research communications
κ3N,N′,N′′]methyl}-5-chloroquinolin-8-ol)dibromidozinc(II)
of (7-{[bis(pyridin-2-ylmethyl)amino-aOsaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan, and bOsaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
*Correspondence e-mail: kubono@cc.osaka-kyoiku.ac.jp
In the title compound, [ZnBr2(C22H19ClN4O)], the ZnII atom adopts a distorted square-pyramidal coordination geometry, formed by two bromido ligands and three N atoms of the bis(pyridin-2-ylmethyl)amine moiety in the pentadentate ligand containing quinolinol. The ZnII atom is located well above the mean basal plane of the square-based pyramid. The apical position is occupied by a Br atom. The O and N atoms of the quinolinol moiety in the ligand are not coordinated to the ZnII atom. An intramolecular O—H⋯N hydrogen bond, generating an S(5) ring motif, stabilizes the molecular structure. In the crystal, the molecules are linked by intermolecular C—H⋯Br hydrogen bonds, generating ribbon structures containing alternating R22(22) and R22(14) rings. These ribbons are linked through an intermolecular C—H⋯Br hydrogen bond, forming a two-dimensional network sheet.
Keywords: crystal structure; zinc(II) complex; 8-quinolinol; bis(2-picoly)amine; C—H⋯Br interactions.
CCDC reference: 2150991
1. Chemical context
8-Quinolinol (Hq) is a notable bidentate ligand and an excellent analytical reagent for the determination of the concentration and separation of metal ions (Medlin, 1960; Eguchi et al., 2019). Hq derivatives and their metal complexes have wide applications in diverse areas such as pharmaceuticals (Lai et al., 2009) and organic light-emitting diodes (Li et al., 2020). Bis(pyridin-2-ylmethyl)amine [di(2-picolyl)amine, dpa] is a well-known tridentate ligand and highly selective for ZnII. Its derivatives are utilized as chemosensors for detecting ZnII at low concentration in biological samples (Lin et al., 2013) . In addition, some ZnII complexes with dpa derivatives comprise a binding site for polyphosphates such as diphosphate and adenosine triphosphate, and can act as respective anion sensors (Aoki et al., 2020; Bazany-Rodríguez et al., 2020). We, hence, developed the pentadentate ligand, 7-{[bis(pyridin-2-ylmethyl)amino]methyl}-5-chloroquinolin-8-ol (HClqdpa) containing Hq and dpa moieties (Kubono et al., 2015). Subsequently, reactions between HClqdpa and ZnII salts were carried out in order to develop fluorescent anion sensors. In the course of these studies, a crystalline complex was obtained from the reaction with zinc(II) bromide. Here, the of the respective title compound is reported.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The ZnII atom adopts a distorted square-pyramidal geometry and coordinates two bromido ligands (Br1 and Br2) and three N atoms (N7, N8 and N9) of the dpa moiety in HClqdpa forming the ZnBr2(dpa) unit. The Hq moiety of the pentadentate ligand (HClqdpa) is not coordinated to the ZnII center. The five-coordinate geometry parameter, τ = (β − α)/60, derived from the two largest angles (α < β) in a structure has ideal values of 0 for square-pyramidal and of 1 for trigonal–bipyramidal geometry (Addison et al., 1984). In the title compound it is equal to 0.138. The ZnII atom is located 0.5574 (3) Å above the mean basal plane (Br2/N8/N7/N9) of the square-based pyramid. The dpa moiety is meridionally bound to the ZnII atom. The apical position is occupied by the Br1 atom with the apical bond being slightly elongated to 2.4419 (4) Å compared to the equatorial Br2—Zn3 bond length of 2.4085 (4) Å. The Zn—N bond lengths in the title compound are 2.1455 (18) and 2.1497 (18) Å for the pyridyl atoms (N8, N9), and 2.2670 (18) Å for the tertiary atom N7. In comparison, the Zn—N bond lengths in the of a related complex with a mesityl methylene-appended dpa derivative are 2.093 (3), 2.066 (3), and 2.521 (3) Å (MUDWEQ; Acharya et al., 2020). The bond lengths for the pyridyl N atoms are, hence, shorter and the bond length for the tertiary N atom is longer than those in the title compound. The dihedral angle between the two pyridine rings in the title compound is 15.84 (13)°. In a related complex (MUDWEQ; Acharya et al., 2020), this dihedral angle between two pyridine rings is widened to 23.53 (18)°, concomitant with an increased τ parameter of 0.211. The phenolic oxygen O5 of the Hq moiety is bound to hydrogen atom H5, which was found and refined freely. The proton, therefore, does not dissociate and no phenoxy function is formed. There is an intramolecular hydrogen bond, O5—H5⋯N6, generating an S(5) ring motif (Fig. 1 and Table 1). The quinoline ring system is slightly bent with an r.m.s. deviation of 0.018 (3) Å. In the quinoline ring system, the largest deviation from the mean plane is 0.020 (4) Å for carbon atom C15. The quinoline plane subtends dihedral angles of 24.14 (11) and 36.65 (11)° with the two pyridine rings.
