Jerry P. Jasinski tribute
Chlorocobalt complexes with pyridylethyl-derived diazacycloalkanes
aDepartment of Chemistry, Drexel University, Philadelphia, PA 19104, USA, bDepartment of Chemistry, Keene State College, Keene, NH 03435, USA, cCarlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA, and dDepartment of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
*Correspondence e-mail: AddisonA@drexel.edu
Syntheses are described for the blue/purple complexes of cobalt(II) chloride with the tetradentate ligands 1,4-bis[2-(pyridin-2-yl)ethyl]piperazine (Ppz), 1,4-bis[2-(pyridin-2-yl)ethyl]homopiperazine (Phpz), trans-2,5-dimethyl-1,4-bis[2-(pyridin-2-yl)ethyl]piperazine (Pdmpz) and tridentate 4-methyl-1-[2-(pyridin-2-yl)ethyl]homopiperazine (Pmhpz). The CoCl2 complexes with Ppz, namely, {μ-1,4-bis[2-(pyridin-2-yl)ethyl]piperazine}bis[dichloridocobalt(II)], [Co2Cl4(C18H24N4)] or Co2(Ppz)Cl4, and Pdmpz (structure not reported as X-ray quality crystals were not obtained), are shown to be dinuclear, with the ligands bridging the two tetrahedrally coordinated CoCl2 units. Co2(Ppz)Cl4 and {dichlorido{4-methyl-1-[2-(pyridin-2-yl)ethyl]-1,4-diazacycloheptane}cobalt(II) [CoCl2(C13H21N3)] or Co(Pmhpz)Cl2, crystallize in the monoclinic P21/n, while crystals of the pentacoordinate monochloro chelate 1,4-bis[2-(pyridin-2-yl)ethyl]piperazine}chloridocobalt(II) perchlorate, [CoCl(C18H24N4)]ClO4 or [Co(Ppz)Cl]ClO4, are also monoclinic (P21). The complex {1,4-bis[2-(pyridin-2-yl)ethyl]-1,4-diazacycloheptane}dichloridocobalt(II) [CoCl2(C19H26N4)] or Co(Phpz)Cl2 (P) is mononuclear, with a pentacoordinated CoII ion, and entails a Phpz ligand acting in a tridentate fashion, with one of the pyridyl moieties dangling and non-coordinated; its displacement by Cl− is attributed to the solvophobicity of Cl− toward MeOH. The pentacoordinate Co atoms in Co(Phpz)Cl2, [Co(Ppz)Cl]+ and Co(Pmhpz)Cl2 have substantial trigonal–bipyramidal character in their stereochemistry. Visible- and near-infrared-region electronic spectra are used to differentiate the two types of coordination spheres. TDDFT calculations suggest that the visible/NIR region transitions contain contributions from MLCT and LMCT character, as well as their expected d–d nature. For Co(Pmhpz)Cl2 and Co(Phpz)Cl2, variable-temperature data were obtained, and the observed decreases in moment with decreasing temperature were modelled with a zero-field-splitting approach, the D values being +28 and +39 cm−1, respectively, with the S = 1/2 state at lower energy.
Keywords: crystal structure; cobalt; magnetism; ZFS; piperazines; DFT; NIR spectra; electronic spectra.
1. Chemical context
Pyridylethylation of et al., 1970; Profft & Georgi, 1961; Profft & Lojack 1962; Gray et al., 1960; Kryatov et al., 2002; Kryatova et al., 2012; Marsich et al., 1998; Karlin et al., 1984; Anandababu et al., 2020; Muthuramalingam et al., 2019a,b), with an original driver being the generation of biomimetic molecules (Karlin et al., 1984). Examples immediately relevant to the present work (Fig. 1) include 1,4-bis[2′-(2′′-pyridylethyl)]piperazine (Ppz) and 1,4-bis[2′-(2′′-pyridylethyl)]homo-piperazine, Phpz. Phpz was first prepared by Schmidt et al. (2013), while Jain and coworkers reported Ppz in 1967 (Jain et al., 1967). For Ppz, both copper(II) (Mautner et al., 2008, 2009; O'Connor et al., 2012) and nickel(II) (O'Connor et al., 2012) complexes have been described. In the case of Phpz, there are reports of copper(II) complexes (O'Connor et al., 2012), including their application as oxidation catalysts (Muthuramalingam et al., 2017, 2020). In addition, nickel(II) complexes of Phpz have been studied as catalysts (Muthuramalingam et al., 2019a,b) as has a recent cobalt(II) complex (Anandababu et al., 2020). For Pmhpz, copper and nickel complexes have been characterized (O'Connor et al., 2012), and Muthuramalingam and co-workers have recently examined oxidative catalysis by copper complexes including that of Pmhpz (Muthuramalingam et al., 2021), but there appears to be only the single prior report of Pdmpz (O'Connor et al., 2012). Four structures are described here. X-ray quality crystals of the Pdmzp complex were not obtained.
has previously been used to prepare a variety of chelating agents (Phillip2. Structural commentary
The structures are not all entirely what was originally expected, based on previous work with these types of ligands. The Co–N(Pyr) bond lengths (Tables 1–4) range from 2.03 to 2.16 Å, which is within the usual span (Orpen et al., 1989), while the Co—Cl distances average 2.28 ± 0.03 Å, which is again common for cobalt(II) (Orpen et al., 1989). The Co—Namine bond lengths are generally longer than the Co—Npyridine ones, and quite variable (vide infra), with an average of 2.154 Å and covering a 0.153 Å range. The distances are unexceptional for CoII to tertiary amine linkages (Orpen et al., 1989), and indeed tertiary amine nitrogen atoms in tripodal ligands are often notably more distant from the CoII ion (2.44–3.27 Å; Brewer, 2020).
|
|
|
|
For the CoCl2-Ppz combination, the dinuclear compound Co2(Ppz)Cl4 was obtained (Fig. 2), rather than the mononuclear Co(Ppz)Cl2. The in this P21/n structure is the half-molecule, related to the molecule's other corresponding half by an inversion centre.
The piperazine moiety in Co(Ppz)Cl2 does not chelate a cobalt ion, but instead bridges between two, so that each tetracoordinate Co is bound by a piperazine-N atom, a pyridyl-N atom and two chloride ions. The two identical coordination cores have ω = 86° (Sakaguchi & Addison, 1979) and φt = 0.07 (Addison et al., 2004; Yang et al., 2007), so are fairly close to exactly tetrahedral in geometry.
As the same ligand behaves as a straightforward mononucleating quadridentate in the copper and nickel complexes (O'Connor et al., 2012; Muthuramalingam et al., 2017, 2019a,b), this led to the question as to whether the coordination is governed by the ligand bite vs the larger ionic radius of Co2+ vs Cu2+/Ni2+. This proposal was approached by synthesising the homopiperazine analogue, Phpz, whose ligand has a larger (N2—N2A) bite. The compound Co(Phpz)Cl2 was indeed obtained as a mononuclear product (Fig. 3), crystallizing into a P lattice. The structure suffers some disorder, but one conformation is dominant, at 91% (the discussion below refers to that major component of the Co(Phpz)Cl2 crystals). However, anticipatedly quadridentate Phpz is now seen to act as a tridentate ligand, with the cobalt(II) ion being pentacoordinate.
One of the pyridylethyl arms is now in the less-commonly observed dangling mode, pyridine being a consistent protagonist of this phenomenon (Reeves et al., 2014; Ball et al., 1981; Rajendiran et al., 2008; Camerano et al., 2011; Lonnon et al., 2006; Palaniandavar et al., 1996). The core geometry is markedly toward the trigonal–bipyramidal (τ = 0.62) (Addison et al., 1984) with Cl2 acting as the erstwhile reference tetragonal axial ligand. The bond from the cobalt ion to the piperazine nitrogen atom (N3) holding the dangling arm is 0.08 (3) Å longer than the one associated with the coordinated pyridine arm. Inasmuch as the ability of Phpz to act as a tetradentate toward CoII has recently been demonstrated in [Co(Phpz)Cl](BPh4) (Anandababu et al., 2020), it is clear that ligand bite is not the sole factor governing the structural outcome in Co(Phpz)Cl2. However, all the complexes herein were prepared in non-aqueous solvents – methanol or THF – and we propose that the chloride ion, with its substantial hydration energy, is solvofugic enough to displace a terminal pyridine in a complex involving cobalt(II). We hence prepared the compound of composition [Co(Ppz)Cl]ClO4, thus removing a chloride from the binding competition. The resulting structure bears out this hypothesis (Fig. 4).
[Co(Ppz)Cl)]ClO4 crystallizes in the P21, and entails the [Co(Ppz)Cl)]+ cation. This structure has τ = 0.65, so is substantially trigonal–bipyramidal in its coordination geometry; the reference axis is Co1A–Cl1A, and the (pseudo)trigonal axis is N2A–Co1A–N4A. The cation is asymmetric, with non-matching Co—Npyridine bonds of 2.057 (5) and 2.109 (5) Å, while the Co—Namine distances are notably inequivalent, at 2.098 (5) for Co1A—N3A, but 2.238 (5) Å for Co1A—N2A – the longest Co—N bond in this set of four compounds. One might note that N3A is `trigonal–equatorial', vs N2A being `trigonal–axial', and suspect that this longer bond betokens an instability that leads to Co2(Ppz)Cl4. The perchlorate may be involved with quite weak C—H⋯O hydrogen-bonding interactions: e.g., C11A⋯O3B, C13A⋯O4B, and C11A⋯O4C are 3.28, 3.46 and 3.60 Å, respectively.
In a further experimental essay, we eliminated an otherwise dangling pyridyl arm by replacing it with a methyl group, as in the simpler tridentate ligand Pmhpz. The resulting molecule, Co(Pmhpz)Cl2 (Fig. 5) crystallizes in the P21/n space group.
The coordination core is somewhat trigonal–bipyramidal, with τ = 0.57 and the reference axis being Co1–Cl1. The sole pyridine nitrogen N3 and the methylated piperazine nitrogen N1 form the pseudo-trigonal axis. Analogously to the [Co(Ppz)Cl)]+ situation, the pseudo-equatorial Co—N2amine bond, at 2.097 (4) Å, is shorter that the Co—N1amine [2.232 (5) Å] and Co—N3pyridine [2.146 (4) Å] bonds in the trigonal directions. One may note that the same axial vs equatorial Co–N bond-length relationship also holds for Co(Phpz)Cl2, above.
Electronic spectra: Pseudotetrahedral species: The essentially identical UV–Vis–NIR spectra for [Co2(Ppz)Cl4] and Co(Pdmpz)Cl2 (Fig. 6, Table 5) strongly implicate a tetrahedral CoN2Cl2 coordination geometry for the latter, and its constitution as [Co2(Pdmpz)Cl4] is ultimately confirmed by the elemental analyses (vide infra).
|
Both might also be compared to [Co(Me4en)]Cl2, which has maxima at ca 1670, 1380, 1000, 650 and 580 nm, attributed in a crystal-field model to 4A2 → 4T1 (F) transitions (the first three) (Lever, 1984), and the latter two to 4A2 → 4T1 (P). Though shifted slightly, these maxima are quite similar to the bands for [Co2(Ppz)Cl4] and [Co2(Pdmpz)Cl4]. The DFT results for a CoN2Cl2 chromophore of Co2(Ppz)Cl4 suggest that even the low-energy transitions involve CT contributions from the CoCl2 moiety to the pyridine ring (Fig. 7).
Pentacoordinate Systems: Like [Co2(ppz)Cl4] and other CoN2Cl2 chromophores, the roughly trigonal–bipyramidal archetypal CoN3Cl2 systems Co(Me5dien)Cl2 and [Co(Et4dien)Cl2] also have strong ligand-field absorptions in the visible region near 500 and 650 nm, as well as NIR bands at ca 2500, 1140, and 950 nm (Ciampolini & Speroni, 1966; Lever, 1984). These transitions have been assigned as from 4A2′ to 4E, 4A2(P) and 4E(P) (Lever, 1984). More recent examples of CoN3Cl2 centres (Xiao et al., 2018) display similarly structured bands with maxima around 650–700 nm. The absorption bands for [Co(Phpz)Cl2] resemble those of the above examples to various extents.
Figs. 8 and 9 show the solid-state spectra of CoPhpzCl2 and [Co(Ppz)Cl]ClO4, respectively. In comparison with the CoN2Cl2 cores, one should note the rather different pattern of absorption bands in the NIR. Firstly, the band near 1000 nm appears to be supplanted by two bands, one being near 750 nm, the other around 950 nm. More tellingly, the 1100–1500 nm region, which has clear CoN2Cl2 maxima near 1300 and 1700 nm, becomes hollowed out, and broader features appear at 1600–1900 nm. The Vis–NIR spectrum (Fig. S9 in the supporting information) of Co(Pmhpz)Cl2 is, as expected, similar to that of Co(Phpz)Cl2. We do note that the utility of NIR spectroscopy for tetra- and pentacoordinate cobalt(II) complexes, pioneered by Goodgame & Goodgame (1965) has hardly been widely adopted (Table S1).
Magnetism analysis
Preliminary data indicated apparently reduced magnetic moments for some samples. However, the structures do not suggest the possibility of any pathway for significant superexchange coupling. Inasmuch as there are pentacoordinate cobalt(II) complexes that have recently been discovered to act as single-ion/single-molecule magnets (SIM/SMM) at reduced temperature (Rechkemmer et al., 2016; Świtlicka et al., 2018), we studied the temperature dependence of the magnetic behaviour of powdered samples of Co(Pmhpz)Cl2 and Co(Phpz)Cl2 (Figs. 10 and 11).
The magnetism as a function of temperature and applied field showed no evidence for SMM behaviour. In situations like this, the temperature dependence of the moments has been recognized as being due to zero-field splitting (Nemec et al., 2016; Cruz et al., 2018; Boča et al., 1999; Papánková et al., 2010; Rajnák et al., 2013; Żurowska et al., 2008) (see the supporting information for further discussion). We were able to fit the data through most of the temperature regime and the extracted D, gave, Δ, a and b which are listed in Table 6, via:
where χx and χz are the longitudinal and transverse modes of the anisotropic responses (Δ = Sx/Sz), a is the TIP and b the total diamagnetic correction.
