. The final complex was then isolated by filtration, washed with water and diethyl ether and dried under vacuum. Slow diffusion between methanol and diethyl ether of the aceto­nitrile solution of the obtained powder gave orange needles of the title compound suitable for X-ray diffraction.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C—H hydrogen atoms were positioned geometrically with C—H = 0.95 Å and refined with Uiso(H) = 1.2Ueq(C). The O—H hydrogen atoms were located in a difference-Fourier map, but their positional and isotropic displacement parameters were restrained with the SHELXL DFIX command and with Uiso(H) = 1.5Ueq(O), respectively. Four fluorine atoms of one hexa­fluoro­phosphate anion (P3 as the central atom) are disordered over two sets of positions with refined site-occupancy factors of 0.697 (5) and 0.303 (5). The corresponding P—F bond lengths and F—P—F bond angles were restrained with the DFIX and DANG commands while the displacement parameters were restrained with the SIMU command.

Table 3
Experimental details

Crystal data
Chemical formula [Co(C24H16N2)3](PF6)3·H2O
Mr 1509.02
Crystal system, space group Monoclinic, P21/c
Temperature (K) 160
a, b, c (Å) 11.23448 (10), 25.0698 (2), 23.3956 (2)
β (°) 96.9903 (8)
V3) 6540.29 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.66
Crystal size (mm) 0.18 × 0.12 × 0.02
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, Pilatus 200K
Absorption correction Analytical [(CrysAlis PRO; Rigaku OD (2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) based on expressions derived by Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]]
Tmin, Tmax 0.595, 0.929
No. of measured, independent and observed [I > 2σ(I)] reflections 71503, 13335, 11500
Rint 0.040
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.243, 1.04
No. of reflections 13335
No. of parameters 953
No. of restraints 272
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.88, −1.05
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Tris(4,7-diphenyl-1,10-phenanthroline-κ2N,N')cobalt(III) tris(hexafluorophosphate) monohydrate top
Crystal data top
[Co(C24H16N2)3](PF6)3·H2OF(000) = 3064
Mr = 1509.02Dx = 1.533 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 11.23448 (10) ÅCell parameters from 32214 reflections
b = 25.0698 (2) Åθ = 2.6–78.7°
c = 23.3956 (2) ŵ = 3.66 mm1
β = 96.9903 (8)°T = 160 K
V = 6540.29 (10) Å3Plate, yellow
Z = 40.18 × 0.12 × 0.02 mm
Data collection top
XtaLAB Synergy, Dualflex, Pilatus 200K
diffractometer
13335 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source11500 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 5.8140 pixels mm-1θmax = 74.5°, θmin = 2.6°
ω scansh = 1413
Absorption correction: analytical
[(CrysAlisPro; Rigaku OD (2019) based on expressions derived by Clark & Reid, 1995]
k = 3131
Tmin = 0.595, Tmax = 0.929l = 2926
71503 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.080H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.243 w = 1/[σ2(Fo2) + (0.1493P)2 + 10.0383P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
13335 reflectionsΔρmax = 1.88 e Å3
953 parametersΔρmin = 1.05 e Å3
272 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4968 (4)0.63319 (16)0.71887 (18)0.0419 (8)
H10.4364290.6422340.6883640.050*
C20.4754 (4)0.59200 (17)0.75643 (18)0.0447 (9)
H20.4000290.5743790.7517340.054*
C30.5613 (4)0.57648 (15)0.79997 (17)0.0401 (8)
C40.6716 (3)0.60482 (14)0.80685 (16)0.0366 (7)
C50.6857 (3)0.64682 (14)0.76893 (15)0.0337 (7)
C60.7914 (3)0.67862 (14)0.77523 (15)0.0330 (7)
C70.8836 (3)0.66881 (14)0.81965 (15)0.0344 (7)
C80.9882 (3)0.70185 (15)0.82297 (16)0.0372 (8)
C90.9894 (3)0.74058 (15)0.78113 (17)0.0392 (8)
H91.0577170.7629590.7816410.047*
C100.8936 (3)0.74789 (15)0.73821 (16)0.0371 (8)
H100.8982170.7751620.7103760.044*
C110.7676 (4)0.59493 (15)0.85110 (17)0.0420 (8)
H110.7606530.5664270.8772380.050*
C120.8689 (4)0.62497 (15)0.85710 (17)0.0410 (8)
H120.9313310.6166380.8868800.049*
C130.5409 (4)0.53348 (16)0.84122 (18)0.0430 (9)
C140.6087 (4)0.48711 (17)0.84560 (19)0.0476 (9)
H140.6669190.4813920.8199850.057*
C150.5927 (4)0.44903 (19)0.8869 (2)0.0558 (11)
H150.6389690.4172190.8893830.067*
C160.5082 (5)0.4578 (2)0.9246 (2)0.0623 (13)
H160.4975000.4321030.9533410.075*
C170.4402 (5)0.5034 (2)0.9205 (2)0.0612 (13)
H170.3837200.5091890.9469770.073*
C180.4524 (4)0.54113 (19)0.8785 (2)0.0530 (10)
H180.4021620.5717140.8747370.064*
C191.0915 (3)0.69433 (15)0.86768 (17)0.0398 (8)
C201.2076 (4)0.69364 (18)0.8510 (2)0.0498 (10)
H201.2189020.6985420.8117340.060*
C211.3058 (4)0.6857 (2)0.8924 (2)0.0597 (12)
H211.3842910.6852220.8812790.072*
C221.2903 (5)0.67864 (19)0.9492 (2)0.0616 (13)
H221.3579990.6727670.9770120.074*
C231.1762 (5)0.68000 (18)0.9662 (2)0.0552 (11)
H231.1660120.6753571.0056030.066*
C241.0770 (4)0.68816 (16)0.92563 (18)0.0448 (9)
H240.9990710.6895310.9373900.054*
C250.7630 (4)0.78075 (15)0.59100 (17)0.0393 (8)
H250.7764320.7483090.5717900.047*
C260.8000 (4)0.82847 (17)0.56893 (17)0.0417 (8)
H260.8362900.8278490.5343160.050*
C270.7860 (3)0.87685 (16)0.59549 (16)0.0376 (8)
C280.7286 (3)0.87611 (15)0.64690 (15)0.0355 (7)
C290.6894 (3)0.82666 (15)0.66521 (15)0.0336 (7)
C300.6204 (3)0.82295 (14)0.71241 (15)0.0336 (7)
C310.5873 (3)0.86886 (15)0.74036 (15)0.0353 (7)
C320.5039 (3)0.86268 (16)0.78164 (16)0.0385 (8)
C330.4640 (4)0.81197 (18)0.79079 (17)0.0448 (9)
H330.4060760.8067480.8166490.054*
C340.5064 (4)0.76813 (17)0.76310 (17)0.0417 (8)
H340.4798140.7335050.7721050.050*
C350.7016 (4)0.92207 (16)0.67916 (16)0.0411 (8)
H350.7320440.9558210.6695570.049*
C360.6333 (4)0.91869 (15)0.72329 (16)0.0404 (8)
H360.6158650.9502390.7431720.048*
C370.8235 (3)0.92742 (16)0.57065 (17)0.0406 (8)
C380.7885 (4)0.93826 (17)0.51282 (18)0.0452 (9)
H380.7461100.9122850.4887680.054*
C390.8163 (5)0.98768 (19)0.4904 (2)0.0546 (11)
H390.7919800.9952280.4508980.066*
C400.8775 (5)1.0252 (2)0.5241 (2)0.0642 (13)
H400.8935111.0590980.5085300.077*
C410.9166 (5)1.0136 (2)0.5815 (2)0.0694 (14)
H410.9614871.0393730.6048370.083*
C420.8908 (4)0.9650 (2)0.6047 (2)0.0553 (11)
H420.9186610.9571250.6437280.066*
C430.4570 (4)0.91008 (17)0.80923 (17)0.0438 (9)
C440.5344 (4)0.94603 (19)0.84093 (18)0.0497 (10)
H440.6179860.9388520.8476740.060*
C450.4885 (5)0.9920 (2)0.8623 (2)0.0669 (14)
H450.5403871.0159410.8848300.080*
C460.3678 (6)1.0033 (2)0.8512 (3)0.0749 (16)
H460.3376991.0355810.8651910.090*
C470.2904 (5)0.9684 (3)0.8202 (3)0.0775 (17)
H470.2074050.9765440.8124520.093*
C480.3352 (4)0.9214 (2)0.8003 (2)0.0599 (12)
H480.2817480.8964440.7802170.072*
C490.8241 (3)0.64466 (15)0.63394 (16)0.0369 (8)
H490.8830900.6557600.6641720.044*
C500.8531 (3)0.60596 (15)0.59594 (16)0.0370 (8)
H500.9319400.5916000.6001430.044*
C510.7700 (3)0.58771 (14)0.55201 (15)0.0328 (7)
C520.6528 (3)0.61036 (14)0.54691 (15)0.0316 (7)
C530.6319 (3)0.64999 (13)0.58581 (15)0.0308 (7)
C540.5186 (3)0.67625 (14)0.58226 (15)0.0327 (7)
C550.4255 (3)0.66234 (14)0.53978 (15)0.0329 (7)
C560.3169 (3)0.69295 (15)0.53654 (17)0.0373 (8)
C570.3126 (4)0.73284 (17)0.57683 (19)0.0442 (9)
H570.2424830.7541960.5756960.053*
C580.4091 (3)0.74269 (16)0.61940 (18)0.0424 (9)
H580.4019720.7700820.6468430.051*
C590.5533 (3)0.59306 (15)0.50671 (16)0.0357 (7)
H590.5634290.5637240.4820600.043*
C600.4445 (3)0.61795 (15)0.50324 (16)0.0354 (7)
H600.3804590.6056770.4761920.042*
C610.8004 (3)0.54451 (15)0.51347 (16)0.0358 (7)
C620.8472 (3)0.49669 (16)0.53789 (18)0.0410 (8)
H620.8619490.4931190.5785640.049*
C630.8717 (4)0.45475 (17)0.5028 (2)0.0485 (10)
H630.9028710.4223020.5194580.058*
C640.8514 (4)0.45979 (19)0.4442 (2)0.0509 (10)
H640.8646810.4302640.4203560.061*
C650.8114 (4)0.5080 (2)0.41955 (19)0.0542 (11)
H650.8020350.5120000.3788770.065*
C660.7852 (4)0.55008 (18)0.45419 (17)0.0453 (9)
H660.7566530.5828200.4372490.054*
C670.2124 (3)0.68412 (15)0.49285 (18)0.0393 (8)
C680.2249 (4)0.67567 (16)0.43524 (18)0.0425 (8)
H680.3026220.6748360.4231960.051*
C690.1243 (4)0.66842 (18)0.3950 (2)0.0515 (10)
H690.1334350.6624340.3556840.062*
C700.0104 (4)0.66996 (19)0.4125 (2)0.0551 (11)
H700.0583440.6649260.3851500.066*
C710.0030 (4)0.67879 (17)0.4697 (2)0.0536 (11)
H710.0810080.6800110.4814330.064*
C720.0967 (3)0.68585 (16)0.5098 (2)0.0453 (9)
H720.0869030.6918870.5490840.054*
Co10.65174 (5)0.71899 (2)0.67893 (2)0.03151 (17)
N10.6003 (3)0.66029 (12)0.72480 (13)0.0348 (6)