3. Supramolecular features
In the crystal, two molecules are associated through a pair of intermolecular C—H⋯Br hydrogen bonds [C16—H16⋯Br2i; symmetry code: (i) 1 − x, −y, −z] (Table 1), forming a centrosymmetric dimer with an R22(22) ring motif. Another pair of intermolecular C—H⋯Br hydrogen bonds is observed [C29—H29⋯Br1iii; symmetry code: (iii) 1 − x, 1 − y, 1 − z] (Table 1), which forms another centrosymmetric dimer with an R22(14) ring motif. The different hydrogen-bonded pairs of molecules are also linked to each other by these intermolecular C—H⋯Br hydrogen bonds, generating a ribbon structure along [01] based on alternating R22(22) and R22(14) hydrogen-bonding motifs (Fig. 2). In the crystal, molecules are further linked by an intermolecular C—H⋯Br hydrogen bond [C22—H22⋯Br2ii; symmetry code: (ii) x + 1, y − 1, z] (Table 1), forming a C(6) chain motif running along [20] (Fig. 3). The ribbon structures are, therefore, linked through the intermolecular C22—H22⋯Br2ii hydrogen bonds and form a two-dimensional network sheet parallel to [22] (Fig. 3).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42; May 2021; Groom et al., 2016) using ConQuest (Bruno et al., 2002) for ZnII complexes with the [bis(pyridin-2-ylmethyl)amino]methyl fragment as ligand gave 517 hits, and among those, eight hits with two bromido ligands. Of these eight analogues, three structures are complexes with dpa bearing a tertiary N donor atom directly bound to an aromatic moiety (IRISEJ; Zhang et al., 2016; ZEGZOC; Gao et al., 2012; TORLUH; Plenio et al., 1996). In the remaining five dibromido ZnII complexes with dpa derivatives (comprising four compounds), the tertiary N atoms are bound to aliphatic carbon atoms as in the title complex. Four of these five closely related structures exhibit square-pyramidal geometries with dpa being meridionally coordinated (YOZZOC; Abufarag et al., 1995; RUVCUI; Škalamera et al., 2016; MUDWEQ; Acharya et al., 2020; IHIJIV; Juraj et al., 2020). The remaining exceptional structure is fac-{N,N′-bis[(pyridine-2-yl)methyl]propan-2-amine}dibromidozinc(II) (IHIJOB; Juraj et al., 2020), which adopts a trigonal–bipyramidal geometry with dpa being facially coordinated. This structure is a polymorph of one complex with a more typical geometry mentioned above (IHIJIV; Juraj et al., 2020). A search for molecular structures containing ZnII and the Hq moiety in which the H atom of the phenolic hydroxy group is not dissociated gave 29 hits (comprising 25 compounds). Of these, six structures (three compounds) are ion-pairs between tetrachloridozincate(II) and an 8-hydroxyquinolin-1-ium (H2q+) derivative, for example, (H2q)2[ZnCl4] (FARFIP; Lamshöft et al., 2011). Eight structures are ion-pairs between H2q+ derivatives and anionic complexes consisting of ZnX2 (X = Cl, Br, or I) and quinolin-8-lato derivatives, e.g. 8-hydroxy-2-methylquinolinolinium diiodo(2-methyluinolin-8-lato)zinc(II) (AYOCOH; Najafi et al., 2011). Two structures are ion-pairs between H2q+ derivatives and anionic ZnII complexes with other chelate ligands, e.g. bis(8-hydroxyquinolin-1-ium) tris(4-nitrophenol) bis(pyridine-2,6-carboxylato)zinc(II) dihydrate (MIYKEN; Singh et al., 2019). The remaining 13 structures (12 compounds) are ZnII chelate complexes containing the Hq ligand with an undissociated phenolic e.g., bis(8-hydroxyquinolin-2-carboxylato)zinc(II) trihydrate (QOCRAC; McDonald et al., 2008). A of a ZnII complex containing the Hq moiety which is neither the counter-cation of an ion-pair nor bound to ZnII has not been reported yet. A search for ZnII complexes in which the entire ligand scaffold and substitution is also more analogous to the title compound, i.e. with [bis(pyridin-2-ylmethyl)amino]methyl at the 2-position of Hq or respective derivatives, gave three hits (CIGJAF; Royzen et al., 2013; RIZROI; Xue et al., 2008; TEHDOA; Royzen et al., 2006). In the three structures, the phenolic hydroxy group is deprotonated and coordinated by ZnII.
5. Synthesis and crystallization
The HClqdpa ligand (97.7 mg, 0.250 mmol) was dissolved in 15 mL of hot acetonitrile. Then a solution of zinc(II) bromide (56.4 mg, 0.250 mmol) in 15 mL of hot acetonitrile was added to the ligand solution. The mixture was stirred for 20 min at 333 K. After removal of the solvent at room temperature in air for one week, colorless crystals of the title compound were obtained (yield 35%; m.p. 496–497 K). Analysis calculated for C22H19Br2ClN4OZn: C 42.89, H 3.11, N 9.09%; found: C 42.94, H 3.02, N 8.95%.
6. Refinement
Crystal data, data collection and structure . The hydroxy H atom was located in a difference-Fourier map and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C). One outlier reflex (002) was omitted from the refinement.
details are summarized in Table 2Supporting information
CCDC reference: 2150991
https://doi.org/10.1107/S2056989022001530/yz2016sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022001530/yz2016Isup2.hkl
Data collection: RAPID-AUTO (Rigaku, 2006); cell
RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SIR92 (Altomare, et al., 1993); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: CrystalStructure (Rigaku, 2016).[ZnBr2(C22H19ClN4O)] | Z = 2 |
Mr = 616.05 | F(000) = 608.00 |
Triclinic, P1 | Dx = 1.818 Mg m−3 |
a = 7.6779 (3) Å | Mo Kα radiation, λ = 0.71075 Å |
b = 8.7860 (4) Å | Cell parameters from 9577 reflections |
c = 18.1379 (8) Å | θ = 2.5–27.4° |
α = 89.460 (6)° | µ = 4.78 mm−1 |
β = 89.617 (6)° | T = 173 K |
γ = 66.878 (5)° | Block, colorless |
V = 1125.21 (9) Å3 | 0.35 × 0.20 × 0.15 mm |
Rigaku R-AXIS RAPID diffractometer | 4386 reflections with F2 > 2.0σ(F2) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.017 |
ω scans | θmax = 27.4°, θmin = 2.8° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −9→9 |
Tmin = 0.316, Tmax = 0.487 | k = −11→11 |
11009 measured reflections | l = −23→23 |
5114 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.059 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.024P)2 + 0.8532P] where P = (Fo2 + 2Fc2)/3 |
5114 reflections | (Δ/σ)max < 0.001 |
284 parameters | Δρmax = 0.59 e Å−3 |
0 restraints | Δρmin = −0.65 e Å−3 |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.27928 (3) | 0.13134 (3) | 0.42388 (2) | 0.02925 (7) | |
Br2 | 0.21673 (4) | 0.34246 (3) | 0.22122 (2) | 0.03710 (7) | |
Zn3 | 0.43550 (3) | 0.18902 (3) | 0.31584 (2) | 0.02169 (7) | |
Cl4 | 0.52345 (11) | 0.31327 (11) | 0.04318 (5) | 0.0578 (2) | |
O5 | 1.0962 (2) | −0.2077 (2) | 0.21912 (11) | 0.0350 (4) | |
N6 | 1.0498 (3) | −0.2729 (3) | 0.07984 (13) | 0.0399 (5) | |
N7 | 0.7489 (3) | 0.0783 (2) | 0.34256 (10) | 0.0226 (4) | |
N8 | 0.5357 (3) | −0.0510 (2) | 0.26615 (11) | 0.0249 (4) | |
N9 | 0.4920 (3) | 0.3899 (2) | 0.36144 (10) | 0.0252 (4) | |
C10 | 0.9635 (3) | −0.0864 (3) | 0.17935 (13) | 0.0259 (5) | |
C11 | 0.8577 (3) | 0.0643 (3) | 0.21048 (13) | 0.0248 (5) | |
C12 | 0.7210 (3) | 0.1857 (3) | 0.16621 (14) | 0.0294 (5) | |
H12 | 0.649031 | 0.290977 | 0.186741 | 0.035* | |
C13 | 0.6895 (4) | 0.1560 (3) | 0.09501 (15) | 0.0337 (5) | |
C14 | 0.7943 (4) | 0.0008 (3) | 0.06192 (14) | 0.0337 (6) | |
C15 | 0.7731 (5) | −0.0458 (4) | −0.01112 (16) | 0.0489 (8) | |
H15 | 0.679789 | 0.029174 | −0.042671 | 0.059* | |
C16 | 0.8870 (5) | −0.1980 (5) | −0.03553 (17) | 0.0595 (10) | |
H16 | 0.873842 | −0.230341 | −0.084318 | 0.071* | |
C17 | 1.0237 (5) | −0.3070 (4) | 0.01133 (17) | 0.0521 (8) | |
H17 | 1.102771 | −0.412396 | −0.007394 | 0.063* | |
C18 | 0.9343 (3) | −0.1194 (3) | 0.10505 (13) | 0.0297 (5) | |
C19 | 0.8847 (3) | 0.1035 (3) | 0.28896 (13) | 0.0291 (5) | |
H19A | 1.015382 | 0.032903 | 0.304228 | 0.035* | |
H19B | 0.870946 | 0.220136 | 0.291434 | 0.035* | |
C20 | 0.7877 (3) | −0.0985 (3) | 0.35371 (14) | 0.0278 (5) | |
H20A | 0.736052 | −0.114214 | 0.402007 | 0.033* | |
H20B | 0.926284 | −0.163249 | 0.354144 | 0.033* | |
C21 | 0.6994 (3) | −0.1604 (3) | 0.29331 (13) | 0.0255 (5) | |
C22 | 0.7819 (4) | −0.3211 (3) | 0.26675 (15) | 0.0334 (6) | |
H22 | 0.896330 | −0.397844 | 0.287479 | 0.040* | |
C23 | 0.6955 (4) | −0.3673 (3) | 0.21001 (17) | 0.0401 (6) | |
H23 | 0.751460 | −0.475780 | 0.190356 | 0.048* | |
C24 | 0.5265 (4) | −0.2547 (3) | 0.18174 (16) | 0.0396 (6) | |
H24 | 0.464442 | −0.284338 | 0.142650 | 0.048* | |
C25 | 0.4499 (3) | −0.0976 (3) | 0.21191 (14) | 0.0325 (5) | |
H25 | 0.332682 | −0.020331 | 0.193508 | 0.039* | |
C26 | 0.7580 (3) | 0.1610 (3) | 0.41217 (12) | 0.0260 (5) | |
H26A | 0.891471 | 0.138494 | 0.424156 | 0.031* | |
H26B | 0.703999 | 0.117546 | 0.452978 | 0.031* | |
C27 | 0.6470 (3) | 0.3453 (3) | 0.40353 (12) | 0.0258 (5) | |
C28 | 0.6961 (4) | 0.4618 (3) | 0.43949 (14) | 0.0349 (6) | |
H28 | 0.808069 | 0.428428 | 0.468254 | 0.042* | |
C29 | 0.5782 (5) | 0.6278 (3) | 0.43250 (15) | 0.0412 (7) | |
H29 | 0.607517 | 0.709633 | 0.457163 | 0.049* | |
C30 | 0.4187 (4) | 0.6729 (3) | 0.38959 (15) | 0.0380 (6) | |
H30 | 0.336091 | 0.785945 | 0.384380 | 0.046* | |
C31 | 0.3804 (4) | 0.5510 (3) | 0.35418 (14) | 0.0327 (5) | |
H31 | 0.271613 | 0.582321 | 0.323689 | 0.039* | |
H5 | 1.131 (6) | −0.285 (5) | 0.193 (2) | 0.071 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02994 (12) | 0.03405 (13) | 0.02819 (12) | −0.01729 (10) | 0.00204 (9) | −0.00401 (9) |
Br2 | 0.03370 (13) | 0.03205 (13) | 0.03195 (13) | 0.00201 (10) | −0.00934 (10) | −0.00635 (10) |
Zn3 | 0.01991 (12) | 0.01955 (12) | 0.02461 (13) | −0.00657 (10) | −0.00128 (10) | −0.00394 (10) |
Cl4 | 0.0467 (4) | 0.0647 (5) | 0.0546 (5) | −0.0144 (4) | −0.0121 (4) | 0.0322 (4) |
O5 | 0.0269 (9) | 0.0347 (10) | 0.0364 (10) | −0.0046 (8) | 0.0016 (8) | 0.0014 (8) |
N6 | 0.0514 (14) | 0.0411 (13) | 0.0359 (12) | −0.0276 (11) | 0.0146 (11) | −0.0090 (10) |
N7 | 0.0225 (9) | 0.0236 (9) | 0.0229 (9) | −0.0104 (8) | −0.0006 (7) | −0.0011 (7) |
N8 | 0.0220 (9) | 0.0220 (9) | 0.0308 (10) | −0.0089 (8) | 0.0037 (8) | −0.0054 (8) |
N9 | 0.0297 (10) | 0.0228 (9) | 0.0243 (10) | −0.0114 (8) | 0.0001 (8) | −0.0022 (8) |
C10 | 0.0246 (11) | 0.0282 (11) | 0.0273 (12) | −0.0131 (10) | 0.0011 (9) | 0.0033 (9) |
C11 | 0.0240 (11) | 0.0275 (11) | 0.0266 (11) | −0.0140 (9) | 0.0021 (9) | −0.0002 (9) |
C12 | 0.0289 (12) | 0.0257 (12) | 0.0354 (13) | −0.0128 (10) | 0.0030 (10) | 0.0036 (10) |
C13 | 0.0309 (12) | 0.0373 (14) | 0.0351 (13) | −0.0161 (11) | −0.0043 (11) | 0.0146 (11) |
C14 | 0.0398 (14) | 0.0455 (15) | 0.0274 (12) | −0.0295 (13) | −0.0022 (11) | 0.0052 (11) |
C15 | 0.0577 (19) | 0.074 (2) | 0.0294 (14) | −0.0417 (18) | −0.0053 (13) | 0.0042 (14) |
C16 | 0.082 (2) | 0.087 (3) | 0.0349 (16) | −0.060 (2) | 0.0105 (16) | −0.0206 (17) |
C17 | 0.072 (2) | 0.0547 (19) | 0.0442 (17) | −0.0404 (18) | 0.0201 (16) | −0.0204 (15) |
C18 | 0.0347 (13) | 0.0332 (13) | 0.0286 (12) | −0.0216 (11) | 0.0066 (10) | −0.0022 (10) |
C19 | 0.0277 (12) | 0.0354 (13) | 0.0284 (12) | −0.0167 (10) | 0.0039 (9) | −0.0059 (10) |
C20 | 0.0231 (11) | 0.0241 (11) | 0.0335 (13) | −0.0063 (9) | −0.0015 (10) | 0.0020 (10) |
C21 | 0.0226 (10) | 0.0211 (11) | 0.0334 (12) | −0.0092 (9) | 0.0071 (9) | −0.0021 (9) |
C22 | 0.0290 (12) | 0.0198 (11) | 0.0488 (16) | −0.0067 (10) | 0.0130 (11) | −0.0038 (11) |
C23 | 0.0406 (15) | 0.0268 (13) | 0.0563 (17) | −0.0169 (12) | 0.0190 (13) | −0.0170 (12) |
C24 | 0.0438 (15) | 0.0392 (15) | 0.0447 (16) | −0.0255 (13) | 0.0087 (12) | −0.0165 (12) |
C25 | 0.0287 (12) | 0.0323 (13) | 0.0389 (14) | −0.0142 (11) | 0.0032 (11) | −0.0102 (11) |
C26 | 0.0251 (11) | 0.0328 (12) | 0.0225 (11) | −0.0137 (10) | −0.0033 (9) | −0.0009 (9) |
C27 | 0.0313 (12) | 0.0322 (12) | 0.0200 (10) | −0.0189 (10) | 0.0046 (9) | −0.0044 (9) |
C28 | 0.0456 (15) | 0.0472 (15) | 0.0254 (12) | −0.0327 (13) | 0.0033 (11) | −0.0065 (11) |
C29 | 0.0684 (19) | 0.0396 (15) | 0.0326 (14) | −0.0393 (15) | 0.0181 (13) | −0.0140 (11) |
C30 | 0.0573 (17) | 0.0252 (12) | 0.0356 (14) | −0.0206 (12) | 0.0143 (13) | −0.0059 (10) |
C31 | 0.0415 (14) | 0.0252 (12) | 0.0313 (13) | −0.0129 (11) | 0.0049 (11) | −0.0017 (10) |
Br1—Zn3 | 2.4419 (4) | C16—C17 | 1.396 (5) |
Br2—Zn3 | 2.4085 (4) | C16—H16 | 0.9500 |
Zn3—N8 | 2.1455 (18) | C17—H17 | 0.9500 |
Zn3—N9 | 2.1497 (18) | C19—H19A | 0.9900 |
Zn3—N7 | 2.2670 (18) | C19—H19B | 0.9900 |
Cl4—C13 | 1.740 (3) | C20—C21 | 1.506 (3) |
O5—C10 | 1.355 (3) | C20—H20A | 0.9900 |
O5—H5 | 0.79 (4) | C20—H20B | 0.9900 |
N6—C17 | 1.316 (4) | C21—C22 | 1.390 (3) |
N6—C18 | 1.371 (3) | C22—C23 | 1.376 (4) |
N7—C20 | 1.474 (3) | C22—H22 | 0.9500 |
N7—C26 | 1.478 (3) | C23—C24 | 1.385 (4) |
N7—C19 | 1.498 (3) | C23—H23 | 0.9500 |
N8—C21 | 1.341 (3) | C24—C25 | 1.387 (3) |
N8—C25 | 1.341 (3) | C24—H24 | 0.9500 |
N9—C27 | 1.339 (3) | C25—H25 | 0.9500 |
N9—C31 | 1.342 (3) | C26—C27 | 1.512 (3) |
C10—C11 | 1.377 (3) | C26—H26A | 0.9900 |
C10—C18 | 1.419 (3) | C26—H26B | 0.9900 |
C11—C12 | 1.414 (3) | C27—C28 | 1.391 (3) |
C11—C19 | 1.502 (3) | C28—C29 | 1.386 (4) |
C12—C13 | 1.362 (4) | C28—H28 | 0.9500 |
C12—H12 | 0.9500 | C29—C30 | 1.374 (4) |
C13—C14 | 1.420 (4) | C29—H29 | 0.9500 |
C14—C18 | 1.409 (4) | C30—C31 | 1.381 (3) |
C14—C15 | 1.419 (4) | C30—H30 | 0.9500 |
C15—C16 | 1.355 (5) | C31—H31 | 0.9500 |
C15—H15 | 0.9500 | ||
N8—Zn3—N9 | 149.88 (7) | C14—C18—C10 | 120.6 (2) |
N8—Zn3—N7 | 76.13 (7) | N7—C19—C11 | 114.29 (18) |
N9—Zn3—N7 | 75.20 (7) | N7—C19—H19A | 108.7 |
N8—Zn3—Br2 | 98.53 (5) | C11—C19—H19A | 108.7 |
N9—Zn3—Br2 | 98.16 (5) | N7—C19—H19B | 108.7 |
N7—Zn3—Br2 | 141.63 (5) | C11—C19—H19B | 108.7 |
N8—Zn3—Br1 | 98.76 (5) | H19A—C19—H19B | 107.6 |
N9—Zn3—Br1 | 97.48 (5) | N7—C20—C21 | 110.67 (19) |
N7—Zn3—Br1 | 105.26 (5) | N7—C20—H20A | 109.5 |
Br2—Zn3—Br1 | 113.102 (14) | C21—C20—H20A | 109.5 |
C10—O5—H5 | 104 (3) | N7—C20—H20B | 109.5 |
C17—N6—C18 | 116.6 (3) | C21—C20—H20B | 109.5 |
C20—N7—C26 | 112.22 (18) | H20A—C20—H20B | 108.1 |
C20—N7—C19 | 111.92 (18) | N8—C21—C22 | 121.6 (2) |
C26—N7—C19 | 108.08 (16) | N8—C21—C20 | 116.01 (19) |
C20—N7—Zn3 | 102.79 (13) | C22—C21—C20 | 122.4 (2) |
C26—N7—Zn3 | 102.85 (13) | C23—C22—C21 | 119.1 (2) |
C19—N7—Zn3 | 118.69 (14) | C23—C22—H22 | 120.5 |
C21—N8—C25 | 119.2 (2) | C21—C22—H22 | 120.5 |
C21—N8—Zn3 | 114.94 (14) | C22—C23—C24 | 119.5 (2) |
C25—N8—Zn3 | 125.90 (16) | C22—C23—H23 | 120.2 |
C27—N9—C31 | 119.2 (2) | C24—C23—H23 | 120.2 |
C27—N9—Zn3 | 115.33 (15) | C23—C24—C25 | 118.3 (2) |
C31—N9—Zn3 | 125.38 (16) | C23—C24—H24 | 120.8 |
O5—C10—C11 | 120.9 (2) | C25—C24—H24 | 120.8 |
O5—C10—C18 | 118.3 (2) | N8—C25—C24 | 122.3 (2) |
C11—C10—C18 | 120.8 (2) | N8—C25—H25 | 118.9 |
C10—C11—C12 | 118.2 (2) | C24—C25—H25 | 118.9 |
C10—C11—C19 | 122.2 (2) | N7—C26—C27 | 109.09 (18) |
C12—C11—C19 | 119.6 (2) | N7—C26—H26A | 109.9 |
C13—C12—C11 | 122.0 (2) | C27—C26—H26A | 109.9 |
C13—C12—H12 | 119.0 | N7—C26—H26B | 109.9 |
C11—C12—H12 | 119.0 | C27—C26—H26B | 109.9 |
C12—C13—C14 | 121.0 (2) | H26A—C26—H26B | 108.3 |
C12—C13—Cl4 | 119.3 (2) | N9—C27—C28 | 121.6 (2) |
C14—C13—Cl4 | 119.7 (2) | N9—C27—C26 | 115.59 (19) |
C18—C14—C15 | 116.3 (3) | C28—C27—C26 | 122.7 (2) |
C18—C14—C13 | 117.4 (2) | C29—C28—C27 | 118.6 (2) |
C15—C14—C13 | 126.3 (3) | C29—C28—H28 | 120.7 |
C16—C15—C14 | 119.5 (3) | C27—C28—H28 | 120.7 |
C16—C15—H15 | 120.2 | C30—C29—C28 | 119.5 (2) |
C14—C15—H15 | 120.2 | C30—C29—H29 | 120.3 |
C15—C16—C17 | 119.7 (3) | C28—C29—H29 | 120.3 |
C15—C16—H16 | 120.1 | C29—C30—C31 | 118.9 (3) |
C17—C16—H16 | 120.1 | C29—C30—H30 | 120.6 |
N6—C17—C16 | 124.0 (3) | C31—C30—H30 | 120.6 |
N6—C17—H17 | 118.0 | N9—C31—C30 | 122.1 (3) |
C16—C17—H17 | 118.0 | N9—C31—H31 | 118.9 |
N6—C18—C14 | 123.9 (2) | C30—C31—H31 | 118.9 |
N6—C18—C10 | 115.5 (2) | ||
O5—C10—C11—C12 | −179.8 (2) | C26—N7—C20—C21 | 155.72 (18) |
C18—C10—C11—C12 | −0.7 (3) | C19—N7—C20—C21 | −82.6 (2) |
O5—C10—C11—C19 | 0.8 (3) | Zn3—N7—C20—C21 | 45.9 (2) |
C18—C10—C11—C19 | 179.9 (2) | C25—N8—C21—C22 | −0.2 (3) |
C10—C11—C12—C13 | 1.3 (3) | Zn3—N8—C21—C22 | 179.88 (18) |
C19—C11—C12—C13 | −179.3 (2) | C25—N8—C21—C20 | 179.6 (2) |
C11—C12—C13—C14 | −0.3 (4) | Zn3—N8—C21—C20 | −0.3 (3) |
C11—C12—C13—Cl4 | −178.28 (18) | N7—C20—C21—N8 | −33.3 (3) |
C12—C13—C14—C18 | −1.4 (4) | N7—C20—C21—C22 | 146.4 (2) |
Cl4—C13—C14—C18 | 176.63 (18) | N8—C21—C22—C23 | 1.6 (4) |
C12—C13—C14—C15 | 179.1 (2) | C20—C21—C22—C23 | −178.2 (2) |
Cl4—C13—C14—C15 | −2.9 (4) | C21—C22—C23—C24 | −1.5 (4) |
C18—C14—C15—C16 | −1.0 (4) | C22—C23—C24—C25 | 0.2 (4) |
C13—C14—C15—C16 | 178.5 (3) | C21—N8—C25—C24 | −1.3 (4) |
C14—C15—C16—C17 | 0.0 (5) | Zn3—N8—C25—C24 | 178.66 (19) |
C18—N6—C17—C16 | −0.5 (4) | C23—C24—C25—N8 | 1.3 (4) |
C15—C16—C17—N6 | 0.8 (5) | C20—N7—C26—C27 | −158.30 (18) |
C17—N6—C18—C14 | −0.7 (4) | C19—N7—C26—C27 | 77.8 (2) |
C17—N6—C18—C10 | 179.2 (2) | Zn3—N7—C26—C27 | −48.52 (19) |
C15—C14—C18—N6 | 1.4 (4) | C31—N9—C27—C28 | −0.5 (3) |
C13—C14—C18—N6 | −178.1 (2) | Zn3—N9—C27—C28 | −176.89 (17) |
C15—C14—C18—C10 | −178.5 (2) | C31—N9—C27—C26 | 176.6 (2) |
C13—C14—C18—C10 | 2.0 (3) | Zn3—N9—C27—C26 | 0.2 (2) |
O5—C10—C18—N6 | −1.7 (3) | N7—C26—C27—N9 | 35.0 (3) |
C11—C10—C18—N6 | 179.1 (2) | N7—C26—C27—C28 | −147.9 (2) |
O5—C10—C18—C14 | 178.2 (2) | N9—C27—C28—C29 | 1.5 (4) |
C11—C10—C18—C14 | −1.0 (3) | C26—C27—C28—C29 | −175.4 (2) |
C20—N7—C19—C11 | 70.4 (3) | C27—C28—C29—C30 | −1.0 (4) |
C26—N7—C19—C11 | −165.5 (2) | C28—C29—C30—C31 | −0.3 (4) |
Zn3—N7—C19—C11 | −49.1 (2) | C27—N9—C31—C30 | −0.9 (4) |
C10—C11—C19—N7 | −96.5 (3) | Zn3—N9—C31—C30 | 175.09 (18) |
C12—C11—C19—N7 | 84.1 (3) | C29—C30—C31—N9 | 1.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···N6 | 0.79 (4) | 2.14 (4) | 2.653 (3) | 124 (3) |
C16—H16···Br2i | 0.95 | 2.87 | 3.808 (3) | 170 |
C22—H22···Br2ii | 0.95 | 2.88 | 3.581 (3) | 131 |
C29—H29···Br1iii | 0.95 | 2.90 | 3.798 (3) | 158 |
Symmetry codes: (i) −x+1, −y, −z; (ii) x+1, y−1, z; (iii) −x+1, −y+1, −z+1. |
Funding information
Funding for this research was provided by: JSPS KAKENHI (grant No. JP20K05565).
References
Abufarag, A. & Vahrenkamp, H. (1995). Inorg. Chem. 34, 2207–2216. CSD CrossRef CAS Web of Science Google Scholar
Acharya, J., Sarkar, A., Kumar, P., Kumar, V., Gonzalez, J. F., Cador, O., Pointillart, F., Rajaraman, G. & Chandrasekhar, V. (2020). Dalton Trans. 49, 4785–4796. CSD CrossRef CAS PubMed Google Scholar
Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Aoki, K., Osako, R., Deng, J., Hayashita, T., Hashimoto, T. & Suzuki, Y. (2020). RSC Adv. 10, 15299–15306. CrossRef CAS Google Scholar
Bazany-Rodríguez, I. J., Salomón-Flores, M. K., Bautista-Renedo, J. M., González-Rivas, N. & Dorazco-González, A. (2020). Inorg. Chem. 59, 7739–7751. PubMed Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Eguchi, A., Morita, K. & Hirayama, N. (2019). Anal. Sci. 35, 1003–1007. CrossRef CAS PubMed Google Scholar
Gao, C.-Y., Qiao, X., Ma, Z.-Y., Wang, Z.-G., Lu, J., Tian, J.-L., Xu, J.-Y. & Yan, S.-P. (2012). Dalton Trans. 41, 12220–12232. CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Juraj, N. P., Muratović, S., Perić, B., Vujičić, N. Š., Vianello, R., Žilić, D., Jagličić, Z. & Kirin, S. I. (2020). Cryst. Growth Des. 20, 2440–2453. Google Scholar
Kubono, K., Kado, K., Kashiwagi, Y., Tani, K. & Yokoi, K. (2015). Acta Cryst. E71, 1545–1547. CSD CrossRef IUCr Journals Google Scholar
Lai, H., Feng, M., Roxas-Duncan, V., Dakshanamurthy, S., Smith, L. A. & Yang, D. C. H. (2009). Arch. Biochem. Biophys. 491, 75–84. CrossRef PubMed CAS Google Scholar
Lamshöft, M., Storp, J., Ivanova, B. & Spiteller, M. (2011). Polyhedron, 30, 2564–2573. Google Scholar
Li, S., Wen, H., Yuan, N., Xie, P., Qin, J. & Wang, Z. (2020). RSC Adv. 10, 32490–32496. CSD CrossRef CAS Google Scholar
Lin, W., Buccella, D. & Lippard, S. J. (2013). J. Am. Chem. Soc. 135, 13512–13520. CSD CrossRef CAS PubMed Google Scholar
McDonald, F. C., Applefield, R. C., Halkides, C. J., Reibenspies, J. H. & Hancock, R. D. (2008). Inorg. Chim. Acta, 361, 1937–1946. Web of Science CSD CrossRef CAS Google Scholar
Medlin, W. L. (1960). Anal. Chem. 32, 632–634. CrossRef CAS Google Scholar
Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m1282. CSD CrossRef IUCr Journals Google Scholar
Plenio, H. & Burth, D. (1996). Organometallics, 15, 4054–4062. CSD CrossRef CAS Google Scholar
Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Royzen, M. & Canary, J. W. (2013). Polyhedron, 58, 85–91. CSD CrossRef CAS Google Scholar
Royzen, M., Durandin, A., Young, V. G. Jr, Geacintov, N. E. & Canary, J. W. (2006). J. Am. Chem. Soc. 128, 3854–3855. CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, M. P., Shankar, K. & Baruah, J. B. (2019). Inorg. Chim. Acta, 489, 204–210. CSD CrossRef CAS Google Scholar
Škalamera, Đ., Sanders, E., Vianello, R., Maršavelski, A., Pevec, A., Turel, I. & Kirin, S. I. (2016). Dalton Trans. 45, 2845–2858. PubMed Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Xue, L., Wang, H.-H., Wang, X.-J. & Jiang, H. (2008). Inorg. Chem. 47, 4310–4318. CSD CrossRef PubMed CAS Google Scholar
Zhang, Y.-P., Ma, Z.-Y., Gao, C.-Y., Qiao, X., Tian, J.-L., Gu, W., Liu, X., Xu, J.-Y., Zhao, J.-Z. & Yan, S.-P. (2016). New J. Chem. 40, 7513–7521. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.