Both compounds have a positive axial single-ion anisotropy (SIA) term, and the anisotropy values also confirm the findings as self-consistent (e.g. Δ > 1 for positive D and Δ < 1 for negative D, and larger D leads to larger Δ). The D and gave values appear to be in the normal ranges; D values for CoII do cover a wide range, from ca −50 to +100 cm−1 (Cruz et al., 2018; Nemec et al., 2016). While CoII g values intrinsically also cover a wide range, applicable values for fitting ZFS data have been observed to be about 2.0–2.4 (Voronkova et al., 1974; Baum et al., 2016; Banci et al., 1980; Martinelli et al., 1989). Both compounds here show a faster drop in χT and a distinct kink at temperatures below ca 15 K. These features have been seen in several other CoII systems (Żurowska et al., 2008; Papánková et al., 2010; Boča et al., 1999; Rajnák et al., 2013); however, no definitive accounting for this has been advanced as yet, apart from the not infrequently employed addition of a weak antiferromagnetism mean field term.
3. Supramolecular features
There are no true supramolecular structures formed by the compounds, whose crystal lattices containing individual molecules are defined mainly by weak, non-bonding interactions. Along with the absence of any solvation of these crystals, the only hydrogen-bonding interactions observed are in [Co(Ppz)Cl]ClO4, which has weak C—H⋯O hydrogen-bonds (numerical values are given in the CIF), likely of little energetic consequence.
Some lattice views of the compounds are displayed in the supporting information (Figs. S1–S8).
4. Database survey
Closely related compounds with similar M(pyridylethylpiperazine)X2, M(pyridylethylpiperazine)X+, M(pyridylethylhomopiperazine)X2 or M(pyridylethylhomopiperazine)X+ structures include [Co(Phzp)Cl]BPh4 (Anandababu et al., 2020) and Cu(Dpzp)(NC·N·CN)ClO4 (Mautner et al., 2008).
5. Synthesis and crystallization
Methods
Chemical ionization mass spectra were obtained on a Thermo-Electron LTQ–FT 7T FT–ICR instrument. UV–visible–near infrared spectra were obtained using PerkinElmer Lambda-35 or Shimadzu UV3600Plus spectrophotometers equipped with integrating spheres for solid-state spectroscopy. ). DFT calculations were performed using the ωB97X-D/6-31G* method on an iMac16,2 with Spartan-18 software (Wavefunction Inc., Irvine CA, version 1.4.4), while structural diagrams were generated using the CrystalMaker-10 software and Preview-10. Reagents were used as received from TCI America, Sigma–Aldrich, MCB and Fisher Scientific. Elemental microanalyses were by Robertson Microlit Laboratories (Ledgewood, NJ).
data between 1.8 and 310 K in an applied field of 1 kOe were collected using a Quantum Design MPMS-XL SQUID magnetometer. Crystals were powdered and packed into #3 gel capsules that were placed inside drinking straws attached to the sample rod. The magnetization was measured at 1.8 K as a function of increasing field from zero to five tesla and at selected fields returning to zero. The data were corrected for the contributions from the sample holders (measured independently) and the diamagnetism of the constituent atoms, as estimated using Pascal's constants (Carlin, 1986Ligands were prepared by adaptions of the solventless method (Addison & Burke, 1981), typically using a 5–50% excess of 2-vinylpyridine plus a catalytic amount of acetic acid, and were then, in effect, purified as the metal complexes (Phillip et al., 1970); these ligand synthesis reactions are not necessarily stoichiometric or irreversible (Profft & Lojack, 1962). The procedure is exemplified by:
1,4-Bis[2-(pyrid-2-yl)ethyl]piperazine (Ppz): A mixture of piperazine (0.86 g, 10 mmol), 2-vinylpyridine (3.15 g, 30 mmol), and 2 drops of glacial acetic acid was set to react at ca 368 K for 14 to 50 h in a capped tube. The reaction mixture was allowed to cool to room temperature, resulting in the formation of a brown solid mass. The indicated Ppz as the dominant component of the solid: m/z = 297.207, calculated for (C18H24N4+H)+, 297.208. The crude ligand was used without purification in the synthesis of the cobalt complexes.
1,4-Bis[2-(pyridin-2-yl)ethyl]homopiperazine (Phpz): From 2-vinylpyridine (6.32 g, 60 mmol) and homopiperazine (2.01 g, 20 mmol); crude ligand as a brown mass; m/z = 311.223, calculated for (C19H26N4+H)+, 311.224.
trans-2,5-Dimethyl-1,4-bis[2-(pyridin-2-yl)ethyl]piperazine (Pdmpz): From trans-2,5-dimethylpiperazine (2.28 g, 20 mmol) and 2-vinylpyridine (6.32 g, 60 mmol) as a brown solid mass mingled with white crystals. m/z = 325.239, calculated for (C20H28N4+H)+, 325.239.
4-Methyl-1-[2-(pyridin-2-yl)ethyl]homopiperazine (Pmhpz): N-methylhomopiperazine (1.14 g, 10 mmol) and 2-vinylpyridine (1.10 g, 10.5 mmol): heated at the boiling point (ca 433 K) for 3 min.; as a viscous brown oil; m/z = 220.181, calculated for (C13H21N3+H)+, 220.181
Synthesis of cobalt complexes: The cobalt(II) compounds were mainly prepared by the general method exemplified for [Co2(Ppz)Cl4] below, using amounts of crude ligands equivalent to the molecular content of the diazacycloalkane used for the ligand synthesis.
[Co2(Ppz)Cl4]: Crude ligand equivalent to 12.0 mmol Ppz, in methanol (30 mL), was combined with 10.0 mmol (6.5 mL of 1.54 M) methanolic cobalt(II) chloride hydrate solution. Deep-blue crystals deposited, which were filtered off and recrystallized from nitromethane. The showed several elucidatory peaks, including m/z = 518.975 for (M − Cl)+ = Co2PpzCl3+ (calculated 518.973) as well as m/z = 426.079 (CoPpzCl2H+, calculated 426.078) and m/z = 390.102 (CoPpzCl+, calculated 390.102). Analysis C,H,N: found %, C 39.08, H 4.10, N 9.70; calculated for C18H24Cl4Co2N4: C 38.88, H 4.35, N 10.08.
[Co(Phpz)Cl2]: In this case, the CoCl2 solution was added to the ligand in tetrahydrofuran. When the solution was allowed to stand for 4 d, purple crystalline clusters of product were obtained. This presumably THF-solvated efflorescent product was air-dried and recrystallized from nitromethane. MS m/z = 404.117 for (M − Cl)+, calculated 404.117. Analysis C,H,N (desolvated): found %, C 49.65, H 5.84, N 13.38; calculated for C19H26Cl2CoN4: C 49.75, H 5.89, N 13.39.
[Co(Pmhpz)Cl2]: This compound was obtained by dropwise addition of crude 1-(2′-pyridylethyl)-4-methylhomopiperazine in methanol to a warm solution of cobalt(II) chloride in methanol. After two days, the deep blue–purple solution yielded blue crystals in 55% yield. MS: observed m/z = 313.1, calculated for (M − Cl)+, 313.076. Analysis C,H,N: found %, 44.72, 5.84, 11.79; calculated for C13H21N3Cl2Co, 44.72, 6.06, 12.03.
[Co(Ppz)Cl]ClO4: The blue crystals produced were filtered off and recrystallized from acetonitrile. MS m/z = 390.102 (M − ClO4)+ = C18H24N4CoCl+, calculated 390.102. Analysis C,H,N: found %, C 44.3, H 4.78, N 11.4; calculated for C18H24N4CoCl2O4, C 44.1, H 4.93, N 11.4.
[Co2(Pdmpz)Cl4]: The blue crystals produced were filtered off and recrystallized from nitromethane. MS m/z = 454.111, (M + H)+: calculated for C20H29Cl2Co2N4+, 454.110; m/z = 418.133, (M − Cl)+, calculated for C20H28ClCo2N4+, 418.133. Analysis C,H,N: found %, C 41.6, H 4.80, N 9.44; calculated for C20H28Cl4Co2N4: C 41.1, H 4.83, N 9.59.
6. Refinement
Crystal data, data collection and structure . X-ray diffraction data were collected on a Rigaku Oxford Diffraction Gemini diffractometer via ω-scans using an Atlas CCD detector using Cu Kα radiation or a Bruker AXS D8 Quest diffractometer with a PhotonII charge-integrating pixel array detector (CPAD). Data for those structures were collected, scaled and corrected for absorption using the CrysAlis PRO 2015 software suite program package (Rigaku OD, 2015) or APEX4 and SAINT (Bruker, 2021) and SADABS (Krause et al., 2015). Crystal structures were solved using SHELXT (Sheldrick, 2015a), and refined using SHELXL (Sheldrick, 2015b) and ShelXle (Hübschle et al., 2011), with by full-matrix least-squares on F2. Further processing for the Ppz and Pmhpz complexes utilized the OLEX software (Dolomanov et al., 2009).
details are summarized in Table 7
|
The structure of Co(Phpz)Cl2 contains an additional 121 Å3 of solvent-accessible voids filled by extensively disordered nitromethane recrystallization solvent. The residual electron density peaks are not arranged in an interpretable pattern. The structure factors were instead augmented via reverse-Fourier-transform methods using the SQUEEZE routine (van der Sluis & Spek, 1990; Spek, 2015) as implemented in PLATON. The resultant FAB file containing the structure-factor contribution from the electron content of the void space was used together with the original hkl file in the further (The FAB file with details of the SQUEEZE results is included in the in the supporting information). The SQUEEZE procedure corrected for 69 electrons within the solvent-accessible voids, or around two nitromethane molecules. The central part of the metal complex (two of the Co-coordinated nitrogen atoms and the C atoms bridging between them) are disordered by a pseudo-mirror operation. Additional disorder that is vaguely recognizable (largest difference peak 0.78 electrons) was ignored. The two disordered moieties were restrained to have similar geometries. Uij components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions, the occupancy ratio refined to 0.914 (3):0.086 (3).
For all compounds, H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).
Supporting information
https://doi.org/10.1107/S2056989022001220/yy2006sup1.cif
contains datablocks global, CoPhpzCl2_sq, ta-eab1701-c, ta-eab1607, ta-sa15-05. DOI:Structure factors: contains datablock ta-sa15-05. DOI: https://doi.org/10.1107/S2056989022001220/yy2006ta-sa15-05sup2.hkl
Structure factors: contains datablock CoPhpzCl2_sq. DOI: https://doi.org/10.1107/S2056989022001220/yy2006CoPhpzCl2_sqsup3.hkl
Structure factors: contains datablock ta-eab1701-c. DOI: https://doi.org/10.1107/S2056989022001220/yy2006ta-eab1701-csup4.hkl
Structure factors: contains datablock ta-eab1607. DOI: https://doi.org/10.1107/S2056989022001220/yy2006ta-eab1607sup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022001220/yy2006sup6.pdf
Data collection: CrysAlis PRO (Agilent, 2014) for ta-sa15-05; APEX4 (Bruker, 2021) for CoPhpzCl2_sq; CrysAlis PRO (Rigaku OD, 2015) for ta-eab1701-c, ta-eab1607. Cell
CrysAlis PRO (Agilent, 2014) for ta-sa15-05; SAINT (Bruker, 2020) for CoPhpzCl2_sq; CrysAlis PRO (Rigaku OD, 2015) for ta-eab1701-c, ta-eab1607. Data reduction: CrysAlis PRO (Agilent, 2014) for ta-sa15-05; SAINT (Bruker, 2020) for CoPhpzCl2_sq; CrysAlis PRO (Rigaku OD, 2015) for ta-eab1701-c, ta-eab1607. Program(s) used to solve structure: ShelXT (Sheldrick, 2015a) for ta-sa15-05, ta-eab1607; SHELXT (Sheldrick, 2015a) for CoPhpzCl2_sq; ShelXT (Sheldrick, 2015b0) for ta-eab1701-c. Program(s) used to refine structure: SHELXL (Sheldrick, 2015b) for ta-sa15-05, ta-eab1607; SHELXL (Sheldrick, 2015b), shelXle (Hübschle et al., 2011) for CoPhpzCl2_sq, ta-eab1701-c. Molecular graphics: OLEX2 (Dolomanov et al., 2009) for ta-sa15-05, ta-eab1607. Software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) for ta-sa15-05, ta-eab1607.[Co2Cl4(C18H24N4)] | F(000) = 564 |
Mr = 556.07 | Dx = 1.654 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 11.6370 (5) Å | Cell parameters from 2820 reflections |
b = 7.4382 (2) Å | θ = 4.2–32.8° |
c = 13.3104 (5) Å | µ = 1.98 mm−1 |
β = 104.229 (4)° | T = 173 K |
V = 1116.77 (7) Å3 | Prism, blue |
Z = 2 | 0.32 × 0.22 × 0.11 mm |
Agilent, Eos, Gemini diffractometer | 3708 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3044 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 16.0416 pixels mm-1 | θmax = 33.0°, θmin = 3.3° |
ω scans | h = −17→13 |
Absorption correction: multi-scan (CrysAlisPro; Agilent, 2014) | k = −9→10 |
Tmin = 0.687, Tmax = 1.000 | l = −19→18 |
7280 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.095 | w = 1/[σ2(Fo2) + (0.0428P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
3708 reflections | Δρmax = 0.69 e Å−3 |
127 parameters | Δρmin = −0.63 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.48371 (2) | 0.39454 (3) | 0.78675 (2) | 0.01891 (8) | |
Cl1 | 0.66943 (5) | 0.29581 (7) | 0.80327 (4) | 0.03312 (13) | |
Cl2 | 0.34895 (5) | 0.17887 (6) | 0.77648 (4) | 0.02996 (13) | |
N1 | 0.43498 (14) | 0.5445 (2) | 0.65615 (12) | 0.0208 (3) | |
N2 | 0.48454 (14) | 0.59266 (18) | 0.89900 (12) | 0.0166 (3) | |
C1 | 0.37081 (18) | 0.4753 (3) | 0.56620 (15) | 0.0259 (4) | |
H1 | 0.3434 | 0.3549 | 0.5654 | 0.031* | |
C2 | 0.34353 (18) | 0.5728 (3) | 0.47548 (16) | 0.0286 (4) | |
H2 | 0.2999 | 0.5198 | 0.4127 | 0.034* | |
C3 | 0.3809 (2) | 0.7490 (3) | 0.47777 (16) | 0.0300 (4) | |
H3 | 0.3635 | 0.8195 | 0.4164 | 0.036* | |
C4 | 0.44398 (19) | 0.8213 (3) | 0.57021 (16) | 0.0276 (4) | |
H4 | 0.4691 | 0.9432 | 0.5731 | 0.033* | |
C5 | 0.47084 (17) | 0.7165 (2) | 0.65901 (14) | 0.0206 (4) | |
C6 | 0.53965 (19) | 0.7884 (2) | 0.76234 (15) | 0.0233 (4) | |
H6A | 0.5589 | 0.9165 | 0.7546 | 0.028* | |
H6B | 0.6152 | 0.7215 | 0.7847 | 0.028* | |
C7 | 0.47009 (18) | 0.7714 (2) | 0.84567 (14) | 0.0215 (4) | |
H7A | 0.4966 | 0.8669 | 0.8981 | 0.026* | |
H7B | 0.3849 | 0.7914 | 0.8133 | 0.026* | |
C8 | 0.59897 (16) | 0.5912 (2) | 0.97969 (14) | 0.0198 (4) | |
H8A | 0.6032 | 0.6989 | 1.0242 | 0.024* | |
H8B | 0.6655 | 0.5973 | 0.9455 | 0.024* | |
C9 | 0.38779 (16) | 0.5759 (2) | 0.95338 (14) | 0.0195 (3) | |
H9A | 0.3106 | 0.5718 | 0.9015 | 0.023* | |
H9B | 0.3880 | 0.6832 | 0.9974 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.02127 (14) | 0.01542 (13) | 0.01850 (14) | 0.00189 (9) | 0.00194 (10) | 0.00053 (8) |
Cl1 | 0.0279 (3) | 0.0416 (3) | 0.0308 (3) | 0.0137 (2) | 0.0090 (2) | 0.0033 (2) |
Cl2 | 0.0318 (3) | 0.0199 (2) | 0.0323 (3) | −0.00587 (19) | −0.0034 (2) | 0.00083 (17) |
N1 | 0.0204 (7) | 0.0207 (7) | 0.0203 (8) | 0.0012 (6) | 0.0029 (6) | 0.0011 (6) |
N2 | 0.0163 (7) | 0.0165 (6) | 0.0162 (7) | −0.0008 (6) | 0.0025 (6) | 0.0022 (5) |
C1 | 0.0247 (9) | 0.0278 (9) | 0.0239 (10) | 0.0026 (8) | 0.0036 (8) | −0.0013 (7) |
C2 | 0.0231 (10) | 0.0396 (10) | 0.0203 (9) | 0.0040 (9) | −0.0001 (8) | −0.0013 (8) |
C3 | 0.0279 (10) | 0.0400 (11) | 0.0221 (9) | 0.0066 (10) | 0.0061 (8) | 0.0081 (8) |
C4 | 0.0306 (11) | 0.0268 (9) | 0.0273 (10) | 0.0014 (8) | 0.0107 (9) | 0.0074 (8) |
C5 | 0.0209 (9) | 0.0229 (8) | 0.0192 (8) | 0.0011 (7) | 0.0070 (7) | 0.0017 (7) |
C6 | 0.0281 (10) | 0.0199 (8) | 0.0215 (9) | −0.0063 (8) | 0.0053 (8) | 0.0025 (7) |
C7 | 0.0281 (10) | 0.0167 (7) | 0.0191 (8) | 0.0019 (7) | 0.0048 (7) | 0.0030 (6) |
C8 | 0.0148 (8) | 0.0236 (8) | 0.0196 (9) | −0.0045 (7) | 0.0019 (7) | 0.0036 (6) |
C9 | 0.0156 (8) | 0.0249 (8) | 0.0177 (8) | 0.0019 (7) | 0.0035 (7) | 0.0037 (6) |
Co1—Cl1 | 2.2415 (6) | C4—H4 | 0.9500 |
Co1—Cl2 | 2.2240 (6) | C4—C5 | 1.386 (3) |
Co1—N1 | 2.0257 (15) | C5—C6 | 1.509 (3) |
Co1—N2 | 2.0969 (15) | C6—H6A | 0.9900 |
N1—C1 | 1.348 (2) | C6—H6B | 0.9900 |
N1—C5 | 1.343 (2) | C6—C7 | 1.531 (3) |
N2—C7 | 1.497 (2) | C7—H7A | 0.9900 |
N2—C8 | 1.491 (2) | C7—H7B | 0.9900 |
N2—C9 | 1.486 (2) | C8—H8A | 0.9900 |
C1—H1 | 0.9500 | C8—H8B | 0.9900 |
C1—C2 | 1.377 (3) | C8—C9i | 1.515 (2) |
C2—H2 | 0.9500 | C9—C8i | 1.515 (2) |
C2—C3 | 1.379 (3) | C9—H9A | 0.9900 |
C3—H3 | 0.9500 | C9—H9B | 0.9900 |
C3—C4 | 1.378 (3) | ||
Cl2—Co1—Cl1 | 114.71 (2) | N1—C5—C4 | 120.55 (17) |
N1—Co1—Cl1 | 108.93 (5) | N1—C5—C6 | 117.07 (16) |
N1—Co1—Cl2 | 107.46 (5) | C4—C5—C6 | 122.38 (17) |
N1—Co1—N2 | 100.12 (6) | C5—C6—H6A | 109.2 |
N2—Co1—Cl1 | 108.96 (5) | C5—C6—H6B | 109.2 |
N2—Co1—Cl2 | 115.49 (5) | C5—C6—C7 | 111.99 (16) |
C1—N1—Co1 | 121.94 (13) | H6A—C6—H6B | 107.9 |
C5—N1—Co1 | 118.73 (12) | C7—C6—H6A | 109.2 |
C5—N1—C1 | 119.31 (16) | C7—C6—H6B | 109.2 |
C7—N2—Co1 | 107.82 (11) | N2—C7—C6 | 113.52 (15) |
C8—N2—Co1 | 110.80 (11) | N2—C7—H7A | 108.9 |
C8—N2—C7 | 108.92 (14) | N2—C7—H7B | 108.9 |
C9—N2—Co1 | 114.63 (11) | C6—C7—H7A | 108.9 |
C9—N2—C7 | 107.17 (14) | C6—C7—H7B | 108.9 |
C9—N2—C8 | 107.34 (14) | H7A—C7—H7B | 107.7 |
N1—C1—H1 | 118.8 | N2—C8—H8A | 109.2 |
N1—C1—C2 | 122.40 (19) | N2—C8—H8B | 109.2 |
C2—C1—H1 | 118.8 | N2—C8—C9i | 111.91 (14) |
C1—C2—H2 | 120.7 | H8A—C8—H8B | 107.9 |
C1—C2—C3 | 118.52 (19) | C9i—C8—H8A | 109.2 |
C3—C2—H2 | 120.7 | C9i—C8—H8B | 109.2 |
C2—C3—H3 | 120.4 | N2—C9—C8i | 112.07 (15) |
C4—C3—C2 | 119.14 (19) | N2—C9—H9A | 109.2 |
C4—C3—H3 | 120.4 | N2—C9—H9B | 109.2 |
C3—C4—H4 | 120.0 | C8i—C9—H9A | 109.2 |
C3—C4—C5 | 120.05 (19) | C8i—C9—H9B | 109.2 |
C5—C4—H4 | 120.0 | H9A—C9—H9B | 107.9 |
Co1—N1—C1—C2 | −175.85 (15) | C3—C4—C5—N1 | −0.6 (3) |
Co1—N1—C5—C4 | 177.07 (15) | C3—C4—C5—C6 | 180.0 (2) |
Co1—N1—C5—C6 | −3.5 (2) | C4—C5—C6—C7 | 122.0 (2) |
Co1—N2—C7—C6 | −39.88 (18) | C5—N1—C1—C2 | 2.2 (3) |
Co1—N2—C8—C9i | −69.19 (16) | C5—C6—C7—N2 | 86.0 (2) |
Co1—N2—C9—C8i | 66.77 (16) | C7—N2—C8—C9i | 172.37 (15) |
N1—C1—C2—C3 | −1.7 (3) | C7—N2—C9—C8i | −173.62 (15) |
N1—C5—C6—C7 | −57.4 (2) | C8—N2—C7—C6 | 80.41 (18) |
C1—N1—C5—C4 | −1.0 (3) | C8—N2—C9—C8i | −56.8 (2) |
C1—N1—C5—C6 | 178.43 (17) | C9—N2—C7—C6 | −163.77 (15) |
C1—C2—C3—C4 | 0.0 (3) | C9—N2—C8—C9i | 56.7 (2) |
C2—C3—C4—C5 | 1.1 (3) |
Symmetry code: (i) −x+1, −y+1, −z+2. |
[CoCl2(C19H26N4)][+solvent] | Z = 2 |
Mr = 440.27 | F(000) = 458 |
Triclinic, P1 | Dx = 1.383 Mg m−3 |
a = 7.2628 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.5369 (4) Å | Cell parameters from 9804 reflections |
c = 12.6384 (5) Å | θ = 3.2–33.2° |
α = 86.9553 (19)° | µ = 1.07 mm−1 |
β = 89.1996 (19)° | T = 150 K |
γ = 89.3798 (18)° | Fragment, blue |
V = 1057.32 (7) Å3 | 0.23 × 0.13 × 0.09 mm |
Bruker AXS D8 Quest diffractometer with PhotonII charge-integrating pixel array detector (CPAD) | 8042 independent reflections |
Radiation source: fine focus sealed tube X-ray source | 7248 reflections with I > 2σ(I) |
Triumph curved graphite crystal monochromator | Rint = 0.035 |
Detector resolution: 7.4074 pixels mm-1 | θmax = 33.2°, θmin = 1.8° |
ω and phi scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −17→17 |
Tmin = 0.660, Tmax = 0.747 | l = −19→19 |
43329 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0309P)2 + 1.165P] where P = (Fo2 + 2Fc2)/3 |
8042 reflections | (Δ/σ)max = 0.002 |
317 parameters | Δρmax = 0.81 e Å−3 |
298 restraints | Δρmin = −0.35 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The central part of the metal complex (two of the Co-coordinated nitrogen atoms and the C atoms bridging between them) are disordered by a pseudo-mirror operation. Addtional disorder that is vaguely recognizable (largest difference peak 0.78 electrons) was ignored. The two disordered moieties were restrained to have similar geometries. Uij components of ADPs for disordered atoms closer to each other than 2.0 Angstrom were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.914 (3) to 0.086 (3). The structure contains additional 121 Ang3 of solvent accessible voids filled by extensively disordered solvate molecules (presumably nitromethane, the solvate of crystallization). The residual electron density peaks are not arranged in an interpretable pattern. The structure factors were instead augmented via reverse Fourier transform methods using the SQUEEZE routine (P. van der Sluis & A.L. Spek (1990). Acta Cryst. A46, 194-201) as implemented in the program Platon. The resultant FAB file containing the structure factor contribution from the electron content of the void space was used in together with the original hkl file in the further refinement. (The FAB file with details of the Squeeze results is appended to this cif file). The Squeeze procedure corrected for 69 electrons within the solvent accessible voids, or around two nitromethane molecules. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Co1 | 0.53192 (3) | 0.72356 (2) | 0.71546 (2) | 0.01491 (5) | |
Cl1 | 0.39576 (6) | 0.90464 (3) | 0.72682 (3) | 0.02551 (8) | |
Cl2 | 0.35412 (5) | 0.56244 (3) | 0.69120 (3) | 0.02233 (8) | |
N1 | 0.52808 (19) | 0.69410 (13) | 0.88487 (11) | 0.0210 (2) | |
N4 | 0.1556 (2) | 0.69189 (13) | 0.31011 (12) | 0.0236 (3) | |
C1 | 0.3612 (3) | 0.70540 (19) | 0.93121 (14) | 0.0299 (4) | |
H1 | 0.261957 | 0.733949 | 0.888753 | 0.036* | |
C2 | 0.3266 (3) | 0.6775 (2) | 1.03773 (15) | 0.0351 (4) | |
H2 | 0.207425 | 0.688678 | 1.067724 | 0.042* | |
C3 | 0.4692 (3) | 0.63313 (18) | 1.09915 (14) | 0.0304 (4) | |
H3 | 0.449538 | 0.610848 | 1.171842 | 0.036* | |
C4 | 0.6422 (3) | 0.62179 (17) | 1.05229 (14) | 0.0285 (3) | |
H4 | 0.742296 | 0.591331 | 1.092985 | 0.034* | |
C5 | 0.6689 (2) | 0.65507 (16) | 0.94559 (13) | 0.0239 (3) | |
N2 | 0.8075 (2) | 0.67209 (14) | 0.69839 (12) | 0.0186 (3) | 0.914 (3) |
N3 | 0.5951 (3) | 0.75652 (17) | 0.5435 (2) | 0.0161 (3) | 0.914 (3) |
C6 | 0.8595 (4) | 0.6501 (3) | 0.8962 (2) | 0.0278 (6) | 0.914 (3) |
H6A | 0.907241 | 0.730202 | 0.888560 | 0.033* | 0.914 (3) |
H6B | 0.940719 | 0.605601 | 0.946249 | 0.033* | 0.914 (3) |
C7 | 0.8759 (3) | 0.59720 (18) | 0.79009 (16) | 0.0256 (4) | 0.914 (3) |
H7A | 1.007023 | 0.577766 | 0.776770 | 0.031* | 0.914 (3) |
H7B | 0.806603 | 0.523656 | 0.793394 | 0.031* | 0.914 (3) |
C8 | 0.8212 (3) | 0.60193 (16) | 0.60292 (16) | 0.0220 (3) | 0.914 (3) |
H8A | 0.787981 | 0.520602 | 0.622862 | 0.026* | 0.914 (3) |
H8B | 0.950000 | 0.602210 | 0.576264 | 0.026* | 0.914 (3) |
C9 | 0.6934 (3) | 0.64957 (17) | 0.51413 (18) | 0.0193 (4) | 0.914 (3) |
H9A | 0.767374 | 0.666467 | 0.448841 | 0.023* | 0.914 (3) |
H9B | 0.602312 | 0.589692 | 0.498837 | 0.023* | 0.914 (3) |
C10 | 0.7153 (3) | 0.85978 (18) | 0.5286 (2) | 0.0203 (4) | 0.914 (3) |
H10A | 0.658570 | 0.925301 | 0.565159 | 0.024* | 0.914 (3) |
H10B | 0.724466 | 0.882734 | 0.452098 | 0.024* | 0.914 (3) |
C11 | 0.9089 (3) | 0.83628 (17) | 0.57172 (17) | 0.0244 (4) | 0.914 (3) |
H11A | 0.975384 | 0.785361 | 0.523062 | 0.029* | 0.914 (3) |
H11B | 0.975306 | 0.910862 | 0.570387 | 0.029* | 0.914 (3) |
C12 | 0.9187 (2) | 0.78025 (17) | 0.68365 (16) | 0.0239 (3) | 0.914 (3) |
H12A | 1.048899 | 0.761401 | 0.700064 | 0.029* | 0.914 (3) |
H12B | 0.874315 | 0.836870 | 0.734617 | 0.029* | 0.914 (3) |
N2B | 0.817 (2) | 0.7263 (13) | 0.7020 (10) | 0.0189 (19) | 0.086 (3) |
N3B | 0.592 (3) | 0.7352 (19) | 0.539 (2) | 0.018 (3) | 0.086 (3) |
C6B | 0.857 (3) | 0.674 (4) | 0.897 (2) | 0.027 (3) | 0.086 (3) |
H6C | 0.936090 | 0.698669 | 0.954391 | 0.032* | 0.086 (3) |
H6D | 0.903055 | 0.595936 | 0.878877 | 0.032* | 0.086 (3) |
C7B | 0.903 (3) | 0.7523 (18) | 0.8028 (13) | 0.028 (2) | 0.086 (3) |
H7C | 0.867783 | 0.832473 | 0.819544 | 0.033* | 0.086 (3) |
H7D | 1.038393 | 0.750743 | 0.791949 | 0.033* | 0.086 (3) |
C8B | 0.869 (3) | 0.8190 (15) | 0.6206 (14) | 0.022 (2) | 0.086 (3) |
H8C | 0.992689 | 0.800892 | 0.590990 | 0.027* | 0.086 (3) |
H8D | 0.876643 | 0.894227 | 0.654440 | 0.027* | 0.086 (3) |
C9B | 0.727 (4) | 0.829 (2) | 0.529 (2) | 0.021 (3) | 0.086 (3) |
H9C | 0.662432 | 0.905059 | 0.530854 | 0.026* | 0.086 (3) |
H9D | 0.793098 | 0.826209 | 0.460360 | 0.026* | 0.086 (3) |
C10B | 0.663 (3) | 0.6218 (19) | 0.508 (2) | 0.020 (2) | 0.086 (3) |
H10C | 0.662423 | 0.619746 | 0.429500 | 0.025* | 0.086 (3) |
H10D | 0.580853 | 0.559595 | 0.537089 | 0.025* | 0.086 (3) |
C11B | 0.860 (3) | 0.5997 (18) | 0.5482 (14) | 0.027 (2) | 0.086 (3) |
H11C | 0.900632 | 0.520830 | 0.530291 | 0.033* | 0.086 (3) |
H11D | 0.944096 | 0.656140 | 0.511618 | 0.033* | 0.086 (3) |
C12B | 0.873 (3) | 0.6104 (15) | 0.6666 (13) | 0.027 (2) | 0.086 (3) |
H12C | 0.793950 | 0.550760 | 0.702889 | 0.032* | 0.086 (3) |
H12D | 1.001477 | 0.594237 | 0.688289 | 0.032* | 0.086 (3) |
C13 | 0.4219 (2) | 0.77299 (15) | 0.48334 (12) | 0.0197 (3) | |
H13A | 0.362629 | 0.846289 | 0.503844 | 0.024* | |
H13B | 0.337699 | 0.708954 | 0.505272 | 0.024* | |
C14 | 0.4423 (2) | 0.77715 (16) | 0.36172 (13) | 0.0232 (3) | |
H14A | 0.519445 | 0.843907 | 0.337483 | 0.028* | |
H14B | 0.503654 | 0.705223 | 0.339373 | 0.028* | |
C15 | 0.2548 (2) | 0.78897 (14) | 0.31256 (12) | 0.0202 (3) | |
C16 | −0.0139 (2) | 0.70104 (17) | 0.26944 (14) | 0.0257 (3) | |
H16 | −0.084107 | 0.632313 | 0.266619 | 0.031* | |
C17 | −0.0923 (3) | 0.80415 (19) | 0.23144 (16) | 0.0303 (4) | |
H17 | −0.212622 | 0.806205 | 0.202799 | 0.036* | |
C18 | 0.0093 (3) | 0.90462 (19) | 0.23624 (19) | 0.0369 (4) | |
H18 | −0.041362 | 0.977641 | 0.212811 | 0.044* | |
C19 | 0.1866 (3) | 0.89658 (17) | 0.27597 (17) | 0.0310 (4) | |
H19 | 0.260430 | 0.963874 | 0.278109 | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.01236 (9) | 0.01649 (9) | 0.01594 (9) | 0.00004 (6) | −0.00004 (6) | −0.00142 (7) |
Cl1 | 0.02846 (19) | 0.02000 (16) | 0.02813 (19) | 0.00544 (14) | 0.00301 (14) | −0.00377 (14) |
Cl2 | 0.02063 (16) | 0.02148 (16) | 0.02497 (17) | −0.00612 (13) | 0.00151 (13) | −0.00138 (13) |
N1 | 0.0191 (6) | 0.0269 (7) | 0.0171 (6) | 0.0007 (5) | −0.0007 (4) | −0.0013 (5) |
N4 | 0.0251 (7) | 0.0239 (6) | 0.0218 (6) | −0.0030 (5) | 0.0003 (5) | 0.0003 (5) |
C1 | 0.0237 (8) | 0.0462 (11) | 0.0193 (7) | 0.0058 (7) | 0.0023 (6) | 0.0004 (7) |
C2 | 0.0323 (10) | 0.0518 (12) | 0.0207 (8) | 0.0046 (8) | 0.0066 (7) | −0.0012 (8) |
C3 | 0.0410 (10) | 0.0349 (9) | 0.0153 (7) | −0.0006 (8) | 0.0008 (6) | −0.0020 (6) |
C4 | 0.0342 (9) | 0.0331 (9) | 0.0182 (7) | 0.0033 (7) | −0.0055 (6) | −0.0004 (6) |
C5 | 0.0251 (7) | 0.0276 (8) | 0.0191 (7) | 0.0026 (6) | −0.0038 (6) | −0.0011 (6) |
N2 | 0.0141 (6) | 0.0213 (7) | 0.0202 (6) | 0.0008 (5) | 0.0010 (5) | 0.0009 (5) |
N3 | 0.0150 (6) | 0.0164 (8) | 0.0169 (7) | −0.0002 (6) | 0.0001 (5) | −0.0015 (6) |
C6 | 0.0209 (9) | 0.0345 (16) | 0.0278 (10) | 0.0016 (8) | −0.0061 (7) | 0.0021 (9) |
C7 | 0.0198 (8) | 0.0299 (9) | 0.0265 (8) | 0.0048 (6) | −0.0005 (6) | 0.0042 (7) |
C8 | 0.0198 (7) | 0.0214 (7) | 0.0246 (8) | 0.0035 (6) | 0.0036 (6) | −0.0006 (6) |
C9 | 0.0200 (8) | 0.0190 (8) | 0.0192 (7) | −0.0003 (6) | 0.0034 (6) | −0.0039 (7) |
C10 | 0.0220 (8) | 0.0184 (9) | 0.0203 (7) | −0.0041 (8) | 0.0004 (6) | 0.0015 (7) |
C11 | 0.0194 (8) | 0.0259 (8) | 0.0277 (9) | −0.0076 (6) | 0.0023 (6) | 0.0014 (7) |
C12 | 0.0175 (7) | 0.0276 (8) | 0.0268 (8) | −0.0051 (6) | −0.0034 (6) | −0.0006 (7) |
N2B | 0.015 (3) | 0.019 (4) | 0.022 (3) | −0.008 (3) | −0.002 (3) | 0.002 (3) |
N3B | 0.018 (4) | 0.020 (5) | 0.017 (4) | −0.006 (4) | 0.001 (4) | 0.001 (4) |
C6B | 0.020 (5) | 0.035 (6) | 0.025 (5) | 0.003 (5) | −0.008 (5) | 0.001 (5) |
C7B | 0.019 (4) | 0.036 (4) | 0.028 (4) | −0.002 (4) | −0.004 (4) | 0.003 (4) |
C8B | 0.020 (4) | 0.023 (4) | 0.023 (4) | −0.008 (4) | 0.002 (4) | 0.004 (4) |
C9B | 0.023 (4) | 0.022 (5) | 0.019 (4) | 0.001 (4) | 0.003 (4) | 0.005 (4) |
C10B | 0.020 (4) | 0.020 (5) | 0.021 (4) | 0.000 (4) | 0.002 (4) | −0.003 (4) |
C11B | 0.027 (5) | 0.028 (5) | 0.026 (5) | 0.001 (4) | 0.006 (4) | 0.001 (4) |
C12B | 0.022 (4) | 0.030 (4) | 0.028 (4) | 0.000 (4) | 0.006 (4) | 0.002 (4) |
C13 | 0.0177 (6) | 0.0252 (7) | 0.0161 (6) | 0.0001 (5) | −0.0006 (5) | −0.0006 (5) |
C14 | 0.0203 (7) | 0.0324 (8) | 0.0169 (6) | −0.0006 (6) | −0.0014 (5) | −0.0014 (6) |
C15 | 0.0223 (7) | 0.0241 (7) | 0.0145 (6) | −0.0007 (5) | −0.0006 (5) | −0.0023 (5) |
C16 | 0.0237 (7) | 0.0312 (8) | 0.0225 (7) | −0.0067 (6) | 0.0024 (6) | −0.0030 (6) |
C17 | 0.0225 (8) | 0.0384 (10) | 0.0305 (9) | 0.0002 (7) | −0.0042 (6) | −0.0042 (7) |
C18 | 0.0353 (10) | 0.0291 (9) | 0.0463 (12) | 0.0048 (8) | −0.0127 (9) | −0.0005 (8) |
C19 | 0.0330 (9) | 0.0225 (8) | 0.0378 (10) | −0.0019 (7) | −0.0104 (8) | −0.0015 (7) |
Co1—N2B | 2.072 (15) | C11—H11B | 0.9900 |
Co1—N2 | 2.0933 (15) | C12—H12A | 0.9900 |
Co1—N1 | 2.1498 (14) | C12—H12B | 0.9900 |
Co1—N3 | 2.228 (3) | N2B—C7B | 1.475 (15) |
Co1—N3B | 2.26 (3) | N2B—C12B | 1.485 (16) |
Co1—Cl2 | 2.3110 (4) | N2B—C8B | 1.493 (15) |
Co1—Cl1 | 2.3122 (4) | N3B—C9B | 1.471 (18) |
N1—C5 | 1.347 (2) | N3B—C10B | 1.473 (18) |
N1—C1 | 1.347 (2) | N3B—C13 | 1.481 (15) |
N4—C15 | 1.341 (2) | C6B—C7B | 1.489 (18) |
N4—C16 | 1.341 (2) | C6B—H6C | 0.9900 |
C1—C2 | 1.388 (3) | C6B—H6D | 0.9900 |
C1—H1 | 0.9500 | C7B—H7C | 0.9900 |
C2—C3 | 1.381 (3) | C7B—H7D | 0.9900 |
C2—H2 | 0.9500 | C8B—C9B | 1.557 (17) |
C3—C4 | 1.389 (3) | C8B—H8C | 0.9900 |
C3—H3 | 0.9500 | C8B—H8D | 0.9900 |
C4—C5 | 1.394 (2) | C9B—H9C | 0.9900 |
C4—H4 | 0.9500 | C9B—H9D | 0.9900 |
C5—C6B | 1.508 (18) | C10B—C11B | 1.542 (17) |
C5—C6 | 1.512 (3) | C10B—H10C | 0.9900 |
N2—C8 | 1.490 (2) | C10B—H10D | 0.9900 |
N2—C7 | 1.496 (2) | C11B—C12B | 1.512 (17) |
N2—C12 | 1.496 (2) | C11B—H11C | 0.9900 |
N3—C9 | 1.481 (3) | C11B—H11D | 0.9900 |
N3—C13 | 1.484 (2) | C12B—H12C | 0.9900 |
N3—C10 | 1.487 (3) | C12B—H12D | 0.9900 |
C6—C7 | 1.505 (4) | C13—C14 | 1.540 (2) |
C6—H6A | 0.9900 | C13—H13A | 0.9900 |
C6—H6B | 0.9900 | C13—H13B | 0.9900 |
C7—H7A | 0.9900 | C14—C15 | 1.506 (2) |
C7—H7B | 0.9900 | C14—H14A | 0.9900 |
C8—C9 | 1.541 (3) | C14—H14B | 0.9900 |
C8—H8A | 0.9900 | C15—C19 | 1.390 (2) |
C8—H8B | 0.9900 | C16—C17 | 1.379 (3) |
C9—H9A | 0.9900 | C16—H16 | 0.9500 |
C9—H9B | 0.9900 | C17—C18 | 1.385 (3) |
C10—C11 | 1.532 (3) | C17—H17 | 0.9500 |
C10—H10A | 0.9900 | C18—C19 | 1.389 (3) |
C10—H10B | 0.9900 | C18—H18 | 0.9500 |
C11—C12 | 1.526 (3) | C19—H19 | 0.9500 |
C11—H11A | 0.9900 | ||
N2B—Co1—N1 | 94.8 (4) | N2—C12—H12A | 108.9 |
N2—Co1—N1 | 94.16 (6) | C11—C12—H12A | 108.9 |
N2—Co1—N3 | 75.49 (6) | N2—C12—H12B | 108.9 |
N1—Co1—N3 | 168.81 (6) | C11—C12—H12B | 108.9 |
N2B—Co1—N3B | 74.9 (6) | H12A—C12—H12B | 107.7 |
N1—Co1—N3B | 168.3 (4) | C7B—N2B—C12B | 111.9 (14) |
N2B—Co1—Cl2 | 124.4 (4) | C7B—N2B—C8B | 108.1 (13) |
N2—Co1—Cl2 | 107.08 (5) | C12B—N2B—C8B | 110.4 (13) |
N1—Co1—Cl2 | 92.63 (4) | C7B—N2B—Co1 | 111.8 (11) |
N3—Co1—Cl2 | 94.48 (5) | C12B—N2B—Co1 | 106.0 (11) |
N3B—Co1—Cl2 | 88.7 (6) | C8B—N2B—Co1 | 108.6 (10) |
N2B—Co1—Cl1 | 114.2 (4) | C9B—N3B—C10B | 114 (2) |
N2—Co1—Cl1 | 131.72 (5) | C9B—N3B—C13 | 109.1 (17) |
N1—Co1—Cl1 | 91.92 (4) | C10B—N3B—C13 | 113.2 (16) |
N3—Co1—Cl1 | 91.92 (5) | C9B—N3B—Co1 | 102.1 (15) |
N3B—Co1—Cl1 | 97.4 (5) | C10B—N3B—Co1 | 108.6 (17) |
Cl2—Co1—Cl1 | 120.428 (18) | C13—N3B—Co1 | 108.7 (16) |
C5—N1—C1 | 118.13 (15) | C7B—C6B—C5 | 126 (2) |
C5—N1—Co1 | 126.68 (12) | C7B—C6B—H6C | 105.7 |
C1—N1—Co1 | 114.83 (11) | C5—C6B—H6C | 105.7 |
C15—N4—C16 | 117.68 (16) | C7B—C6B—H6D | 105.7 |
N1—C1—C2 | 123.43 (18) | C5—C6B—H6D | 105.7 |
N1—C1—H1 | 118.3 | H6C—C6B—H6D | 106.2 |
C2—C1—H1 | 118.3 | N2B—C7B—C6B | 117 (2) |
C3—C2—C1 | 118.49 (18) | N2B—C7B—H7C | 108.1 |
C3—C2—H2 | 120.8 | C6B—C7B—H7C | 108.1 |
C1—C2—H2 | 120.8 | N2B—C7B—H7D | 108.1 |
C2—C3—C4 | 118.52 (17) | C6B—C7B—H7D | 108.1 |
C2—C3—H3 | 120.7 | H7C—C7B—H7D | 107.3 |
C4—C3—H3 | 120.7 | N2B—C8B—C9B | 111.2 (13) |
C3—C4—C5 | 120.04 (17) | N2B—C8B—H8C | 109.4 |
C3—C4—H4 | 120.0 | C9B—C8B—H8C | 109.4 |
C5—C4—H4 | 120.0 | N2B—C8B—H8D | 109.4 |
N1—C5—C4 | 121.30 (17) | C9B—C8B—H8D | 109.4 |
N1—C5—C6B | 114.8 (10) | H8C—C8B—H8D | 108.0 |
C4—C5—C6B | 122.7 (11) | N3B—C9B—C8B | 111.3 (15) |
N1—C5—C6 | 118.58 (18) | N3B—C9B—H9C | 109.4 |
C4—C5—C6 | 120.10 (18) | C8B—C9B—H9C | 109.4 |
C8—N2—C7 | 107.13 (15) | N3B—C9B—H9D | 109.4 |
C8—N2—C12 | 110.95 (14) | C8B—C9B—H9D | 109.4 |
C7—N2—C12 | 110.86 (15) | H9C—C9B—H9D | 108.0 |
C8—N2—Co1 | 107.43 (11) | N3B—C10B—C11B | 110.9 (15) |
C7—N2—Co1 | 113.33 (11) | N3B—C10B—H10C | 109.5 |
C12—N2—Co1 | 107.12 (11) | C11B—C10B—H10C | 109.5 |
C9—N3—C13 | 110.98 (17) | N3B—C10B—H10D | 109.5 |
C9—N3—C10 | 111.21 (17) | C11B—C10B—H10D | 109.5 |
C13—N3—C10 | 111.21 (18) | H10C—C10B—H10D | 108.1 |
C9—N3—Co1 | 103.56 (15) | C12B—C11B—C10B | 112.3 (16) |
C13—N3—Co1 | 110.15 (16) | C12B—C11B—H11C | 109.2 |
C10—N3—Co1 | 109.47 (14) | C10B—C11B—H11C | 109.2 |
C7—C6—C5 | 116.7 (2) | C12B—C11B—H11D | 109.2 |
C7—C6—H6A | 108.1 | C10B—C11B—H11D | 109.2 |
C5—C6—H6A | 108.1 | H11C—C11B—H11D | 107.9 |
C7—C6—H6B | 108.1 | N2B—C12B—C11B | 113.6 (14) |
C5—C6—H6B | 108.1 | N2B—C12B—H12C | 108.8 |
H6A—C6—H6B | 107.3 | C11B—C12B—H12C | 108.8 |
N2—C7—C6 | 115.13 (18) | N2B—C12B—H12D | 108.8 |
N2—C7—H7A | 108.5 | C11B—C12B—H12D | 108.8 |
C6—C7—H7A | 108.5 | H12C—C12B—H12D | 107.7 |
N2—C7—H7B | 108.5 | N3B—C13—C14 | 113.5 (13) |
C6—C7—H7B | 108.5 | N3—C13—C14 | 115.92 (16) |
H7A—C7—H7B | 107.5 | N3—C13—H13A | 108.3 |
N2—C8—C9 | 111.81 (15) | C14—C13—H13A | 108.3 |
N2—C8—H8A | 109.3 | N3—C13—H13B | 108.3 |
C9—C8—H8A | 109.3 | C14—C13—H13B | 108.3 |
N2—C8—H8B | 109.3 | H13A—C13—H13B | 107.4 |
C9—C8—H8B | 109.3 | C15—C14—C13 | 109.50 (13) |
H8A—C8—H8B | 107.9 | C15—C14—H14A | 109.8 |
N3—C9—C8 | 111.89 (17) | C13—C14—H14A | 109.8 |
N3—C9—H9A | 109.2 | C15—C14—H14B | 109.8 |
C8—C9—H9A | 109.2 | C13—C14—H14B | 109.8 |
N3—C9—H9B | 109.2 | H14A—C14—H14B | 108.2 |
C8—C9—H9B | 109.2 | N4—C15—C19 | 122.17 (16) |
H9A—C9—H9B | 107.9 | N4—C15—C14 | 116.69 (15) |
N3—C10—C11 | 112.12 (17) | C19—C15—C14 | 121.08 (16) |
N3—C10—H10A | 109.2 | N4—C16—C17 | 123.99 (17) |
C11—C10—H10A | 109.2 | N4—C16—H16 | 118.0 |
N3—C10—H10B | 109.2 | C17—C16—H16 | 118.0 |
C11—C10—H10B | 109.2 | C16—C17—C18 | 118.11 (18) |
H10A—C10—H10B | 107.9 | C16—C17—H17 | 120.9 |
C12—C11—C10 | 116.03 (17) | C18—C17—H17 | 120.9 |
C12—C11—H11A | 108.3 | C17—C18—C19 | 118.75 (19) |
C10—C11—H11A | 108.3 | C17—C18—H18 | 120.6 |
C12—C11—H11B | 108.3 | C19—C18—H18 | 120.6 |
C10—C11—H11B | 108.3 | C18—C19—C15 | 119.27 (18) |
H11A—C11—H11B | 107.4 | C18—C19—H19 | 120.4 |
N2—C12—C11 | 113.26 (15) | C15—C19—H19 | 120.4 |
C5—N1—C1—C2 | −0.9 (3) | C12B—N2B—C7B—C6B | −62 (2) |
Co1—N1—C1—C2 | 172.64 (18) | C8B—N2B—C7B—C6B | 176 (2) |
N1—C1—C2—C3 | −1.7 (4) | Co1—N2B—C7B—C6B | 57 (2) |
C1—C2—C3—C4 | 2.0 (3) | C5—C6B—C7B—N2B | −62 (4) |
C2—C3—C4—C5 | 0.1 (3) | C7B—N2B—C8B—C9B | −156.5 (19) |
C1—N1—C5—C4 | 3.0 (3) | C12B—N2B—C8B—C9B | 81 (2) |
Co1—N1—C5—C4 | −169.60 (14) | Co1—N2B—C8B—C9B | −35 (2) |
C1—N1—C5—C6B | −165 (2) | C10B—N3B—C9B—C8B | −76 (3) |
Co1—N1—C5—C6B | 23 (2) | C13—N3B—C9B—C8B | 156 (2) |
C1—N1—C5—C6 | −175.7 (2) | Co1—N3B—C9B—C8B | 41 (2) |
Co1—N1—C5—C6 | 11.6 (3) | N2B—C8B—C9B—N3B | −8 (3) |
C3—C4—C5—N1 | −2.7 (3) | C9B—N3B—C10B—C11B | 41 (3) |
C3—C4—C5—C6B | 164 (2) | C13—N3B—C10B—C11B | 167 (2) |
C3—C4—C5—C6 | 176.0 (2) | Co1—N3B—C10B—C11B | −72 (2) |
N1—C5—C6—C7 | −46.8 (3) | N3B—C10B—C11B—C12B | 55 (3) |
C4—C5—C6—C7 | 134.4 (2) | C7B—N2B—C12B—C11B | −154.9 (16) |
C8—N2—C7—C6 | −175.57 (18) | C8B—N2B—C12B—C11B | −34 (2) |
C12—N2—C7—C6 | 63.2 (2) | Co1—N2B—C12B—C11B | 83.0 (16) |
Co1—N2—C7—C6 | −57.3 (2) | C10B—C11B—C12B—N2B | −59 (2) |
C5—C6—C7—N2 | 74.9 (3) | C9B—N3B—C13—C14 | 73 (2) |
C7—N2—C8—C9 | 159.07 (16) | C10B—N3B—C13—C14 | −56 (2) |
C12—N2—C8—C9 | −79.80 (18) | Co1—N3B—C13—C14 | −176.5 (5) |
Co1—N2—C8—C9 | 36.99 (17) | C9—N3—C13—C14 | −56.5 (2) |
C13—N3—C9—C8 | −155.72 (19) | C10—N3—C13—C14 | 67.8 (2) |
C10—N3—C9—C8 | 79.9 (2) | Co1—N3—C13—C14 | −170.61 (12) |
Co1—N3—C9—C8 | −37.55 (18) | N3B—C13—C14—C15 | 167.0 (10) |
N2—C8—C9—N3 | 2.7 (2) | N3—C13—C14—C15 | 177.57 (15) |
C9—N3—C10—C11 | −44.7 (3) | C16—N4—C15—C19 | 0.8 (3) |
C13—N3—C10—C11 | −168.9 (2) | C16—N4—C15—C14 | 178.14 (15) |
Co1—N3—C10—C11 | 69.10 (19) | C13—C14—C15—N4 | −79.46 (18) |
N3—C10—C11—C12 | −48.9 (3) | C13—C14—C15—C19 | 97.9 (2) |
C8—N2—C12—C11 | 38.9 (2) | C15—N4—C16—C17 | −0.9 (3) |
C7—N2—C12—C11 | 157.83 (16) | N4—C16—C17—C18 | −0.5 (3) |
Co1—N2—C12—C11 | −78.06 (16) | C16—C17—C18—C19 | 1.9 (3) |
C10—C11—C12—N2 | 52.5 (2) | C17—C18—C19—C15 | −1.9 (3) |
N1—C5—C6B—C7B | 15 (4) | N4—C15—C19—C18 | 0.5 (3) |
C4—C5—C6B—C7B | −153 (3) | C14—C15—C19—C18 | −176.65 (19) |
[CoCl(C18H24N4)]ClO4 | F(000) = 506 |
Mr = 490.24 | Dx = 1.562 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54184 Å |
a = 8.3952 (3) Å | Cell parameters from 2470 reflections |
b = 10.9341 (4) Å | θ = 3.9–71.3° |
c = 11.3643 (4) Å | µ = 9.10 mm−1 |
β = 92.125 (3)° | T = 293 K |
V = 1042.46 (6) Å3 | Prism, violet |
Z = 2 | 0.18 × 0.14 × 0.12 mm |
Rigaku, Oxford diffraction diffractometer | 3274 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 2877 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
Detector resolution: 16.0416 pixels mm-1 | θmax = 71.5°, θmin = 3.9° |
ω scans | h = −9→10 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) | k = −13→10 |
Tmin = 0.378, Tmax = 1.000 | l = −12→13 |
6624 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.116 | w = 1/[σ2(Fo2) + (0.0576P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.002 |
3274 reflections | Δρmax = 0.77 e Å−3 |
308 parameters | Δρmin = −0.40 e Å−3 |
155 restraints | Absolute structure: Classical Flack method preferred over Parsons because s.u. lower |
Primary atom site location: dual | Absolute structure parameter: −0.021 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The perchlorate ion was refined as disordered by a slight rotation. The two disordered moieties were restrained to have similar geometries. Uij components of ADPs for disordered atoms closer to each other than 2.0 Angstrom were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.540 (19) to 0.460 (19). |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Co1A | 0.55461 (10) | 0.55297 (7) | 0.83474 (7) | 0.0299 (2) | |
Cl1A | 0.4381 (2) | 0.5403 (2) | 1.01221 (12) | 0.0572 (5) | |
N1A | 0.6426 (6) | 0.3908 (5) | 0.7724 (4) | 0.0328 (11) | |
N2A | 0.3341 (5) | 0.5009 (5) | 0.7303 (5) | 0.0378 (12) | |
N3A | 0.4779 (6) | 0.6982 (5) | 0.7259 (5) | 0.0369 (12) | |
N4A | 0.7676 (6) | 0.6407 (5) | 0.8916 (5) | 0.0362 (11) | |
C1A | 0.7876 (7) | 0.3864 (6) | 0.7261 (6) | 0.0363 (13) | |
H1A | 0.850157 | 0.456584 | 0.728812 | 0.044* | |
C2A | 0.8478 (8) | 0.2833 (7) | 0.6751 (6) | 0.0462 (17) | |
H2A | 0.948525 | 0.284273 | 0.643694 | 0.055* | |
C3A | 0.7578 (9) | 0.1795 (7) | 0.6710 (6) | 0.0476 (17) | |
H3A | 0.797059 | 0.108202 | 0.638103 | 0.057* | |
C4A | 0.6069 (9) | 0.1819 (6) | 0.7166 (6) | 0.0418 (15) | |
H4A | 0.543737 | 0.112018 | 0.714020 | 0.050* | |
C5A | 0.5508 (8) | 0.2878 (6) | 0.7657 (6) | 0.0335 (14) | |
C6A | 0.3877 (8) | 0.2942 (7) | 0.8161 (6) | 0.0437 (15) | |
H6AA | 0.398062 | 0.323980 | 0.896421 | 0.052* | |
H6AB | 0.343464 | 0.212291 | 0.818602 | 0.052* | |
C7A | 0.2709 (8) | 0.3772 (8) | 0.7460 (7) | 0.0485 (17) | |
H7AA | 0.247778 | 0.341021 | 0.669318 | 0.058* | |
H7AB | 0.171676 | 0.382148 | 0.786883 | 0.058* | |
C8A | 0.2215 (8) | 0.5989 (8) | 0.7598 (7) | 0.0505 (17) | |
H8AA | 0.175124 | 0.581761 | 0.834998 | 0.061* | |
H8AB | 0.135983 | 0.603416 | 0.700176 | 0.061* | |
C9A | 0.3123 (9) | 0.7207 (7) | 0.7661 (8) | 0.053 (2) | |
H9AA | 0.259024 | 0.780907 | 0.715770 | 0.064* | |
H9AB | 0.316132 | 0.751531 | 0.846192 | 0.064* | |
C10A | 0.3831 (7) | 0.5229 (7) | 0.6094 (5) | 0.0427 (16) | |
H10A | 0.290829 | 0.520504 | 0.555489 | 0.051* | |
H10B | 0.457253 | 0.460105 | 0.586342 | 0.051* | |
C11A | 0.4623 (9) | 0.6483 (8) | 0.6049 (6) | 0.0475 (17) | |
H11A | 0.566723 | 0.641025 | 0.571727 | 0.057* | |
H11B | 0.398320 | 0.703001 | 0.555292 | 0.057* | |
C12A | 0.5736 (9) | 0.8108 (7) | 0.7317 (7) | 0.0449 (17) | |
H12A | 0.553124 | 0.853475 | 0.804460 | 0.054* | |
H12B | 0.541105 | 0.863798 | 0.666769 | 0.054* | |
C13A | 0.7532 (9) | 0.7846 (7) | 0.7263 (6) | 0.0454 (16) | |
H13A | 0.769664 | 0.723368 | 0.666230 | 0.054* | |
H13B | 0.806884 | 0.858794 | 0.702779 | 0.054* | |
C14A | 0.8280 (7) | 0.7406 (6) | 0.8409 (5) | 0.0347 (13) | |
C15A | 0.9611 (8) | 0.8001 (7) | 0.8921 (7) | 0.0449 (16) | |
H15A | 1.002814 | 0.869074 | 0.856521 | 0.054* | |
C16A | 1.0294 (8) | 0.7562 (8) | 0.9948 (7) | 0.0511 (19) | |
H16A | 1.117969 | 0.795338 | 1.028881 | 0.061* | |
C17A | 0.9692 (8) | 0.6564 (8) | 1.0469 (6) | 0.0496 (18) | |
H17A | 1.015624 | 0.625491 | 1.116260 | 0.060* | |
C18A | 0.8361 (8) | 0.6013 (7) | 0.9942 (6) | 0.0416 (14) | |
H18A | 0.791831 | 0.534196 | 1.031197 | 0.050* | |
Cl1B | 0.8515 (11) | 0.5211 (9) | 0.4162 (9) | 0.041 (2) | 0.540 (19) |
O1B | 0.9721 (18) | 0.4337 (16) | 0.4341 (17) | 0.081 (4) | 0.540 (19) |
O2B | 0.841 (2) | 0.551 (2) | 0.2956 (13) | 0.082 (4) | 0.540 (19) |
O3B | 0.698 (2) | 0.477 (2) | 0.450 (3) | 0.064 (5) | 0.540 (19) |
O4B | 0.891 (2) | 0.6189 (19) | 0.4913 (17) | 0.098 (5) | 0.540 (19) |
Cl1C | 0.8480 (15) | 0.5254 (12) | 0.4181 (12) | 0.050 (3) | 0.460 (19) |
O1C | 0.9811 (19) | 0.495 (2) | 0.4894 (18) | 0.089 (5) | 0.460 (19) |
O2C | 0.891 (3) | 0.510 (2) | 0.3011 (16) | 0.078 (5) | 0.460 (19) |
O3C | 0.721 (2) | 0.446 (2) | 0.447 (3) | 0.056 (5) | 0.460 (19) |
O4C | 0.822 (2) | 0.6509 (13) | 0.4417 (18) | 0.069 (4) | 0.460 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1A | 0.0308 (4) | 0.0292 (5) | 0.0295 (4) | −0.0003 (4) | −0.0008 (3) | 0.0007 (4) |
Cl1A | 0.0685 (9) | 0.0720 (12) | 0.0319 (6) | −0.0196 (11) | 0.0101 (6) | −0.0027 (9) |
N1A | 0.030 (2) | 0.034 (3) | 0.033 (2) | 0.000 (2) | −0.0033 (19) | −0.001 (2) |
N2A | 0.023 (2) | 0.048 (3) | 0.042 (3) | 0.001 (2) | −0.0016 (18) | −0.001 (2) |
N3A | 0.037 (3) | 0.037 (3) | 0.037 (3) | 0.008 (2) | −0.002 (2) | 0.002 (2) |
N4A | 0.037 (3) | 0.034 (3) | 0.037 (3) | −0.006 (2) | −0.001 (2) | −0.002 (2) |
C1A | 0.027 (3) | 0.039 (4) | 0.043 (3) | 0.003 (3) | −0.002 (2) | 0.001 (3) |
C2A | 0.032 (3) | 0.060 (5) | 0.046 (4) | 0.010 (3) | −0.004 (3) | −0.005 (3) |
C3A | 0.052 (4) | 0.049 (4) | 0.041 (3) | 0.014 (3) | −0.007 (3) | −0.011 (3) |
C4A | 0.052 (4) | 0.030 (3) | 0.043 (3) | −0.001 (3) | −0.004 (3) | −0.005 (3) |
C5A | 0.037 (3) | 0.029 (3) | 0.035 (3) | 0.001 (3) | 0.001 (2) | 0.009 (2) |
C6A | 0.043 (3) | 0.037 (4) | 0.051 (4) | −0.014 (3) | 0.008 (3) | 0.002 (3) |
C7A | 0.032 (3) | 0.054 (5) | 0.059 (4) | −0.011 (3) | 0.001 (3) | −0.002 (4) |
C8A | 0.028 (3) | 0.054 (4) | 0.070 (5) | 0.006 (3) | 0.006 (3) | −0.001 (4) |
C9A | 0.041 (4) | 0.041 (4) | 0.077 (5) | 0.016 (3) | 0.010 (4) | 0.005 (4) |
C10A | 0.038 (3) | 0.053 (5) | 0.036 (3) | 0.000 (3) | −0.006 (2) | −0.008 (3) |
C11A | 0.050 (4) | 0.061 (5) | 0.031 (3) | −0.005 (3) | −0.002 (3) | 0.008 (3) |
C12A | 0.051 (4) | 0.034 (4) | 0.050 (4) | 0.006 (3) | −0.004 (3) | 0.001 (3) |
C13A | 0.051 (4) | 0.041 (4) | 0.045 (4) | −0.017 (3) | 0.004 (3) | 0.009 (3) |
C14A | 0.032 (3) | 0.034 (3) | 0.038 (3) | −0.001 (2) | 0.003 (2) | −0.009 (3) |
C15A | 0.042 (3) | 0.041 (4) | 0.052 (4) | −0.016 (3) | 0.007 (3) | −0.008 (3) |
C16A | 0.040 (4) | 0.061 (5) | 0.051 (4) | −0.016 (3) | −0.006 (3) | −0.018 (4) |
C17A | 0.041 (4) | 0.063 (5) | 0.044 (4) | −0.004 (3) | −0.008 (3) | −0.005 (3) |
C18A | 0.040 (3) | 0.045 (4) | 0.039 (3) | −0.003 (3) | −0.008 (3) | 0.001 (3) |
Cl1B | 0.039 (3) | 0.043 (3) | 0.044 (3) | −0.017 (3) | 0.012 (3) | −0.007 (3) |
O1B | 0.069 (7) | 0.078 (9) | 0.099 (9) | 0.024 (7) | 0.016 (7) | 0.012 (7) |
O2B | 0.099 (9) | 0.086 (10) | 0.061 (6) | 0.018 (8) | 0.015 (6) | 0.016 (7) |
O3B | 0.053 (7) | 0.059 (11) | 0.082 (8) | −0.004 (7) | 0.026 (6) | −0.011 (8) |
O4B | 0.098 (10) | 0.097 (10) | 0.099 (9) | −0.042 (8) | 0.011 (8) | −0.043 (8) |
Cl1C | 0.047 (5) | 0.053 (5) | 0.049 (5) | 0.010 (4) | 0.006 (4) | 0.014 (4) |
O1C | 0.059 (7) | 0.121 (11) | 0.087 (9) | −0.020 (8) | −0.029 (7) | 0.031 (8) |
O2C | 0.088 (10) | 0.081 (10) | 0.069 (8) | 0.004 (8) | 0.031 (7) | −0.013 (8) |
O3C | 0.050 (8) | 0.046 (10) | 0.073 (8) | −0.021 (8) | 0.005 (8) | −0.014 (8) |
O4C | 0.075 (9) | 0.046 (7) | 0.088 (9) | −0.005 (7) | 0.021 (7) | −0.009 (7) |
Co1A—N1A | 2.057 (5) | C8A—H8AB | 0.9700 |
Co1A—N3A | 2.099 (5) | C9A—H9AA | 0.9700 |
Co1A—N4A | 2.109 (5) | C9A—H9AB | 0.9700 |
Co1A—N2A | 2.236 (5) | C10A—C11A | 1.526 (11) |
Co1A—Cl1A | 2.2780 (16) | C10A—H10A | 0.9700 |
N1A—C1A | 1.344 (8) | C10A—H10B | 0.9700 |
N1A—C5A | 1.366 (8) | C11A—H11A | 0.9700 |
N2A—C7A | 1.467 (10) | C11A—H11B | 0.9700 |
N2A—C10A | 1.468 (8) | C12A—C13A | 1.538 (10) |
N2A—C8A | 1.476 (9) | C12A—H12A | 0.9700 |
N3A—C12A | 1.470 (9) | C12A—H12B | 0.9700 |
N3A—C11A | 1.480 (8) | C13A—C14A | 1.504 (9) |
N3A—C9A | 1.500 (9) | C13A—H13A | 0.9700 |
N4A—C14A | 1.344 (9) | C13A—H13B | 0.9700 |
N4A—C18A | 1.352 (8) | C14A—C15A | 1.401 (9) |
C1A—C2A | 1.372 (10) | C15A—C16A | 1.368 (12) |
C1A—H1A | 0.9300 | C15A—H15A | 0.9300 |
C2A—C3A | 1.363 (11) | C16A—C17A | 1.348 (12) |
C2A—H2A | 0.9300 | C16A—H16A | 0.9300 |
C3A—C4A | 1.387 (11) | C17A—C18A | 1.386 (9) |
C3A—H3A | 0.9300 | C17A—H17A | 0.9300 |
C4A—C5A | 1.376 (10) | C18A—H18A | 0.9300 |
C4A—H4A | 0.9300 | Cl1B—O4B | 1.400 (13) |
C5A—C6A | 1.506 (9) | Cl1B—O1B | 1.401 (13) |
C6A—C7A | 1.537 (10) | Cl1B—O2B | 1.409 (13) |
C6A—H6AA | 0.9700 | Cl1B—O3B | 1.442 (13) |
C6A—H6AB | 0.9700 | Cl1C—O1C | 1.395 (14) |
C7A—H7AA | 0.9700 | Cl1C—O2C | 1.400 (15) |
C7A—H7AB | 0.9700 | Cl1C—O4C | 1.417 (15) |
C8A—C9A | 1.535 (11) | Cl1C—O3C | 1.425 (15) |
C8A—H8AA | 0.9700 | ||
N1A—Co1A—N3A | 123.7 (2) | C9A—C8A—H8AB | 110.0 |
N1A—Co1A—N4A | 100.7 (2) | H8AA—C8A—H8AB | 108.3 |
N3A—Co1A—N4A | 94.3 (2) | N3A—C9A—C8A | 107.9 (6) |
N1A—Co1A—N2A | 84.2 (2) | N3A—C9A—H9AA | 110.1 |
N3A—Co1A—N2A | 69.5 (2) | C8A—C9A—H9AA | 110.1 |
N4A—Co1A—N2A | 162.6 (2) | N3A—C9A—H9AB | 110.1 |
N1A—Co1A—Cl1A | 115.11 (16) | C8A—C9A—H9AB | 110.1 |
N3A—Co1A—Cl1A | 115.81 (17) | H9AA—C9A—H9AB | 108.4 |
N4A—Co1A—Cl1A | 98.25 (16) | N2A—C10A—C11A | 108.5 (5) |
N2A—Co1A—Cl1A | 94.62 (15) | N2A—C10A—H10A | 110.0 |
C1A—N1A—C5A | 117.7 (6) | C11A—C10A—H10A | 110.0 |
C1A—N1A—Co1A | 120.5 (4) | N2A—C10A—H10B | 110.0 |
C5A—N1A—Co1A | 121.4 (4) | C11A—C10A—H10B | 110.0 |
C7A—N2A—C10A | 112.4 (6) | H10A—C10A—H10B | 108.4 |
C7A—N2A—C8A | 113.8 (6) | N3A—C11A—C10A | 108.8 (5) |
C10A—N2A—C8A | 107.3 (6) | N3A—C11A—H11A | 109.9 |
C7A—N2A—Co1A | 117.8 (4) | C10A—C11A—H11A | 109.9 |
C10A—N2A—Co1A | 101.5 (3) | N3A—C11A—H11B | 109.9 |
C8A—N2A—Co1A | 102.7 (4) | C10A—C11A—H11B | 109.9 |
C12A—N3A—C11A | 112.3 (6) | H11A—C11A—H11B | 108.3 |
C12A—N3A—C9A | 111.1 (6) | N3A—C12A—C13A | 112.2 (6) |
C11A—N3A—C9A | 107.0 (6) | N3A—C12A—H12A | 109.2 |
C12A—N3A—Co1A | 116.8 (4) | C13A—C12A—H12A | 109.2 |
C11A—N3A—Co1A | 106.5 (4) | N3A—C12A—H12B | 109.2 |
C9A—N3A—Co1A | 102.2 (4) | C13A—C12A—H12B | 109.2 |
C14A—N4A—C18A | 118.3 (5) | H12A—C12A—H12B | 107.9 |
C14A—N4A—Co1A | 124.6 (4) | C14A—C13A—C12A | 113.8 (6) |
C18A—N4A—Co1A | 116.6 (4) | C14A—C13A—H13A | 108.8 |
N1A—C1A—C2A | 123.2 (6) | C12A—C13A—H13A | 108.8 |
N1A—C1A—H1A | 118.4 | C14A—C13A—H13B | 108.8 |
C2A—C1A—H1A | 118.4 | C12A—C13A—H13B | 108.8 |
C3A—C2A—C1A | 119.1 (7) | H13A—C13A—H13B | 107.7 |
C3A—C2A—H2A | 120.5 | N4A—C14A—C15A | 120.5 (6) |
C1A—C2A—H2A | 120.5 | N4A—C14A—C13A | 118.6 (5) |
C2A—C3A—C4A | 119.0 (7) | C15A—C14A—C13A | 120.8 (6) |
C2A—C3A—H3A | 120.5 | C16A—C15A—C14A | 119.6 (7) |
C4A—C3A—H3A | 120.5 | C16A—C15A—H15A | 120.2 |
C5A—C4A—C3A | 119.9 (7) | C14A—C15A—H15A | 120.2 |
C5A—C4A—H4A | 120.0 | C17A—C16A—C15A | 120.4 (6) |
C3A—C4A—H4A | 120.0 | C17A—C16A—H16A | 119.8 |
N1A—C5A—C4A | 121.0 (6) | C15A—C16A—H16A | 119.8 |
N1A—C5A—C6A | 117.4 (6) | C16A—C17A—C18A | 118.1 (7) |
C4A—C5A—C6A | 121.6 (6) | C16A—C17A—H17A | 120.9 |
C5A—C6A—C7A | 113.7 (6) | C18A—C17A—H17A | 120.9 |
C5A—C6A—H6AA | 108.8 | N4A—C18A—C17A | 123.0 (7) |
C7A—C6A—H6AA | 108.8 | N4A—C18A—H18A | 118.5 |
C5A—C6A—H6AB | 108.8 | C17A—C18A—H18A | 118.5 |
C7A—C6A—H6AB | 108.8 | O4B—Cl1B—O1B | 106.3 (12) |
H6AA—C6A—H6AB | 107.7 | O4B—Cl1B—O2B | 114.9 (14) |
N2A—C7A—C6A | 112.4 (5) | O1B—Cl1B—O2B | 108.5 (11) |
N2A—C7A—H7AA | 109.1 | O4B—Cl1B—O3B | 106.6 (13) |
C6A—C7A—H7AA | 109.1 | O1B—Cl1B—O3B | 112.3 (13) |
N2A—C7A—H7AB | 109.1 | O2B—Cl1B—O3B | 108.4 (14) |
C6A—C7A—H7AB | 109.1 | O1C—Cl1C—O2C | 107.2 (15) |
H7AA—C7A—H7AB | 107.9 | O1C—Cl1C—O4C | 104.1 (15) |
N2A—C8A—C9A | 108.6 (5) | O2C—Cl1C—O4C | 110.1 (13) |
N2A—C8A—H8AA | 110.0 | O1C—Cl1C—O3C | 108.3 (15) |
C9A—C8A—H8AA | 110.0 | O2C—Cl1C—O3C | 111.6 (15) |
N2A—C8A—H8AB | 110.0 | O4C—Cl1C—O3C | 115.0 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2A—H2A···O4Bi | 0.93 | 2.76 | 3.454 (19) | 133 |
C2A—H2A···O4Ci | 0.93 | 2.63 | 3.439 (18) | 146 |
C7A—H7AA···O4Cii | 0.97 | 2.49 | 3.34 (2) | 146 |
C10A—H10B···O3B | 0.97 | 2.60 | 3.30 (2) | 129 |
C11A—H11A···O3B | 0.97 | 2.54 | 3.28 (2) | 133 |
C12A—H12B···O3Biii | 0.97 | 2.67 | 3.53 (3) | 147 |
C13A—H13A···O4B | 0.97 | 2.54 | 3.461 (17) | 159 |
C17A—H17A···O2Biv | 0.93 | 2.68 | 3.271 (17) | 122 |
Symmetry codes: (i) −x+2, y−1/2, −z+1; (ii) −x+1, y−1/2, −z+1; (iii) −x+1, y+1/2, −z+1; (iv) x, y, z+1. |
[CoCl2(C13H21N3)] | F(000) = 724 |
Mr = 349.16 | Dx = 1.485 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 10.3626 (6) Å | Cell parameters from 1666 reflections |
b = 11.5871 (7) Å | θ = 3.4–70.8° |
c = 13.7035 (7) Å | µ = 11.67 mm−1 |
β = 108.308 (6)° | T = 273 K |
V = 1562.12 (16) Å3 | Needle, violet |
Z = 4 | 0.42 × 0.08 × 0.06 mm |
Rigaku-OxfordDiffracti0on diffractometer | 2957 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1805 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
Detector resolution: 16.0416 pixels mm-1 | θmax = 71.4°, θmin = 5.1° |
ω scans | h = −11→12 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) | k = −9→14 |
Tmin = 0.202, Tmax = 1.000 | l = −16→15 |
5711 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.056 | H-atom parameters constrained |
wR(F2) = 0.139 | w = 1/[σ2(Fo2) + (0.0523P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2957 reflections | Δρmax = 0.54 e Å−3 |
173 parameters | Δρmin = −0.33 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.47418 (8) | 0.55685 (8) | 0.71591 (6) | 0.0360 (2) | |
Cl1 | 0.42833 (17) | 0.63048 (14) | 0.85722 (11) | 0.0587 (4) | |
Cl2 | 0.69468 (13) | 0.55827 (16) | 0.71540 (11) | 0.0580 (4) | |
N1 | 0.4898 (6) | 0.3748 (4) | 0.7718 (4) | 0.0565 (13) | |
N2 | 0.2983 (5) | 0.4751 (4) | 0.6221 (4) | 0.0488 (12) | |
N3 | 0.4278 (4) | 0.7156 (4) | 0.6315 (3) | 0.0416 (10) | |
C1 | 0.5068 (6) | 0.8045 (5) | 0.6743 (4) | 0.0507 (15) | |
H1 | 0.5807 | 0.7900 | 0.7324 | 0.061* | |
C2 | 0.4869 (7) | 0.9154 (5) | 0.6387 (6) | 0.0643 (18) | |
H2 | 0.5442 | 0.9746 | 0.6726 | 0.077* | |
C3 | 0.3805 (7) | 0.9368 (6) | 0.5522 (6) | 0.0688 (18) | |
H3 | 0.3634 | 1.0112 | 0.5259 | 0.083* | |
C4 | 0.2996 (7) | 0.8472 (5) | 0.5049 (4) | 0.0566 (16) | |
H4 | 0.2275 | 0.8601 | 0.4453 | 0.068* | |
C5 | 0.3249 (5) | 0.7366 (5) | 0.5455 (4) | 0.0421 (12) | |
C6 | 0.2368 (6) | 0.6382 (6) | 0.4937 (4) | 0.0622 (18) | |
H6A | 0.1561 | 0.6695 | 0.4435 | 0.075* | |
H6B | 0.2854 | 0.5938 | 0.4564 | 0.075* | |
C7 | 0.1931 (6) | 0.5584 (6) | 0.5622 (5) | 0.0633 (17) | |
H7A | 0.1154 | 0.5148 | 0.5206 | 0.076* | |
H7B | 0.1631 | 0.6042 | 0.6102 | 0.076* | |
C8 | 0.3381 (7) | 0.3961 (6) | 0.5516 (5) | 0.0665 (19) | |
H8A | 0.4005 | 0.4366 | 0.5237 | 0.080* | |
H8B | 0.2576 | 0.3778 | 0.4947 | 0.080* | |
C9 | 0.4033 (8) | 0.2856 (6) | 0.5980 (6) | 0.075 (2) | |
H9A | 0.4372 | 0.2469 | 0.5482 | 0.090* | |
H9B | 0.3339 | 0.2366 | 0.6099 | 0.090* | |
C10 | 0.5177 (7) | 0.2958 (6) | 0.6966 (5) | 0.0635 (18) | |
H10A | 0.5376 | 0.2198 | 0.7274 | 0.076* | |
H10B | 0.5980 | 0.3225 | 0.6815 | 0.076* | |
C11 | 0.2414 (7) | 0.4125 (6) | 0.6920 (6) | 0.071 (2) | |
H11A | 0.1779 | 0.3548 | 0.6535 | 0.085* | |
H11B | 0.1917 | 0.4660 | 0.7213 | 0.085* | |
C12 | 0.3524 (8) | 0.3533 (6) | 0.7791 (6) | 0.078 (2) | |
H12A | 0.3482 | 0.3815 | 0.8447 | 0.094* | |
H12B | 0.3356 | 0.2708 | 0.7764 | 0.094* | |
C13 | 0.5948 (8) | 0.3600 (6) | 0.8732 (5) | 0.086 (3) | |
H13A | 0.6829 | 0.3747 | 0.8669 | 0.130* | |
H13B | 0.5915 | 0.2825 | 0.8970 | 0.130* | |
H13C | 0.5779 | 0.4132 | 0.9216 | 0.130* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0361 (4) | 0.0358 (4) | 0.0344 (4) | 0.0004 (4) | 0.0086 (3) | 0.0003 (4) |
Cl1 | 0.0794 (10) | 0.0529 (9) | 0.0478 (8) | 0.0211 (8) | 0.0258 (7) | −0.0003 (7) |
Cl2 | 0.0374 (6) | 0.0691 (10) | 0.0646 (9) | 0.0021 (7) | 0.0119 (6) | −0.0030 (8) |
N1 | 0.083 (4) | 0.040 (3) | 0.052 (3) | 0.011 (3) | 0.029 (3) | 0.010 (2) |
N2 | 0.045 (2) | 0.034 (2) | 0.064 (3) | −0.006 (2) | 0.013 (2) | −0.007 (2) |
N3 | 0.040 (2) | 0.040 (2) | 0.039 (2) | −0.003 (2) | 0.0042 (18) | 0.008 (2) |
C1 | 0.047 (3) | 0.047 (3) | 0.050 (3) | −0.012 (3) | 0.004 (3) | 0.005 (3) |
C2 | 0.065 (4) | 0.041 (4) | 0.090 (5) | −0.011 (3) | 0.029 (4) | 0.000 (3) |
C3 | 0.072 (4) | 0.044 (4) | 0.093 (5) | 0.005 (4) | 0.030 (4) | 0.022 (4) |
C4 | 0.062 (4) | 0.052 (4) | 0.051 (3) | 0.013 (3) | 0.009 (3) | 0.015 (3) |
C5 | 0.042 (3) | 0.044 (3) | 0.037 (3) | 0.005 (3) | 0.007 (2) | 0.001 (2) |
C6 | 0.059 (4) | 0.058 (4) | 0.050 (3) | 0.010 (3) | −0.010 (3) | −0.004 (3) |
C7 | 0.040 (3) | 0.055 (4) | 0.085 (5) | −0.007 (3) | 0.005 (3) | −0.009 (4) |
C8 | 0.079 (5) | 0.055 (4) | 0.060 (4) | −0.015 (4) | 0.013 (3) | −0.015 (3) |
C9 | 0.090 (5) | 0.055 (4) | 0.089 (5) | −0.001 (4) | 0.041 (4) | −0.022 (4) |
C10 | 0.079 (5) | 0.043 (4) | 0.072 (4) | 0.020 (3) | 0.030 (4) | 0.006 (3) |
C11 | 0.064 (4) | 0.043 (4) | 0.123 (6) | −0.013 (3) | 0.055 (4) | −0.001 (4) |
C12 | 0.124 (6) | 0.042 (4) | 0.094 (5) | −0.010 (4) | 0.071 (5) | 0.019 (4) |
C13 | 0.125 (7) | 0.068 (5) | 0.063 (4) | 0.032 (5) | 0.024 (4) | 0.033 (4) |
Co1—Cl1 | 2.2981 (16) | C6—H6A | 0.9700 |
Co1—Cl2 | 2.2872 (15) | C6—H6B | 0.9700 |
Co1—N1 | 2.232 (5) | C6—C7 | 1.486 (9) |
Co1—N2 | 2.097 (4) | C7—H7A | 0.9700 |
Co1—N3 | 2.146 (4) | C7—H7B | 0.9700 |
N1—C10 | 1.473 (8) | C8—H8A | 0.9700 |
N1—C12 | 1.479 (9) | C8—H8B | 0.9700 |
N1—C13 | 1.482 (8) | C8—C9 | 1.493 (9) |
N2—C7 | 1.494 (7) | C9—H9A | 0.9700 |
N2—C8 | 1.480 (8) | C9—H9B | 0.9700 |
N2—C11 | 1.465 (8) | C9—C10 | 1.496 (9) |
N3—C1 | 1.331 (7) | C10—H10A | 0.9700 |
N3—C5 | 1.340 (6) | C10—H10B | 0.9700 |
C1—H1 | 0.9300 | C11—H11A | 0.9700 |
C1—C2 | 1.367 (8) | C11—H11B | 0.9700 |
C2—H2 | 0.9300 | C11—C12 | 1.535 (10) |
C2—C3 | 1.365 (9) | C12—H12A | 0.9700 |
C3—H3 | 0.9300 | C12—H12B | 0.9700 |
C3—C4 | 1.363 (9) | C13—H13A | 0.9600 |
C4—H4 | 0.9300 | C13—H13B | 0.9600 |
C4—C5 | 1.389 (8) | C13—H13C | 0.9600 |
C5—C6 | 1.493 (8) | ||
Cl2—Co1—Cl1 | 118.10 (7) | C7—C6—H6A | 108.3 |
N1—Co1—Cl1 | 94.21 (14) | C7—C6—H6B | 108.3 |
N1—Co1—Cl2 | 92.47 (15) | N2—C7—H7A | 108.3 |
N2—Co1—Cl1 | 108.33 (15) | N2—C7—H7B | 108.3 |
N2—Co1—Cl2 | 132.67 (15) | C6—C7—N2 | 115.8 (5) |
N2—Co1—N1 | 74.86 (19) | C6—C7—H7A | 108.3 |
N2—Co1—N3 | 93.00 (17) | C6—C7—H7B | 108.3 |
N3—Co1—Cl1 | 93.75 (13) | H7A—C7—H7B | 107.4 |
N3—Co1—Cl2 | 92.70 (13) | N2—C8—H8A | 108.4 |
N3—Co1—N1 | 167.11 (18) | N2—C8—H8B | 108.4 |
C10—N1—Co1 | 110.9 (4) | N2—C8—C9 | 115.7 (6) |
C10—N1—C12 | 110.3 (5) | H8A—C8—H8B | 107.4 |
C10—N1—C13 | 109.6 (5) | C9—C8—H8A | 108.4 |
C12—N1—Co1 | 102.4 (4) | C9—C8—H8B | 108.4 |
C12—N1—C13 | 110.8 (6) | C8—C9—H9A | 108.2 |
C13—N1—Co1 | 112.6 (4) | C8—C9—H9B | 108.2 |
C7—N2—Co1 | 112.9 (3) | C8—C9—C10 | 116.2 (6) |
C8—N2—Co1 | 108.2 (4) | H9A—C9—H9B | 107.4 |
C8—N2—C7 | 110.2 (5) | C10—C9—H9A | 108.2 |
C11—N2—Co1 | 105.9 (4) | C10—C9—H9B | 108.2 |
C11—N2—C7 | 107.8 (5) | N1—C10—C9 | 114.0 (5) |
C11—N2—C8 | 111.8 (5) | N1—C10—H10A | 108.8 |
C1—N3—Co1 | 115.0 (3) | N1—C10—H10B | 108.8 |
C1—N3—C5 | 117.2 (5) | C9—C10—H10A | 108.8 |
C5—N3—Co1 | 127.7 (4) | C9—C10—H10B | 108.8 |
N3—C1—H1 | 117.7 | H10A—C10—H10B | 107.6 |
N3—C1—C2 | 124.5 (5) | N2—C11—H11A | 109.2 |
C2—C1—H1 | 117.7 | N2—C11—H11B | 109.2 |
C1—C2—H2 | 121.0 | N2—C11—C12 | 111.9 (5) |
C3—C2—C1 | 118.1 (6) | H11A—C11—H11B | 107.9 |
C3—C2—H2 | 121.0 | C12—C11—H11A | 109.2 |
C2—C3—H3 | 120.6 | C12—C11—H11B | 109.2 |
C4—C3—C2 | 118.9 (6) | N1—C12—C11 | 111.9 (5) |
C4—C3—H3 | 120.6 | N1—C12—H12A | 109.2 |
C3—C4—H4 | 119.9 | N1—C12—H12B | 109.2 |
C3—C4—C5 | 120.1 (5) | C11—C12—H12A | 109.2 |
C5—C4—H4 | 119.9 | C11—C12—H12B | 109.2 |
N3—C5—C4 | 121.2 (5) | H12A—C12—H12B | 107.9 |
N3—C5—C6 | 118.6 (5) | N1—C13—H13A | 109.5 |
C4—C5—C6 | 120.2 (5) | N1—C13—H13B | 109.5 |
C5—C6—H6A | 108.3 | N1—C13—H13C | 109.5 |
C5—C6—H6B | 108.3 | H13A—C13—H13B | 109.5 |
H6A—C6—H6B | 107.4 | H13A—C13—H13C | 109.5 |
C7—C6—C5 | 115.9 (5) | H13B—C13—H13C | 109.5 |
Compound | λmax (nm) | |||||||
Co2(Ppz)Cl4 | 580 | 620 | 1040 | 1335 | 1680 | |||
Co2(Pdmpz)Cl4 | 585 | 625 | 1055 | 1315 | 1680 | |||
Co(Phpz)Cl2 | 540 | 565 | 635 | 783 | 975 | 1400 | 1664 | 1873 |
Co(Pmhpz)Cl2 | 502 | 635 | 800 | 990 | 1700 | 1880 | ||
[Co(Ppz)Cl]ClO4 | 540 | 610 | 810 | 1400 | 1710 | 1875 |
Compound | Co(Pmhpz)Cl2 | Co(Phpz)Cl2 |
T window | 12.5–310 K | 5–310 K |
D/hc (cm-1) | +28 (1) | +39 (1) |
gave | 2.32 (2) | 2.17 (2) |
Δ | 1.11 (6) | 1.50 (10) |
aa | 0 | 0.00056 (21) |
b | 0.34 (5) | 0.19 (2) |
Note: (a) the a value for Co(Pmhpz)Cl2 was held at zero. |
Funding information
JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funding of the Gemini X-ray diffractometer. MMT gratefully acknowledges financial assistance from the NSF (IMR-0314773) and the Kresge Foundation toward the purchase of the MPMS SQUID magnetometer. MZ acknowledges support through the National Science Foundation Major Research Instrumentation Program under grant No. CHE-1625543 (Purdue crystallographic facility). AWA, MAO, EAB and SJJ thank Drexel University for support.
References
Addison, A. W., Bennett, J. W., Bowman, R. K., Butcher, R. J., Nazarenko, A. Y., Stahl, N. G. & Thompson, L. K. (2004). Abstracts, 228th ACS National Meeting, Philadelphia, PA; INOR-267; Chem. Abs. (2004) 661440. Google Scholar
Addison, A. W. & Burke, P. J. (1981). J. Heterocyc. Chem. 18, 803–805. CrossRef CAS Google Scholar
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Anandababu, K., Muthuramalingam, S., Velusamy, M. & Mayilmurugan, R. (2020). Catal. Sci. Technol. 10, 2540–2548. CSD CrossRef CAS Google Scholar
Ball, R. G., James, B. R., Mahajan, D. & Trotter, J. (1981). Inorg. Chem. 20, 254–261. CSD CrossRef CAS Google Scholar
Banci, L., Bencini, A., Benelli, C. & Gatteschi, D. (1980). Nouveau J. Chem. 4, 593–598. CAS Google Scholar
Baum, R. A., Myers, W. K., Greer, S. M., Breece, R. M. & Tierney, D. L. (2016). Eur. J. Inorg. Chem. pp. 2641–2647. CrossRef Google Scholar
Boča, R., Dlháň, L., Linert, W., Ehrenberg, H., Fuess, H. & Haase, W. (1999). Chem. Phys. Lett. 307, 359–366. Google Scholar
Brewer, G. (2020). Magnetochemistry, 6, 28–55. CrossRef CAS Google Scholar
Bruker (2021). APEX4 and SAINT. Bruker Nano Inc., Madison, Wisconsin, USA. Google Scholar
Camerano, J. A., Sämann, C., Wadepohl, H. & Gade, L. H. (2011). Organometallics, 30, 379–382. CSD CrossRef CAS Google Scholar
Carlin, R. L. (1986). Magnetochemistry. Berlin: Springer-Verlag. Google Scholar
Ciampolini, M. & Speroni, G. P. (1966). Inorg. Chem. 5, 45–49. CrossRef CAS Google Scholar
Cruz, T. F. C., Figueira, C. A., Waerenborgh, J. C., Pereira, L. C. J., Li, Y., Lescouëzec, R. & Gomes, P. T. (2018). Polyhedron, 152, 179–187. CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Goodgame, D. M. L. & Goodgame, M. (1965). Inorg. Chem. 4, 139–143. CrossRef CAS Google Scholar
Gray, A. P., Kraus, H. & Heitmeier, D. E. (1960). J. Org. Chem. 25, 1939–1943. CrossRef CAS Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Jain, P. C., Kapoor, V., Anand, N., Ahmad, A. & Patnaik, G. K. (1967). J. Med. Chem. 10, 812–818. CrossRef CAS PubMed Google Scholar
Karlin, K. D., Shi, J., Hayes, J. C., McKown, J. W., Hutchinson, J. P. & Zubieta, J. (1984). Inorg. Chim. Acta, 91, L3–L7. CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kryatova, M. S., Makhlynets, O. V., Nazarenko, A. Y. & Rybak-Akimova, E. V. (2012). Inorg. Chim. Acta, 387, 74–80. Web of Science CSD CrossRef CAS Google Scholar
Kryatov, S. V., Mohanraj, B. S., Tarasov, V. V., Kryatova, O. P., Rybak-Akimova, E. V., Nuthakki, B., Rusling, J. F., Staples, R. J. & Nazarenko, A. Y. (2002). Inorg. Chem. 41, 923–930. CSD CrossRef PubMed CAS Google Scholar
Lever, A. B. P. (1984). Studies in Physical and Theoretical Chemistry, Vol. 33, Inorganic Electronic Spectroscopy, pp. 491-492. Amsterdam: Elsevier. Google Scholar
Lonnon, D. G., Craig, D. C. & Colbran, S. B. (2006). Dalton Trans. pp. 3785–3797. CSD CrossRef Google Scholar
Marsich, N., Nardin, G., Randaccio, L. & Camus, A. (1998). Inorg. Chim. Acta, 278, 237–240. Web of Science CSD CrossRef CAS Google Scholar
Martinelli, R. A., Hanson, G. R., Thompson, J. S., Holmquist, B., Pilbrow, J. R., Auld, D. S. & Vallee, B. L. (1989). Biochemistry, 28, 2251–2258. CrossRef CAS PubMed Google Scholar
Mautner, F. A., Louka, F. R., LeGuet, T. & Massoud, S. S. (2009). J. Mol. Struct. 919, 196–203. CSD CrossRef CAS Google Scholar
Mautner, F. A., Soileau, J. B., Bankole, P. K., Gallo, A. A. & Massoud, S. S. (2008). J. Mol. Struct. 889, 271–278. CSD CrossRef CAS Google Scholar
Muthuramalingam, S., Anandababu, K., Velusamy, M. & Mayilmurugan, R. (2019a). Catal. Sci. Technol. 9, 5991–6001. CSD CrossRef CAS Google Scholar
Muthuramalingam, S., Anandababu, K., Velusamy, M. & Mayilmurugan, R. (2020). Inorg. Chem. 59, 5918–5928. CSD CrossRef CAS PubMed Google Scholar
Muthuramalingam, S., Sankaralingam, M., Velusamy, M. & Mayilmurugan, R. (2019b). Inorg. Chem. 58, 12975–12985. CSD CrossRef CAS PubMed Google Scholar
Muthuramalingam, S., Subramaniyan, S., Khamrang, T., Velusamy, M. & Mayilmurugan, R. (2017). ChemistrySelect 2, 940-948. CrossRef CAS Google Scholar
Muthuramalingam, S., Velusamy, M. & Mayilmurugan, R. (2021). Dalton Trans. 50, 7984–7994. CSD CrossRef CAS PubMed Google Scholar
Nemec, I., Liu, H., Herchel, R., Zhang, X. & Trávníček, Z. (2016). Synth. Met. 215, 158–163. CSD CrossRef CAS Google Scholar
O'Connor, M. A., Addison, A. W., Zeller, M. & Hunter, A. D. (2012). Abstracts, American Chemical Society 43rd Mid-Atlantic Regional Meeting, Catonsville, MD. Abstract #442. Chem. Abs. (2012). 774061. Google Scholar
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–S83. CrossRef Web of Science Google Scholar
Palaniandavar, M., Butcher, R. J. & Addison, A. W. (1996). Inorg. Chem. 35, 467–471. CSD CrossRef PubMed CAS Google Scholar
Papánková, B., Boča, R., Dlháň, L., Nemec, I., Titiš, J., Svoboda, I. & Fuess, H. (2010). Inorg. Chim. Acta, 363, 147–156. Google Scholar
Phillip, A. T., Casey, A. T. & Thompson, C. R. (1970). Aust. J. Chem. 23, 491–499. CrossRef CAS Google Scholar
Profft, E. & Georgi, W. (1961). Justus Liebigs Ann. Chem. 643, 136–144. CrossRef CAS Google Scholar
Profft, E. & Lojack, S. (1962). Rev. Chim. Acad. Rep. Populaire Roumaine 7, 405-429. CAS Google Scholar
Rajendiran, V., Murali, M., Suresh, E., Sinha, S., Somasundaram, K. & Palaniandavar, M. (2008). Dalton Trans. pp. 148–163. CSD CrossRef Google Scholar
Rajnák, C., Titiš, J., Šalitroš, I., Boča, R., Fuhr, O. & Ruben, M. (2013). Polyhedron, 65, 122–128. Google Scholar
Rechkemmer, Y., Breitgoff, F. D., van der Meer, M., Atanasov, M., Hakl, M., Orlita, M., Neugebauer, P., Neese, F., Sarkar, B. & van Slageren, J. (2016). Nat. Commun. 7, 10467. Web of Science CSD CrossRef PubMed Google Scholar
Reeves, G. T., Addison, A. W., Zeller, M. & Hunter, A. D. (2014). Polyhedron, 68, 70–75. CSD CrossRef CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA. Google Scholar
Sakaguchi, U. & Addison, A. W. (1979). J. Chem. Soc. Dalton Trans. pp. 600–609. CrossRef Google Scholar
Schmidt, M., Wiedemann, D., Moubaraki, B., Chilton, N. F., Murray, K. S., Vignesh, K. R., Rajaraman, G. & Grohmann, A. (2013). Eur. J. Inorg. Chem. 2013, 958–967. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201. CrossRef Web of Science IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Świtlicka, A., Machura, B., Kruszynski, R., Cano, J., Toma, L. M., Lloret, F. & Julve, M. (2018). Dalton Trans. 47, 5831–5842. PubMed Google Scholar
Voronkova, V. K., Zaripov, M. M., Yablokov, Y. V., Ablov, A. V. & Ablova, M. A. (1974). Dokl. Akad. Nauk SSSR, 214, 377-80. CAS Google Scholar
Xiao, L., Bhadbhade, M. & Baker, A. T. (2018). J. Mol. Struct. 1157, 112–118. CrossRef CAS Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Żurowska, B., Kalinowska-Lis, U., Białońska, A. & Ochocki, J. (2008). J. Mol. Struct. 889, 98–103. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.