N20.7953 (3)0.71751 (11)0.73518 (13)0.0333 (6)
N30.7088 (3)0.77952 (12)0.63882 (13)0.0343 (6)
N40.5829 (3)0.77309 (12)0.72446 (13)0.0350 (6)
N50.7153 (3)0.66689 (12)0.62928 (13)0.0317 (6)
N60.5105 (3)0.71465 (12)0.62244 (14)0.0356 (6)
F10.7023 (3)0.70768 (14)0.47885 (13)0.0702 (8)
F20.5998 (3)0.78510 (16)0.47147 (16)0.0821 (10)
F30.7786 (3)0.77811 (14)0.43789 (14)0.0705 (9)
F40.6076 (3)0.78566 (14)0.37517 (14)0.0766 (10)
F50.7095 (3)0.70887 (17)0.38305 (15)0.0810 (10)
F60.5304 (3)0.71560 (14)0.41707 (13)0.0715 (9)
P10.65426 (9)0.74674 (5)0.42702 (5)0.0482 (3)
F70.1732 (3)0.82570 (15)0.72944 (19)0.0954 (12)
F80.1590 (2)0.90313 (11)0.67956 (13)0.0646 (8)
F90.0012 (2)0.84994 (12)0.68175 (14)0.0641 (7)
F100.0829 (4)0.85907 (17)0.60049 (16)0.0907 (11)
F110.0985 (3)0.78177 (13)0.6499 (2)0.0893 (12)
F120.2617 (3)0.83455 (14)0.6485 (2)0.1071 (14)
P20.12975 (10)0.84315 (5)0.66478 (6)0.0546 (3)
F130.0178 (3)0.52703 (16)0.67741 (13)0.0883 (10)
F140.1488 (5)0.5855 (2)0.7846 (2)0.1456 (16)
F15A0.0113 (13)0.5394 (7)0.7751 (6)0.118 (3)0.303 (5)
F15B0.0464 (8)0.5084 (3)0.7714 (3)0.1140 (18)0.697 (5)
F16A0.1522 (16)0.5012 (5)0.7440 (7)0.121 (2)0.303 (5)
F16B0.2034 (5)0.5305 (3)0.7229 (3)0.1017 (16)0.697 (5)
F17A0.1890 (11)0.5803 (7)0.6993 (6)0.118 (3)0.303 (5)
F17B0.1091 (8)0.6030 (3)0.6892 (3)0.1148 (18)0.697 (5)
F18A0.0146 (12)0.6121 (4)0.7185 (5)0.113 (2)0.303 (5)
F18B0.0489 (6)0.5801 (3)0.7374 (3)0.1184 (18)0.697 (5)
P30.08027 (17)0.55560 (6)0.73172 (6)0.0755 (5)
O10.2529 (5)0.6951 (3)0.7055 (3)0.1140 (19)
H1A0.235 (8)0.666 (2)0.722 (4)0.171*
H1B0.186 (5)0.705 (4)0.685 (4)0.171*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0364 (19)0.043 (2)0.047 (2)0.0070 (16)0.0041 (16)0.0024 (16)
C20.038 (2)0.045 (2)0.051 (2)0.0085 (17)0.0065 (16)0.0037 (18)
C30.047 (2)0.0334 (18)0.0419 (19)0.0061 (15)0.0133 (16)0.0050 (15)
C40.0432 (19)0.0307 (17)0.0366 (17)0.0028 (15)0.0080 (15)0.0044 (14)
C50.0342 (17)0.0308 (16)0.0370 (17)0.0017 (13)0.0077 (14)0.0049 (13)
C60.0337 (17)0.0295 (16)0.0360 (17)0.0021 (13)0.0057 (13)0.0055 (13)
C70.0355 (17)0.0304 (16)0.0374 (17)0.0010 (14)0.0051 (14)0.0056 (14)
C80.0363 (18)0.0357 (18)0.0390 (18)0.0025 (15)0.0019 (14)0.0074 (15)
C90.0357 (18)0.0365 (19)0.045 (2)0.0051 (15)0.0047 (15)0.0021 (15)
C100.0364 (18)0.0341 (18)0.0404 (19)0.0044 (14)0.0037 (15)0.0006 (14)
C110.052 (2)0.0317 (18)0.042 (2)0.0030 (16)0.0038 (17)0.0031 (15)
C120.047 (2)0.0338 (18)0.0404 (19)0.0001 (16)0.0003 (16)0.0009 (15)
C130.045 (2)0.0393 (19)0.045 (2)0.0108 (16)0.0089 (16)0.0042 (16)
C140.048 (2)0.044 (2)0.051 (2)0.0096 (18)0.0052 (18)0.0020 (18)
C150.056 (3)0.048 (2)0.062 (3)0.013 (2)0.002 (2)0.008 (2)
C160.069 (3)0.064 (3)0.052 (3)0.029 (3)0.000 (2)0.015 (2)
C170.071 (3)0.063 (3)0.053 (3)0.026 (3)0.021 (2)0.006 (2)
C180.059 (3)0.047 (2)0.056 (2)0.013 (2)0.020 (2)0.0057 (19)
C190.0374 (19)0.0333 (18)0.047 (2)0.0022 (15)0.0012 (16)0.0043 (15)
C200.039 (2)0.047 (2)0.063 (3)0.0004 (17)0.0015 (18)0.006 (2)
C210.040 (2)0.053 (3)0.082 (3)0.0034 (19)0.005 (2)0.014 (2)
C220.052 (3)0.045 (2)0.079 (3)0.004 (2)0.025 (2)0.005 (2)
C230.064 (3)0.044 (2)0.053 (2)0.004 (2)0.013 (2)0.0004 (19)
C240.045 (2)0.0359 (19)0.051 (2)0.0025 (16)0.0055 (17)0.0027 (16)
C250.041 (2)0.041 (2)0.0380 (19)0.0063 (15)0.0094 (15)0.0003 (15)
C260.043 (2)0.046 (2)0.0382 (19)0.0017 (16)0.0099 (15)0.0009 (16)
C270.0348 (18)0.0404 (19)0.0370 (18)0.0005 (15)0.0019 (14)0.0011 (15)
C280.0334 (17)0.0374 (18)0.0350 (17)0.0018 (14)0.0009 (14)0.0006 (14)
C290.0307 (16)0.0369 (18)0.0328 (16)0.0041 (14)0.0023 (13)0.0019 (14)
C300.0319 (17)0.0356 (18)0.0328 (16)0.0021 (14)0.0014 (13)0.0008 (14)
C310.0346 (17)0.0388 (19)0.0317 (16)0.0038 (14)0.0015 (13)0.0038 (14)
C320.0368 (18)0.044 (2)0.0345 (17)0.0033 (15)0.0017 (14)0.0065 (15)
C330.042 (2)0.054 (2)0.040 (2)0.0024 (18)0.0118 (16)0.0048 (17)
C340.042 (2)0.0412 (19)0.043 (2)0.0034 (16)0.0110 (16)0.0015 (16)
C350.048 (2)0.0366 (19)0.0388 (19)0.0003 (16)0.0033 (16)0.0009 (15)
C360.049 (2)0.0347 (18)0.0377 (18)0.0037 (16)0.0041 (16)0.0033 (15)
C370.0382 (19)0.041 (2)0.044 (2)0.0007 (15)0.0093 (15)0.0009 (16)
C380.051 (2)0.044 (2)0.043 (2)0.0030 (18)0.0130 (17)0.0009 (17)
C390.071 (3)0.048 (2)0.048 (2)0.005 (2)0.020 (2)0.0078 (19)
C400.085 (4)0.049 (3)0.064 (3)0.008 (2)0.027 (3)0.000 (2)
C410.079 (4)0.062 (3)0.070 (3)0.029 (3)0.019 (3)0.009 (3)
C420.057 (3)0.056 (3)0.053 (2)0.015 (2)0.010 (2)0.002 (2)
C430.045 (2)0.049 (2)0.0397 (19)0.0013 (17)0.0107 (16)0.0102 (17)
C440.050 (2)0.058 (3)0.041 (2)0.000 (2)0.0060 (17)0.0137 (19)
C450.072 (3)0.067 (3)0.065 (3)0.012 (3)0.022 (3)0.031 (3)
C460.076 (4)0.066 (3)0.087 (4)0.005 (3)0.028 (3)0.034 (3)
C470.057 (3)0.082 (4)0.096 (4)0.016 (3)0.022 (3)0.028 (3)
C480.046 (2)0.067 (3)0.068 (3)0.001 (2)0.014 (2)0.025 (2)
C490.0300 (17)0.0394 (19)0.0405 (18)0.0048 (14)0.0010 (14)0.0018 (15)
C500.0284 (16)0.0383 (18)0.0446 (19)0.0084 (14)0.0057 (14)0.0016 (15)
C510.0300 (16)0.0328 (17)0.0361 (17)0.0053 (13)0.0067 (13)0.0044 (14)
C520.0283 (16)0.0328 (16)0.0340 (16)0.0057 (13)0.0045 (13)0.0040 (13)
C530.0281 (16)0.0286 (16)0.0357 (17)0.0041 (13)0.0036 (13)0.0044 (13)
C540.0298 (16)0.0297 (16)0.0390 (17)0.0045 (13)0.0063 (13)0.0001 (13)
C550.0258 (15)0.0329 (17)0.0396 (18)0.0059 (13)0.0023 (13)0.0037 (14)
C560.0287 (17)0.0361 (18)0.047 (2)0.0056 (14)0.0031 (14)0.0035 (15)
C570.0332 (18)0.044 (2)0.054 (2)0.0123 (16)0.0005 (16)0.0041 (18)
C580.0354 (19)0.042 (2)0.049 (2)0.0125 (16)0.0021 (16)0.0072 (17)
C590.0330 (17)0.0353 (18)0.0380 (18)0.0062 (14)0.0013 (14)0.0015 (14)
C600.0279 (16)0.0373 (18)0.0398 (18)0.0039 (14)0.0007 (13)0.0002 (15)
C610.0280 (16)0.0392 (19)0.0404 (18)0.0073 (14)0.0050 (14)0.0025 (15)
C620.0371 (19)0.0384 (19)0.048 (2)0.0066 (15)0.0083 (16)0.0017 (16)
C630.041 (2)0.039 (2)0.067 (3)0.0078 (17)0.0133 (19)0.0022 (19)
C640.0326 (19)0.055 (2)0.066 (3)0.0083 (18)0.0083 (18)0.018 (2)
C650.043 (2)0.074 (3)0.045 (2)0.018 (2)0.0034 (17)0.012 (2)
C660.040 (2)0.054 (2)0.042 (2)0.0165 (18)0.0045 (16)0.0006 (17)
C670.0291 (17)0.0308 (17)0.056 (2)0.0043 (14)0.0011 (15)0.0028 (16)
C680.0334 (18)0.043 (2)0.049 (2)0.0037 (15)0.0016 (16)0.0079 (17)
C690.049 (2)0.048 (2)0.054 (2)0.0029 (19)0.0098 (19)0.0081 (19)
C700.039 (2)0.049 (2)0.072 (3)0.0013 (18)0.016 (2)0.013 (2)
C710.0287 (19)0.040 (2)0.089 (3)0.0037 (16)0.002 (2)0.006 (2)
C720.0306 (18)0.041 (2)0.064 (3)0.0064 (15)0.0042 (17)0.0010 (18)
Co10.0292 (3)0.0306 (3)0.0345 (3)0.0026 (2)0.0030 (2)0.0013 (2)
N10.0307 (14)0.0323 (15)0.0411 (16)0.0006 (12)0.0029 (12)0.0025 (12)
N20.0321 (15)0.0323 (15)0.0356 (15)0.0016 (11)0.0049 (12)0.0019 (11)
N30.0327 (15)0.0353 (16)0.0349 (15)0.0038 (12)0.0034 (12)0.0009 (12)
N40.0345 (15)0.0353 (15)0.0349 (15)0.0010 (12)0.0035 (12)0.0010 (12)
N50.0263 (13)0.0314 (14)0.0370 (15)0.0038 (11)0.0024 (11)0.0007 (12)
N60.0314 (15)0.0331 (15)0.0422 (16)0.0067 (12)0.0046 (12)0.0014 (12)
F10.0608 (17)0.083 (2)0.0634 (17)0.0028 (15)0.0056 (14)0.0286 (15)
F20.0568 (18)0.109 (3)0.078 (2)0.0160 (17)0.0011 (16)0.0121 (19)
F30.0454 (15)0.094 (2)0.0692 (18)0.0200 (14)0.0024 (13)0.0168 (16)
F40.0611 (18)0.095 (2)0.0685 (19)0.0068 (16)0.0116 (15)0.0352 (17)
F50.0593 (18)0.115 (3)0.0678 (19)0.0129 (18)0.0040 (15)0.0164 (18)
F60.0462 (15)0.102 (2)0.0642 (18)0.0228 (15)0.0000 (13)0.0158 (16)
P10.0321 (5)0.0658 (7)0.0457 (6)0.0021 (5)0.0007 (4)0.0134 (5)
F70.073 (2)0.074 (2)0.130 (3)0.0179 (17)0.029 (2)0.026 (2)
F80.0610 (17)0.0442 (15)0.090 (2)0.0024 (12)0.0151 (15)0.0051 (13)
F90.0478 (14)0.0667 (17)0.0801 (19)0.0022 (13)0.0170 (13)0.0018 (14)
F100.097 (3)0.106 (3)0.073 (2)0.022 (2)0.0282 (19)0.0089 (19)
F110.079 (2)0.0545 (18)0.140 (3)0.0101 (15)0.037 (2)0.0263 (19)
F120.0606 (19)0.0581 (18)0.212 (4)0.0066 (15)0.055 (2)0.008 (2)
P20.0403 (6)0.0423 (6)0.0830 (8)0.0009 (4)0.0152 (5)0.0074 (5)
F130.095 (2)0.111 (2)0.0591 (17)0.024 (2)0.0099 (16)0.0028 (17)
F140.194 (4)0.137 (3)0.098 (3)0.002 (3)0.015 (3)0.031 (3)
F15A0.143 (5)0.126 (5)0.085 (4)0.022 (5)0.019 (4)0.003 (4)
F15B0.144 (4)0.125 (4)0.073 (3)0.020 (3)0.013 (3)0.028 (3)
F16A0.142 (5)0.122 (5)0.095 (4)0.025 (4)0.001 (4)0.002 (4)
F16B0.092 (3)0.113 (4)0.096 (3)0.012 (3)0.004 (3)0.015 (3)
F17A0.133 (5)0.120 (5)0.093 (4)0.012 (5)0.020 (4)0.008 (4)
F17B0.146 (4)0.091 (3)0.110 (3)0.013 (3)0.025 (3)0.006 (3)
F18A0.138 (5)0.104 (4)0.098 (4)0.026 (4)0.017 (4)0.004 (4)
F18B0.147 (4)0.127 (4)0.085 (3)0.061 (3)0.031 (3)0.005 (3)
P30.1056 (12)0.0701 (9)0.0491 (7)0.0314 (8)0.0027 (7)0.0029 (6)
O10.097 (4)0.114 (4)0.140 (5)0.022 (3)0.053 (4)0.037 (4)
Geometric parameters (Å, º) top
C1—H10.9500C44—C451.381 (7)
C1—C21.395 (6)C45—H450.9500
C1—N11.339 (5)C45—C461.379 (8)
C2—H20.9500C46—H460.9500
C2—C31.371 (6)C46—C471.377 (9)
C3—C41.421 (5)C47—H470.9500
C3—C131.483 (5)C47—C481.385 (7)
C4—C51.398 (5)C48—H480.9500
C4—C111.423 (6)C49—H490.9500
C5—C61.424 (5)C49—C501.381 (5)
C5—N11.363 (5)C49—N51.336 (5)
C6—C71.396 (5)C50—H500.9500
C6—N21.357 (5)C50—C511.380 (5)
C7—C81.432 (5)C51—C521.426 (5)
C7—C121.428 (5)C51—C611.476 (5)
C8—C91.380 (6)C52—C531.386 (5)
C8—C191.477 (5)C52—C591.437 (5)
C9—H90.9500C53—C541.427 (5)
C9—C101.391 (5)C53—N51.363 (4)
C10—H100.9500C54—C551.396 (5)
C10—N21.336 (5)C54—N61.356 (5)
C11—H110.9500C55—C561.435 (5)
C11—C121.357 (6)C55—C601.435 (5)
C12—H120.9500C56—C571.379 (6)
C13—C141.387 (6)C56—C671.476 (5)
C13—C181.413 (6)C57—H570.9500
C14—H140.9500C57—C581.402 (6)
C14—C151.385 (6)C58—H580.9500
C15—H150.9500C58—N61.334 (5)
C15—C161.390 (8)C59—H590.9500
C16—H160.9500C59—C601.365 (5)
C16—C171.372 (8)C60—H600.9500
C17—H170.9500C61—C621.402 (5)
C17—C181.383 (7)C61—C661.384 (5)
C18—H180.9500C62—H620.9500
C19—C201.406 (6)C62—C631.382 (6)
C19—C241.394 (6)C63—H630.9500
C20—H200.9500C63—C641.367 (7)
C20—C211.391 (7)C64—H640.9500
C21—H210.9500C64—C651.390 (7)
C21—C221.372 (8)C65—H650.9500
C22—H220.9500C65—C661.384 (6)
C22—C231.388 (8)C66—H660.9500
C23—H230.9500C67—C681.388 (6)
C23—C241.388 (6)C67—C721.406 (5)
C24—H240.9500C68—H680.9500
C25—H250.9500C68—C691.392 (6)
C25—C261.387 (6)C69—H690.9500
C25—N31.338 (5)C69—C701.391 (7)
C26—H260.9500C70—H700.9500
C26—C271.381 (6)C70—C711.381 (8)
C27—C281.432 (5)C71—H710.9500
C27—C371.478 (5)C71—C721.383 (6)
C28—C291.400 (5)C72—H720.9500
C28—C351.430 (5)Co1—N11.950 (3)
C29—C301.428 (5)Co1—N21.954 (3)
C29—N31.363 (5)Co1—N31.934 (3)
C30—C311.396 (5)Co1—N41.942 (3)
C30—N41.359 (5)Co1—N51.941 (3)
C31—C321.434 (5)Co1—N61.940 (3)
C31—C361.427 (5)F1—P11.600 (3)
C32—C331.373 (6)F2—P11.592 (4)
C32—C431.479 (5)F3—P11.596 (3)
C33—H330.9500F4—P11.595 (3)
C33—C341.389 (6)F5—P11.581 (4)
C34—H340.9500F6—P11.588 (3)
C34—N41.327 (5)F7—P21.593 (4)
C35—H350.9500F8—P21.569 (3)
C35—C361.362 (6)F9—P21.579 (3)
C36—H360.9500F10—P21.583 (4)
C37—C381.389 (6)F11—P21.607 (3)
C37—C421.394 (6)F12—P21.590 (3)
C38—H380.9500F13—P31.550 (4)
C38—C391.396 (6)F14—P31.567 (4)
C39—H390.9500F15A—P31.583 (9)
C39—C401.359 (7)F15B—P31.580 (6)
C40—H400.9500F16A—P31.593 (9)
C40—C411.392 (8)F16B—P31.557 (6)
C41—H410.9500F17A—P31.636 (9)
C41—C421.380 (7)F17B—P31.608 (6)
C42—H420.9500F18A—P31.610 (7)
C43—C441.400 (6)F18B—P31.596 (5)
C43—C481.389 (6)O1—H1A0.872 (5)
C44—H440.9500O1—H1B0.870 (5)
Cg1···Cg2i3.707 (3)
C2—C1—H1119.2C53—C52—C59117.8 (3)
N1—C1—H1119.2C52—C53—C54120.9 (3)
N1—C1—C2121.6 (4)N5—C53—C52123.8 (3)
C1—C2—H2119.4N5—C53—C54115.3 (3)
C3—C2—C1121.3 (4)C55—C54—C53120.8 (3)
C3—C2—H2119.4N6—C54—C53114.9 (3)
C2—C3—C4117.8 (4)N6—C54—C55124.3 (3)
C2—C3—C13122.7 (4)C54—C55—C56117.5 (3)
C4—C3—C13119.4 (4)C54—C55—C60117.7 (3)
C3—C4—C11124.7 (4)C60—C55—C56124.8 (3)
C5—C4—C3118.0 (4)C55—C56—C67123.7 (3)
C5—C4—C11117.3 (3)C57—C56—C55116.9 (3)
C4—C5—C6120.9 (3)C57—C56—C67119.4 (3)
N1—C5—C4122.9 (3)C56—C57—H57119.2
N1—C5—C6116.2 (3)C56—C57—C58121.7 (3)
C7—C6—C5120.8 (3)C58—C57—H57119.2
N2—C6—C5115.3 (3)C57—C58—H58119.1
N2—C6—C7123.9 (3)N6—C58—C57121.8 (4)
C6—C7—C8117.9 (3)N6—C58—H58119.1
C6—C7—C12117.5 (3)C52—C59—H59119.3
C12—C7—C8124.6 (3)C60—C59—C52121.3 (3)
C7—C8—C19122.3 (3)C60—C59—H59119.3
C9—C8—C7116.6 (3)C55—C60—H60119.5
C9—C8—C19121.2 (4)C59—C60—C55121.1 (3)
C8—C9—H9119.0C59—C60—H60119.5
C8—C9—C10122.1 (4)C62—C61—C51118.8 (3)
C10—C9—H9119.0C66—C61—C51121.9 (3)
C9—C10—H10119.2C66—C61—C62119.3 (4)
N2—C10—C9121.6 (3)C61—C62—H62120.0
N2—C10—H10119.2C63—C62—C61120.0 (4)
C4—C11—H11119.0C63—C62—H62120.0
C12—C11—C4122.0 (4)C62—C63—H63119.9
C12—C11—H11119.0C64—C63—C62120.2 (4)
C7—C12—H12119.3C64—C63—H63119.9
C11—C12—C7121.5 (4)C63—C64—H64119.9
C11—C12—H12119.3C63—C64—C65120.2 (4)
C14—C13—C3122.0 (4)C65—C64—H64119.9
C14—C13—C18119.3 (4)C64—C65—H65120.0
C18—C13—C3118.6 (4)C66—C65—C64120.0 (4)
C13—C14—H14119.6C66—C65—H65120.0
C15—C14—C13120.8 (4)C61—C66—C65120.0 (4)
C15—C14—H14119.6C61—C66—H66120.0
C14—C15—H15120.3C65—C66—H66120.0
C14—C15—C16119.4 (5)C68—C67—C56122.0 (3)
C16—C15—H15120.3C68—C67—C72119.0 (4)
C15—C16—H16119.8C72—C67—C56119.0 (4)
C17—C16—C15120.4 (4)C67—C68—H68119.8
C17—C16—H16119.8C67—C68—C69120.5 (4)
C16—C17—H17119.5C69—C68—H68119.8
C16—C17—C18121.1 (5)C68—C69—H69120.1
C18—C17—H17119.5C70—C69—C68119.8 (5)
C13—C18—H18120.5C70—C69—H69120.1
C17—C18—C13119.0 (5)C69—C70—H70119.9
C17—C18—H18120.5C71—C70—C69120.2 (4)
C20—C19—C8118.7 (4)C71—C70—H70119.9
C24—C19—C8121.9 (4)C70—C71—H71119.9
C24—C19—C20119.4 (4)C70—C71—C72120.2 (4)
C19—C20—H20120.3C72—C71—H71119.9
C21—C20—C19119.4 (5)C67—C72—H72119.8
C21—C20—H20120.3C71—C72—C67120.3 (4)
C20—C21—H21119.7C71—C72—H72119.8
C22—C21—C20120.7 (5)N1—Co1—N283.72 (13)
C22—C21—H21119.7N3—Co1—N1175.62 (13)
C21—C22—H22119.9N3—Co1—N292.66 (13)
C21—C22—C23120.3 (4)N3—Co1—N484.01 (13)
C23—C22—H22119.9N3—Co1—N594.01 (13)
C22—C23—H23120.0N3—Co1—N690.31 (13)
C22—C23—C24120.0 (5)N4—Co1—N193.48 (13)
C24—C23—H23120.0N4—Co1—N289.70 (13)
C19—C24—H24119.9N5—Co1—N188.67 (13)
C23—C24—C19120.1 (4)N5—Co1—N293.26 (12)
C23—C24—H24119.9N5—Co1—N4176.52 (13)
C26—C25—H25119.4N6—Co1—N193.44 (13)
N3—C25—H25119.4N6—Co1—N2175.65 (13)
N3—C25—C26121.3 (3)N6—Co1—N493.77 (13)
C25—C26—H26118.8N6—Co1—N583.36 (12)
C27—C26—C25122.3 (4)C1—N1—C5118.3 (3)
C27—C26—H26118.8C1—N1—Co1129.6 (3)
C26—C27—C28117.0 (3)C5—N1—Co1112.1 (2)
C26—C27—C37121.5 (3)C6—N2—Co1112.7 (2)
C28—C27—C37121.4 (3)C10—N2—C6118.0 (3)
C29—C28—C27117.3 (3)C10—N2—Co1129.4 (3)
C29—C28—C35117.2 (3)C25—N3—C29118.2 (3)
C35—C28—C27125.4 (3)C25—N3—Co1129.4 (3)
C28—C29—C30121.0 (3)C29—N3—Co1112.3 (2)
N3—C29—C28123.8 (3)C30—N4—Co1112.0 (2)
N3—C29—C30115.2 (3)C34—N4—C30118.0 (3)
C31—C30—C29120.6 (3)C34—N4—Co1130.0 (3)
N4—C30—C29115.5 (3)C49—N5—C53118.0 (3)
N4—C30—C31123.7 (3)C49—N5—Co1129.2 (3)
C30—C31—C32117.3 (3)C53—N5—Co1112.7 (2)
C30—C31—C36117.7 (3)C54—N6—Co1113.2 (2)
C36—C31—C32124.9 (3)C58—N6—C54117.8 (3)
C31—C32—C43120.2 (4)C58—N6—Co1129.0 (3)
C33—C32—C31117.2 (3)F2—P1—F189.8 (2)
C33—C32—C43122.4 (4)F2—P1—F389.8 (2)
C32—C33—H33119.2F2—P1—F490.6 (2)
C32—C33—C34121.5 (4)F3—P1—F188.44 (17)
C34—C33—H33119.2F4—P1—F1179.46 (19)
C33—C34—H34119.0F4—P1—F391.15 (17)
N4—C34—C33122.1 (4)F5—P1—F190.1 (2)
N4—C34—H34119.0F5—P1—F2179.5 (2)
C28—C35—H35119.1F5—P1—F389.7 (2)
C36—C35—C28121.7 (4)F5—P1—F489.5 (2)
C36—C35—H35119.1F5—P1—F690.9 (2)
C31—C36—H36119.2F6—P1—F191.10 (17)
C35—C36—C31121.5 (4)F6—P1—F289.6 (2)
C35—C36—H36119.2F6—P1—F3179.26 (18)
C38—C37—C27119.4 (4)F6—P1—F489.32 (17)
C38—C37—C42119.6 (4)F7—P2—F1188.6 (2)
C42—C37—C27121.1 (4)F8—P2—F791.27 (19)
C37—C38—H38120.3F8—P2—F991.02 (16)
C37—C38—C39119.3 (4)F8—P2—F1090.2 (2)
C39—C38—H38120.3F8—P2—F11179.4 (2)
C38—C39—H39119.4F8—P2—F1290.37 (18)
C40—C39—C38121.1 (4)F9—P2—F788.7 (2)
C40—C39—H39119.4F9—P2—F1090.0 (2)
C39—C40—H40120.2F9—P2—F1188.40 (18)
C39—C40—C41119.6 (5)F9—P2—F12178.3 (2)
C41—C40—H40120.2F10—P2—F7178.0 (2)
C40—C41—H41119.8F10—P2—F1189.8 (2)
C42—C41—C40120.5 (5)F10—P2—F1291.0 (3)
C42—C41—H41119.8F12—P2—F790.2 (3)
C37—C42—H42120.1F12—P2—F1190.2 (2)
C41—C42—C37119.8 (5)F13—P3—F14176.9 (3)
C41—C42—H42120.1F13—P3—F15A98.2 (7)
C44—C43—C32121.1 (4)F13—P3—F15B91.1 (3)
C48—C43—C32119.6 (4)F13—P3—F16A85.5 (7)
C48—C43—C44119.1 (4)F13—P3—F16B91.4 (3)
C43—C44—H44120.2F13—P3—F17A94.8 (6)
C45—C44—C43119.6 (4)F13—P3—F17B86.5 (3)
C45—C44—H44120.2F13—P3—F18A95.6 (4)
C44—C45—H45119.8F13—P3—F18B85.4 (3)
C46—C45—C44120.4 (5)F14—P3—F15A84.9 (7)
C46—C45—H45119.8F14—P3—F15B91.4 (4)
C45—C46—H46119.6F14—P3—F16A94.4 (7)
C47—C46—C45120.8 (5)F14—P3—F17A82.0 (6)
C47—C46—H46119.6F14—P3—F17B91.1 (4)
C46—C47—H47120.4F14—P3—F18A84.3 (4)
C46—C47—C48119.1 (5)F14—P3—F18B96.6 (3)
C48—C47—H47120.4F15A—P3—F16A91.2 (6)
C43—C48—H48119.5F15A—P3—F17A166.9 (9)
C47—C48—C43121.0 (5)F15A—P3—F18A91.7 (8)
C47—C48—H48119.5F15B—P3—F17B177.3 (4)
C50—C49—H49119.2F15B—P3—F18B87.3 (4)
N5—C49—H49119.1F16A—P3—F17A91.0 (9)
N5—C49—C50121.7 (3)F16A—P3—F18A176.7 (9)
C49—C50—H50119.3F16B—P3—F1486.5 (3)
C51—C50—C49121.4 (3)F16B—P3—F15B93.3 (4)
C51—C50—H50119.3F16B—P3—F17B88.1 (4)
C50—C51—C52117.7 (3)F16B—P3—F18B176.8 (3)
C50—C51—C61120.8 (3)F18A—P3—F17A85.9 (5)
C52—C51—C61121.4 (3)F18B—P3—F17B91.2 (4)
C51—C52—C59124.8 (3)H1A—O1—H1B104.3 (13)
C53—C52—C51117.3 (3)
C1—C2—C3—C41.9 (6)C33—C32—C43—C44126.5 (5)
C1—C2—C3—C13179.0 (4)C33—C32—C43—C4858.2 (6)
C2—C1—N1—C50.2 (6)C33—C34—N4—C300.3 (6)
C2—C1—N1—Co1179.7 (3)C33—C34—N4—Co1178.3 (3)
C2—C3—C4—C50.2 (5)C35—C28—C29—C303.0 (5)
C2—C3—C4—C11177.6 (4)C35—C28—C29—N3179.9 (3)
C2—C3—C13—C14118.2 (5)C36—C31—C32—C33176.6 (4)
C2—C3—C13—C1864.2 (5)C36—C31—C32—C431.2 (6)
C3—C4—C5—C6176.8 (3)C37—C27—C28—C29176.1 (3)
C3—C4—C5—N12.4 (5)C37—C27—C28—C350.1 (6)
C3—C4—C11—C12176.9 (4)C37—C38—C39—C400.4 (7)
C3—C13—C14—C15176.1 (4)C38—C37—C42—C413.3 (7)
C3—C13—C18—C17174.3 (4)C38—C39—C40—C412.1 (8)
C4—C3—C13—C1464.8 (5)C39—C40—C41—C421.8 (9)
C4—C3—C13—C18112.8 (5)C40—C41—C42—C370.9 (8)
C4—C5—C6—C70.3 (5)C42—C37—C38—C393.1 (6)
C4—C5—C6—N2178.9 (3)C43—C32—C33—C34178.0 (4)
C4—C5—N1—C12.4 (5)C43—C44—C45—C461.9 (8)
C4—C5—N1—Co1177.9 (3)C44—C43—C48—C472.7 (8)
C4—C11—C12—C71.0 (6)C44—C45—C46—C471.9 (10)
C5—C4—C11—C120.5 (6)C45—C46—C47—C480.4 (10)
C5—C6—C7—C8179.1 (3)C46—C47—C48—C432.7 (10)
C5—C6—C7—C121.8 (5)C48—C43—C44—C450.4 (7)
C5—C6—N2—C10178.6 (3)C49—C50—C51—C520.3 (5)
C5—C6—N2—Co10.0 (4)C49—C50—C51—C61177.0 (3)
C6—C5—N1—C1176.8 (3)C50—C49—N5—C530.5 (5)
C6—C5—N1—Co12.9 (4)C50—C49—N5—Co1176.9 (3)
C6—C7—C8—C90.7 (5)C50—C51—C52—C531.4 (5)
C6—C7—C8—C19179.0 (3)C50—C51—C52—C59174.8 (3)
C6—C7—C12—C112.1 (6)C50—C51—C61—C6253.0 (5)
C7—C6—N2—C100.6 (5)C50—C51—C61—C66126.4 (4)
C7—C6—N2—Co1179.2 (3)C51—C52—C53—C54177.5 (3)
C7—C8—C9—C100.8 (6)C51—C52—C53—N52.3 (5)
C7—C8—C19—C20132.8 (4)C51—C52—C59—C60177.9 (4)
C7—C8—C19—C2447.5 (5)C51—C61—C62—C63177.3 (4)
C8—C7—C12—C11179.3 (4)C51—C61—C66—C65178.0 (4)
C8—C9—C10—N20.3 (6)C52—C51—C61—C62124.1 (4)
C8—C19—C20—C21178.9 (4)C52—C51—C61—C6656.4 (5)
C8—C19—C24—C23178.6 (4)C52—C53—C54—C550.5 (5)
C9—C8—C19—C2045.5 (5)C52—C53—C54—N6179.2 (3)
C9—C8—C19—C24134.3 (4)C52—C53—N5—C491.4 (5)
C9—C10—N2—C60.5 (5)C52—C53—N5—Co1175.6 (3)
C9—C10—N2—Co1178.8 (3)C52—C59—C60—C550.1 (6)
C11—C4—C5—C60.9 (5)C53—C52—C59—C605.8 (5)
C11—C4—C5—N1180.0 (3)C53—C54—C55—C56175.9 (3)
C12—C7—C8—C9176.5 (4)C53—C54—C55—C605.2 (5)
C12—C7—C8—C191.9 (6)C53—C54—N6—C58176.3 (3)
C13—C3—C4—C5177.0 (3)C53—C54—N6—Co15.5 (4)
C13—C3—C4—C110.5 (6)C54—C53—N5—C49178.4 (3)
C13—C14—C15—C160.6 (7)C54—C53—N5—Co14.6 (4)
C14—C13—C18—C173.4 (7)C54—C55—C56—C571.6 (5)
C14—C15—C16—C170.9 (7)C54—C55—C56—C67177.9 (3)
C15—C16—C17—C181.1 (8)C54—C55—C60—C595.4 (5)
C16—C17—C18—C133.2 (7)C55—C54—N6—C583.4 (6)
C18—C13—C14—C151.6 (6)C55—C54—N6—Co1174.7 (3)
C19—C8—C9—C10179.2 (4)C55—C56—C57—C580.8 (6)
C19—C20—C21—C220.0 (7)C55—C56—C67—C6843.7 (6)
C20—C19—C24—C231.7 (6)C55—C56—C67—C72138.2 (4)
C20—C21—C22—C230.9 (7)C56—C55—C60—C59175.8 (4)
C21—C22—C23—C240.5 (7)C56—C57—C58—N61.2 (7)
C22—C23—C24—C190.8 (6)C56—C67—C68—C69178.9 (4)
C24—C19—C20—C211.3 (6)C56—C67—C72—C71178.7 (4)
C25—C26—C27—C281.3 (6)C57—C56—C67—C68135.8 (4)
C25—C26—C27—C37178.6 (4)C57—C56—C67—C7242.3 (5)
C26—C25—N3—C290.7 (6)C57—C58—N6—C540.8 (6)
C26—C25—N3—Co1178.7 (3)C57—C58—N6—Co1177.0 (3)
C26—C27—C28—C291.3 (5)C59—C52—C53—C546.0 (5)
C26—C27—C28—C35177.3 (4)C59—C52—C53—N5174.2 (3)
C26—C27—C37—C3848.8 (5)C60—C55—C56—C57177.2 (4)
C26—C27—C37—C42132.9 (4)C60—C55—C56—C673.2 (6)
C27—C28—C29—C30173.4 (3)C61—C51—C52—C53178.7 (3)
C27—C28—C29—N33.8 (5)C61—C51—C52—C592.4 (5)
C27—C28—C35—C36171.4 (4)C61—C62—C63—C640.4 (6)
C27—C37—C38—C39175.2 (4)C62—C61—C66—C652.6 (6)
C27—C37—C42—C41174.9 (5)C62—C63—C64—C653.1 (7)
C28—C27—C37—C38128.4 (4)C63—C64—C65—C663.8 (7)
C28—C27—C37—C4249.9 (6)C64—C65—C66—C611.0 (7)
C28—C29—C30—C311.9 (5)C66—C61—C62—C633.3 (6)
C28—C29—C30—N4177.1 (3)C67—C56—C57—C58179.7 (4)
C28—C29—N3—C253.5 (5)C67—C68—C69—C700.4 (6)
C28—C29—N3—Co1176.0 (3)C68—C67—C72—C710.5 (6)
C28—C35—C36—C311.3 (6)C68—C69—C70—C710.2 (7)
C29—C28—C35—C364.6 (6)C69—C70—C71—C720.4 (7)
C29—C30—C31—C32171.2 (3)C70—C71—C72—C670.0 (6)
C29—C30—C31—C365.1 (5)C72—C67—C68—C690.7 (6)
C29—C30—N4—C34171.9 (3)N1—C1—C2—C32.0 (6)
C29—C30—N4—Co17.0 (4)N1—C5—C6—C7178.9 (3)
C30—C29—N3—C25173.8 (3)N1—C5—C6—N21.9 (4)
C30—C29—N3—Co16.6 (4)N2—C6—C7—C80.0 (5)
C30—C31—C32—C330.6 (5)N2—C6—C7—C12177.4 (3)
C30—C31—C32—C43174.8 (3)N3—C25—C26—C271.7 (6)
C30—C31—C36—C353.6 (6)N3—C29—C30—C31175.5 (3)
C31—C30—N4—C343.2 (5)N3—C29—C30—N40.3 (5)
C31—C30—N4—Co1177.9 (3)N4—C30—C31—C323.7 (5)
C31—C32—C33—C342.7 (6)N4—C30—C31—C36180.0 (3)
C31—C32—C43—C4458.4 (5)N5—C49—C50—C511.3 (6)
C31—C32—C43—C48117.0 (5)N5—C53—C54—C55179.7 (3)
C32—C31—C36—C35172.4 (4)N5—C53—C54—N60.6 (5)
C32—C33—C34—N43.3 (6)N6—C54—C55—C563.8 (5)
C32—C43—C44—C45175.0 (4)N6—C54—C55—C60175.1 (3)
C32—C43—C48—C47172.8 (5)
Symmetry code: (i) x+1, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of atoms C19–C24, C67–C72, C37–C42 and N5/C49–C53, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.952.523.132 (7)122
C2—H2···F17A0.952.543.344 (14)143
C9—H9···F7ii0.952.463.300 (5)148
C10—H10···F9ii0.952.333.173 (5)148
C10—H10···F11ii0.952.803.383 (5)120
C25—H25···F10.952.453.204 (5)136
C26—H26···F30.952.593.297 (5)132
C42—H42···F15Biii0.952.363.096 (7)134
C48—H48···F70.952.393.328 (6)172
C48—H48···F80.952.593.278 (6)130
C49—H49···F18Aii0.952.132.850 (9)132
C50—H50···F13ii0.952.533.180 (5)126
C50—H50···F17Bii0.952.723.392 (10)129
C57—H57···F110.952.613.349 (5)135
C58—H58···F120.952.262.963 (5)130
O1—H1A···F17A0.87 (1)2.25 (7)2.965 (17)139 (9)
O1—H1A···F17B0.87 (1)2.19 (8)2.817 (10)128 (8)
O1—H1B···F110.87 (1)2.28 (7)2.977 (7)137 (8)
C17—H17···Cg3iv0.952.803.525 (6)134
C46—H46···Cg4iii0.952.723.670 (6)177
C63—H63···Cg5v0.952.593.466 (5)154
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x+1, y+1, z+1.
 

Funding information

The authors gratefully acknowledge the University of Carthage and the Tunisian Ministry of Higher Education and Scientific Research for a mobility grant and financial support (AM).

References

First citationAlatrash, N. & Macdonnell, F. (2020). CSD Communication (refcode: LAKCIN). CCDC, Cambridge, England.  Google Scholar
First citationCaspar, R., Cordier, C., Waern, J. B., Guyard-Duhayon, C., Gruselle, M., Le Floch, P. & Amouri, H. (2006). Inorg. Chem. 45, 4071–4078.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoldstein, B. M., Barton, J. K. & Berman, H. M. (1986). Inorg. Chem. 25, 842–847.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHadadzadeh, H., Mansouri, G., Rezvani, A., Khavasi, H. R., Skelton, B. W., Makha, M. & Charati, F. R. (2011). Polyhedron, 30, 2535–2543.  Web of Science CSD CrossRef CAS Google Scholar
First citationHeinemann, F., Karges, J. & Gasser, G. (2017). Acc. Chem. Res. 50, 2727–2736.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHowerton, B. S., Heidary, D. K. & Glazer, E. C. (2012). J. Am. Chem. Soc. 134, 8324–8327.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMcFarland, S. A., Mandel, A., Dumoulin-White, R. & Gasser, G. (2020). Curr. Opin. Chem. Biol. 56, 23–27.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMcLaurin, E. J., Greytak, A. B., Bawendi, M. G. & Nocera, D. G. (2009). J. Am. Chem. Soc. 131, 12994–13001.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMonro, S., Colón, K. L., Yin, H., Roque, J., Konda, P., Gujar, S., Thummel, R. P., Lilge, L., Cameron, C. G. & McFarland, S. A. (2019). Chem. Rev. 119, 797–828.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNagababu, P., Shilpa, M., Satyanarayana, S., Latha, J. N. L., Karthikeyan, K. S. & Rajesh, M. (2008). Transition Met. Chem. 33, 1027–1033.  Web of Science CrossRef CAS Google Scholar
First citationOtter, C. A. & Hartshorn, R. M. (2004). Dalton Trans. pp. 150–156.  Web of Science CSD CrossRef Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSapp, S. A., Elliott, C. M., Contado, C., Caramori, S. & Bignozzi, C. A. (2002). J. Am. Chem. Soc. 124, 11215–11222.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, X.-L., Chao, H., Li, H., Hong, X.-L., Liu, Y.-J., Tan, L.-F. & Ji, L.-N. (2004). J. Inorg. Biochem. 98, 1143–1150.  CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, C., Nikiforidis, G., Park, J. Y., Choi, J., Luo, Y., Zhang, L., Wang, S.-C., Chan, Y.-T., Lim, J., Hou, Z., Baik, M.-H., Lee, Y. & Byon, H. R. (2018). Adv. Energy Mater. 8, 1702897.  Web of Science CrossRef Google Scholar
First citationZhang, Q.-L., Liu, J.-G., Chao, H., Xue, G.-Q. & Ji, L.-N. (2001). J. Inorg. Biochem. 83, 49–55.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds