Jerry P. Jasinski tribute\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chloro­cobalt complexes with pyridyl­ethyl-derived di­aza­cyclo­alkanes

crossmark logo

aDepartment of Chemistry, Drexel University, Philadelphia, PA 19104, USA, bDepartment of Chemistry, Keene State College, Keene, NH 03435, USA, cCarlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA, and dDepartment of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
*Correspondence e-mail: AddisonA@drexel.edu

(Received 27 September 2021; accepted 1 February 2022; online 15 February 2022)

Syntheses are described for the blue/purple complexes of cobalt(II) chloride with the tetra­dentate ligands 1,4-bis­[2-(pyridin-2-yl)eth­yl]piperazine (Ppz), 1,4-bis­[2-(pyridin-2-yl)eth­yl]homopiperazine (Phpz), trans-2,5-dimethyl-1,4-bis­[2-(pyridin-2-yl)eth­yl]piperazine (Pdmpz) and tridentate 4-methyl-1-[2-(pyridin-2-yl)eth­yl]homopiperazine (Pmhpz). The CoCl2 complexes with Ppz, namely, {μ-1,4-bis­[2-(pyridin-2-yl)eth­yl]piperazine}bis­[di­chlorido­cobalt(II)], [Co2Cl4(C18H24N4)] or Co2(Ppz)Cl4, and Pdmpz (structure not reported as X-ray quality crystals were not obtained), are shown to be dinuclear, with the ligands bridging the two tetra­hedrally coordinated CoCl2 units. Co2(Ppz)Cl4 and {di­chlorido­{4-methyl-1-[2-(pyridin-2-yl)eth­yl]-1,4-di­aza­cyclo­hepta­ne}cobalt(II) [CoCl2(C13H21N3)] or Co(Pmhpz)Cl2, crystallize in the monoclinic space group P21/n, while crystals of the penta­coordinate mono­chloro chelate 1,4-bis­[2-(pyr­id­in-2-yl)eth­yl]piperazine}chlorido­cobalt(II) perchlorate, [CoCl(C18H24N4)]ClO4 or [Co(Ppz)Cl]ClO4, are also monoclinic (P21). The complex {1,4-bis­[2-(pyridin-2-yl)eth­yl]-1,4-di­aza­cyclo­hepta­ne}di­chlorido­cobalt(II) [CoCl2(C19H26N4)] or Co(Phpz)Cl2 (P[\overline{1}]) is mononuclear, with a penta­coordinated CoII ion, and entails a Phpz ligand acting in a tridentate fashion, with one of the pyridyl moieties dangling and non-coordinated; its displacement by Cl is attributed to the solvophobicity of Cl toward MeOH. The penta­coordinate Co atoms in Co(Phpz)Cl2, [Co(Ppz)Cl]+ and Co(Pmhpz)Cl2 have substantial trigonal–bipyramidal character in their stereochemistry. Visible- and near-infrared-region electronic spectra are used to differentiate the two types of coordination spheres. TDDFT calculations suggest that the visible/NIR region transitions contain contributions from MLCT and LMCT character, as well as their expected d–d nature. For Co(Pmhpz)Cl2 and Co(Phpz)Cl2, variable-temperature magnetic susceptibility data were obtained, and the observed decreases in moment with decreasing temperature were modelled with a zero-field-splitting approach, the D values being +28 and +39 cm−1, respectively, with the S = 1/2 state at lower energy.

1. Chemical context

Pyridyl­ethyl­ation of amines has previously been used to prepare a variety of chelating agents (Phillip et al., 1970[Phillip, A. T., Casey, A. T. & Thompson, C. R. (1970). Aust. J. Chem. 23, 491-499.]; Profft & Georgi, 1961[Profft, E. & Georgi, W. (1961). Justus Liebigs Ann. Chem. 643, 136-144.]; Profft & Lojack 1962[Profft, E. & Lojack, S. (1962). Rev. Chim. Acad. Rep. Populaire Roumaine 7, 405-429.]; Gray et al., 1960[Gray, A. P., Kraus, H. & Heitmeier, D. E. (1960). J. Org. Chem. 25, 1939-1943.]; Kryatov et al., 2002[Kryatov, S. V., Mohanraj, B. S., Tarasov, V. V., Kryatova, O. P., Rybak-Akimova, E. V., Nuthakki, B., Rusling, J. F., Staples, R. J. & Nazarenko, A. Y. (2002). Inorg. Chem. 41, 923-930.]; Kryatova et al., 2012[Kryatova, M. S., Makhlynets, O. V., Nazarenko, A. Y. & Rybak-Akimova, E. V. (2012). Inorg. Chim. Acta, 387, 74-80.]; Marsich et al., 1998[Marsich, N., Nardin, G., Randaccio, L. & Camus, A. (1998). Inorg. Chim. Acta, 278, 237-240.]; Karlin et al., 1984[Karlin, K. D., Shi, J., Hayes, J. C., McKown, J. W., Hutchinson, J. P. & Zubieta, J. (1984). Inorg. Chim. Acta, 91, L3-L7.]; Anandababu et al., 2020[Anandababu, K., Muthuramalingam, S., Velusamy, M. & Mayilmurugan, R. (2020). Catal. Sci. Technol. 10, 2540-2548.]; Muthuramalingam et al., 2019a[Muthuramalingam, S., Anandababu, K., Velusamy, M. & Mayilmurugan, R. (2019a). Catal. Sci. Technol. 9, 5991-6001.],b[Muthuramalingam, S., Sankaralingam, M., Velusamy, M. & Mayilmurugan, R. (2019b). Inorg. Chem. 58, 12975-12985.]), with an original driver being the generation of biomimetic mol­ecules (Karlin et al., 1984[Karlin, K. D., Shi, J., Hayes, J. C., McKown, J. W., Hutchinson, J. P. & Zubieta, J. (1984). Inorg. Chim. Acta, 91, L3-L7.]). Examples immediately relevant to the present work (Fig. 1[link]) include 1,4-bis­[2′-(2′′-pyridyl­eth­yl)]piperazine (Ppz) and 1,4-bis­[2′-(2′′-pyridyl­eth­yl)]homo-piperazine, Phpz. Phpz was first prepared by Schmidt et al. (2013[Schmidt, M., Wiedemann, D., Moubaraki, B., Chilton, N. F., Murray, K. S., Vignesh, K. R., Rajaraman, G. & Grohmann, A. (2013). Eur. J. Inorg. Chem. 2013, 958-967.]), while Jain and coworkers reported Ppz in 1967 (Jain et al., 1967[Jain, P. C., Kapoor, V., Anand, N., Ahmad, A. & Patnaik, G. K. (1967). J. Med. Chem. 10, 812-818.]). For Ppz, both copper(II) (Mautner et al., 2008[Mautner, F. A., Soileau, J. B., Bankole, P. K., Gallo, A. A. & Massoud, S. S. (2008). J. Mol. Struct. 889, 271-278.], 2009[Mautner, F. A., Louka, F. R., LeGuet, T. & Massoud, S. S. (2009). J. Mol. Struct. 919, 196-203.]; O'Connor et al., 2012[O'Connor, M. A., Addison, A. W., Zeller, M. & Hunter, A. D. (2012). Abstracts, American Chemical Society 43rd Mid-Atlantic Regional Meeting, Catonsville, MD. Abstract #442. Chem. Abs. (2012). 774061.]) and nickel(II) (O'Connor et al., 2012[O'Connor, M. A., Addison, A. W., Zeller, M. & Hunter, A. D. (2012). Abstracts, American Chemical Society 43rd Mid-Atlantic Regional Meeting, Catonsville, MD. Abstract #442. Chem. Abs. (2012). 774061.]) complexes have been described. In the case of Phpz, there are reports of copper(II) complexes (O'Connor et al., 2012[O'Connor, M. A., Addison, A. W., Zeller, M. & Hunter, A. D. (2012). Abstracts, American Chemical Society 43rd Mid-Atlantic Regional Meeting, Catonsville, MD. Abstract #442. Chem. Abs. (2012). 774061.]), including their application as oxidation catalysts (Muthuramalingam et al., 2017[Muthuramalingam, S., Subramaniyan, S., Khamrang, T., Velusamy, M. & Mayilmurugan, R. (2017). ChemistrySelect 2, 940-948.], 2020[Muthuramalingam, S., Anandababu, K., Velusamy, M. & Mayilmurugan, R. (2020). Inorg. Chem. 59, 5918-5928.]). In addition, nickel(II) complexes of Phpz have been studied as catalysts (Muthuramalingam et al., 2019a[Muthuramalingam, S., Anandababu, K., Velusamy, M. & Mayilmurugan, R. (2019a). Catal. Sci. Technol. 9, 5991-6001.],b[Muthuramalingam, S., Sankaralingam, M., Velusamy, M. & Mayilmurugan, R. (2019b). Inorg. Chem. 58, 12975-12985.]) as has a recent cobalt(II) complex (Anandababu et al., 2020[Anandababu, K., Muthuramalingam, S., Velusamy, M. & Mayilmurugan, R. (2020). Catal. Sci. Technol. 10, 2540-2548.]). For Pmhpz, copper and nickel complexes have been characterized (O'Connor et al., 2012[O'Connor, M. A., Addison, A. W., Zeller, M. & Hunter, A. D. (2012). Abstracts, American Chemical Society 43rd Mid-Atlantic Regional Meeting, Catonsville, MD. Abstract #442. Chem. Abs. (2012). 774061.]), and Muthuramalingam and co-workers have recently examined oxidative catalysis by copper complexes including that of Pmhpz (Muthuramalingam et al., 2021[Muthuramalingam, S., Velusamy, M. & Mayilmurugan, R. (2021). Dalton Trans. 50, 7984-7994.]), but there appears to be only the single prior report of Pdmpz (O'Connor et al., 2012[O'Connor, M. A., Addison, A. W., Zeller, M. & Hunter, A. D. (2012). Abstracts, American Chemical Society 43rd Mid-Atlantic Regional Meeting, Catonsville, MD. Abstract #442. Chem. Abs. (2012). 774061.]). Four structures are described here. X-ray quality crystals of the Pdmzp complex were not obtained.

[Scheme 1]
[Figure 1]
Figure 1
Ligands employed in this work.

2. Structural commentary

The structures are not all entirely what was originally expected, based on previous work with these types of ligands. The Co–N(Pyr) bond lengths (Tables 1[link]–4[link][link][link]) range from 2.03 to 2.16 Å, which is within the usual span (Orpen et al., 1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-S83.]), while the Co—Cl distances average 2.28 ± 0.03 Å, which is again common for cobalt(II) (Orpen et al., 1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-S83.]). The Co—Namine bond lengths are generally longer than the Co—Npyridine ones, and quite variable (vide infra), with an average of 2.154 Å and covering a 0.153 Å range. The distances are unexceptional for CoII to tertiary amine linkages (Orpen et al., 1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-S83.]), and indeed tertiary amine nitro­gen atoms in tripodal ligands are often notably more distant from the CoII ion (2.44–3.27 Å; Brewer, 2020[Brewer, G. (2020). Magnetochemistry, 6, 28-55.]).

Table 1
Selected geometric parameters (Å, °) for Co2(Ppz)Cl4[link]

Co1—Cl1 2.2415 (6) Co1—N1 2.0257 (15)
Co1—Cl2 2.2240 (6) Co1—N2 2.0969 (15)
       
Cl2—Co1—Cl1 114.71 (2) N1—Co1—N2 100.12 (6)
N1—Co1—Cl1 108.93 (5) N2—Co1—Cl1 108.96 (5)
N1—Co1—Cl2 107.46 (5) N2—Co1—Cl2 115.49 (5)

Table 2
Selected geometric parameters (Å, °) for Co(Pmhpz)Cl2[link]

Co1—N2B 2.072 (15) Co1—N3B 2.26 (3)
Co1—N2 2.0933 (15) Co1—Cl2 2.3110 (4)
Co1—N1 2.1498 (14) Co1—Cl1 2.3122 (4)
Co1—N3 2.228 (3)    
       
N2B—Co1—N1 94.8 (4) N3—Co1—Cl2 94.48 (5)
N2—Co1—N1 94.16 (6) N3B—Co1—Cl2 88.7 (6)
N2—Co1—N3 75.49 (6) N2B—Co1—Cl1 114.2 (4)
N1—Co1—N3 168.81 (6) N2—Co1—Cl1 131.72 (5)
N2B—Co1—N3B 74.9 (6) N1—Co1—Cl1 91.92 (4)
N1—Co1—N3B 168.3 (4) N3—Co1—Cl1 91.92 (5)
N2B—Co1—Cl2 124.4 (4) N3B—Co1—Cl1 97.4 (5)
N2—Co1—Cl2 107.08 (5) Cl2—Co1—Cl1 120.428 (18)
N1—Co1—Cl2 92.63 (4)    

Table 3
Selected geometric parameters (Å, °) for [Co(Ppz)Cl]ClO4[link]

Co1A—N1A 2.057 (5) Co1A—N2A 2.236 (5)
Co1A—N3A 2.099 (5) Co1A—Cl1A 2.2780 (16)
Co1A—N4A 2.109 (5)    
       
N1A—Co1A—N3A 123.7 (2) N4A—Co1A—N2A 162.6 (2)
N1A—Co1A—N4A 100.7 (2) N1A—Co1A—Cl1A 115.11 (16)
N3A—Co1A—N4A 94.3 (2) N3A—Co1A—Cl1A 115.81 (17)
N1A—Co1A—N2A 84.2 (2) N4A—Co1A—Cl1A 98.25 (16)
N3A—Co1A—N2A 69.5 (2) N2A—Co1A—Cl1A 94.62 (15)

Table 4
Selected geometric parameters (Å, °) for Co(Phpz)Cl2[link]

Co1—Cl1 2.2981 (16) Co1—N2 2.097 (4)
Co1—Cl2 2.2872 (15) Co1—N3 2.146 (4)
Co1—N1 2.232 (5)    
       
Cl2—Co1—Cl1 118.10 (7) N2—Co1—N1 74.86 (19)
N1—Co1—Cl1 94.21 (14) N2—Co1—N3 93.00 (17)
N1—Co1—Cl2 92.47 (15) N3—Co1—Cl1 93.75 (13)
N2—Co1—Cl1 108.33 (15) N3—Co1—Cl2 92.70 (13)
N2—Co1—Cl2 132.67 (15) N3—Co1—N1 167.11 (18)

For the CoCl2-Ppz combination, the dinuclear compound Co2(Ppz)Cl4 was obtained (Fig. 2[link]), rather than the mononuclear Co(Ppz)Cl2. The asymmetric unit in this P21/n structure is the half-mol­ecule, related to the mol­ecule's other corresponding half by an inversion centre.

[Figure 2]
Figure 2
Mol­ecular structure of Co2(Ppz)Cl4. Ellipsoids are drawn at the 50% level, and for clarity of presentation, H atoms are omitted. The two half-mol­ecules in the structure are symmetry equivalent and are related to the other halves via the symmetry operation (1 − x, 1 − y, 2 − z).

The piperazine moiety in Co(Ppz)Cl2 does not chelate a cobalt ion, but instead bridges between two, so that each tetra­coordinate Co is bound by a piperazine-N atom, a pyridyl-N atom and two chloride ions. The two identical coordination cores have ω = 86° (Sakaguchi & Addison, 1979[Sakaguchi, U. & Addison, A. W. (1979). J. Chem. Soc. Dalton Trans. pp. 600-609.]) and φt = 0.07 (Addison et al., 2004[Addison, A. W., Bennett, J. W., Bowman, R. K., Butcher, R. J., Nazarenko, A. Y., Stahl, N. G. & Thompson, L. K. (2004). Abstracts, 228th ACS National Meeting, Philadelphia, PA; INOR-267; Chem. Abs. (2004) 661440.]; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]), so are fairly close to exactly tetra­hedral in geometry.

As the same ligand behaves as a straightforward mononucleating quadridentate in the copper and nickel complexes (O'Connor et al., 2012[O'Connor, M. A., Addison, A. W., Zeller, M. & Hunter, A. D. (2012). Abstracts, American Chemical Society 43rd Mid-Atlantic Regional Meeting, Catonsville, MD. Abstract #442. Chem. Abs. (2012). 774061.]; Muthuramalingam et al., 2017[Muthuramalingam, S., Subramaniyan, S., Khamrang, T., Velusamy, M. & Mayilmurugan, R. (2017). ChemistrySelect 2, 940-948.], 2019a[Muthuramalingam, S., Anandababu, K., Velusamy, M. & Mayilmurugan, R. (2019a). Catal. Sci. Technol. 9, 5991-6001.],b[Muthuramalingam, S., Sankaralingam, M., Velusamy, M. & Mayilmurugan, R. (2019b). Inorg. Chem. 58, 12975-12985.]), this led to the question as to whether the coordination is governed by the ligand bite vs the larger ionic radius of Co2+ vs Cu2+/Ni2+. This proposal was approached by synthesising the homopiperazine analogue, Phpz, whose ligand has a larger (N2—N2A) bite. The compound Co(Phpz)Cl2 was indeed obtained as a mononuclear product (Fig. 3[link]), crystallizing into a P[\overline{1}] lattice. The structure suffers some disorder, but one conformation is dominant, at 91% (the discussion below refers to that major component of the Co(Phpz)Cl2 crystals). However, anti­cipatedly quadridentate Phpz is now seen to act as a tridentate ligand, with the cobalt(II) ion being penta­coordinate.

[Figure 3]
Figure 3
Structure of Co(Phpz)Cl2, with its dangling pyridine moiety. The dominant conformer is shown. Ellipsoids are drawn at the 50% level, and for clarity of presentation, H atoms are omitted.

One of the pyridyl­ethyl arms is now in the less-commonly observed dangling mode, pyridine being a consistent protagonist of this phenomenon (Reeves et al., 2014[Reeves, G. T., Addison, A. W., Zeller, M. & Hunter, A. D. (2014). Polyhedron, 68, 70-75.]; Ball et al., 1981[Ball, R. G., James, B. R., Mahajan, D. & Trotter, J. (1981). Inorg. Chem. 20, 254-261.]; Rajendiran et al., 2008[Rajendiran, V., Murali, M., Suresh, E., Sinha, S., Somasundaram, K. & Palaniandavar, M. (2008). Dalton Trans. pp. 148-163.]; Camerano et al., 2011[Camerano, J. A., Sämann, C., Wadepohl, H. & Gade, L. H. (2011). Organometallics, 30, 379-382.]; Lonnon et al., 2006[Lonnon, D. G., Craig, D. C. & Colbran, S. B. (2006). Dalton Trans. pp. 3785-3797.]; Palaniandavar et al., 1996[Palaniandavar, M., Butcher, R. J. & Addison, A. W. (1996). Inorg. Chem. 35, 467-471.]). The core geometry is markedly toward the trigonal–bipyramidal (τ = 0.62) (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) with Cl2 acting as the erstwhile reference tetra­gonal axial ligand. The bond from the cobalt ion to the piperazine nitro­gen atom (N3) holding the dangling arm is 0.08 (3) Å longer than the one associated with the coordinated pyridine arm. Inasmuch as the ability of Phpz to act as a tetra­dentate toward CoII has recently been demonstrated in [Co(Phpz)Cl](BPh4) (Anandababu et al., 2020[Anandababu, K., Muthuramalingam, S., Velusamy, M. & Mayilmurugan, R. (2020). Catal. Sci. Technol. 10, 2540-2548.]), it is clear that ligand bite is not the sole factor governing the structural outcome in Co(Phpz)Cl2. However, all the complexes herein were prepared in non-aqueous solvents – methanol or THF – and we propose that the chloride ion, with its substantial hydration energy, is solvofugic enough to displace a terminal pyridine in a complex involving cobalt(II). We hence prepared the compound of composition [Co(Ppz)Cl]ClO4, thus removing a chloride from the binding competition. The resulting structure bears out this hypothesis (Fig. 4[link]).

[Figure 4]
Figure 4
Structural representation of [Co(Ppz)Cl]ClO4 (major component). The perchlorate is disordered by a rocking motion along the O2B–Cl1B–O4B direction, which may be related to weak C—H⋯O hydrogen-bonding inter­actions. Ellipsoids are drawn at the 50% level, and for clarity of presentation, H atoms are omitted.

[Co(Ppz)Cl)]ClO4 crystallizes in the space group P21, and entails the [Co(Ppz)Cl)]+ cation. This structure has τ = 0.65, so is substanti­ally trigonal–bipyramidal in its coordination geometry; the reference axis is Co1A–Cl1A, and the (pseudo)trigonal axis is N2A–Co1A–N4A. The cation is asymmetric, with non-matching Co—Npyridine bonds of 2.057 (5) and 2.109 (5) Å, while the Co—Namine distances are notably inequivalent, at 2.098 (5) for Co1A—N3A, but 2.238 (5) Å for Co1A—N2A – the longest Co—N bond in this set of four compounds. One might note that N3A is `trigonal–equatorial', vs N2A being `trigonal–axial', and suspect that this longer bond betokens an instability that leads to Co2(Ppz)Cl4. The perchlorate may be involved with quite weak C—H⋯O hydrogen-bonding inter­actions: e.g., C11A⋯O3B, C13A⋯O4B, and C11A⋯O4C are 3.28, 3.46 and 3.60 Å, respectively.

In a further experimental essay, we eliminated an otherwise dangling pyridyl arm by replacing it with a methyl group, as in the simpler tridentate ligand Pmhpz. The resulting mol­ecule, Co(Pmhpz)Cl2 (Fig. 5[link]) crystallizes in the P21/n space group.

[Figure 5]
Figure 5
Mol­ecular structure of the complex Co(Pmhpz)Cl­2, with the ligand in which a pyridyl arm is replaced by a methyl group. Ellipsoids are drawn at the 50% level, and for clarity of presentation, H atoms are omitted.

The coordination core is somewhat trigonal–bipyramidal, with τ = 0.57 and the reference axis being Co1–Cl1. The sole pyridine nitro­gen N3 and the methyl­ated piperazine nitro­gen N1 form the pseudo-trigonal axis. Analogously to the [Co(Ppz)Cl)]+ situation, the pseudo-equatorial Co—N2amine bond, at 2.097 (4) Å, is shorter that the Co—N1amine [2.232 (5) Å] and Co—N3pyridine [2.146 (4) Å] bonds in the trigonal directions. One may note that the same axial vs equatorial Co–N bond-length relationship also holds for Co(Phpz)Cl2, above.

Electronic spectra: Pseudo­tetra­hedral species: The essentially identical UV–Vis–NIR spectra for [Co2(Ppz)Cl4] and Co(Pdmpz)Cl2 (Fig. 6[link], Table 5[link]) strongly implicate a tetra­hedral CoN2Cl2 coordination geometry for the latter, and its constitution as [Co2(Pdmpz)Cl4] is ultimately confirmed by the elemental analyses (vide infra).

Table 5
Principal absorption bands in the visible and near-IR regions

Compound λmax (nm)
Co2(Ppz)Cl4   580 620   1040 1335 1680  
Co2(Pdmpz)Cl4   585 625   1055 1315 1680  
Co(Phpz)Cl2 540 565 635 783 975 1400 1664 1873
Co(Pmhpz)Cl2 502   635 800 990   1700 1880
[Co(Ppz)Cl]ClO4 540 610   810   1400 1710 1875
[Figure 6]
Figure 6
Solid-state diffuse reflectance spectra of [Co2(Ppz)Cl4] (blue trace) and Co(Pmhpz)Cl2 (black trace).

Both might also be compared to [Co(Me4en)]Cl2, which has maxima at ca 1670, 1380, 1000, 650 and 580 nm, attributed in a crystal-field model to 4A24T1 (F) transitions (the first three) (Lever, 1984[Lever, A. B. P. (1984). Studies in Physical and Theoretical Chemistry, Vol. 33, Inorganic Electronic Spectroscopy, pp. 491-492. Amsterdam: Elsevier.]), and the latter two to 4A24T1 (P). Though shifted slightly, these maxima are quite similar to the bands for [Co2(Ppz)Cl4] and [Co2(Pdmpz)Cl4]. The DFT results for a CoN2Cl2 chromophore of Co2(Ppz)Cl4 suggest that even the low-energy transitions involve CT contributions from the CoCl2 moiety to the pyridine ring (Fig. 7[link]).

[Figure 7]
Figure 7
Wavefunction density surface maps of MOs involved in several of the visible-NIR transitions in a CoN2Cl2 moiety of Co2(Ppz)Cl4, modelled with a 2-(di­methyl­amino­eth­yl)pyridine ligand. Lower left and right: originating HOMO(−3), HOMO(−4), respectively; upper left and right, the receiving LUMO and LUMO(+1), respectively. Blue indicates highest density. Note the translation of wavefunction density from the CoCl2 or CoN2Cl2 unit to the pyridine ring in the excitations.

Penta­coordinate Systems: Like [Co2(ppz)Cl4] and other CoN2Cl2 chromophores, the roughly trigonal–bipyramidal archetypal CoN3Cl2 systems Co(Me5dien)Cl2 and [Co(Et4dien)Cl2] also have strong ligand-field absorptions in the visible region near 500 and 650 nm, as well as NIR bands at ca 2500, 1140, and 950 nm (Ciampolini & Speroni, 1966[Ciampolini, M. & Speroni, G. P. (1966). Inorg. Chem. 5, 45-49.]; Lever, 1984[Lever, A. B. P. (1984). Studies in Physical and Theoretical Chemistry, Vol. 33, Inorganic Electronic Spectroscopy, pp. 491-492. Amsterdam: Elsevier.]). These transitions have been assigned as from 4A2′ to 4E, 4A2(P) and 4E(P) (Lever, 1984[Lever, A. B. P. (1984). Studies in Physical and Theoretical Chemistry, Vol. 33, Inorganic Electronic Spectroscopy, pp. 491-492. Amsterdam: Elsevier.]). More recent examples of CoN3Cl2 centres (Xiao et al., 2018[Xiao, L., Bhadbhade, M. & Baker, A. T. (2018). J. Mol. Struct. 1157, 112-118.]) display similarly structured bands with maxima around 650–700 nm. The absorption bands for [Co(Phpz)Cl2] resemble those of the above examples to various extents.

Figs. 8[link] and 9[link] show the solid-state spectra of CoPhpzCl2 and [Co(Ppz)Cl]ClO4, respectively. In comparison with the CoN2Cl2 cores, one should note the rather different pattern of absorption bands in the NIR. Firstly, the band near 1000 nm appears to be supplanted by two bands, one being near 750 nm, the other around 950 nm. More tellingly, the 1100–1500 nm region, which has clear CoN2Cl2 maxima near 1300 and 1700 nm, becomes hollowed out, and broader features appear at 1600–1900 nm. The Vis–NIR spectrum (Fig. S9 in the supporting information) of Co(Pmhpz)Cl2 is, as expected, similar to that of Co(Phpz)Cl2. We do note that the utility of NIR spectroscopy for tetra- and penta­coordinate cobalt(II) complexes, pioneered by Goodgame & Goodgame (1965[Goodgame, D. M. L. & Goodgame, M. (1965). Inorg. Chem. 4, 139-143.]) has hardly been widely adopted (Table S1).

[Figure 8]
Figure 8
Solid-state Vis–NIR spectrum of [Co(Phpz)Cl2].
[Figure 9]
Figure 9
Solid-state Vis–NIR spectrum of [Co(Ppz)Cl]ClO4.

Magnetism analysis

Preliminary data indicated apparently reduced magnetic moments for some samples. However, the structures do not suggest the possibility of any pathway for significant superexchange coupling. Inasmuch as there are penta­coordinate cobalt(II) complexes that have recently been discovered to act as single-ion/single-mol­ecule magnets (SIM/SMM) at reduced temperature (Rechkemmer et al., 2016[Rechkemmer, Y., Breitgoff, F. D., van der Meer, M., Atanasov, M., Hakl, M., Orlita, M., Neugebauer, P., Neese, F., Sarkar, B. & van Slageren, J. (2016). Nat. Commun. 7, 10467.]; Świtlicka et al., 2018[Świtlicka, A., Machura, B., Kruszynski, R., Cano, J., Toma, L. M., Lloret, F. & Julve, M. (2018). Dalton Trans. 47, 5831-5842.]), we studied the temperature dependence of the magnetic behaviour of powdered samples of Co(Pmhpz)Cl2 and Co(Phpz)Cl2 (Figs. 10[link] and 11[link]).

[Figure 10]
Figure 10
Temperature dependence of χT for Co(Pmhpz)Cl2. The solid line is the fit using an exact diagonalization method, between 12.5 and 310 K. (Note that the usual units for molar susceptibility χ have been replaced here by SI units: 1 cm3 mol−1 = 4π ×10 −6 m3 mol−1.)
[Figure 11]
Figure 11
Temperature dependence of χT for Co(Phpz)Cl2. The solid line is the fit using an exact diagonalization method, between 5 and 310 K.

The magnetism as a function of temperature and applied field showed no evidence for SMM behaviour. In situations like this, the temperature dependence of the moments has been recognized as being due to zero-field splitting (Nemec et al., 2016[Nemec, I., Liu, H., Herchel, R., Zhang, X. & Trávníček, Z. (2016). Synth. Met. 215, 158-163.]; Cruz et al., 2018[Cruz, T. F. C., Figueira, C. A., Waerenborgh, J. C., Pereira, L. C. J., Li, Y., Lescouëzec, R. & Gomes, P. T. (2018). Polyhedron, 152, 179-187.]; Boča et al., 1999[Boča, R., Dlháň, L., Linert, W., Ehrenberg, H., Fuess, H. & Haase, W. (1999). Chem. Phys. Lett. 307, 359-366.]; Papánková et al., 2010[Papánková, B., Boča, R., Dlháň, L., Nemec, I., Titiš, J., Svoboda, I. & Fuess, H. (2010). Inorg. Chim. Acta, 363, 147-156.]; Rajnák et al., 2013[Rajnák, C., Titiš, J., Šalitroš, I., Boča, R., Fuhr, O. & Ruben, M. (2013). Polyhedron, 65, 122-128.]; Żurowska et al., 2008[Żurowska, B., Kalinowska-Lis, U., Białońska, A. & Ochocki, J. (2008). J. Mol. Struct. 889, 98-103.]) (see the supporting information for further discussion). We were able to fit the data through most of the temperature regime and the extracted D, gave, Δ, a and b which are listed in Table 6[link], via:

[$\chi T = {2\Delta \over 2\Delta + 1} \Chi_{x}^{*}T + {1 \over 2\Delta + 1} \Chi_{z}^{*}T + aT b$]

where χx and χz are the longitudinal and transverse modes of the anisotropic responses (Δ = Sx/Sz), a is the TIP and b the total diamagnetic correction.

Table 6
Derived magnetism parameters for Co(Pmhpz)Cl2 and Co(Phpz)Cl2, with their estimated mean deviations

Compound Co(Pmhpz)Cl2 Co(Phpz)Cl2
T window 12.5–310 K 5–310 K
D/hc (cm−1) +28 (1) +39 (1)
gave 2.32 (2) 2.17 (2)
Δ 1.11 (6) 1.50 (10)
aa 0 0.00056 (21)
b 0.34 (5) 0.19 (2)
Note: (a) the a value for Co(Pmhpz)Cl2 was held at zero.

Both compounds have a positive axial single-ion anisotropy (SIA) term, and the anisotropy values also confirm the findings as self-consistent (e.g. Δ > 1 for positive D and Δ < 1 for negative D, and larger D leads to larger Δ). The D and gave values appear to be in the normal ranges; D values for CoII do cover a wide range, from ca −50 to +100 cm−1 (Cruz et al., 2018[Cruz, T. F. C., Figueira, C. A., Waerenborgh, J. C., Pereira, L. C. J., Li, Y., Lescouëzec, R. & Gomes, P. T. (2018). Polyhedron, 152, 179-187.]; Nemec et al., 2016[Nemec, I., Liu, H., Herchel, R., Zhang, X. & Trávníček, Z. (2016). Synth. Met. 215, 158-163.]). While CoII g values intrinsically also cover a wide range, applicable values for fitting ZFS data have been observed to be about 2.0–2.4 (Voronkova et al., 1974[Voronkova, V. K., Zaripov, M. M., Yablokov, Y. V., Ablov, A. V. & Ablova, M. A. (1974). Dokl. Akad. Nauk SSSR, 214, 377-80.]; Baum et al., 2016[Baum, R. A., Myers, W. K., Greer, S. M., Breece, R. M. & Tierney, D. L. (2016). Eur. J. Inorg. Chem. pp. 2641-2647.]; Banci et al., 1980[Banci, L., Bencini, A., Benelli, C. & Gatteschi, D. (1980). Nouveau J. Chem. 4, 593-598.]; Martinelli et al., 1989[Martinelli, R. A., Hanson, G. R., Thompson, J. S., Holmquist, B., Pilbrow, J. R., Auld, D. S. & Vallee, B. L. (1989). Biochemistry, 28, 2251-2258.]). Both compounds here show a faster drop in χT and a distinct kink at temperatures below ca 15 K. These features have been seen in several other CoII systems (Żurowska et al., 2008[Żurowska, B., Kalinowska-Lis, U., Białońska, A. & Ochocki, J. (2008). J. Mol. Struct. 889, 98-103.]; Papánková et al., 2010[Papánková, B., Boča, R., Dlháň, L., Nemec, I., Titiš, J., Svoboda, I. & Fuess, H. (2010). Inorg. Chim. Acta, 363, 147-156.]; Boča et al., 1999[Boča, R., Dlháň, L., Linert, W., Ehrenberg, H., Fuess, H. & Haase, W. (1999). Chem. Phys. Lett. 307, 359-366.]; Rajnák et al., 2013[Rajnák, C., Titiš, J., Šalitroš, I., Boča, R., Fuhr, O. & Ruben, M. (2013). Polyhedron, 65, 122-128.]); however, no definitive accounting for this has been advanced as yet, apart from the not infrequently employed addition of a weak anti­ferromagnetism mean field term.

3. Supra­molecular features

There are no true supra­molecular structures formed by the compounds, whose crystal lattices containing individual mol­ecules are defined mainly by weak, non-bonding inter­actions. Along with the absence of any solvation of these crystals, the only hydrogen-bonding inter­actions observed are in [Co(Ppz)Cl]ClO4, which has weak C—H⋯O hydrogen-bonds (numerical values are given in the CIF), likely of little energetic consequence.

Some lattice views of the compounds are displayed in the supporting information (Figs. S1–S8).

4. Database survey

Closely related compounds with similar M(pyridyl­ethyl­piperazine)X2, M(pyridyl­ethyl­piperazine)X+, M(pyridyl­ethyl­homopiperazine)X2 or M(pyridyl­ethyl­homo­piperazine)X+ structures include [Co(Phzp)Cl]BPh4 (Anandababu et al., 2020[Anandababu, K., Muthuramalingam, S., Velusamy, M. & Mayilmurugan, R. (2020). Catal. Sci. Technol. 10, 2540-2548.]) and Cu(Dpzp)(NC·N·CN)ClO4 (Mautner et al., 2008[Mautner, F. A., Soileau, J. B., Bankole, P. K., Gallo, A. A. & Massoud, S. S. (2008). J. Mol. Struct. 889, 271-278.]).

5. Synthesis and crystallization

Methods

Chemical ionization mass spectra were obtained on a Thermo-Electron LTQ–FT 7T FT–ICR instrument. UV–visible–near infrared spectra were obtained using PerkinElmer Lambda-35 or Shimadzu UV3600Plus spectrophotometers equipped with integrating spheres for solid-state spectroscopy. Magnetic susceptibility data between 1.8 and 310 K in an applied field of 1 kOe were collected using a Quantum Design MPMS-XL SQUID magnetometer. Crystals were powdered and packed into #3 gel capsules that were placed inside drinking straws attached to the sample rod. The magnetization was measured at 1.8 K as a function of increasing field from zero to five tesla and at selected fields returning to zero. The data were corrected for the contributions from the sample holders (measured independently) and the diamagnetism of the constituent atoms, as estimated using Pascal's constants (Carlin, 1986[Carlin, R. L. (1986). Magnetochemistry. Berlin: Springer-Verlag.]). DFT calculations were performed using the ωB97X-D/6-31G* method on an iMac16,2 with Spartan-18 software (Wavefunction Inc., Irvine CA, version 1.4.4), while structural diagrams were generated using the CrystalMaker-10 software and Preview-10. Reagents were used as received from TCI America, Sigma–Aldrich, MCB and Fisher Scientific. Elemental microanalyses were by Robertson Microlit Laboratories (Ledgewood, NJ).

Ligands were prepared by adaptions of the solventless method (Addison & Burke, 1981[Addison, A. W. & Burke, P. J. (1981). J. Heterocyc. Chem. 18, 803-805.]), typically using a 5–50% excess of 2-vinyl­pyridine plus a catalytic amount of acetic acid, and were then, in effect, purified as the metal complexes (Phillip et al., 1970[Phillip, A. T., Casey, A. T. & Thompson, C. R. (1970). Aust. J. Chem. 23, 491-499.]); these ligand synthesis reactions are not necessarily stoichiometric or irreversible (Profft & Lojack, 1962[Profft, E. & Lojack, S. (1962). Rev. Chim. Acad. Rep. Populaire Roumaine 7, 405-429.]). The procedure is exemplified by:

1,4-Bis[2-(pyrid-2-yl)eth­yl]piperazine (Ppz): A mixture of piperazine (0.86 g, 10 mmol), 2-vinyl­pyridine (3.15 g, 30 mmol), and 2 drops of glacial acetic acid was set to react at ca 368 K for 14 to 50 h in a capped tube. The reaction mixture was allowed to cool to room temperature, resulting in the formation of a brown solid mass. The mass spectrum indicated Ppz as the dominant component of the solid: m/z = 297.207, calculated for (C18H24N4+H)+, 297.208. The crude ligand was used without purification in the synthesis of the cobalt complexes.

1,4-Bis[2-(pyridin-2-yl)eth­yl]homopiperazine (Phpz): From 2-vinyl­pyridine (6.32 g, 60 mmol) and homopiperazine (2.01 g, 20 mmol); crude ligand as a brown mass; m/z = 311.223, calculated for (C19H26N4+H)+, 311.224.

trans-2,5-Dimethyl-1,4-bis­[2-(pyridin-2-yl)eth­yl]piperazine (Pdmpz): From trans-2,5-di­methyl­piperazine (2.28 g, 20 mmol) and 2-vinyl­pyridine (6.32 g, 60 mmol) as a brown solid mass mingled with white crystals. m/z = 325.239, calculated for (C20H28N4+H)+, 325.239.

4-Methyl-1-[2-(pyridin-2-yl)eth­yl]homopiperazine (Pmhpz): N-methyl­homopiperazine (1.14 g, 10 mmol) and 2-vinyl­pyridine (1.10 g, 10.5 mmol): heated at the boiling point (ca 433 K) for 3 min.; as a viscous brown oil; m/z = 220.181, calculated for (C13H21N3+H)+, 220.181

Synthesis of cobalt complexes: The cobalt(II) compounds were mainly prepared by the general method exemplified for [Co2(Ppz)Cl­4] below, using amounts of crude ligands equivalent to the mol­ecular content of the di­aza­cyclo­alkane used for the ligand synthesis.

[Co2(Ppz)Cl4]: Crude ligand equivalent to 12.0 mmol Ppz, in methanol (30 mL), was combined with 10.0 mmol (6.5 mL of 1.54 M) methano­lic cobalt(II) chloride hydrate solution. Deep-blue crystals deposited, which were filtered off and recrystallized from nitro­methane. The mass spectrum showed several elucidatory peaks, including m/z = 518.975 for (M − Cl)+ = Co2PpzCl3+ (calculated 518.973) as well as m/z = 426.079 (CoPpzCl2H+, calculated 426.078) and m/z = 390.102 (CoPpzCl+, calculated 390.102). Analysis C,H,N: found %, C 39.08, H 4.10, N 9.70; calculated for C18H24Cl4Co2N4: C 38.88, H 4.35, N 10.08.

[Co(Phpz)Cl­2]: In this case, the CoCl2 solution was added to the ligand in tetra­hydro­furan. When the solution was allowed to stand for 4 d, purple crystalline clusters of product were obtained. This presumably THF-solvated efflorescent product was air-dried and recrystallized from nitro­methane. MS m/z = 404.117 for (M − Cl)+, calculated 404.117. Analysis C,H,N (desolvated): found %, C 49.65, H 5.84, N 13.38; calculated for C19H26Cl2CoN4: C 49.75, H 5.89, N 13.39.

[Co(Pmhpz)Cl2]: This compound was obtained by dropwise addition of crude 1-(2′-pyridyl­eth­yl)-4-methyl­homopiperazine in methanol to a warm solution of cobalt(II) chloride in methanol. After two days, the deep blue–purple solution yielded blue crystals in 55% yield. MS: observed m/z = 313.1, calculated for (M − Cl)+, 313.076. Analysis C,H,N: found %, 44.72, 5.84, 11.79; calculated for C13H21N3Cl2Co, 44.72, 6.06, 12.03.

[Co(Ppz)Cl]ClO4: The blue crystals produced were filtered off and recrystallized from aceto­nitrile. MS m/z = 390.102 (M − ClO4)+ = C18H24N4CoCl+, calculated 390.102. Analysis C,H,N: found %, C 44.3, H 4.78, N 11.4; calculated for C18H24N4CoCl2O4, C 44.1, H 4.93, N 11.4.

[Co2(Pdmpz)Cl4]: The blue crystals produced were filtered off and recrystallized from nitro­methane. MS m/z = 454.111, (M + H)+: calculated for C20H29Cl2Co2N4+, 454.110; m/z = 418.133, (M − Cl)+, calculated for C20H28ClCo2N4+, 418.133. Analysis C,H,N: found %, C 41.6, H 4.80, N 9.44; calculated for C20H28Cl4Co2N4: C 41.1, H 4.83, N 9.59.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. X-ray diffraction data were collected on a Rigaku Oxford Diffraction Gemini diffractometer via ω-scans using an Atlas CCD detector using Cu Kα radiation or a Bruker AXS D8 Quest diffractometer with a PhotonII charge-integrating pixel array detector (CPAD). Data for those structures were collected, scaled and corrected for absorption using the CrysAlis PRO 2015 software suite program package (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.]) or APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker Nano Inc., Madison, Wisconsin, USA.]) and SADABS (Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]). Crystal structures were solved using SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), and refined using SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), with refinement by full-matrix least-squares on F2. Further processing for the Ppz and Pmhpz complexes utilized the OLEX software (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Table 7
Experimental details

  Co2(Ppz)Cl4 Co(Phpz)Cl2 [Co(Ppz)Cl]ClO4 Co(Pmhpz)Cl2
Crystal data
Chemical formula [Co2Cl4(C18H24N4)] [CoCl2(C19H26N4)][+solvent] [CoCl(C18H24N4)]ClO4 [CoCl2(C13H21N3)]
Mr 556.07 440.27 490.24 349.16
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}] Monoclinic, P21 Monoclinic, P21/n
Temperature (K) 173 150 293 273
a, b, c (Å) 11.6370 (5), 7.4382 (2), 13.3104 (5) 7.2628 (3), 11.5369 (4), 12.6384 (5) 8.3952 (3), 10.9341 (4), 11.3643 (4) 10.3626 (6), 11.5871 (7), 13.7035 (7)
α, β, γ (°) 90, 104.229 (4), 90 86.9553 (19), 89.1996 (19), 89.3798 (18) 90, 92.125 (3), 90 90, 108.308 (6), 90
V3) 1116.77 (7) 1057.32 (7) 1042.46 (6) 1562.12 (16)
Z 2 2 2 4
Radiation type Mo Kα Mo Kα Cu Kα Cu Kα
μ (mm−1) 1.98 1.07 9.10 11.67
Crystal size (mm) 0.32 × 0.22 × 0.11 0.23 × 0.13 × 0.09 0.18 × 0.14 × 0.12 0.42 × 0.08 × 0.06
 
Data collection
Diffractometer Agilent, Eos, Gemini Bruker D8 Quest diffractometer with PhotonII charge-integrating pixel array detector (CPAD) Rigaku, Oxford Diffraction Eos Rigaku Oxford Diffraction Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.])
Tmin, Tmax 0.687, 1.000 0.660, 0.747 0.378, 1.000 0.202, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7280, 3708, 3044 43329, 8042, 7248 6624, 3274, 2877 5711, 2957, 1805
Rint 0.033 0.035 0.052 0.054
(sin θ/λ)max−1) 0.765 0.771 0.615 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 1.04 0.037, 0.098, 1.12 0.047, 0.116, 1.03 0.056, 0.139, 1.04
No. of reflections 3708 8042 3274 2957
No. of parameters 127 317 308 173
No. of restraints 0 298 155 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.69, −0.63 0.81, −0.35 0.77, −0.40 0.54, −0.33
Absolute structure Classical Flack method preferred over Parsons because s.u. lower
Absolute structure parameter −0.021 (7)
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.]), APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker Nano Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

The structure of Co(Phpz)Cl2 contains an additional 121 Å3 of solvent-accessible voids filled by extensively disordered nitro­methane recrystallization solvent. The residual electron density peaks are not arranged in an inter­pretable pattern. The structure factors were instead augmented via reverse-Fourier-transform methods using the SQUEEZE routine (van der Sluis & Spek, 1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]; Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) as implemented in PLATON. The resultant FAB file containing the structure-factor contribution from the electron content of the void space was used together with the original hkl file in the further refinement. (The FAB file with details of the SQUEEZE results is included in the CIF in the supporting information). The SQUEEZE procedure corrected for 69 electrons within the solvent-accessible voids, or around two nitro­methane mol­ecules. The central part of the metal complex (two of the Co-coordinated nitro­gen atoms and the C atoms bridging between them) are disordered by a pseudo-mirror operation. Additional disorder that is vaguely recognizable (largest difference peak 0.78 electrons) was ignored. The two disordered moieties were restrained to have similar geometries. Uij components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions, the occupancy ratio refined to 0.914 (3):0.086 (3).

For all compounds, H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014) for ta-sa15-05; APEX4 (Bruker, 2021) for CoPhpzCl2_sq; CrysAlis PRO (Rigaku OD, 2015) for ta-eab1701-c, ta-eab1607. Cell refinement: CrysAlis PRO (Agilent, 2014) for ta-sa15-05; SAINT (Bruker, 2020) for CoPhpzCl2_sq; CrysAlis PRO (Rigaku OD, 2015) for ta-eab1701-c, ta-eab1607. Data reduction: CrysAlis PRO (Agilent, 2014) for ta-sa15-05; SAINT (Bruker, 2020) for CoPhpzCl2_sq; CrysAlis PRO (Rigaku OD, 2015) for ta-eab1701-c, ta-eab1607. Program(s) used to solve structure: ShelXT (Sheldrick, 2015a) for ta-sa15-05, ta-eab1607; SHELXT (Sheldrick, 2015a) for CoPhpzCl2_sq; ShelXT (Sheldrick, 2015b0) for ta-eab1701-c. Program(s) used to refine structure: SHELXL (Sheldrick, 2015b) for ta-sa15-05, ta-eab1607; SHELXL (Sheldrick, 2015b), shelXle (Hübschle et al., 2011) for CoPhpzCl2_sq, ta-eab1701-c. Molecular graphics: OLEX2 (Dolomanov et al., 2009) for ta-sa15-05, ta-eab1607. Software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) for ta-sa15-05, ta-eab1607.

{µ-1,4-Bis[2-(pyridin-2-yl)ethyl]piperazine}bis[dichloridocobalt(II)] (ta-sa15-05) top
Crystal data top
[Co2Cl4(C18H24N4)]F(000) = 564
Mr = 556.07Dx = 1.654 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.6370 (5) ÅCell parameters from 2820 reflections
b = 7.4382 (2) Åθ = 4.2–32.8°
c = 13.3104 (5) ŵ = 1.98 mm1
β = 104.229 (4)°T = 173 K
V = 1116.77 (7) Å3Prism, blue
Z = 20.32 × 0.22 × 0.11 mm
Data collection top
Agilent, Eos, Gemini
diffractometer
3708 independent reflections
Radiation source: Enhance (Mo) X-ray Source3044 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 16.0416 pixels mm-1θmax = 33.0°, θmin = 3.3°
ω scansh = 1713
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2014)
k = 910
Tmin = 0.687, Tmax = 1.000l = 1918
7280 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0428P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3708 reflectionsΔρmax = 0.69 e Å3
127 parametersΔρmin = 0.63 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.48371 (2)0.39454 (3)0.78675 (2)0.01891 (8)
Cl10.66943 (5)0.29581 (7)0.80327 (4)0.03312 (13)
Cl20.34895 (5)0.17887 (6)0.77648 (4)0.02996 (13)
N10.43498 (14)0.5445 (2)0.65615 (12)0.0208 (3)
N20.48454 (14)0.59266 (18)0.89900 (12)0.0166 (3)
C10.37081 (18)0.4753 (3)0.56620 (15)0.0259 (4)
H10.34340.35490.56540.031*
C20.34353 (18)0.5728 (3)0.47548 (16)0.0286 (4)
H20.29990.51980.41270.034*
C30.3809 (2)0.7490 (3)0.47777 (16)0.0300 (4)
H30.36350.81950.41640.036*
C40.44398 (19)0.8213 (3)0.57021 (16)0.0276 (4)
H40.46910.94320.57310.033*
C50.47084 (17)0.7165 (2)0.65901 (14)0.0206 (4)
C60.53965 (19)0.7884 (2)0.76234 (15)0.0233 (4)
H6A0.55890.91650.75460.028*
H6B0.61520.72150.78470.028*
C70.47009 (18)0.7714 (2)0.84567 (14)0.0215 (4)
H7A0.49660.86690.89810.026*
H7B0.38490.79140.81330.026*
C80.59897 (16)0.5912 (2)0.97969 (14)0.0198 (4)
H8A0.60320.69891.02420.024*
H8B0.66550.59730.94550.024*
C90.38779 (16)0.5759 (2)0.95338 (14)0.0195 (3)
H9A0.31060.57180.90150.023*
H9B0.38800.68320.99740.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02127 (14)0.01542 (13)0.01850 (14)0.00189 (9)0.00194 (10)0.00053 (8)
Cl10.0279 (3)0.0416 (3)0.0308 (3)0.0137 (2)0.0090 (2)0.0033 (2)
Cl20.0318 (3)0.0199 (2)0.0323 (3)0.00587 (19)0.0034 (2)0.00083 (17)
N10.0204 (7)0.0207 (7)0.0203 (8)0.0012 (6)0.0029 (6)0.0011 (6)
N20.0163 (7)0.0165 (6)0.0162 (7)0.0008 (6)0.0025 (6)0.0022 (5)
C10.0247 (9)0.0278 (9)0.0239 (10)0.0026 (8)0.0036 (8)0.0013 (7)
C20.0231 (10)0.0396 (10)0.0203 (9)0.0040 (9)0.0001 (8)0.0013 (8)
C30.0279 (10)0.0400 (11)0.0221 (9)0.0066 (10)0.0061 (8)0.0081 (8)
C40.0306 (11)0.0268 (9)0.0273 (10)0.0014 (8)0.0107 (9)0.0074 (8)
C50.0209 (9)0.0229 (8)0.0192 (8)0.0011 (7)0.0070 (7)0.0017 (7)
C60.0281 (10)0.0199 (8)0.0215 (9)0.0063 (8)0.0053 (8)0.0025 (7)
C70.0281 (10)0.0167 (7)0.0191 (8)0.0019 (7)0.0048 (7)0.0030 (6)
C80.0148 (8)0.0236 (8)0.0196 (9)0.0045 (7)0.0019 (7)0.0036 (6)
C90.0156 (8)0.0249 (8)0.0177 (8)0.0019 (7)0.0035 (7)0.0037 (6)
Geometric parameters (Å, º) top
Co1—Cl12.2415 (6)C4—H40.9500
Co1—Cl22.2240 (6)C4—C51.386 (3)
Co1—N12.0257 (15)C5—C61.509 (3)
Co1—N22.0969 (15)C6—H6A0.9900
N1—C11.348 (2)C6—H6B0.9900
N1—C51.343 (2)C6—C71.531 (3)
N2—C71.497 (2)C7—H7A0.9900
N2—C81.491 (2)C7—H7B0.9900
N2—C91.486 (2)C8—H8A0.9900
C1—H10.9500C8—H8B0.9900
C1—C21.377 (3)C8—C9i1.515 (2)
C2—H20.9500C9—C8i1.515 (2)
C2—C31.379 (3)C9—H9A0.9900
C3—H30.9500C9—H9B0.9900
C3—C41.378 (3)
Cl2—Co1—Cl1114.71 (2)N1—C5—C4120.55 (17)
N1—Co1—Cl1108.93 (5)N1—C5—C6117.07 (16)
N1—Co1—Cl2107.46 (5)C4—C5—C6122.38 (17)
N1—Co1—N2100.12 (6)C5—C6—H6A109.2
N2—Co1—Cl1108.96 (5)C5—C6—H6B109.2
N2—Co1—Cl2115.49 (5)C5—C6—C7111.99 (16)
C1—N1—Co1121.94 (13)H6A—C6—H6B107.9
C5—N1—Co1118.73 (12)C7—C6—H6A109.2
C5—N1—C1119.31 (16)C7—C6—H6B109.2
C7—N2—Co1107.82 (11)N2—C7—C6113.52 (15)
C8—N2—Co1110.80 (11)N2—C7—H7A108.9
C8—N2—C7108.92 (14)N2—C7—H7B108.9
C9—N2—Co1114.63 (11)C6—C7—H7A108.9
C9—N2—C7107.17 (14)C6—C7—H7B108.9
C9—N2—C8107.34 (14)H7A—C7—H7B107.7
N1—C1—H1118.8N2—C8—H8A109.2
N1—C1—C2122.40 (19)N2—C8—H8B109.2
C2—C1—H1118.8N2—C8—C9i111.91 (14)
C1—C2—H2120.7H8A—C8—H8B107.9
C1—C2—C3118.52 (19)C9i—C8—H8A109.2
C3—C2—H2120.7C9i—C8—H8B109.2
C2—C3—H3120.4N2—C9—C8i112.07 (15)
C4—C3—C2119.14 (19)N2—C9—H9A109.2
C4—C3—H3120.4N2—C9—H9B109.2
C3—C4—H4120.0C8i—C9—H9A109.2
C3—C4—C5120.05 (19)C8i—C9—H9B109.2
C5—C4—H4120.0H9A—C9—H9B107.9
Co1—N1—C1—C2175.85 (15)C3—C4—C5—N10.6 (3)
Co1—N1—C5—C4177.07 (15)C3—C4—C5—C6180.0 (2)
Co1—N1—C5—C63.5 (2)C4—C5—C6—C7122.0 (2)
Co1—N2—C7—C639.88 (18)C5—N1—C1—C22.2 (3)
Co1—N2—C8—C9i69.19 (16)C5—C6—C7—N286.0 (2)
Co1—N2—C9—C8i66.77 (16)C7—N2—C8—C9i172.37 (15)
N1—C1—C2—C31.7 (3)C7—N2—C9—C8i173.62 (15)
N1—C5—C6—C757.4 (2)C8—N2—C7—C680.41 (18)
C1—N1—C5—C41.0 (3)C8—N2—C9—C8i56.8 (2)
C1—N1—C5—C6178.43 (17)C9—N2—C7—C6163.77 (15)
C1—C2—C3—C40.0 (3)C9—N2—C8—C9i56.7 (2)
C2—C3—C4—C51.1 (3)
Symmetry code: (i) x+1, y+1, z+2.
{1,4-Bis[2-(pyridin-2-yl)ethyl]-1,4-diazacycloheptane}dichloridocobalt(II) (CoPhpzCl2_sq) top
Crystal data top
[CoCl2(C19H26N4)][+solvent]Z = 2
Mr = 440.27F(000) = 458
Triclinic, P1Dx = 1.383 Mg m3
a = 7.2628 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.5369 (4) ÅCell parameters from 9804 reflections
c = 12.6384 (5) Åθ = 3.2–33.2°
α = 86.9553 (19)°µ = 1.07 mm1
β = 89.1996 (19)°T = 150 K
γ = 89.3798 (18)°Fragment, blue
V = 1057.32 (7) Å30.23 × 0.13 × 0.09 mm
Data collection top
Bruker AXS D8 Quest
diffractometer with PhotonII charge-integrating pixel array detector (CPAD)
8042 independent reflections
Radiation source: fine focus sealed tube X-ray source7248 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.035
Detector resolution: 7.4074 pixels mm-1θmax = 33.2°, θmin = 1.8°
ω and phi scansh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1717
Tmin = 0.660, Tmax = 0.747l = 1919
43329 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0309P)2 + 1.165P]
where P = (Fo2 + 2Fc2)/3
8042 reflections(Δ/σ)max = 0.002
317 parametersΔρmax = 0.81 e Å3
298 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The central part of the metal complex (two of the Co-coordinated nitrogen atoms and the C atoms bridging between them) are disordered by a pseudo-mirror operation. Addtional disorder that is vaguely recognizable (largest difference peak 0.78 electrons) was ignored. The two disordered moieties were restrained to have similar geometries. Uij components of ADPs for disordered atoms closer to each other than 2.0 Angstrom were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.914 (3) to 0.086 (3).

The structure contains additional 121 Ang3 of solvent accessible voids filled by extensively disordered solvate molecules (presumably nitromethane, the solvate of crystallization). The residual electron density peaks are not arranged in an interpretable pattern. The structure factors were instead augmented via reverse Fourier transform methods using the SQUEEZE routine (P. van der Sluis & A.L. Spek (1990). Acta Cryst. A46, 194-201) as implemented in the program Platon. The resultant FAB file containing the structure factor contribution from the electron content of the void space was used in together with the original hkl file in the further refinement. (The FAB file with details of the Squeeze results is appended to this cif file). The Squeeze procedure corrected for 69 electrons within the solvent accessible voids, or around two nitromethane molecules.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.53192 (3)0.72356 (2)0.71546 (2)0.01491 (5)
Cl10.39576 (6)0.90464 (3)0.72682 (3)0.02551 (8)
Cl20.35412 (5)0.56244 (3)0.69120 (3)0.02233 (8)
N10.52808 (19)0.69410 (13)0.88487 (11)0.0210 (2)
N40.1556 (2)0.69189 (13)0.31011 (12)0.0236 (3)
C10.3612 (3)0.70540 (19)0.93121 (14)0.0299 (4)
H10.2619570.7339490.8887530.036*
C20.3266 (3)0.6775 (2)1.03773 (15)0.0351 (4)
H20.2074250.6886781.0677240.042*
C30.4692 (3)0.63313 (18)1.09915 (14)0.0304 (4)
H30.4495380.6108481.1718420.036*
C40.6422 (3)0.62179 (17)1.05229 (14)0.0285 (3)
H40.7422960.5913311.0929850.034*
C50.6689 (2)0.65507 (16)0.94559 (13)0.0239 (3)
N20.8075 (2)0.67209 (14)0.69839 (12)0.0186 (3)0.914 (3)
N30.5951 (3)0.75652 (17)0.5435 (2)0.0161 (3)0.914 (3)
C60.8595 (4)0.6501 (3)0.8962 (2)0.0278 (6)0.914 (3)
H6A0.9072410.7302020.8885600.033*0.914 (3)
H6B0.9407190.6056010.9462490.033*0.914 (3)
C70.8759 (3)0.59720 (18)0.79009 (16)0.0256 (4)0.914 (3)
H7A1.0070230.5777660.7767700.031*0.914 (3)
H7B0.8066030.5236560.7933940.031*0.914 (3)
C80.8212 (3)0.60193 (16)0.60292 (16)0.0220 (3)0.914 (3)
H8A0.7879810.5206020.6228620.026*0.914 (3)
H8B0.9500000.6022100.5762640.026*0.914 (3)
C90.6934 (3)0.64957 (17)0.51413 (18)0.0193 (4)0.914 (3)
H9A0.7673740.6664670.4488410.023*0.914 (3)
H9B0.6023120.5896920.4988370.023*0.914 (3)
C100.7153 (3)0.85978 (18)0.5286 (2)0.0203 (4)0.914 (3)
H10A0.6585700.9253010.5651590.024*0.914 (3)
H10B0.7244660.8827340.4520980.024*0.914 (3)
C110.9089 (3)0.83628 (17)0.57172 (17)0.0244 (4)0.914 (3)
H11A0.9753840.7853610.5230620.029*0.914 (3)
H11B0.9753060.9108620.5703870.029*0.914 (3)
C120.9187 (2)0.78025 (17)0.68365 (16)0.0239 (3)0.914 (3)
H12A1.0488990.7614010.7000640.029*0.914 (3)
H12B0.8743150.8368700.7346170.029*0.914 (3)
N2B0.817 (2)0.7263 (13)0.7020 (10)0.0189 (19)0.086 (3)
N3B0.592 (3)0.7352 (19)0.539 (2)0.018 (3)0.086 (3)
C6B0.857 (3)0.674 (4)0.897 (2)0.027 (3)0.086 (3)
H6C0.9360900.6986690.9543910.032*0.086 (3)
H6D0.9030550.5959360.8788770.032*0.086 (3)
C7B0.903 (3)0.7523 (18)0.8028 (13)0.028 (2)0.086 (3)
H7C0.8677830.8324730.8195440.033*0.086 (3)
H7D1.0383930.7507430.7919490.033*0.086 (3)
C8B0.869 (3)0.8190 (15)0.6206 (14)0.022 (2)0.086 (3)
H8C0.9926890.8008920.5909900.027*0.086 (3)
H8D0.8766430.8942270.6544400.027*0.086 (3)
C9B0.727 (4)0.829 (2)0.529 (2)0.021 (3)0.086 (3)
H9C0.6624320.9050590.5308540.026*0.086 (3)
H9D0.7930980.8262090.4603600.026*0.086 (3)
C10B0.663 (3)0.6218 (19)0.508 (2)0.020 (2)0.086 (3)
H10C0.6624230.6197460.4295000.025*0.086 (3)
H10D0.5808530.5595950.5370890.025*0.086 (3)
C11B0.860 (3)0.5997 (18)0.5482 (14)0.027 (2)0.086 (3)
H11C0.9006320.5208300.5302910.033*0.086 (3)
H11D0.9440960.6561400.5116180.033*0.086 (3)
C12B0.873 (3)0.6104 (15)0.6666 (13)0.027 (2)0.086 (3)
H12C0.7939500.5507600.7028890.032*0.086 (3)
H12D1.0014770.5942370.6882890.032*0.086 (3)
C130.4219 (2)0.77299 (15)0.48334 (12)0.0197 (3)
H13A0.3626290.8462890.5038440.024*
H13B0.3376990.7089540.5052720.024*
C140.4423 (2)0.77715 (16)0.36172 (13)0.0232 (3)
H14A0.5194450.8439070.3374830.028*
H14B0.5036540.7052230.3393730.028*
C150.2548 (2)0.78897 (14)0.31256 (12)0.0202 (3)
C160.0139 (2)0.70104 (17)0.26944 (14)0.0257 (3)
H160.0841070.6323130.2666190.031*
C170.0923 (3)0.80415 (19)0.23144 (16)0.0303 (4)
H170.2126220.8062050.2027990.036*
C180.0093 (3)0.90462 (19)0.23624 (19)0.0369 (4)
H180.0413620.9776410.2128110.044*
C190.1866 (3)0.89658 (17)0.27597 (17)0.0310 (4)
H190.2604300.9638740.2781090.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01236 (9)0.01649 (9)0.01594 (9)0.00004 (6)0.00004 (6)0.00142 (7)
Cl10.02846 (19)0.02000 (16)0.02813 (19)0.00544 (14)0.00301 (14)0.00377 (14)
Cl20.02063 (16)0.02148 (16)0.02497 (17)0.00612 (13)0.00151 (13)0.00138 (13)
N10.0191 (6)0.0269 (7)0.0171 (6)0.0007 (5)0.0007 (4)0.0013 (5)
N40.0251 (7)0.0239 (6)0.0218 (6)0.0030 (5)0.0003 (5)0.0003 (5)
C10.0237 (8)0.0462 (11)0.0193 (7)0.0058 (7)0.0023 (6)0.0004 (7)
C20.0323 (10)0.0518 (12)0.0207 (8)0.0046 (8)0.0066 (7)0.0012 (8)
C30.0410 (10)0.0349 (9)0.0153 (7)0.0006 (8)0.0008 (6)0.0020 (6)
C40.0342 (9)0.0331 (9)0.0182 (7)0.0033 (7)0.0055 (6)0.0004 (6)
C50.0251 (7)0.0276 (8)0.0191 (7)0.0026 (6)0.0038 (6)0.0011 (6)
N20.0141 (6)0.0213 (7)0.0202 (6)0.0008 (5)0.0010 (5)0.0009 (5)
N30.0150 (6)0.0164 (8)0.0169 (7)0.0002 (6)0.0001 (5)0.0015 (6)
C60.0209 (9)0.0345 (16)0.0278 (10)0.0016 (8)0.0061 (7)0.0021 (9)
C70.0198 (8)0.0299 (9)0.0265 (8)0.0048 (6)0.0005 (6)0.0042 (7)
C80.0198 (7)0.0214 (7)0.0246 (8)0.0035 (6)0.0036 (6)0.0006 (6)
C90.0200 (8)0.0190 (8)0.0192 (7)0.0003 (6)0.0034 (6)0.0039 (7)
C100.0220 (8)0.0184 (9)0.0203 (7)0.0041 (8)0.0004 (6)0.0015 (7)
C110.0194 (8)0.0259 (8)0.0277 (9)0.0076 (6)0.0023 (6)0.0014 (7)
C120.0175 (7)0.0276 (8)0.0268 (8)0.0051 (6)0.0034 (6)0.0006 (7)
N2B0.015 (3)0.019 (4)0.022 (3)0.008 (3)0.002 (3)0.002 (3)
N3B0.018 (4)0.020 (5)0.017 (4)0.006 (4)0.001 (4)0.001 (4)
C6B0.020 (5)0.035 (6)0.025 (5)0.003 (5)0.008 (5)0.001 (5)
C7B0.019 (4)0.036 (4)0.028 (4)0.002 (4)0.004 (4)0.003 (4)
C8B0.020 (4)0.023 (4)0.023 (4)0.008 (4)0.002 (4)0.004 (4)
C9B0.023 (4)0.022 (5)0.019 (4)0.001 (4)0.003 (4)0.005 (4)
C10B0.020 (4)0.020 (5)0.021 (4)0.000 (4)0.002 (4)0.003 (4)
C11B0.027 (5)0.028 (5)0.026 (5)0.001 (4)0.006 (4)0.001 (4)
C12B0.022 (4)0.030 (4)0.028 (4)0.000 (4)0.006 (4)0.002 (4)
C130.0177 (6)0.0252 (7)0.0161 (6)0.0001 (5)0.0006 (5)0.0006 (5)
C140.0203 (7)0.0324 (8)0.0169 (6)0.0006 (6)0.0014 (5)0.0014 (6)
C150.0223 (7)0.0241 (7)0.0145 (6)0.0007 (5)0.0006 (5)0.0023 (5)
C160.0237 (7)0.0312 (8)0.0225 (7)0.0067 (6)0.0024 (6)0.0030 (6)
C170.0225 (8)0.0384 (10)0.0305 (9)0.0002 (7)0.0042 (6)0.0042 (7)
C180.0353 (10)0.0291 (9)0.0463 (12)0.0048 (8)0.0127 (9)0.0005 (8)
C190.0330 (9)0.0225 (8)0.0378 (10)0.0019 (7)0.0104 (8)0.0015 (7)
Geometric parameters (Å, º) top
Co1—N2B2.072 (15)C11—H11B0.9900
Co1—N22.0933 (15)C12—H12A0.9900
Co1—N12.1498 (14)C12—H12B0.9900
Co1—N32.228 (3)N2B—C7B1.475 (15)
Co1—N3B2.26 (3)N2B—C12B1.485 (16)
Co1—Cl22.3110 (4)N2B—C8B1.493 (15)
Co1—Cl12.3122 (4)N3B—C9B1.471 (18)
N1—C51.347 (2)N3B—C10B1.473 (18)
N1—C11.347 (2)N3B—C131.481 (15)
N4—C151.341 (2)C6B—C7B1.489 (18)
N4—C161.341 (2)C6B—H6C0.9900
C1—C21.388 (3)C6B—H6D0.9900
C1—H10.9500C7B—H7C0.9900
C2—C31.381 (3)C7B—H7D0.9900
C2—H20.9500C8B—C9B1.557 (17)
C3—C41.389 (3)C8B—H8C0.9900
C3—H30.9500C8B—H8D0.9900
C4—C51.394 (2)C9B—H9C0.9900
C4—H40.9500C9B—H9D0.9900
C5—C6B1.508 (18)C10B—C11B1.542 (17)
C5—C61.512 (3)C10B—H10C0.9900
N2—C81.490 (2)C10B—H10D0.9900
N2—C71.496 (2)C11B—C12B1.512 (17)
N2—C121.496 (2)C11B—H11C0.9900
N3—C91.481 (3)C11B—H11D0.9900
N3—C131.484 (2)C12B—H12C0.9900
N3—C101.487 (3)C12B—H12D0.9900
C6—C71.505 (4)C13—C141.540 (2)
C6—H6A0.9900C13—H13A0.9900
C6—H6B0.9900C13—H13B0.9900
C7—H7A0.9900C14—C151.506 (2)
C7—H7B0.9900C14—H14A0.9900
C8—C91.541 (3)C14—H14B0.9900
C8—H8A0.9900C15—C191.390 (2)
C8—H8B0.9900C16—C171.379 (3)
C9—H9A0.9900C16—H160.9500
C9—H9B0.9900C17—C181.385 (3)
C10—C111.532 (3)C17—H170.9500
C10—H10A0.9900C18—C191.389 (3)
C10—H10B0.9900C18—H180.9500
C11—C121.526 (3)C19—H190.9500
C11—H11A0.9900
N2B—Co1—N194.8 (4)N2—C12—H12A108.9
N2—Co1—N194.16 (6)C11—C12—H12A108.9
N2—Co1—N375.49 (6)N2—C12—H12B108.9
N1—Co1—N3168.81 (6)C11—C12—H12B108.9
N2B—Co1—N3B74.9 (6)H12A—C12—H12B107.7
N1—Co1—N3B168.3 (4)C7B—N2B—C12B111.9 (14)
N2B—Co1—Cl2124.4 (4)C7B—N2B—C8B108.1 (13)
N2—Co1—Cl2107.08 (5)C12B—N2B—C8B110.4 (13)
N1—Co1—Cl292.63 (4)C7B—N2B—Co1111.8 (11)
N3—Co1—Cl294.48 (5)C12B—N2B—Co1106.0 (11)
N3B—Co1—Cl288.7 (6)C8B—N2B—Co1108.6 (10)
N2B—Co1—Cl1114.2 (4)C9B—N3B—C10B114 (2)
N2—Co1—Cl1131.72 (5)C9B—N3B—C13109.1 (17)
N1—Co1—Cl191.92 (4)C10B—N3B—C13113.2 (16)
N3—Co1—Cl191.92 (5)C9B—N3B—Co1102.1 (15)
N3B—Co1—Cl197.4 (5)C10B—N3B—Co1108.6 (17)
Cl2—Co1—Cl1120.428 (18)C13—N3B—Co1108.7 (16)
C5—N1—C1118.13 (15)C7B—C6B—C5126 (2)
C5—N1—Co1126.68 (12)C7B—C6B—H6C105.7
C1—N1—Co1114.83 (11)C5—C6B—H6C105.7
C15—N4—C16117.68 (16)C7B—C6B—H6D105.7
N1—C1—C2123.43 (18)C5—C6B—H6D105.7
N1—C1—H1118.3H6C—C6B—H6D106.2
C2—C1—H1118.3N2B—C7B—C6B117 (2)
C3—C2—C1118.49 (18)N2B—C7B—H7C108.1
C3—C2—H2120.8C6B—C7B—H7C108.1
C1—C2—H2120.8N2B—C7B—H7D108.1
C2—C3—C4118.52 (17)C6B—C7B—H7D108.1
C2—C3—H3120.7H7C—C7B—H7D107.3
C4—C3—H3120.7N2B—C8B—C9B111.2 (13)
C3—C4—C5120.04 (17)N2B—C8B—H8C109.4
C3—C4—H4120.0C9B—C8B—H8C109.4
C5—C4—H4120.0N2B—C8B—H8D109.4
N1—C5—C4121.30 (17)C9B—C8B—H8D109.4
N1—C5—C6B114.8 (10)H8C—C8B—H8D108.0
C4—C5—C6B122.7 (11)N3B—C9B—C8B111.3 (15)
N1—C5—C6118.58 (18)N3B—C9B—H9C109.4
C4—C5—C6120.10 (18)C8B—C9B—H9C109.4
C8—N2—C7107.13 (15)N3B—C9B—H9D109.4
C8—N2—C12110.95 (14)C8B—C9B—H9D109.4
C7—N2—C12110.86 (15)H9C—C9B—H9D108.0
C8—N2—Co1107.43 (11)N3B—C10B—C11B110.9 (15)
C7—N2—Co1113.33 (11)N3B—C10B—H10C109.5
C12—N2—Co1107.12 (11)C11B—C10B—H10C109.5
C9—N3—C13110.98 (17)N3B—C10B—H10D109.5
C9—N3—C10111.21 (17)C11B—C10B—H10D109.5
C13—N3—C10111.21 (18)H10C—C10B—H10D108.1
C9—N3—Co1103.56 (15)C12B—C11B—C10B112.3 (16)
C13—N3—Co1110.15 (16)C12B—C11B—H11C109.2
C10—N3—Co1109.47 (14)C10B—C11B—H11C109.2
C7—C6—C5116.7 (2)C12B—C11B—H11D109.2
C7—C6—H6A108.1C10B—C11B—H11D109.2
C5—C6—H6A108.1H11C—C11B—H11D107.9
C7—C6—H6B108.1N2B—C12B—C11B113.6 (14)
C5—C6—H6B108.1N2B—C12B—H12C108.8
H6A—C6—H6B107.3C11B—C12B—H12C108.8
N2—C7—C6115.13 (18)N2B—C12B—H12D108.8
N2—C7—H7A108.5C11B—C12B—H12D108.8
C6—C7—H7A108.5H12C—C12B—H12D107.7
N2—C7—H7B108.5N3B—C13—C14113.5 (13)
C6—C7—H7B108.5N3—C13—C14115.92 (16)
H7A—C7—H7B107.5N3—C13—H13A108.3
N2—C8—C9111.81 (15)C14—C13—H13A108.3
N2—C8—H8A109.3N3—C13—H13B108.3
C9—C8—H8A109.3C14—C13—H13B108.3
N2—C8—H8B109.3H13A—C13—H13B107.4
C9—C8—H8B109.3C15—C14—C13109.50 (13)
H8A—C8—H8B107.9C15—C14—H14A109.8
N3—C9—C8111.89 (17)C13—C14—H14A109.8
N3—C9—H9A109.2C15—C14—H14B109.8
C8—C9—H9A109.2C13—C14—H14B109.8
N3—C9—H9B109.2H14A—C14—H14B108.2
C8—C9—H9B109.2N4—C15—C19122.17 (16)
H9A—C9—H9B107.9N4—C15—C14116.69 (15)
N3—C10—C11112.12 (17)C19—C15—C14121.08 (16)
N3—C10—H10A109.2N4—C16—C17123.99 (17)
C11—C10—H10A109.2N4—C16—H16118.0
N3—C10—H10B109.2C17—C16—H16118.0
C11—C10—H10B109.2C16—C17—C18118.11 (18)
H10A—C10—H10B107.9C16—C17—H17120.9
C12—C11—C10116.03 (17)C18—C17—H17120.9
C12—C11—H11A108.3C17—C18—C19118.75 (19)
C10—C11—H11A108.3C17—C18—H18120.6
C12—C11—H11B108.3C19—C18—H18120.6
C10—C11—H11B108.3C18—C19—C15119.27 (18)
H11A—C11—H11B107.4C18—C19—H19120.4
N2—C12—C11113.26 (15)C15—C19—H19120.4
C5—N1—C1—C20.9 (3)C12B—N2B—C7B—C6B62 (2)
Co1—N1—C1—C2172.64 (18)C8B—N2B—C7B—C6B176 (2)
N1—C1—C2—C31.7 (4)Co1—N2B—C7B—C6B57 (2)
C1—C2—C3—C42.0 (3)C5—C6B—C7B—N2B62 (4)
C2—C3—C4—C50.1 (3)C7B—N2B—C8B—C9B156.5 (19)
C1—N1—C5—C43.0 (3)C12B—N2B—C8B—C9B81 (2)
Co1—N1—C5—C4169.60 (14)Co1—N2B—C8B—C9B35 (2)
C1—N1—C5—C6B165 (2)C10B—N3B—C9B—C8B76 (3)
Co1—N1—C5—C6B23 (2)C13—N3B—C9B—C8B156 (2)
C1—N1—C5—C6175.7 (2)Co1—N3B—C9B—C8B41 (2)
Co1—N1—C5—C611.6 (3)N2B—C8B—C9B—N3B8 (3)
C3—C4—C5—N12.7 (3)C9B—N3B—C10B—C11B41 (3)
C3—C4—C5—C6B164 (2)C13—N3B—C10B—C11B167 (2)
C3—C4—C5—C6176.0 (2)Co1—N3B—C10B—C11B72 (2)
N1—C5—C6—C746.8 (3)N3B—C10B—C11B—C12B55 (3)
C4—C5—C6—C7134.4 (2)C7B—N2B—C12B—C11B154.9 (16)
C8—N2—C7—C6175.57 (18)C8B—N2B—C12B—C11B34 (2)
C12—N2—C7—C663.2 (2)Co1—N2B—C12B—C11B83.0 (16)
Co1—N2—C7—C657.3 (2)C10B—C11B—C12B—N2B59 (2)
C5—C6—C7—N274.9 (3)C9B—N3B—C13—C1473 (2)
C7—N2—C8—C9159.07 (16)C10B—N3B—C13—C1456 (2)
C12—N2—C8—C979.80 (18)Co1—N3B—C13—C14176.5 (5)
Co1—N2—C8—C936.99 (17)C9—N3—C13—C1456.5 (2)
C13—N3—C9—C8155.72 (19)C10—N3—C13—C1467.8 (2)
C10—N3—C9—C879.9 (2)Co1—N3—C13—C14170.61 (12)
Co1—N3—C9—C837.55 (18)N3B—C13—C14—C15167.0 (10)
N2—C8—C9—N32.7 (2)N3—C13—C14—C15177.57 (15)
C9—N3—C10—C1144.7 (3)C16—N4—C15—C190.8 (3)
C13—N3—C10—C11168.9 (2)C16—N4—C15—C14178.14 (15)
Co1—N3—C10—C1169.10 (19)C13—C14—C15—N479.46 (18)
N3—C10—C11—C1248.9 (3)C13—C14—C15—C1997.9 (2)
C8—N2—C12—C1138.9 (2)C15—N4—C16—C170.9 (3)
C7—N2—C12—C11157.83 (16)N4—C16—C17—C180.5 (3)
Co1—N2—C12—C1178.06 (16)C16—C17—C18—C191.9 (3)
C10—C11—C12—N252.5 (2)C17—C18—C19—C151.9 (3)
N1—C5—C6B—C7B15 (4)N4—C15—C19—C180.5 (3)
C4—C5—C6B—C7B153 (3)C14—C15—C19—C18176.65 (19)
{1,4-Bis[2-(pyridin-2-yl)ethyl]piperazine}chloridocobalt(II) perchlorate (ta-eab1701-c) top
Crystal data top
[CoCl(C18H24N4)]ClO4F(000) = 506
Mr = 490.24Dx = 1.562 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 8.3952 (3) ÅCell parameters from 2470 reflections
b = 10.9341 (4) Åθ = 3.9–71.3°
c = 11.3643 (4) ŵ = 9.10 mm1
β = 92.125 (3)°T = 293 K
V = 1042.46 (6) Å3Prism, violet
Z = 20.18 × 0.14 × 0.12 mm
Data collection top
Rigaku, Oxford diffraction
diffractometer
3274 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source2877 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 16.0416 pixels mm-1θmax = 71.5°, θmin = 3.9°
ω scansh = 910
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 1310
Tmin = 0.378, Tmax = 1.000l = 1213
6624 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0576P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
3274 reflectionsΔρmax = 0.77 e Å3
308 parametersΔρmin = 0.40 e Å3
155 restraintsAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower
Primary atom site location: dualAbsolute structure parameter: 0.021 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The perchlorate ion was refined as disordered by a slight rotation. The two disordered moieties were restrained to have similar geometries. Uij components of ADPs for disordered atoms closer to each other than 2.0 Angstrom were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.540 (19) to 0.460 (19).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co1A0.55461 (10)0.55297 (7)0.83474 (7)0.0299 (2)
Cl1A0.4381 (2)0.5403 (2)1.01221 (12)0.0572 (5)
N1A0.6426 (6)0.3908 (5)0.7724 (4)0.0328 (11)
N2A0.3341 (5)0.5009 (5)0.7303 (5)0.0378 (12)
N3A0.4779 (6)0.6982 (5)0.7259 (5)0.0369 (12)
N4A0.7676 (6)0.6407 (5)0.8916 (5)0.0362 (11)
C1A0.7876 (7)0.3864 (6)0.7261 (6)0.0363 (13)
H1A0.8501570.4565840.7288120.044*
C2A0.8478 (8)0.2833 (7)0.6751 (6)0.0462 (17)
H2A0.9485250.2842730.6436940.055*
C3A0.7578 (9)0.1795 (7)0.6710 (6)0.0476 (17)
H3A0.7970590.1082020.6381030.057*
C4A0.6069 (9)0.1819 (6)0.7166 (6)0.0418 (15)
H4A0.5437370.1120180.7140200.050*
C5A0.5508 (8)0.2878 (6)0.7657 (6)0.0335 (14)
C6A0.3877 (8)0.2942 (7)0.8161 (6)0.0437 (15)
H6AA0.3980620.3239800.8964210.052*
H6AB0.3434640.2122910.8186020.052*
C7A0.2709 (8)0.3772 (8)0.7460 (7)0.0485 (17)
H7AA0.2477780.3410210.6693180.058*
H7AB0.1716760.3821480.7868830.058*
C8A0.2215 (8)0.5989 (8)0.7598 (7)0.0505 (17)
H8AA0.1751240.5817610.8349980.061*
H8AB0.1359830.6034160.7001760.061*
C9A0.3123 (9)0.7207 (7)0.7661 (8)0.053 (2)
H9AA0.2590240.7809070.7157700.064*
H9AB0.3161320.7515310.8461920.064*
C10A0.3831 (7)0.5229 (7)0.6094 (5)0.0427 (16)
H10A0.2908290.5205040.5554890.051*
H10B0.4572530.4601050.5863420.051*
C11A0.4623 (9)0.6483 (8)0.6049 (6)0.0475 (17)
H11A0.5667230.6410250.5717270.057*
H11B0.3983200.7030010.5552920.057*
C12A0.5736 (9)0.8108 (7)0.7317 (7)0.0449 (17)
H12A0.5531240.8534750.8044600.054*
H12B0.5411050.8637980.6667690.054*
C13A0.7532 (9)0.7846 (7)0.7263 (6)0.0454 (16)
H13A0.7696640.7233680.6662300.054*
H13B0.8068840.8587940.7027790.054*
C14A0.8280 (7)0.7406 (6)0.8409 (5)0.0347 (13)
C15A0.9611 (8)0.8001 (7)0.8921 (7)0.0449 (16)
H15A1.0028140.8690740.8565210.054*
C16A1.0294 (8)0.7562 (8)0.9948 (7)0.0511 (19)
H16A1.1179690.7953381.0288810.061*
C17A0.9692 (8)0.6564 (8)1.0469 (6)0.0496 (18)
H17A1.0156240.6254911.1162600.060*
C18A0.8361 (8)0.6013 (7)0.9942 (6)0.0416 (14)
H18A0.7918310.5341961.0311970.050*
Cl1B0.8515 (11)0.5211 (9)0.4162 (9)0.041 (2)0.540 (19)
O1B0.9721 (18)0.4337 (16)0.4341 (17)0.081 (4)0.540 (19)
O2B0.841 (2)0.551 (2)0.2956 (13)0.082 (4)0.540 (19)
O3B0.698 (2)0.477 (2)0.450 (3)0.064 (5)0.540 (19)
O4B0.891 (2)0.6189 (19)0.4913 (17)0.098 (5)0.540 (19)
Cl1C0.8480 (15)0.5254 (12)0.4181 (12)0.050 (3)0.460 (19)
O1C0.9811 (19)0.495 (2)0.4894 (18)0.089 (5)0.460 (19)
O2C0.891 (3)0.510 (2)0.3011 (16)0.078 (5)0.460 (19)
O3C0.721 (2)0.446 (2)0.447 (3)0.056 (5)0.460 (19)
O4C0.822 (2)0.6509 (13)0.4417 (18)0.069 (4)0.460 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co1A0.0308 (4)0.0292 (5)0.0295 (4)0.0003 (4)0.0008 (3)0.0007 (4)
Cl1A0.0685 (9)0.0720 (12)0.0319 (6)0.0196 (11)0.0101 (6)0.0027 (9)
N1A0.030 (2)0.034 (3)0.033 (2)0.000 (2)0.0033 (19)0.001 (2)
N2A0.023 (2)0.048 (3)0.042 (3)0.001 (2)0.0016 (18)0.001 (2)
N3A0.037 (3)0.037 (3)0.037 (3)0.008 (2)0.002 (2)0.002 (2)
N4A0.037 (3)0.034 (3)0.037 (3)0.006 (2)0.001 (2)0.002 (2)
C1A0.027 (3)0.039 (4)0.043 (3)0.003 (3)0.002 (2)0.001 (3)
C2A0.032 (3)0.060 (5)0.046 (4)0.010 (3)0.004 (3)0.005 (3)
C3A0.052 (4)0.049 (4)0.041 (3)0.014 (3)0.007 (3)0.011 (3)
C4A0.052 (4)0.030 (3)0.043 (3)0.001 (3)0.004 (3)0.005 (3)
C5A0.037 (3)0.029 (3)0.035 (3)0.001 (3)0.001 (2)0.009 (2)
C6A0.043 (3)0.037 (4)0.051 (4)0.014 (3)0.008 (3)0.002 (3)
C7A0.032 (3)0.054 (5)0.059 (4)0.011 (3)0.001 (3)0.002 (4)
C8A0.028 (3)0.054 (4)0.070 (5)0.006 (3)0.006 (3)0.001 (4)
C9A0.041 (4)0.041 (4)0.077 (5)0.016 (3)0.010 (4)0.005 (4)
C10A0.038 (3)0.053 (5)0.036 (3)0.000 (3)0.006 (2)0.008 (3)
C11A0.050 (4)0.061 (5)0.031 (3)0.005 (3)0.002 (3)0.008 (3)
C12A0.051 (4)0.034 (4)0.050 (4)0.006 (3)0.004 (3)0.001 (3)
C13A0.051 (4)0.041 (4)0.045 (4)0.017 (3)0.004 (3)0.009 (3)
C14A0.032 (3)0.034 (3)0.038 (3)0.001 (2)0.003 (2)0.009 (3)
C15A0.042 (3)0.041 (4)0.052 (4)0.016 (3)0.007 (3)0.008 (3)
C16A0.040 (4)0.061 (5)0.051 (4)0.016 (3)0.006 (3)0.018 (4)
C17A0.041 (4)0.063 (5)0.044 (4)0.004 (3)0.008 (3)0.005 (3)
C18A0.040 (3)0.045 (4)0.039 (3)0.003 (3)0.008 (3)0.001 (3)
Cl1B0.039 (3)0.043 (3)0.044 (3)0.017 (3)0.012 (3)0.007 (3)
O1B0.069 (7)0.078 (9)0.099 (9)0.024 (7)0.016 (7)0.012 (7)
O2B0.099 (9)0.086 (10)0.061 (6)0.018 (8)0.015 (6)0.016 (7)
O3B0.053 (7)0.059 (11)0.082 (8)0.004 (7)0.026 (6)0.011 (8)
O4B0.098 (10)0.097 (10)0.099 (9)0.042 (8)0.011 (8)0.043 (8)
Cl1C0.047 (5)0.053 (5)0.049 (5)0.010 (4)0.006 (4)0.014 (4)
O1C0.059 (7)0.121 (11)0.087 (9)0.020 (8)0.029 (7)0.031 (8)
O2C0.088 (10)0.081 (10)0.069 (8)0.004 (8)0.031 (7)0.013 (8)
O3C0.050 (8)0.046 (10)0.073 (8)0.021 (8)0.005 (8)0.014 (8)
O4C0.075 (9)0.046 (7)0.088 (9)0.005 (7)0.021 (7)0.009 (7)
Geometric parameters (Å, º) top
Co1A—N1A2.057 (5)C8A—H8AB0.9700
Co1A—N3A2.099 (5)C9A—H9AA0.9700
Co1A—N4A2.109 (5)C9A—H9AB0.9700
Co1A—N2A2.236 (5)C10A—C11A1.526 (11)
Co1A—Cl1A2.2780 (16)C10A—H10A0.9700
N1A—C1A1.344 (8)C10A—H10B0.9700
N1A—C5A1.366 (8)C11A—H11A0.9700
N2A—C7A1.467 (10)C11A—H11B0.9700
N2A—C10A1.468 (8)C12A—C13A1.538 (10)
N2A—C8A1.476 (9)C12A—H12A0.9700
N3A—C12A1.470 (9)C12A—H12B0.9700
N3A—C11A1.480 (8)C13A—C14A1.504 (9)
N3A—C9A1.500 (9)C13A—H13A0.9700
N4A—C14A1.344 (9)C13A—H13B0.9700
N4A—C18A1.352 (8)C14A—C15A1.401 (9)
C1A—C2A1.372 (10)C15A—C16A1.368 (12)
C1A—H1A0.9300C15A—H15A0.9300
C2A—C3A1.363 (11)C16A—C17A1.348 (12)
C2A—H2A0.9300C16A—H16A0.9300
C3A—C4A1.387 (11)C17A—C18A1.386 (9)
C3A—H3A0.9300C17A—H17A0.9300
C4A—C5A1.376 (10)C18A—H18A0.9300
C4A—H4A0.9300Cl1B—O4B1.400 (13)
C5A—C6A1.506 (9)Cl1B—O1B1.401 (13)
C6A—C7A1.537 (10)Cl1B—O2B1.409 (13)
C6A—H6AA0.9700Cl1B—O3B1.442 (13)
C6A—H6AB0.9700Cl1C—O1C1.395 (14)
C7A—H7AA0.9700Cl1C—O2C1.400 (15)
C7A—H7AB0.9700Cl1C—O4C1.417 (15)
C8A—C9A1.535 (11)Cl1C—O3C1.425 (15)
C8A—H8AA0.9700
N1A—Co1A—N3A123.7 (2)C9A—C8A—H8AB110.0
N1A—Co1A—N4A100.7 (2)H8AA—C8A—H8AB108.3
N3A—Co1A—N4A94.3 (2)N3A—C9A—C8A107.9 (6)
N1A—Co1A—N2A84.2 (2)N3A—C9A—H9AA110.1
N3A—Co1A—N2A69.5 (2)C8A—C9A—H9AA110.1
N4A—Co1A—N2A162.6 (2)N3A—C9A—H9AB110.1
N1A—Co1A—Cl1A115.11 (16)C8A—C9A—H9AB110.1
N3A—Co1A—Cl1A115.81 (17)H9AA—C9A—H9AB108.4
N4A—Co1A—Cl1A98.25 (16)N2A—C10A—C11A108.5 (5)
N2A—Co1A—Cl1A94.62 (15)N2A—C10A—H10A110.0
C1A—N1A—C5A117.7 (6)C11A—C10A—H10A110.0
C1A—N1A—Co1A120.5 (4)N2A—C10A—H10B110.0
C5A—N1A—Co1A121.4 (4)C11A—C10A—H10B110.0
C7A—N2A—C10A112.4 (6)H10A—C10A—H10B108.4
C7A—N2A—C8A113.8 (6)N3A—C11A—C10A108.8 (5)
C10A—N2A—C8A107.3 (6)N3A—C11A—H11A109.9
C7A—N2A—Co1A117.8 (4)C10A—C11A—H11A109.9
C10A—N2A—Co1A101.5 (3)N3A—C11A—H11B109.9
C8A—N2A—Co1A102.7 (4)C10A—C11A—H11B109.9
C12A—N3A—C11A112.3 (6)H11A—C11A—H11B108.3
C12A—N3A—C9A111.1 (6)N3A—C12A—C13A112.2 (6)
C11A—N3A—C9A107.0 (6)N3A—C12A—H12A109.2
C12A—N3A—Co1A116.8 (4)C13A—C12A—H12A109.2
C11A—N3A—Co1A106.5 (4)N3A—C12A—H12B109.2
C9A—N3A—Co1A102.2 (4)C13A—C12A—H12B109.2
C14A—N4A—C18A118.3 (5)H12A—C12A—H12B107.9
C14A—N4A—Co1A124.6 (4)C14A—C13A—C12A113.8 (6)
C18A—N4A—Co1A116.6 (4)C14A—C13A—H13A108.8
N1A—C1A—C2A123.2 (6)C12A—C13A—H13A108.8
N1A—C1A—H1A118.4C14A—C13A—H13B108.8
C2A—C1A—H1A118.4C12A—C13A—H13B108.8
C3A—C2A—C1A119.1 (7)H13A—C13A—H13B107.7
C3A—C2A—H2A120.5N4A—C14A—C15A120.5 (6)
C1A—C2A—H2A120.5N4A—C14A—C13A118.6 (5)
C2A—C3A—C4A119.0 (7)C15A—C14A—C13A120.8 (6)
C2A—C3A—H3A120.5C16A—C15A—C14A119.6 (7)
C4A—C3A—H3A120.5C16A—C15A—H15A120.2
C5A—C4A—C3A119.9 (7)C14A—C15A—H15A120.2
C5A—C4A—H4A120.0C17A—C16A—C15A120.4 (6)
C3A—C4A—H4A120.0C17A—C16A—H16A119.8
N1A—C5A—C4A121.0 (6)C15A—C16A—H16A119.8
N1A—C5A—C6A117.4 (6)C16A—C17A—C18A118.1 (7)
C4A—C5A—C6A121.6 (6)C16A—C17A—H17A120.9
C5A—C6A—C7A113.7 (6)C18A—C17A—H17A120.9
C5A—C6A—H6AA108.8N4A—C18A—C17A123.0 (7)
C7A—C6A—H6AA108.8N4A—C18A—H18A118.5
C5A—C6A—H6AB108.8C17A—C18A—H18A118.5
C7A—C6A—H6AB108.8O4B—Cl1B—O1B106.3 (12)
H6AA—C6A—H6AB107.7O4B—Cl1B—O2B114.9 (14)
N2A—C7A—C6A112.4 (5)O1B—Cl1B—O2B108.5 (11)
N2A—C7A—H7AA109.1O4B—Cl1B—O3B106.6 (13)
C6A—C7A—H7AA109.1O1B—Cl1B—O3B112.3 (13)
N2A—C7A—H7AB109.1O2B—Cl1B—O3B108.4 (14)
C6A—C7A—H7AB109.1O1C—Cl1C—O2C107.2 (15)
H7AA—C7A—H7AB107.9O1C—Cl1C—O4C104.1 (15)
N2A—C8A—C9A108.6 (5)O2C—Cl1C—O4C110.1 (13)
N2A—C8A—H8AA110.0O1C—Cl1C—O3C108.3 (15)
C9A—C8A—H8AA110.0O2C—Cl1C—O3C111.6 (15)
N2A—C8A—H8AB110.0O4C—Cl1C—O3C115.0 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2A—H2A···O4Bi0.932.763.454 (19)133
C2A—H2A···O4Ci0.932.633.439 (18)146
C7A—H7AA···O4Cii0.972.493.34 (2)146
C10A—H10B···O3B0.972.603.30 (2)129
C11A—H11A···O3B0.972.543.28 (2)133
C12A—H12B···O3Biii0.972.673.53 (3)147
C13A—H13A···O4B0.972.543.461 (17)159
C17A—H17A···O2Biv0.932.683.271 (17)122
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+1, y1/2, z+1; (iii) x+1, y+1/2, z+1; (iv) x, y, z+1.
Dichlorido{4-methyl-1-[2-(pyridin-2-yl)ethyl]-1,4-diazacycloheptane}cobalt(II) (ta-eab1607) top
Crystal data top
[CoCl2(C13H21N3)]F(000) = 724
Mr = 349.16Dx = 1.485 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 10.3626 (6) ÅCell parameters from 1666 reflections
b = 11.5871 (7) Åθ = 3.4–70.8°
c = 13.7035 (7) ŵ = 11.67 mm1
β = 108.308 (6)°T = 273 K
V = 1562.12 (16) Å3Needle, violet
Z = 40.42 × 0.08 × 0.06 mm
Data collection top
Rigaku-OxfordDiffracti0on
diffractometer
2957 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1805 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 16.0416 pixels mm-1θmax = 71.4°, θmin = 5.1°
ω scansh = 1112
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 914
Tmin = 0.202, Tmax = 1.000l = 1615
5711 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0523P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2957 reflectionsΔρmax = 0.54 e Å3
173 parametersΔρmin = 0.33 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.47418 (8)0.55685 (8)0.71591 (6)0.0360 (2)
Cl10.42833 (17)0.63048 (14)0.85722 (11)0.0587 (4)
Cl20.69468 (13)0.55827 (16)0.71540 (11)0.0580 (4)
N10.4898 (6)0.3748 (4)0.7718 (4)0.0565 (13)
N20.2983 (5)0.4751 (4)0.6221 (4)0.0488 (12)
N30.4278 (4)0.7156 (4)0.6315 (3)0.0416 (10)
C10.5068 (6)0.8045 (5)0.6743 (4)0.0507 (15)
H10.58070.79000.73240.061*
C20.4869 (7)0.9154 (5)0.6387 (6)0.0643 (18)
H20.54420.97460.67260.077*
C30.3805 (7)0.9368 (6)0.5522 (6)0.0688 (18)
H30.36341.01120.52590.083*
C40.2996 (7)0.8472 (5)0.5049 (4)0.0566 (16)
H40.22750.86010.44530.068*
C50.3249 (5)0.7366 (5)0.5455 (4)0.0421 (12)
C60.2368 (6)0.6382 (6)0.4937 (4)0.0622 (18)
H6A0.15610.66950.44350.075*
H6B0.28540.59380.45640.075*
C70.1931 (6)0.5584 (6)0.5622 (5)0.0633 (17)
H7A0.11540.51480.52060.076*
H7B0.16310.60420.61020.076*
C80.3381 (7)0.3961 (6)0.5516 (5)0.0665 (19)
H8A0.40050.43660.52370.080*
H8B0.25760.37780.49470.080*
C90.4033 (8)0.2856 (6)0.5980 (6)0.075 (2)
H9A0.43720.24690.54820.090*
H9B0.33390.23660.60990.090*
C100.5177 (7)0.2958 (6)0.6966 (5)0.0635 (18)
H10A0.53760.21980.72740.076*
H10B0.59800.32250.68150.076*
C110.2414 (7)0.4125 (6)0.6920 (6)0.071 (2)
H11A0.17790.35480.65350.085*
H11B0.19170.46600.72130.085*
C120.3524 (8)0.3533 (6)0.7791 (6)0.078 (2)
H12A0.34820.38150.84470.094*
H12B0.33560.27080.77640.094*
C130.5948 (8)0.3600 (6)0.8732 (5)0.086 (3)
H13A0.68290.37470.86690.130*
H13B0.59150.28250.89700.130*
H13C0.57790.41320.92160.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0361 (4)0.0358 (4)0.0344 (4)0.0004 (4)0.0086 (3)0.0003 (4)
Cl10.0794 (10)0.0529 (9)0.0478 (8)0.0211 (8)0.0258 (7)0.0003 (7)
Cl20.0374 (6)0.0691 (10)0.0646 (9)0.0021 (7)0.0119 (6)0.0030 (8)
N10.083 (4)0.040 (3)0.052 (3)0.011 (3)0.029 (3)0.010 (2)
N20.045 (2)0.034 (2)0.064 (3)0.006 (2)0.013 (2)0.007 (2)
N30.040 (2)0.040 (2)0.039 (2)0.003 (2)0.0042 (18)0.008 (2)
C10.047 (3)0.047 (3)0.050 (3)0.012 (3)0.004 (3)0.005 (3)
C20.065 (4)0.041 (4)0.090 (5)0.011 (3)0.029 (4)0.000 (3)
C30.072 (4)0.044 (4)0.093 (5)0.005 (4)0.030 (4)0.022 (4)
C40.062 (4)0.052 (4)0.051 (3)0.013 (3)0.009 (3)0.015 (3)
C50.042 (3)0.044 (3)0.037 (3)0.005 (3)0.007 (2)0.001 (2)
C60.059 (4)0.058 (4)0.050 (3)0.010 (3)0.010 (3)0.004 (3)
C70.040 (3)0.055 (4)0.085 (5)0.007 (3)0.005 (3)0.009 (4)
C80.079 (5)0.055 (4)0.060 (4)0.015 (4)0.013 (3)0.015 (3)
C90.090 (5)0.055 (4)0.089 (5)0.001 (4)0.041 (4)0.022 (4)
C100.079 (5)0.043 (4)0.072 (4)0.020 (3)0.030 (4)0.006 (3)
C110.064 (4)0.043 (4)0.123 (6)0.013 (3)0.055 (4)0.001 (4)
C120.124 (6)0.042 (4)0.094 (5)0.010 (4)0.071 (5)0.019 (4)
C130.125 (7)0.068 (5)0.063 (4)0.032 (5)0.024 (4)0.033 (4)
Geometric parameters (Å, º) top
Co1—Cl12.2981 (16)C6—H6A0.9700
Co1—Cl22.2872 (15)C6—H6B0.9700
Co1—N12.232 (5)C6—C71.486 (9)
Co1—N22.097 (4)C7—H7A0.9700
Co1—N32.146 (4)C7—H7B0.9700
N1—C101.473 (8)C8—H8A0.9700
N1—C121.479 (9)C8—H8B0.9700
N1—C131.482 (8)C8—C91.493 (9)
N2—C71.494 (7)C9—H9A0.9700
N2—C81.480 (8)C9—H9B0.9700
N2—C111.465 (8)C9—C101.496 (9)
N3—C11.331 (7)C10—H10A0.9700
N3—C51.340 (6)C10—H10B0.9700
C1—H10.9300C11—H11A0.9700
C1—C21.367 (8)C11—H11B0.9700
C2—H20.9300C11—C121.535 (10)
C2—C31.365 (9)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C3—C41.363 (9)C13—H13A0.9600
C4—H40.9300C13—H13B0.9600
C4—C51.389 (8)C13—H13C0.9600
C5—C61.493 (8)
Cl2—Co1—Cl1118.10 (7)C7—C6—H6A108.3
N1—Co1—Cl194.21 (14)C7—C6—H6B108.3
N1—Co1—Cl292.47 (15)N2—C7—H7A108.3
N2—Co1—Cl1108.33 (15)N2—C7—H7B108.3
N2—Co1—Cl2132.67 (15)C6—C7—N2115.8 (5)
N2—Co1—N174.86 (19)C6—C7—H7A108.3
N2—Co1—N393.00 (17)C6—C7—H7B108.3
N3—Co1—Cl193.75 (13)H7A—C7—H7B107.4
N3—Co1—Cl292.70 (13)N2—C8—H8A108.4
N3—Co1—N1167.11 (18)N2—C8—H8B108.4
C10—N1—Co1110.9 (4)N2—C8—C9115.7 (6)
C10—N1—C12110.3 (5)H8A—C8—H8B107.4
C10—N1—C13109.6 (5)C9—C8—H8A108.4
C12—N1—Co1102.4 (4)C9—C8—H8B108.4
C12—N1—C13110.8 (6)C8—C9—H9A108.2
C13—N1—Co1112.6 (4)C8—C9—H9B108.2
C7—N2—Co1112.9 (3)C8—C9—C10116.2 (6)
C8—N2—Co1108.2 (4)H9A—C9—H9B107.4
C8—N2—C7110.2 (5)C10—C9—H9A108.2
C11—N2—Co1105.9 (4)C10—C9—H9B108.2
C11—N2—C7107.8 (5)N1—C10—C9114.0 (5)
C11—N2—C8111.8 (5)N1—C10—H10A108.8
C1—N3—Co1115.0 (3)N1—C10—H10B108.8
C1—N3—C5117.2 (5)C9—C10—H10A108.8
C5—N3—Co1127.7 (4)C9—C10—H10B108.8
N3—C1—H1117.7H10A—C10—H10B107.6
N3—C1—C2124.5 (5)N2—C11—H11A109.2
C2—C1—H1117.7N2—C11—H11B109.2
C1—C2—H2121.0N2—C11—C12111.9 (5)
C3—C2—C1118.1 (6)H11A—C11—H11B107.9
C3—C2—H2121.0C12—C11—H11A109.2
C2—C3—H3120.6C12—C11—H11B109.2
C4—C3—C2118.9 (6)N1—C12—C11111.9 (5)
C4—C3—H3120.6N1—C12—H12A109.2
C3—C4—H4119.9N1—C12—H12B109.2
C3—C4—C5120.1 (5)C11—C12—H12A109.2
C5—C4—H4119.9C11—C12—H12B109.2
N3—C5—C4121.2 (5)H12A—C12—H12B107.9
N3—C5—C6118.6 (5)N1—C13—H13A109.5
C4—C5—C6120.2 (5)N1—C13—H13B109.5
C5—C6—H6A108.3N1—C13—H13C109.5
C5—C6—H6B108.3H13A—C13—H13B109.5
H6A—C6—H6B107.4H13A—C13—H13C109.5
C7—C6—C5115.9 (5)H13B—C13—H13C109.5
Principal absorption bands in the visible and near-IR regions top
Compoundλmax (nm)
Co2(Ppz)Cl4580620104013351680
Co2(Pdmpz)Cl4585625105513151680
Co(Phpz)Cl2540565635783975140016641873
Co(Pmhpz)Cl250263580099017001880
[Co(Ppz)Cl]ClO4540610810140017101875
Derived magnetism parameters for Co(Pmhpz)Cl2 and Co(Phpz)Cl2, with their estimated mean deviations top
CompoundCo(Pmhpz)Cl2Co(Phpz)Cl2
T window12.5–310 K5–310 K
D/hc (cm-1)+28 (1)+39 (1)
gave2.32 (2)2.17 (2)
Δ1.11 (6)1.50 (10)
aa00.00056 (21)
b0.34 (5)0.19 (2)
Note: (a) the a value for Co(Pmhpz)Cl2 was held at zero.
 

Footnotes

Work performed in partial fulfillment of Drexel University baccalaureate degree requirements.

§Deceased.

Funding information

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funding of the Gemini X-ray diffractometer. MMT gratefully acknowledges financial assistance from the NSF (IMR-0314773) and the Kresge Foundation toward the purchase of the MPMS SQUID magnetometer. MZ acknowledges support through the National Science Foundation Major Research Instrumentation Program under grant No. CHE-1625543 (Purdue crystallographic facility). AWA, MAO, EAB and SJJ thank Drexel University for support.

References

First citationAddison, A. W., Bennett, J. W., Bowman, R. K., Butcher, R. J., Nazarenko, A. Y., Stahl, N. G. & Thompson, L. K. (2004). Abstracts, 228th ACS National Meeting, Philadelphia, PA; INOR-267; Chem. Abs. (2004) 661440.  Google Scholar
First citationAddison, A. W. & Burke, P. J. (1981). J. Heterocyc. Chem. 18, 803–805.  CrossRef CAS Google Scholar
First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAnandababu, K., Muthuramalingam, S., Velusamy, M. & Mayilmurugan, R. (2020). Catal. Sci. Technol. 10, 2540–2548.  CSD CrossRef CAS Google Scholar
First citationBall, R. G., James, B. R., Mahajan, D. & Trotter, J. (1981). Inorg. Chem. 20, 254–261.  CSD CrossRef CAS Google Scholar
First citationBanci, L., Bencini, A., Benelli, C. & Gatteschi, D. (1980). Nouveau J. Chem. 4, 593–598.  CAS Google Scholar
First citationBaum, R. A., Myers, W. K., Greer, S. M., Breece, R. M. & Tierney, D. L. (2016). Eur. J. Inorg. Chem. pp. 2641–2647.  CrossRef Google Scholar
First citationBoča, R., Dlháň, L., Linert, W., Ehrenberg, H., Fuess, H. & Haase, W. (1999). Chem. Phys. Lett. 307, 359–366.  Google Scholar
First citationBrewer, G. (2020). Magnetochemistry, 6, 28–55.  CrossRef CAS Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker Nano Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCamerano, J. A., Sämann, C., Wadepohl, H. & Gade, L. H. (2011). Organometallics, 30, 379–382.  CSD CrossRef CAS Google Scholar
First citationCarlin, R. L. (1986). Magnetochemistry. Berlin: Springer-Verlag.  Google Scholar
First citationCiampolini, M. & Speroni, G. P. (1966). Inorg. Chem. 5, 45–49.  CrossRef CAS Google Scholar
First citationCruz, T. F. C., Figueira, C. A., Waerenborgh, J. C., Pereira, L. C. J., Li, Y., Lescouëzec, R. & Gomes, P. T. (2018). Polyhedron, 152, 179–187.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoodgame, D. M. L. & Goodgame, M. (1965). Inorg. Chem. 4, 139–143.  CrossRef CAS Google Scholar
First citationGray, A. P., Kraus, H. & Heitmeier, D. E. (1960). J. Org. Chem. 25, 1939–1943.  CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJain, P. C., Kapoor, V., Anand, N., Ahmad, A. & Patnaik, G. K. (1967). J. Med. Chem. 10, 812–818.  CrossRef CAS PubMed Google Scholar
First citationKarlin, K. D., Shi, J., Hayes, J. C., McKown, J. W., Hutchinson, J. P. & Zubieta, J. (1984). Inorg. Chim. Acta, 91, L3–L7.  CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKryatova, M. S., Makhlynets, O. V., Nazarenko, A. Y. & Rybak-Akimova, E. V. (2012). Inorg. Chim. Acta, 387, 74–80.  Web of Science CSD CrossRef CAS Google Scholar
First citationKryatov, S. V., Mohanraj, B. S., Tarasov, V. V., Kryatova, O. P., Rybak-Akimova, E. V., Nuthakki, B., Rusling, J. F., Staples, R. J. & Nazarenko, A. Y. (2002). Inorg. Chem. 41, 923–930.  CSD CrossRef PubMed CAS Google Scholar
First citationLever, A. B. P. (1984). Studies in Physical and Theoretical Chemistry, Vol. 33, Inorganic Electronic Spectroscopy, pp. 491-492. Amsterdam: Elsevier.  Google Scholar
First citationLonnon, D. G., Craig, D. C. & Colbran, S. B. (2006). Dalton Trans. pp. 3785–3797.  CSD CrossRef Google Scholar
First citationMarsich, N., Nardin, G., Randaccio, L. & Camus, A. (1998). Inorg. Chim. Acta, 278, 237–240.  Web of Science CSD CrossRef CAS Google Scholar
First citationMartinelli, R. A., Hanson, G. R., Thompson, J. S., Holmquist, B., Pilbrow, J. R., Auld, D. S. & Vallee, B. L. (1989). Biochemistry, 28, 2251–2258.  CrossRef CAS PubMed Google Scholar
First citationMautner, F. A., Louka, F. R., LeGuet, T. & Massoud, S. S. (2009). J. Mol. Struct. 919, 196–203.  CSD CrossRef CAS Google Scholar
First citationMautner, F. A., Soileau, J. B., Bankole, P. K., Gallo, A. A. & Massoud, S. S. (2008). J. Mol. Struct. 889, 271–278.  CSD CrossRef CAS Google Scholar
First citationMuthuramalingam, S., Anandababu, K., Velusamy, M. & Mayilmurugan, R. (2019a). Catal. Sci. Technol. 9, 5991–6001.  CSD CrossRef CAS Google Scholar
First citationMuthuramalingam, S., Anandababu, K., Velusamy, M. & Mayilmurugan, R. (2020). Inorg. Chem. 59, 5918–5928.  CSD CrossRef CAS PubMed Google Scholar
First citationMuthuramalingam, S., Sankaralingam, M., Velusamy, M. & Mayilmurugan, R. (2019b). Inorg. Chem. 58, 12975–12985.  CSD CrossRef CAS PubMed Google Scholar
First citationMuthuramalingam, S., Subramaniyan, S., Khamrang, T., Velusamy, M. & Mayilmurugan, R. (2017). ChemistrySelect 2, 940-948.  CrossRef CAS Google Scholar
First citationMuthuramalingam, S., Velusamy, M. & Mayilmurugan, R. (2021). Dalton Trans. 50, 7984–7994.  CSD CrossRef CAS PubMed Google Scholar
First citationNemec, I., Liu, H., Herchel, R., Zhang, X. & Trávníček, Z. (2016). Synth. Met. 215, 158–163.  CSD CrossRef CAS Google Scholar
First citationO'Connor, M. A., Addison, A. W., Zeller, M. & Hunter, A. D. (2012). Abstracts, American Chemical Society 43rd Mid-Atlantic Regional Meeting, Catonsville, MD. Abstract #442. Chem. Abs. (2012). 774061.  Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–S83.  CrossRef Web of Science Google Scholar
First citationPalaniandavar, M., Butcher, R. J. & Addison, A. W. (1996). Inorg. Chem. 35, 467–471.  CSD CrossRef PubMed CAS Google Scholar
First citationPapánková, B., Boča, R., Dlháň, L., Nemec, I., Titiš, J., Svoboda, I. & Fuess, H. (2010). Inorg. Chim. Acta, 363, 147–156.  Google Scholar
First citationPhillip, A. T., Casey, A. T. & Thompson, C. R. (1970). Aust. J. Chem. 23, 491–499.  CrossRef CAS Google Scholar
First citationProfft, E. & Georgi, W. (1961). Justus Liebigs Ann. Chem. 643, 136–144.  CrossRef CAS Google Scholar
First citationProfft, E. & Lojack, S. (1962). Rev. Chim. Acad. Rep. Populaire Roumaine 7, 405-429.  CAS Google Scholar
First citationRajendiran, V., Murali, M., Suresh, E., Sinha, S., Somasundaram, K. & Palaniandavar, M. (2008). Dalton Trans. pp. 148–163.  CSD CrossRef Google Scholar
First citationRajnák, C., Titiš, J., Šalitroš, I., Boča, R., Fuhr, O. & Ruben, M. (2013). Polyhedron, 65, 122–128.  Google Scholar
First citationRechkemmer, Y., Breitgoff, F. D., van der Meer, M., Atanasov, M., Hakl, M., Orlita, M., Neugebauer, P., Neese, F., Sarkar, B. & van Slageren, J. (2016). Nat. Commun. 7, 10467.  Web of Science CSD CrossRef PubMed Google Scholar
First citationReeves, G. T., Addison, A. W., Zeller, M. & Hunter, A. D. (2014). Polyhedron, 68, 70–75.  CSD CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSakaguchi, U. & Addison, A. W. (1979). J. Chem. Soc. Dalton Trans. pp. 600–609.  CrossRef Google Scholar
First citationSchmidt, M., Wiedemann, D., Moubaraki, B., Chilton, N. F., Murray, K. S., Vignesh, K. R., Rajaraman, G. & Grohmann, A. (2013). Eur. J. Inorg. Chem. 2013, 958–967.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.  CrossRef Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationŚwitlicka, A., Machura, B., Kruszynski, R., Cano, J., Toma, L. M., Lloret, F. & Julve, M. (2018). Dalton Trans. 47, 5831–5842.  PubMed Google Scholar
First citationVoronkova, V. K., Zaripov, M. M., Yablokov, Y. V., Ablov, A. V. & Ablova, M. A. (1974). Dokl. Akad. Nauk SSSR, 214, 377-80.  CAS Google Scholar
First citationXiao, L., Bhadbhade, M. & Baker, A. T. (2018). J. Mol. Struct. 1157, 112–118.  CrossRef CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationŻurowska, B., Kalinowska-Lis, U., Białońska, A. & Ochocki, J. (2008). J. Mol. Struct. 889, 98–103.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds