research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of poly[[bis­­(aqua-κO)tetra­kis­(μ-4,4′-bi­pyridine-κ2N:N′)hexa­kis­(3-chloro­benzoato)-κ5O;κ2O:O′-tricobalt(II)] methanol disolvate]

crossmark logo

aDepartment of Chemistry, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathum Thani 12121, Thailand, and bThammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Klong Luang, Pathum Thani 12121, Thailand
*Correspondence e-mail: nwan0110@tu.ac.th

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 28 December 2021; accepted 21 January 2022; online 1 February 2022)

A novel ladder-chain cobalt(II) coordination polymer, {[Co3(C7H4ClO2)6(C10H8N2)4(H2O)2]·2CH3OH}n, was synthesized and characterized. The structure contains two CoII centres with different octa­hedral environments, [Co(1)N3O3] and [Co(2)N2O4]. The O-donating 3-chloro­benzoate anions (3-Clbenz) act as the terminal ligands, while the N-donating 4,4′-bipy mol­ecules play the role of linkers. The Co(1) ions are linked by 4,4′-bipy mol­ecules into linear chains. Two such chains are joined by [Co(2)(3-Clbenz)2(H2O)2] units via two 4,4′-bipy bridging ligands, thus forming the ladder-chain structure. The crystal packing of the title compound is stabilized by supra­molecular inter­actions, such as hydrogen bonding, ππ and halogen⋯π contacts, giving a three-dimensional framework. The spectroscopic and thermal properties of the title compound have also been investigated.

1. Chemical context

The exploration and synthesis of new one-dimensional coordination polymers based on transition metals and mixed N- and O-donating ligands such as 4,4′-bi­pyridine (4,4′-bipy) and benzoate derivatives have been intensively developed (Kaes et al., 2000[Kaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553-3590.]; Saelim et al., 2020[Saelim, T., Chainok, K., Kielar, F. & Wannarit, N. (2020). Acta Cryst. E76, 1302-1306.]; Topor et al., 2021[Topor, A., Avram, D., Dascalu, R., Maxim, C., Tiseanu, C. & Andruh, M. (2021). Dalton Trans. 50, 9881-9890.]). The substituent groups at the benzoate ligands play an important role not only for electron densities on the aromatic ring, but also for flexible supra­molecular inter­actions, resulting in various bulk physical properties, such as CO2 adsorption (Takahashi et al., 2014[Takahashi, K., Hoshino, N., Takeda, T., Noro, S., Nakamura, T., Takeda, S. & Akutagawa, T. (2014). Dalton Trans. 43, 9081-9089.], 2015[Takahashi, K., Hoshino, N., Takeda, T., Noro, S., Nakamura, T., Takeda, S. & Akutagawa, T. (2015). Inorg. Chem. 54, 9423-9431.]), photoluminescence (Lin, 2015[Lin, R.-G. (2015). Inorg. Chim. Acta, 432, 46-49.]) and conductivity (Islam et al., 2019[Islam, S., Datta, J., Maity, S., Dutta, B., Ahmed, F., Ghosh, P., Ray, P. P. & Mir, M. H. (2019). ChemistrySelect, 4, 3294-3299.]). Among the reported compounds, the majority contain mixed 4,4′-bipy and para-substituted benzoate deriv­atives, but there is a limited number of examples containing meta-substituent benzoate ligands (Fang & Nie, 2011[Fang, Z. & Nie, Q. (2011). J. Coord. Chem. 64, 2573-2582.]; Kar et al., 2011[Kar, P., Biswas, R., Ida, Y., Ishida, T. & Ghosh, A. (2011). Cryst. Growth Des. 11, 5305-5315.]; Xin-Jian et al., 2013[Xin-Jian, W., Yi-Ping, C., Ze-Min, X., Su-Zhi, G., Feng, C., Ling-Yan, Z. & Jian-Zhong, C. (2013). J. Mol. Struct. 1035, 318-325.]; Lin, 2015[Lin, R.-G. (2015). Inorg. Chim. Acta, 432, 46-49.]). We have therefore tried to expand investigations in this area by using various meta-substituted benzoate ligands containing hy­droxy, nitro and halogen substituents. During this study, we employed 3-chloro­benzoate (3-Clbenz), which is expected to support crystal structures via ππ and halogen⋯π inter­molecular inter­actions, together with the 4,4′-bipy organic linker and have synthesized the new CoII coordination polymer {[Co3(4,4′-bipy)4(3-Clbenz)6(H2O)2]·2CH3OH}n, which has an inter­esting one-dimensional ladder-chain structure. This report describes the synthesis, crystal structure, spectroscopic and thermal properties of the title compound.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound comprises two Co2+ ions, three 3-Clbenz anions, two 4,4′-bipy mol­ecules, one coordinated water mol­ecule and one methanol solvate mol­ecule as shown in Fig. 1[link]. One of the Co2+ ions (containing Co2), is situated at an inversion centre. One pyridine ring (C1–C5) and the methanol solvate mol­ecule are disordered over two sets of sites with occupancies of 0.584 (19):0.416 (19) and 0.72 (3):0.28 (3), respectively. Both Co2+ ions are six-coordinated and have octa­hedral environments. The Co1 ion is coordinated by three nitro­gen atoms from three 4,4′-bipy bridging ligands and three oxygen atoms from the carboxyl­ate groups of one monodentate and one bidentate 3-Clbenz ligands, providing a distorted octa­hedral geometry with angles O2—Co1—O1, O2—Co1—O3 and O2—Co1—N1 of 59.88 (6), 119.93 (7) and 148.87 (7)°, respectively. The Co2 ion is coordinated by two nitro­gen atoms from two 4,4′-bipy bridging ligands and four oxygen atoms from two monodentate 3-Clbenz ligands and two coordinated water mol­ecules. The angles in its environment deviate from ideal values no more than by 3.5°. There is an intra­molecular hydrogen bond in the coordination environment of Co2 between the aqua and 3-Clbenz ligands (see Table 1[link]). The Co1 ions are connected by the 4,4′-bipy linkers into linear chains along the a-axis direction, and adjacent chains are linked via the Co2 ions by the 4,4′-bipy ligands, thus forming the ladder-chain structure shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O6i 0.85 (2) 1.84 (2) 2.648 (3) 158 (3)
O7—H7B⋯O8ii 0.85 (2) 1.93 (2) 2.777 (10) 177 (3)
O7—H7B⋯O8Aii 0.85 (2) 1.88 (4) 2.72 (3) 168 (3)
O8—H8A⋯O4 0.82 1.90 2.708 (10) 169
O8A—H8AA⋯O4 0.82 2.04 2.67 (3) 133
C1—H1⋯O3 0.93 2.59 3.102 (7) 115
C5—H5⋯O1 0.93 2.48 3.057 (9) 121
C1A—H1A⋯O3 0.93 2.52 3.088 (9) 120
C5A—H5A⋯O1 0.93 2.33 2.991 (12) 128
C9—H9⋯O5 0.93 2.71 3.189 (3) 113
C11—H11⋯O2 0.93 2.57 3.084 (3) 115
C15—H15⋯N1 0.93 2.60 3.198 (4) 123
C26—H26⋯O6iii 0.93 2.60 3.524 (4) 176
Symmetry codes: (i) [-x+1, -y+2, -z]; (ii) [x, y, z-1]; (iii) [x, y-1, z+1].
[Figure 1]
Figure 1
Asymmetric unit of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
View of the ladder-chain structure along the a-axis direction. The hydrogen atoms located at carbon atoms and methanol solvate mol­ecules are omitted for clarity.

3. Supra­molecular features

The crystal packing is stabilized by inter­molecular inter­actions such as hydrogen bonds (classical O—H⋯O and non-classical C—H⋯O and C—H⋯N), aromatic ππ and Cl⋯π inter­actions (see Table 1[link], Figs. 3[link] and 4[link]). The solvate methanol mol­ecule forms hydrogen bonds to the non-coordinated O4 atom of the 3-Clbenz ligand at Co1 as an H-atom donor and to the coordinated water mol­ecule at Co2 as an H-atom acceptor (see Figs. S1–S3 in the supporting information). Aromatic ππ inter­actions involving the phenyl rings of two 3-Clbenz ligands have an inter­centroid Cg6⋯Cg7 (1 + x, −1 + y, z) separation of 3.917 (2) Å (Fig. 3[link]) (Cg6 and Cg7 are the centroids of the C22–C27 and C29–C34 rings, respectively). There are also halogen⋯π inter­actions between the 3-Clbenz ligands and the pyridine rings of 4,4′-bipy ligands with C24—Cl1⋯Cg5 (x, −1 + y, z) = 3.5833 (14) Å and C31—Cl2⋯Cg4 (−1 + x, 1 + y, z) = 3.7558 (15) Å (Fig. 3[link]) (Cg4 and Cg5 are the centroids of the N3/C11–C15 and N4/C16–C20 rings, respectively). These inter­actions stabilize the structure, leading to a three-dimensional supra­molecular framework (Fig. 4[link]).

[Figure 3]
Figure 3
Views of the inter­molecular ππ and Cl⋯π inter­actions between adjacent ladder chains [symmetry codes: (vi) x, −1 + y, z; (vii) −1 + x, 1 + y, z; (viii) 1 + x, −1 + y, z].
[Figure 4]
Figure 4
Packing diagram of the title compound viewed along the [011] direction. C-bound hydrogen atoms are omitted for clarity. Methanol solvate mol­ecules are indicated by larger balls.

4. Spectroscopic characterization

The FT–IR spectrum of the title compound (Fig. S4) has a characteristic broad peak centred at 3330 cm−1 assigned to the O—H stretching vibrations of coordinated water mol­ecules and the methanol solvate. The strong and sharp peaks at about 1608 and 1382 cm−1 are attributed to the asymmetric and symmetric COO stretching vibration of the monodentate 3-Clbenz ligands, and the peaks appearing at about 1557 and 1488 cm−1 are attributed to the asymmetric and symmetric COO stretching vibration of the chelating 3-Clbenz ligand (Xin-Jian et al., 2013[Xin-Jian, W., Yi-Ping, C., Ze-Min, X., Su-Zhi, G., Feng, C., Ling-Yan, Z. & Jian-Zhong, C. (2013). J. Mol. Struct. 1035, 318-325.]). The strong superimposed bands appearing at 1557 and 1488 cm−1 could be assigned to the C=C/C=N stretching vibration of the aromatic rings of the 3-Clbenz and 4,4′-bipy ligands. The medium-strong peaks in the region of 760 and 731 cm−1 are assigned to C—Cl vibration and C—H bending vibration of the 3-Clbenz ligands. In addition, the medium-strong peak at 1219 cm−1 is assigned to the weak C—N stretching vibration (Xin-Jian et al., 2013[Xin-Jian, W., Yi-Ping, C., Ze-Min, X., Su-Zhi, G., Feng, C., Ling-Yan, Z. & Jian-Zhong, C. (2013). J. Mol. Struct. 1035, 318-325.]) and the bands between 1016 and 1145 cm−1 are assignable to the pyridine ring-breathing modes (Dey et al., 2011[Dey, D., Roy, S., Purkayastha, R. N. D., Pallepogu, R., Male, L. & Mckee, V. (2011). J. Coord. Chem. 64, 1165-1176.]) of the 4,4′-bipy ligands. The characteristic C—H out-of-plane and in-plane deformation bands for pyridine rings are observed at 808 and 631 cm−1, and are shifted to a higher frequency as compared to the values observed for the free ligand (805 and 607 cm−1), suggesting coordinated 4,4′-bipy ligands (Seidel et al., 2011[Seidel, R. W., Goddard, R., Zibrowius, B. & Oppel, I. M. (2011). Polymers, 3, 1458-1474.]). The solid-state electronic spectrum (Fig. S5) of the title compound shows d–d transitions with two broad bands at 489 and 1099 nm, assigned to the ν3: 4T1g4T1g(P) and ν1: 4T1g4T2g transitions, respectively (Fu et al., 2007[Fu, S.-J., Cheng, C.-Y. & Lin, K.-J. (2007). Cryst. Growth Des. 7, 1381-1384.]; Piromchom et al., 2014[Piromchom, J., Wannarit, N., Boonmak, J., Pakawatchai, C. & Youngme, S. (2014). Inorg. Chem. Commun. 40, 59-61.]). The results correspond to the typical d–d transitions for CoII in a distorted octa­hedral geometry, as confirmed by the X-ray structure.

5. PXRD and thermal analysis

The PXRD patterns (Fig. S6) of the title compound used to check the phase purity show good accordance with its simulated PXRD pattern generated from the single-crystal X-ray diffraction data, confirming that the title compound has high phase purity. The TGA curve (Fig. S7) shows the thermal stability of the title compound below 325°C. The first complex step with a weight loss of 29.57% (calculated 30.88%) was found in the temperature range from 100 to 325°C, which was attributed to the loss of methanol mol­ecule of crystallization, two coordinated water and three 3-Clbenz mol­ecules. Then, the structure starts to collapse with a weight loss of 49.24% (calculated 49.44%) in the temperature range from 325–685°C that can be attributed to the removal of three remaining 3-Clbenz and three remaining 4,4′-bipy mol­ecules. After that, the residual product is assumed to be CoO.

6. Database survey

To the best of our knowledge, only two transition-metal-based coordination polymers structurally related to the title compound, namely [Co3(dca)2(nic)4(H2O)8]·2H2O (CSD refcode XOGLOU; Kutasi et al., 2002[Kutasi, A. M., Batten, S. R., Harris, A. R., Moubaraki, B. & Murray, K. S. (2002). CrystEngComm, 4, 202-204.]) and [Cu3(dca)2(nic)4(H2O)8]·2H2O (KAPMOE; Madalan et al., 2005[Madalan, A. M., Paraschiv, C., Sutter, J.-P., Schmidtmann, M., Müller, A. & Andruh, M. (2005). Cryst. Growth Des. 5, 707-711.]) (dca = dicyanamide and nic = 3-pyridine­carboxyl­ate) are reported in the literature. These compounds are isostructural to each other and differ only by the kind of transition metal.

7. Synthesis and crystallization

A methano­lic solution (5 ml) of 4,4′-bipy (0.4586 g, 3 mmol) was added to a solution of Co(NO3)2·6H2O (0.2910 g, 1 mmol) in 10 mL of MeOH/H2O (v:v = 8:2) solution. After stirring for 30 min, a methano­lic solution (5 mL) of m-chloro­benzoic acid (0.3131 g, 2 mmol) was added slowly, and the mixture was stirred continuously at room temperature for 15 minutes. The resulting clear red solution was allowed to evaporate slowly in air. After 4 days, red rod-shaped crystals suitable for single-crystal X-ray diffraction were obtained. Yield 115.2 mg (32.6% based on CoII salt). Analysis calculated for C84H68Cl6Co3N8O16: C, 54.98; H, 3.74; N, 6.11%. Found: C, 53.28; H, 3.60; N, 6.50%. IR (KBr, cm−1): 3330(w), 2348(w), 1608(s), 1557(s), 1488(w), 1415(s), 1382(s), 1263(w), 1219(m), 1145(w), 1068(m), 1031(w), 1010(w), 817(m), 808(m), 760(m), 731(m), 674(w), 657(w), 631(m), 574(w), 499(w), 439(w).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound hydrogen atoms were positioned geometrically and refined as riding, with C—H = 0.96 Å for methyl groups [Uiso(H) = 1.5 Ueq(C)], C—H = 0.93 Å for aromatic [Uiso(H) = 1.2 Ueq(C)]. The oxygen-bound hydrogen atom of methanol was positioned with O—H = 0.82 Å [Uiso(H) = 1.5Ueq(O)], and the OH group was allowed to rotate (AFIX 147). Hydrogen atoms of the coordinated water mol­ecule were located in the differential electron density map and refined with the O—H distance contrained to 0.84 Å.

Table 2
Experimental details

Crystal data
Chemical formula [Co3(C7H4ClO2)6(C10H8N2)4(H2O)2]·2CH4O
Mr 1834.95
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 11.388 (2), 11.868 (2), 18.055 (3)
α, β, γ (°) 79.516 (6), 79.088 (6), 62.148 (6)
V3) 2106.3 (7)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.84
Crystal size (mm) 0.43 × 0.32 × 0.26
 
Data collection
Diffractometer Bruker D8 QUEST CMOS PHOTON II
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.684, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 78843, 8352, 6158
Rint 0.077
(sin θ/λ)max−1) 0.621
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.093, 1.02
No. of reflections 8352
No. of parameters 598
No. of restraints 43
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.36
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

poly[[bis(aqua-κO)tetrakis(µ-4,4'-bipyridine-κ2N:N')hexakis(3-chlorobenzoato)-κ5O;κ2O:O'-tricobalt(II)] methanol disolvate] top
Crystal data top
[Co3(C7H4ClO2)6(C10H8N2)4(H2O)2]·2CH4OZ = 1
Mr = 1834.95F(000) = 939
Triclinic, P1Dx = 1.447 Mg m3
a = 11.388 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.868 (2) ÅCell parameters from 9884 reflections
c = 18.055 (3) Åθ = 2.9–25.9°
α = 79.516 (6)°µ = 0.84 mm1
β = 79.088 (6)°T = 296 K
γ = 62.148 (6)°Block, red
V = 2106.3 (7) Å30.43 × 0.32 × 0.26 mm
Data collection top
Bruker D8 QUEST CMOS PHOTON II
diffractometer
8352 independent reflections
Radiation source: sealed x-ray tube, Mo6158 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 7.39 pixels mm-1θmax = 26.2°, θmin = 2.9°
ω and φ scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1414
Tmin = 0.684, Tmax = 0.745l = 2222
78843 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0352P)2 + 1.2109P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.39 e Å3
8352 reflectionsΔρmin = 0.36 e Å3
598 parametersExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
43 restraintsExtinction coefficient: 0.0034 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.50698 (3)0.68260 (3)0.63422 (2)0.03063 (10)
Co20.5000001.0000000.0000000.03999 (13)
Cl10.99436 (12)0.00343 (9)0.59982 (7)0.1103 (4)
Cl20.05072 (9)1.34860 (8)0.61650 (5)0.0794 (3)
Cl31.09130 (10)0.45840 (8)0.12014 (5)0.0856 (3)
O10.63032 (18)0.48413 (16)0.60490 (10)0.0500 (4)
O20.56402 (17)0.52368 (16)0.72324 (10)0.0471 (4)
O30.39489 (17)0.86355 (16)0.66137 (10)0.0500 (4)
O40.3946 (2)0.80593 (19)0.78514 (12)0.0682 (6)
O50.70423 (17)0.88325 (17)0.02018 (9)0.0489 (4)
O60.79423 (19)1.0110 (2)0.00999 (12)0.0637 (5)
O70.4670 (2)0.83959 (19)0.00306 (11)0.0554 (5)
H7A0.3828 (18)0.870 (3)0.0018 (18)0.070 (10)*
H7B0.504 (3)0.789 (3)0.0370 (14)0.074 (11)*
O80.5835 (9)0.6811 (6)0.8812 (6)0.070 (2)0.72 (3)
H8A0.5342670.7132020.8476350.105*0.72 (3)
O8A0.552 (4)0.669 (3)0.893 (2)0.118 (10)0.28 (3)
H8AA0.5131490.6673220.8603150.177*0.28 (3)
N10.50401 (17)0.74863 (17)0.51524 (10)0.0320 (4)
N20.5003 (2)0.94739 (19)0.12052 (10)0.0436 (5)
N30.68941 (18)0.69508 (18)0.63878 (11)0.0373 (4)
N41.32607 (18)0.66423 (18)0.63798 (11)0.0378 (4)
C10.4041 (7)0.8562 (8)0.4894 (4)0.0409 (18)0.584 (19)
H10.3361330.9060390.5241060.049*0.584 (19)
C20.3979 (7)0.8961 (8)0.4134 (3)0.0422 (17)0.584 (19)
H20.3243860.9701460.3977320.051*0.584 (19)
C40.6000 (9)0.7124 (8)0.3873 (5)0.0385 (19)0.584 (19)
H40.6682350.6587870.3542240.046*0.584 (19)
C50.5979 (9)0.6781 (9)0.4639 (4)0.0368 (19)0.584 (19)
H50.6661820.6008020.4811760.044*0.584 (19)
C1A0.4507 (18)0.8730 (9)0.4867 (5)0.052 (3)0.416 (19)
H1A0.4116510.9341750.5209900.062*0.416 (19)
C2A0.4498 (19)0.9156 (8)0.4113 (4)0.056 (4)0.416 (19)
H2A0.4156361.0028380.3952750.067*0.416 (19)
C4A0.5608 (15)0.7006 (10)0.3868 (6)0.038 (3)0.416 (19)
H4A0.6020700.6379770.3534280.045*0.416 (19)
C5A0.5608 (15)0.6653 (12)0.4634 (6)0.038 (3)0.416 (19)
H5A0.6026810.5783720.4802890.046*0.416 (19)
C30.5007 (2)0.8269 (2)0.35885 (12)0.0355 (5)
C60.5011 (2)0.8683 (2)0.27628 (12)0.0374 (5)
C70.4220 (3)0.9934 (2)0.24883 (13)0.0470 (6)
H70.3672771.0537570.2823400.056*
C80.4246 (3)1.0285 (2)0.17172 (14)0.0504 (7)
H80.3707801.1131440.1545640.060*
C90.5766 (3)0.8273 (3)0.14692 (14)0.0582 (8)
H90.6308290.7691040.1121680.070*
C100.5794 (3)0.7848 (3)0.22277 (14)0.0563 (7)
H100.6342470.6995230.2382100.068*
C110.7468 (2)0.6564 (2)0.70265 (13)0.0415 (6)
H110.7020070.6320020.7461590.050*
C120.8689 (2)0.6506 (2)0.70775 (13)0.0401 (5)
H120.9040540.6233210.7538650.048*
C130.9389 (2)0.6852 (2)0.64437 (13)0.0350 (5)
C140.8759 (3)0.7325 (3)0.57973 (15)0.0589 (8)
H140.9159220.7623620.5362090.071*
C150.7537 (3)0.7356 (3)0.57951 (15)0.0599 (8)
H150.7136500.7680760.5349680.072*
C161.0742 (2)0.6734 (2)0.64405 (13)0.0341 (5)
C171.1168 (2)0.6868 (2)0.70762 (13)0.0405 (6)
H171.0616420.6988690.7535560.049*
C181.2415 (2)0.6820 (2)0.70222 (14)0.0433 (6)
H181.2681210.6915610.7453400.052*
C191.2866 (2)0.6468 (2)0.57783 (14)0.0433 (6)
H191.3449210.6318510.5330420.052*
C201.1646 (2)0.6498 (2)0.57855 (14)0.0439 (6)
H201.1423970.6359070.5351670.053*
C210.6305 (2)0.4468 (2)0.67475 (15)0.0407 (6)
C220.7160 (2)0.3079 (2)0.69985 (14)0.0425 (6)
C230.8002 (3)0.2268 (2)0.64613 (16)0.0516 (7)
H230.7989600.2563150.5947780.062*
C240.8861 (3)0.1018 (3)0.66913 (18)0.0633 (8)
C250.8881 (4)0.0552 (3)0.7441 (2)0.0755 (10)
H250.9463440.0293210.7588250.091*
C260.8032 (4)0.1350 (3)0.79735 (18)0.0734 (9)
H260.8034400.1038450.8484870.088*
C270.7169 (3)0.2615 (3)0.77596 (16)0.0566 (7)
H270.6599470.3148620.8125640.068*
C280.3553 (2)0.8863 (2)0.73000 (15)0.0433 (6)
C290.2493 (2)1.0208 (2)0.74272 (14)0.0409 (6)
C300.2048 (2)1.1118 (2)0.68156 (14)0.0443 (6)
H300.2411211.0913670.6323590.053*
C310.1062 (3)1.2331 (2)0.69406 (15)0.0497 (6)
C320.0488 (3)1.2658 (3)0.76603 (18)0.0640 (8)
H320.0192541.3474390.7736070.077*
C330.0945 (3)1.1749 (3)0.82652 (18)0.0721 (9)
H330.0578861.1959250.8756010.086*
C340.1941 (3)1.0526 (3)0.81560 (15)0.0582 (7)
H340.2238450.9920420.8570680.070*
C350.8013 (3)0.9088 (3)0.02400 (13)0.0460 (6)
C360.9385 (3)0.8046 (3)0.04884 (13)0.0477 (6)
C370.9508 (3)0.6923 (3)0.06973 (14)0.0502 (6)
H370.8753890.6804890.0689120.060*
C381.0771 (3)0.5980 (3)0.09184 (15)0.0590 (8)
C391.1901 (3)0.6134 (4)0.09343 (19)0.0752 (10)
H391.2741040.5491590.1083210.090*
C401.1773 (3)0.7249 (4)0.0728 (2)0.0822 (10)
H401.2531020.7362530.0736920.099*
C411.0521 (3)0.8204 (3)0.05062 (17)0.0663 (8)
H411.0442210.8956010.0368370.080*
C420.601 (2)0.5527 (8)0.9055 (6)0.098 (4)0.72 (3)
H42A0.6907540.4928040.8897080.148*0.72 (3)
H42B0.5395830.5378970.8831460.148*0.72 (3)
H42C0.5828550.5415600.9597500.148*0.72 (3)
C42A0.661 (3)0.544 (2)0.909 (2)0.112 (9)0.28 (3)
H42D0.7438580.5428320.8848620.168*0.28 (3)
H42E0.6468890.4808990.8906480.168*0.28 (3)
H42F0.6640340.5245340.9631450.168*0.28 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02389 (15)0.03470 (17)0.03223 (17)0.01262 (13)0.00512 (12)0.00071 (12)
Co20.0419 (3)0.0426 (3)0.0269 (2)0.0121 (2)0.00361 (19)0.00320 (19)
Cl10.1260 (9)0.0567 (5)0.1072 (8)0.0018 (5)0.0107 (7)0.0273 (5)
Cl20.0859 (6)0.0508 (4)0.0776 (6)0.0133 (4)0.0140 (4)0.0039 (4)
Cl30.0938 (6)0.0531 (5)0.0815 (6)0.0070 (4)0.0091 (5)0.0155 (4)
O10.0551 (11)0.0391 (10)0.0466 (11)0.0144 (8)0.0147 (8)0.0069 (8)
O20.0441 (10)0.0418 (10)0.0529 (11)0.0168 (8)0.0090 (8)0.0025 (8)
O30.0432 (10)0.0454 (10)0.0546 (11)0.0130 (8)0.0027 (8)0.0172 (8)
O40.0709 (14)0.0511 (12)0.0674 (14)0.0140 (10)0.0191 (11)0.0024 (10)
O50.0422 (10)0.0506 (11)0.0456 (10)0.0136 (8)0.0041 (8)0.0071 (8)
O60.0567 (12)0.0623 (13)0.0704 (14)0.0230 (10)0.0014 (10)0.0232 (11)
O70.0581 (14)0.0516 (12)0.0523 (12)0.0193 (10)0.0037 (10)0.0137 (9)
O80.081 (4)0.064 (3)0.051 (3)0.018 (2)0.011 (2)0.0108 (18)
O8A0.136 (14)0.118 (12)0.091 (15)0.030 (9)0.047 (12)0.031 (9)
N10.0288 (10)0.0362 (10)0.0299 (10)0.0132 (8)0.0064 (8)0.0021 (8)
N20.0467 (12)0.0432 (12)0.0300 (10)0.0117 (10)0.0034 (9)0.0034 (9)
N30.0281 (10)0.0439 (11)0.0415 (11)0.0184 (9)0.0064 (8)0.0002 (9)
N40.0296 (10)0.0452 (11)0.0416 (11)0.0198 (9)0.0066 (8)0.0010 (9)
C10.033 (3)0.043 (3)0.033 (3)0.009 (2)0.001 (2)0.001 (2)
C20.035 (3)0.041 (3)0.036 (3)0.007 (2)0.003 (2)0.000 (2)
C40.035 (4)0.041 (3)0.033 (3)0.014 (3)0.000 (2)0.003 (2)
C50.032 (4)0.036 (3)0.036 (3)0.011 (3)0.002 (2)0.001 (2)
C1A0.079 (9)0.034 (4)0.034 (4)0.019 (5)0.002 (5)0.006 (3)
C2A0.087 (9)0.031 (4)0.030 (4)0.014 (5)0.004 (5)0.004 (3)
C4A0.046 (7)0.031 (4)0.033 (4)0.016 (4)0.004 (4)0.007 (3)
C5A0.047 (7)0.028 (4)0.037 (4)0.017 (4)0.001 (4)0.003 (3)
C30.0372 (12)0.0389 (13)0.0301 (12)0.0165 (10)0.0051 (9)0.0034 (10)
C60.0401 (13)0.0395 (13)0.0301 (12)0.0153 (11)0.0057 (10)0.0034 (10)
C70.0592 (16)0.0401 (14)0.0299 (12)0.0131 (12)0.0017 (11)0.0059 (10)
C80.0598 (17)0.0391 (14)0.0357 (13)0.0099 (12)0.0057 (12)0.0002 (11)
C90.0654 (18)0.0500 (16)0.0313 (13)0.0024 (14)0.0022 (12)0.0089 (12)
C100.0663 (18)0.0410 (15)0.0354 (14)0.0018 (13)0.0082 (12)0.0033 (11)
C110.0324 (12)0.0595 (16)0.0356 (13)0.0246 (12)0.0005 (10)0.0055 (11)
C120.0346 (12)0.0540 (15)0.0359 (13)0.0227 (11)0.0075 (10)0.0034 (11)
C130.0297 (11)0.0378 (13)0.0404 (13)0.0171 (10)0.0066 (10)0.0025 (10)
C140.0499 (16)0.096 (2)0.0457 (15)0.0507 (17)0.0148 (12)0.0187 (15)
C150.0509 (16)0.097 (2)0.0464 (15)0.0487 (17)0.0236 (13)0.0225 (15)
C160.0305 (12)0.0360 (12)0.0393 (13)0.0181 (10)0.0061 (10)0.0009 (10)
C170.0338 (12)0.0567 (15)0.0358 (13)0.0260 (12)0.0021 (10)0.0018 (11)
C180.0403 (13)0.0622 (16)0.0359 (13)0.0297 (13)0.0110 (11)0.0011 (11)
C190.0344 (13)0.0591 (16)0.0427 (14)0.0257 (12)0.0014 (10)0.0135 (12)
C200.0379 (13)0.0619 (16)0.0418 (14)0.0279 (12)0.0028 (11)0.0154 (12)
C210.0364 (13)0.0386 (13)0.0512 (16)0.0207 (11)0.0122 (11)0.0037 (12)
C220.0454 (14)0.0383 (13)0.0486 (15)0.0221 (12)0.0159 (12)0.0048 (11)
C230.0588 (17)0.0414 (15)0.0524 (16)0.0206 (13)0.0148 (13)0.0030 (12)
C240.069 (2)0.0385 (15)0.073 (2)0.0139 (14)0.0186 (16)0.0039 (14)
C250.095 (3)0.0388 (16)0.083 (2)0.0189 (17)0.037 (2)0.0115 (17)
C260.104 (3)0.0550 (19)0.0584 (19)0.0361 (19)0.0314 (19)0.0229 (16)
C270.0692 (19)0.0516 (17)0.0501 (16)0.0285 (15)0.0152 (14)0.0045 (13)
C280.0356 (13)0.0472 (15)0.0518 (16)0.0213 (11)0.0043 (12)0.0099 (13)
C290.0390 (13)0.0431 (14)0.0436 (14)0.0182 (11)0.0046 (11)0.0121 (11)
C300.0426 (14)0.0451 (14)0.0436 (14)0.0173 (12)0.0006 (11)0.0124 (11)
C310.0467 (15)0.0429 (15)0.0558 (16)0.0155 (12)0.0068 (12)0.0087 (12)
C320.0641 (19)0.0477 (17)0.068 (2)0.0122 (14)0.0007 (15)0.0239 (15)
C330.082 (2)0.068 (2)0.0523 (18)0.0204 (18)0.0089 (16)0.0305 (16)
C340.0671 (19)0.0606 (18)0.0422 (15)0.0228 (15)0.0057 (13)0.0117 (13)
C350.0473 (15)0.0530 (16)0.0273 (12)0.0147 (13)0.0036 (11)0.0027 (11)
C360.0445 (15)0.0586 (17)0.0299 (13)0.0164 (13)0.0016 (11)0.0025 (11)
C370.0510 (16)0.0524 (16)0.0375 (14)0.0160 (13)0.0064 (12)0.0008 (12)
C380.0604 (18)0.0526 (17)0.0397 (15)0.0056 (14)0.0045 (13)0.0056 (12)
C390.0452 (18)0.085 (2)0.066 (2)0.0058 (17)0.0022 (15)0.0128 (18)
C400.0489 (19)0.103 (3)0.088 (3)0.0281 (19)0.0047 (17)0.023 (2)
C410.0550 (18)0.076 (2)0.066 (2)0.0276 (16)0.0037 (15)0.0194 (16)
C420.136 (10)0.072 (4)0.077 (4)0.035 (4)0.039 (5)0.009 (3)
C42A0.114 (12)0.102 (11)0.121 (15)0.044 (8)0.020 (11)0.022 (9)
Geometric parameters (Å, º) top
Co1—O12.2096 (18)C9—H90.9300
Co1—O22.1703 (17)C9—C101.372 (3)
Co1—O32.0166 (17)C10—H100.9300
Co1—N12.1494 (18)C11—H110.9300
Co1—N32.1683 (18)C11—C121.380 (3)
Co1—N4i2.1584 (18)C12—H120.9300
Co2—O5ii2.0770 (17)C12—C131.380 (3)
Co2—O52.0770 (17)C13—C141.376 (3)
Co2—O7ii2.117 (2)C13—C161.479 (3)
Co2—O72.117 (2)C14—H140.9300
Co2—N2ii2.1520 (19)C14—C151.376 (3)
Co2—N22.1519 (19)C15—H150.9300
Cl1—C241.747 (3)C16—C171.388 (3)
Cl2—C311.751 (3)C16—C201.388 (3)
Cl3—C381.749 (3)C17—H170.9300
O1—C211.259 (3)C17—C181.380 (3)
O2—C211.252 (3)C18—H180.9300
O3—C281.268 (3)C19—H190.9300
O4—C281.235 (3)C19—C201.372 (3)
O5—C351.263 (3)C20—H200.9300
O6—C351.247 (3)C21—C221.505 (3)
O7—H7A0.849 (17)C22—C231.383 (4)
O7—H7B0.848 (18)C22—C271.385 (4)
O8—H8A0.8200C23—H230.9300
O8—C421.436 (9)C23—C241.380 (4)
O8A—H8AA0.8200C24—C251.366 (4)
O8A—C42A1.445 (17)C25—H250.9300
N1—C11.330 (7)C25—C261.371 (5)
N1—C51.332 (8)C26—H260.9300
N1—C1A1.348 (9)C26—C271.387 (4)
N1—C5A1.335 (10)C27—H270.9300
N2—C81.331 (3)C28—C291.511 (3)
N2—C91.329 (3)C29—C301.382 (3)
N3—C111.334 (3)C29—C341.384 (3)
N3—C151.325 (3)C30—H300.9300
N4—C181.340 (3)C30—C311.377 (3)
N4—C191.333 (3)C31—C321.375 (4)
C1—H10.9300C32—H320.9300
C1—C21.372 (7)C32—C331.375 (4)
C2—H20.9300C33—H330.9300
C2—C31.405 (6)C33—C341.383 (4)
C4—H40.9300C34—H340.9300
C4—C51.368 (8)C35—C361.518 (4)
C4—C31.386 (8)C36—C371.387 (4)
C5—H50.9300C36—C411.386 (4)
C1A—H1A0.9300C37—H370.9300
C1A—C2A1.364 (10)C37—C381.387 (4)
C2A—H2A0.9300C38—C391.376 (5)
C2A—C31.388 (8)C39—H390.9300
C4A—H4A0.9300C39—C401.375 (5)
C4A—C5A1.372 (11)C40—H400.9300
C4A—C31.366 (10)C40—C411.384 (4)
C5A—H5A0.9300C41—H410.9300
C3—C61.482 (3)C42—H42A0.9600
C6—C71.383 (3)C42—H42B0.9600
C6—C101.381 (3)C42—H42C0.9600
C7—H70.9300C42A—H42D0.9600
C7—C81.377 (3)C42A—H42E0.9600
C8—H80.9300C42A—H42F0.9600
O2—Co1—O159.88 (6)C11—C12—H12120.0
O3—Co1—O1179.75 (7)C13—C12—C11119.9 (2)
O3—Co1—O2119.93 (7)C13—C12—H12120.0
O3—Co1—N191.08 (7)C12—C13—C16123.1 (2)
O3—Co1—N391.04 (7)C14—C13—C12116.3 (2)
O3—Co1—N4i89.24 (7)C14—C13—C16120.6 (2)
N1—Co1—O189.12 (7)C13—C14—H14120.0
N1—Co1—O2148.87 (7)C15—C14—C13120.0 (2)
N1—Co1—N393.25 (7)C15—C14—H14120.0
N1—Co1—N4i90.81 (7)N3—C15—C14124.1 (2)
N3—Co1—O188.80 (7)N3—C15—H15117.9
N3—Co1—O289.10 (7)C14—C15—H15117.9
N4i—Co1—O190.91 (7)C17—C16—C13122.6 (2)
N4i—Co1—O287.24 (7)C20—C16—C13120.7 (2)
N4i—Co1—N3175.93 (7)C20—C16—C17116.7 (2)
O5—Co2—O5ii180.0C16—C17—H17120.2
O5ii—Co2—O7ii88.68 (8)C18—C17—C16119.6 (2)
O5—Co2—O7ii91.32 (8)C18—C17—H17120.2
O5—Co2—O788.68 (8)N4—C18—C17123.3 (2)
O5ii—Co2—O791.32 (8)N4—C18—H18118.4
O5—Co2—N291.93 (7)C17—C18—H18118.4
O5ii—Co2—N2ii91.93 (7)N4—C19—H19118.3
O5ii—Co2—N288.07 (7)N4—C19—C20123.4 (2)
O5—Co2—N2ii88.07 (7)C20—C19—H19118.3
O7ii—Co2—O7180.00 (11)C16—C20—H20120.0
O7—Co2—N2ii93.42 (8)C19—C20—C16120.0 (2)
O7ii—Co2—N2ii86.58 (8)C19—C20—H20120.0
O7—Co2—N286.58 (8)O1—C21—C22119.0 (2)
O7ii—Co2—N293.42 (8)O2—C21—O1121.1 (2)
N2—Co2—N2ii180.0O2—C21—C22119.8 (2)
C21—O1—Co188.42 (15)C23—C22—C21119.3 (2)
C21—O2—Co190.38 (14)C23—C22—C27119.4 (2)
C28—O3—Co1120.99 (17)C27—C22—C21121.2 (2)
C35—O5—Co2129.83 (17)C22—C23—H23120.2
Co2—O7—H7A104 (2)C24—C23—C22119.7 (3)
Co2—O7—H7B125 (2)C24—C23—H23120.2
H7A—O7—H7B108 (3)C23—C24—Cl1118.4 (2)
C42—O8—H8A109.5C25—C24—Cl1120.3 (2)
C42A—O8A—H8AA109.5C25—C24—C23121.4 (3)
C1—N1—Co1121.7 (3)C24—C25—H25120.5
C1—N1—C5117.2 (5)C24—C25—C26119.0 (3)
C5—N1—Co1120.9 (4)C26—C25—H25120.5
C1A—N1—Co1124.4 (4)C25—C26—H26119.6
C5A—N1—Co1120.6 (5)C25—C26—C27120.9 (3)
C5A—N1—C1A115.0 (7)C27—C26—H26119.6
C8—N2—Co2123.55 (16)C22—C27—C26119.7 (3)
C9—N2—Co2119.64 (16)C22—C27—H27120.2
C9—N2—C8116.8 (2)C26—C27—H27120.2
C11—N3—Co1120.60 (15)O3—C28—C29116.0 (2)
C15—N3—Co1123.58 (16)O4—C28—O3124.4 (2)
C15—N3—C11115.8 (2)O4—C28—C29119.6 (2)
C18—N4—Co1iii119.07 (15)C30—C29—C28120.2 (2)
C19—N4—Co1iii123.78 (15)C30—C29—C34119.6 (2)
C19—N4—C18116.89 (19)C34—C29—C28120.2 (2)
N1—C1—H1118.9C29—C30—H30120.3
N1—C1—C2122.3 (6)C31—C30—C29119.5 (2)
C2—C1—H1118.9C31—C30—H30120.3
C1—C2—H2119.5C30—C31—Cl2119.4 (2)
C1—C2—C3121.1 (5)C32—C31—Cl2119.0 (2)
C3—C2—H2119.5C32—C31—C30121.7 (3)
C5—C4—H4120.0C31—C32—H32120.8
C5—C4—C3120.1 (8)C33—C32—C31118.4 (3)
C3—C4—H4120.0C33—C32—H32120.8
N1—C5—C4124.0 (8)C32—C33—H33119.5
N1—C5—H5118.0C32—C33—C34121.1 (3)
C4—C5—H5118.0C34—C33—H33119.5
N1—C1A—H1A117.6C29—C34—H34120.1
N1—C1A—C2A124.7 (8)C33—C34—C29119.8 (3)
C2A—C1A—H1A117.6C33—C34—H34120.1
C1A—C2A—H2A120.5O5—C35—C36116.0 (2)
C1A—C2A—C3119.1 (8)O6—C35—O5126.2 (2)
C3—C2A—H2A120.5O6—C35—C36117.8 (2)
C5A—C4A—H4A119.7C37—C36—C35120.0 (2)
C3—C4A—H4A119.7C41—C36—C35120.5 (3)
C3—C4A—C5A120.7 (10)C41—C36—C37119.5 (3)
N1—C5A—C4A123.7 (11)C36—C37—H37120.4
N1—C5A—H5A118.2C38—C37—C36119.1 (3)
C4A—C5A—H5A118.2C38—C37—H37120.4
C2—C3—C6123.2 (3)C37—C38—Cl3118.7 (3)
C4—C3—C2115.1 (5)C39—C38—Cl3119.8 (2)
C4—C3—C6121.6 (4)C39—C38—C37121.4 (3)
C2A—C3—C6121.2 (4)C38—C39—H39120.4
C4A—C3—C2A116.6 (6)C40—C39—C38119.3 (3)
C4A—C3—C6121.9 (5)C40—C39—H39120.4
C7—C6—C3121.4 (2)C39—C40—H40119.9
C10—C6—C3122.2 (2)C39—C40—C41120.2 (3)
C10—C6—C7116.5 (2)C41—C40—H40119.9
C6—C7—H7120.1C36—C41—H41119.8
C8—C7—C6119.8 (2)C40—C41—C36120.5 (3)
C8—C7—H7120.1C40—C41—H41119.8
N2—C8—C7123.4 (2)O8—C42—H42A109.5
N2—C8—H8118.3O8—C42—H42B109.5
C7—C8—H8118.3O8—C42—H42C109.5
N2—C9—H9118.3H42A—C42—H42B109.5
N2—C9—C10123.4 (2)H42A—C42—H42C109.5
C10—C9—H9118.3H42B—C42—H42C109.5
C6—C10—H10119.9O8A—C42A—H42D109.5
C9—C10—C6120.2 (2)O8A—C42A—H42E109.5
C9—C10—H10119.9O8A—C42A—H42F109.5
N3—C11—H11118.2H42D—C42A—H42E109.5
N3—C11—C12123.7 (2)H42D—C42A—H42F109.5
C12—C11—H11118.2H42E—C42A—H42F109.5
Co1—O1—C21—O24.4 (2)C5A—C4A—C3—C2A4.7 (12)
Co1—O1—C21—C22173.47 (19)C5A—C4A—C3—C6178.9 (7)
Co1—O2—C21—O14.5 (2)C3—C4—C5—N10.3 (10)
Co1—O2—C21—C22173.37 (19)C3—C4A—C5A—N10.0 (14)
Co1—O3—C28—O410.1 (3)C3—C6—C7—C8179.9 (2)
Co1—O3—C28—C29167.67 (15)C3—C6—C10—C9180.0 (3)
Co1—N1—C1—C2176.8 (4)C6—C7—C8—N20.1 (4)
Co1—N1—C5—C4178.0 (5)C7—C6—C10—C90.1 (4)
Co1—N1—C1A—C2A179.2 (7)C8—N2—C9—C100.5 (4)
Co1—N1—C5A—C4A179.0 (7)C9—N2—C8—C70.4 (4)
Co1—N3—C11—C12173.84 (19)C10—C6—C7—C80.0 (4)
Co1—N3—C15—C14173.5 (3)C11—N3—C15—C143.8 (4)
Co1iii—N4—C18—C17172.36 (19)C11—C12—C13—C144.2 (4)
Co1iii—N4—C19—C20172.32 (19)C11—C12—C13—C16175.8 (2)
Co2—O5—C35—O66.2 (4)C12—C13—C14—C154.0 (4)
Co2—O5—C35—C36173.12 (14)C12—C13—C16—C1731.6 (3)
Co2—N2—C8—C7177.9 (2)C12—C13—C16—C20149.3 (2)
Co2—N2—C9—C10177.8 (2)C13—C14—C15—N30.0 (5)
Cl1—C24—C25—C26179.2 (3)C13—C16—C17—C18176.3 (2)
Cl2—C31—C32—C33179.1 (3)C13—C16—C20—C19176.0 (2)
Cl3—C38—C39—C40178.5 (3)C14—C13—C16—C17148.4 (3)
O1—C21—C22—C235.0 (3)C14—C13—C16—C2030.7 (4)
O1—C21—C22—C27178.3 (2)C15—N3—C11—C123.6 (4)
O2—C21—C22—C23172.9 (2)C16—C13—C14—C15176.0 (3)
O2—C21—C22—C273.8 (3)C16—C17—C18—N40.3 (4)
O3—C28—C29—C302.4 (3)C17—C16—C20—C193.1 (4)
O3—C28—C29—C34176.1 (2)C18—N4—C19—C201.8 (4)
O4—C28—C29—C30179.7 (2)C19—N4—C18—C172.1 (4)
O4—C28—C29—C341.7 (4)C20—C16—C17—C182.9 (4)
O5—C35—C36—C373.5 (3)C21—C22—C23—C24175.2 (2)
O5—C35—C36—C41176.3 (2)C21—C22—C27—C26175.9 (3)
O6—C35—C36—C37175.9 (2)C22—C23—C24—Cl1178.1 (2)
O6—C35—C36—C414.3 (4)C22—C23—C24—C251.2 (5)
N1—C1—C2—C32.6 (9)C23—C22—C27—C260.8 (4)
N1—C1A—C2A—C33.5 (15)C23—C24—C25—C260.2 (5)
N2—C9—C10—C60.4 (5)C24—C25—C26—C270.6 (5)
N3—C11—C12—C130.4 (4)C25—C26—C27—C220.2 (5)
N4—C19—C20—C160.8 (4)C27—C22—C23—C241.5 (4)
C1—N1—C5—C42.8 (8)C28—C29—C30—C31178.6 (2)
C1—C2—C3—C45.3 (7)C28—C29—C34—C33178.2 (3)
C1—C2—C3—C6177.8 (4)C29—C30—C31—Cl2179.59 (19)
C2—C3—C6—C718.7 (6)C29—C30—C31—C321.1 (4)
C2—C3—C6—C10161.2 (6)C30—C29—C34—C330.3 (4)
C4—C3—C6—C7164.7 (6)C30—C31—C32—C331.6 (5)
C4—C3—C6—C1015.5 (6)C31—C32—C33—C341.1 (5)
C5—N1—C1—C21.6 (8)C32—C33—C34—C290.2 (5)
C5—C4—C3—C24.2 (8)C34—C29—C30—C310.1 (4)
C5—C4—C3—C6178.9 (5)C35—C36—C37—C38179.6 (2)
C1A—N1—C5A—C4A3.0 (12)C35—C36—C41—C40179.6 (3)
C1A—C2A—C3—C4A6.2 (12)C36—C37—C38—Cl3178.55 (19)
C1A—C2A—C3—C6179.5 (7)C36—C37—C38—C390.0 (4)
C2A—C3—C6—C716.8 (11)C37—C36—C41—C400.2 (4)
C2A—C3—C6—C10163.3 (11)C37—C38—C39—C400.1 (5)
C4A—C3—C6—C7169.2 (8)C38—C39—C40—C410.0 (5)
C4A—C3—C6—C1010.7 (9)C39—C40—C41—C360.2 (5)
C5A—N1—C1A—C2A1.2 (12)C41—C36—C37—C380.1 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O6ii0.85 (2)1.84 (2)2.648 (3)158 (3)
O7—H7B···O8iv0.85 (2)1.93 (2)2.777 (10)177 (3)
O7—H7B···O8Aiv0.85 (2)1.88 (4)2.72 (3)168 (3)
O8—H8A···O40.821.902.708 (10)169
O8A—H8AA···O40.822.042.67 (3)133
C1—H1···O30.932.593.102 (7)115
C5—H5···O10.932.483.057 (9)121
C1A—H1A···O30.932.523.088 (9)120
C5A—H5A···O10.932.332.991 (12)128
C9—H9···O50.932.713.189 (3)113
C11—H11···O20.932.573.084 (3)115
C15—H15···N10.932.603.198 (4)123
C26—H26···O6v0.932.603.524 (4)176
Symmetry codes: (ii) x+1, y+2, z; (iv) x, y, z1; (v) x, y1, z+1.
 

Acknowledgements

The authors are grateful to Faculty of Science and Technology, Thammasat University for funds to purchase the X-ray diffractometer.

Funding information

Funding for this research was provided by: Financial assistance from the Graduate Development Scholarship 2020, National Research Council of Thailand (contract No. 4/2563 to P. Promwit); Scholarship for talent student to study graduate program in Faculty of Science and Technology Thammasat University (contract No. TB23/2560 to P. Promwit); the Thammasat University Research unit in Multifunctional Crystalline Materials and Applications Research Unit (TU-MCMA) (grant to K. Chainok, N. Wannarit).

References

First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDey, D., Roy, S., Purkayastha, R. N. D., Pallepogu, R., Male, L. & Mckee, V. (2011). J. Coord. Chem. 64, 1165–1176.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFang, Z. & Nie, Q. (2011). J. Coord. Chem. 64, 2573–2582.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, S.-J., Cheng, C.-Y. & Lin, K.-J. (2007). Cryst. Growth Des. 7, 1381–1384.  Web of Science CSD CrossRef CAS Google Scholar
First citationIslam, S., Datta, J., Maity, S., Dutta, B., Ahmed, F., Ghosh, P., Ray, P. P. & Mir, M. H. (2019). ChemistrySelect, 4, 3294–3299.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553–3590.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKar, P., Biswas, R., Ida, Y., Ishida, T. & Ghosh, A. (2011). Cryst. Growth Des. 11, 5305–5315.  Web of Science CSD CrossRef CAS Google Scholar
First citationKutasi, A. M., Batten, S. R., Harris, A. R., Moubaraki, B. & Murray, K. S. (2002). CrystEngComm, 4, 202–204.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, R.-G. (2015). Inorg. Chim. Acta, 432, 46–49.  Web of Science CSD CrossRef CAS Google Scholar
First citationMadalan, A. M., Paraschiv, C., Sutter, J.-P., Schmidtmann, M., Müller, A. & Andruh, M. (2005). Cryst. Growth Des. 5, 707–711.  Web of Science CSD CrossRef CAS Google Scholar
First citationPiromchom, J., Wannarit, N., Boonmak, J., Pakawatchai, C. & Youngme, S. (2014). Inorg. Chem. Commun. 40, 59–61.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaelim, T., Chainok, K., Kielar, F. & Wannarit, N. (2020). Acta Cryst. E76, 1302–1306.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeidel, R. W., Goddard, R., Zibrowius, B. & Oppel, I. M. (2011). Polymers, 3, 1458–1474.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakahashi, K., Hoshino, N., Takeda, T., Noro, S., Nakamura, T., Takeda, S. & Akutagawa, T. (2014). Dalton Trans. 43, 9081–9089.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTakahashi, K., Hoshino, N., Takeda, T., Noro, S., Nakamura, T., Takeda, S. & Akutagawa, T. (2015). Inorg. Chem. 54, 9423–9431.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTopor, A., Avram, D., Dascalu, R., Maxim, C., Tiseanu, C. & Andruh, M. (2021). Dalton Trans. 50, 9881–9890.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationXin-Jian, W., Yi-Ping, C., Ze-Min, X., Su-Zhi, G., Feng, C., Ling-Yan, Z. & Jian-Zhong, C. (2013). J. Mol. Struct. 1035, 318–325.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds