research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (7-{[bis­­(pyridin-2-ylmeth­yl)amino-κ3N,N′,N′′]meth­yl}-5-chloro­quinolin-8-ol)di­bromidozinc(II)

crossmark logo

aOsaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan, and bOsaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
*Correspondence e-mail: kubono@cc.osaka-kyoiku.ac.jp

Edited by C. Schulzke, Universität Greifswald, Germany (Received 18 January 2022; accepted 9 February 2022; online 15 February 2022)

In the title compound, [ZnBr2(C22H19ClN4O)], the ZnII atom adopts a distorted square-pyramidal coordination geometry, formed by two bromido ligands and three N atoms of the bis­(pyridin-2-ylmeth­yl)amine moiety in the penta­dentate ligand containing quinolinol. The ZnII atom is located well above the mean basal plane of the square-based pyramid. The apical position is occupied by a Br atom. The O and N atoms of the quinolinol moiety in the ligand are not coordinated to the ZnII atom. An intra­molecular O—H⋯N hydrogen bond, generating an S(5) ring motif, stabilizes the mol­ecular structure. In the crystal, the mol­ecules are linked by inter­molecular C—H⋯Br hydrogen bonds, generating ribbon structures containing alternating R22(22) and R22(14) rings. These ribbons are linked through an inter­molecular C—H⋯Br hydrogen bond, forming a two-dimensional network sheet.

1. Chemical context

8-Quinolinol (Hq) is a notable bidentate ligand and an excellent analytical reagent for the determination of the concentration and separation of metal ions (Medlin, 1960[Medlin, W. L. (1960). Anal. Chem. 32, 632-634.]; Eguchi et al., 2019[Eguchi, A., Morita, K. & Hirayama, N. (2019). Anal. Sci. 35, 1003-1007.]). Hq derivatives and their metal complexes have wide applications in diverse areas such as pharmaceuticals (Lai et al., 2009[Lai, H., Feng, M., Roxas-Duncan, V., Dakshanamurthy, S., Smith, L. A. & Yang, D. C. H. (2009). Arch. Biochem. Biophys. 491, 75-84.]) and organic light-emitting diodes (Li et al., 2020[Li, S., Wen, H., Yuan, N., Xie, P., Qin, J. & Wang, Z. (2020). RSC Adv. 10, 32490-32496.]). Bis(pyridin-2-ylmeth­yl)amine [di(2-picol­yl)amine, dpa] is a well-known tridentate ligand and highly selective for ZnII. Its derivatives are utilized as chemosensors for detecting ZnII at low concentration in biological samples (Lin et al., 2013[Lin, W., Buccella, D. & Lippard, S. J. (2013). J. Am. Chem. Soc. 135, 13512-13520.]) . In addition, some ZnII complexes with dpa derivatives comprise a binding site for polyphosphates such as diphos­phate and adenosine triphosphate, and can act as respective anion sensors (Aoki et al., 2020[Aoki, K., Osako, R., Deng, J., Hayashita, T., Hashimoto, T. & Suzuki, Y. (2020). RSC Adv. 10, 15299-15306.]; Bazany-Rodríguez et al., 2020[Bazany-Rodríguez, I. J., Salomón-Flores, M. K., Bautista-Renedo, J. M., González-Rivas, N. & Dorazco-González, A. (2020). Inorg. Chem. 59, 7739-7751.]). We, hence, developed the penta­dentate ligand, 7-{[bis(pyridin-2-ylmeth­yl)amino]­meth­yl}-5-chloro­quinolin-8-ol (HClqdpa) containing Hq and dpa moieties (Kubono et al., 2015[Kubono, K., Kado, K., Kashiwagi, Y., Tani, K. & Yokoi, K. (2015). Acta Cryst. E71, 1545-1547.]). Subsequently, reactions between HClqdpa and ZnII salts were carried out in order to develop fluorescent anion sensors. In the course of these studies, a crystalline complex was obtained from the reaction with zinc(II) bromide. Here, the crystal structure of the respective title compound is reported.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The ZnII atom adopts a distorted square-pyramidal geometry and coordinates two bromido ligands (Br1 and Br2) and three N atoms (N7, N8 and N9) of the dpa moiety in HClqdpa forming the ZnBr2(dpa) unit. The Hq moiety of the penta­dentate ligand (HClqdpa) is not coordinated to the ZnII center. The five-coordinate geometry parameter, τ = (β − α)/60, derived from the two largest angles (α < β) in a structure has ideal values of 0 for square-pyramidal and of 1 for trigonal–bipyramidal geometry (Addison et al., 1984[Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). In the title compound it is equal to 0.138. The ZnII atom is located 0.5574 (3) Å above the mean basal plane (Br2/N8/N7/N9) of the square-based pyramid. The dpa moiety is meridionally bound to the ZnII atom. The apical position is occupied by the Br1 atom with the apical bond being slightly elongated to 2.4419 (4) Å compared to the equatorial Br2—Zn3 bond length of 2.4085 (4) Å. The Zn—N bond lengths in the title compound are 2.1455 (18) and 2.1497 (18) Å for the pyridyl atoms (N8, N9), and 2.2670 (18) Å for the tertiary atom N7. In comparison, the Zn—N bond lengths in the crystal structure of a related complex with a mesityl methyl­ene-appended dpa derivative are 2.093 (3), 2.066 (3), and 2.521 (3) Å (MUDWEQ; Acharya et al., 2020[Acharya, J., Sarkar, A., Kumar, P., Kumar, V., Gonzalez, J. F., Cador, O., Pointillart, F., Rajaraman, G. & Chandrasekhar, V. (2020). Dalton Trans. 49, 4785-4796.]). The bond lengths for the pyridyl N atoms are, hence, shorter and the bond length for the tertiary N atom is longer than those in the title compound. The dihedral angle between the two pyridine rings in the title compound is 15.84 (13)°. In a related complex (MUDWEQ; Acharya et al., 2020[Acharya, J., Sarkar, A., Kumar, P., Kumar, V., Gonzalez, J. F., Cador, O., Pointillart, F., Rajaraman, G. & Chandrasekhar, V. (2020). Dalton Trans. 49, 4785-4796.]), this dihedral angle between two pyridine rings is widened to 23.53 (18)°, concomitant with an increased τ parameter of 0.211. The phenolic oxygen O5 of the Hq moiety is bound to hydrogen atom H5, which was found and refined freely. The proton, therefore, does not dissociate and no phen­oxy function is formed. There is an intra­molecular hydrogen bond, O5—H5⋯N6, generating an S(5) ring motif (Fig. 1[link] and Table 1[link]). The quinoline ring system is slightly bent with an r.m.s. deviation of 0.018 (3) Å. In the quinoline ring system, the largest deviation from the mean plane is 0.020 (4) Å for carbon atom C15. The quinoline plane subtends dihedral angles of 24.14 (11) and 36.65 (11)° with the two pyridine rings.

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯N6 0.79 (4) 2.14 (4) 2.653 (3) 124 (3)
C16—H16⋯Br2i 0.95 2.87 3.808 (3) 170
C22—H22⋯Br2ii 0.95 2.88 3.581 (3) 131
C29—H29⋯Br1iii 0.95 2.90 3.798 (3) 158
Symmetry codes: (i) [-x+1, -y, -z]; (ii) [x+1, y-1, z]; (iii) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius. The intra­molecular O—H⋯N hydrogen bond is shown as a dashed line.

3. Supra­molecular features

In the crystal, two mol­ecules are associated through a pair of inter­molecular C—H⋯Br hydrogen bonds [C16—H16⋯Br2i; symmetry code: (i) 1 − x, −y, −z] (Table 1[link]), forming a centrosymmetric dimer with an R22(22) ring motif. Another pair of inter­molecular C—H⋯Br hydrogen bonds is observed [C29—H29⋯Br1iii; symmetry code: (iii) 1 − x, 1 − y, 1 − z] (Table 1[link]), which forms another centrosymmetric dimer with an R22(14) ring motif. The different hydrogen-bonded pairs of mol­ecules are also linked to each other by these inter­molecular C—H⋯Br hydrogen bonds, generating a ribbon structure along [0[\overline{1}]1] based on alternating R22(22) and R22(14) hydrogen-bonding motifs (Fig. 2[link]). In the crystal, mol­ecules are further linked by an inter­molecular C—H⋯Br hydrogen bond [C22—H22⋯Br2ii; symmetry code: (ii) x + 1, y − 1, z] (Table 1[link]), forming a C(6) chain motif running along [2[\overline{2}]0] (Fig. 3[link]). The ribbon structures are, therefore, linked through the inter­molecular C22—H22⋯Br2ii hydrogen bonds and form a two-dimensional network sheet parallel to [22[\overline{2}]] (Fig. 3[link]).

[Figure 2]
Figure 2
A portion of the crystal packing of the title compound showing the ribbon structure motif built from alternating R22(22) and R22(14) rings. The C—H⋯Br hydrogen bonds between the dimers and the intra­molecular hydrogen bonds are shown as dashed lines. H atoms not involved in the inter­actions were omitted for clarity.
[Figure 3]
Figure 3
A packing diagram of the title compound showing the two-dimensional network sheet structure. The inter­molecular C—H⋯Br and intra­molecular O—H⋯N hydrogen bonds are shown as dashed lines. H atoms not involved in the inter­actions were omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42; May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for ZnII complexes with the [bis­(pyridin-2-ylmeth­yl)amino]­methyl fragment as ligand gave 517 hits, and among those, eight hits with two bromido ligands. Of these eight analogues, three structures are complexes with dpa bearing a tertiary N donor atom directly bound to an aromatic moiety (IRISEJ; Zhang et al., 2016[Zhang, Y.-P., Ma, Z.-Y., Gao, C.-Y., Qiao, X., Tian, J.-L., Gu, W., Liu, X., Xu, J.-Y., Zhao, J.-Z. & Yan, S.-P. (2016). New J. Chem. 40, 7513-7521.]; ZEGZOC; Gao et al., 2012[Gao, C.-Y., Qiao, X., Ma, Z.-Y., Wang, Z.-G., Lu, J., Tian, J.-L., Xu, J.-Y. & Yan, S.-P. (2012). Dalton Trans. 41, 12220-12232.]; TORLUH; Plenio et al., 1996[Plenio, H. & Burth, D. (1996). Organometallics, 15, 4054-4062.]). In the remaining five di­bromido ZnII complexes with dpa derivatives (comprising four compounds), the tertiary N atoms are bound to aliphatic carbon atoms as in the title complex. Four of these five closely related structures exhibit square-pyramidal geometries with dpa being meridionally coordinated (YOZZOC; Abufarag et al., 1995[Abufarag, A. & Vahrenkamp, H. (1995). Inorg. Chem. 34, 2207-2216.]; RUVCUI; Škalamera et al., 2016[Škalamera, Đ., Sanders, E., Vianello, R., Maršavelski, A., Pevec, A., Turel, I. & Kirin, S. I. (2016). Dalton Trans. 45, 2845-2858.]; MUDWEQ; Acharya et al., 2020[Acharya, J., Sarkar, A., Kumar, P., Kumar, V., Gonzalez, J. F., Cador, O., Pointillart, F., Rajaraman, G. & Chandrasekhar, V. (2020). Dalton Trans. 49, 4785-4796.]; IHIJIV; Juraj et al., 2020[Juraj, N. P., Muratović, S., Perić, B., Vujičić, N. Š., Vianello, R., Žilić, D., Jagličić, Z. & Kirin, S. I. (2020). Cryst. Growth Des. 20, 2440-2453.]). The remaining exceptional structure is fac-{N,N′-bis­[(pyridine-2-yl)meth­yl]propan-2-amine}­dibromido­zinc(II) (IHIJOB; Juraj et al., 2020[Juraj, N. P., Muratović, S., Perić, B., Vujičić, N. Š., Vianello, R., Žilić, D., Jagličić, Z. & Kirin, S. I. (2020). Cryst. Growth Des. 20, 2440-2453.]), which adopts a trigonal–bipyramidal geometry with dpa being facially coordinated. This structure is a polymorph of one complex with a more typical geometry mentioned above (IHIJIV; Juraj et al., 2020[Juraj, N. P., Muratović, S., Perić, B., Vujičić, N. Š., Vianello, R., Žilić, D., Jagličić, Z. & Kirin, S. I. (2020). Cryst. Growth Des. 20, 2440-2453.]). A search for mol­ecular structures containing ZnII and the Hq moiety in which the H atom of the phenolic hy­droxy group is not dissociated gave 29 hits (comprising 25 compounds). Of these, six structures (three compounds) are ion-pairs between tetra­chlorido­zincate(II) and an 8-hy­droxy­quinolin-1-ium (H2q+) derivative, for example, (H2q)2[ZnCl4] (FARFIP; Lamshöft et al., 2011[Lamshöft, M., Storp, J., Ivanova, B. & Spiteller, M. (2011). Polyhedron, 30, 2564-2573.]). Eight structures are ion-pairs between H2q+ derivatives and anionic complexes consisting of ZnX2 (X = Cl, Br, or I) and quinolin-8-lato derivatives, e.g. 8-hy­droxy-2-methyl­quinolino­linium di­iodo­(2-methyl­uinolin-8-lato)zinc(II) (AYOCOH; Najafi et al., 2011[Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m1282.]). Two structures are ion-pairs between H2q+ derivatives and anionic ZnII complexes with other chelate ligands, e.g. bis­(8-hy­droxy­quinolin-1-ium) tris­(4-nitro­phenol) bis­(pyridine-2,6-carboxyl­ato)zinc(II) dihydrate (MIYKEN; Singh et al., 2019[Singh, M. P., Shankar, K. & Baruah, J. B. (2019). Inorg. Chim. Acta, 489, 204-210.]). The remaining 13 structures (12 compounds) are ZnII chelate complexes containing the Hq ligand with an undissociated phenolic functional group, e.g., bis­(8-hy­droxy­quinolin-2-carboxyl­ato)zinc(II) trihydrate (QOCRAC; McDonald et al., 2008[McDonald, F. C., Applefield, R. C., Halkides, C. J., Reibenspies, J. H. & Hancock, R. D. (2008). Inorg. Chim. Acta, 361, 1937-1946.]). A crystal structure of a ZnII complex containing the Hq moiety which is neither the counter-cation of an ion-pair nor bound to ZnII has not been reported yet. A search for ZnII complexes in which the entire ligand scaffold and substitution is also more analogous to the title compound, i.e. with [bis(pyridin-2-ylmeth­yl)amino]­methyl at the 2-position of Hq or respective derivatives, gave three hits (CIGJAF; Royzen et al., 2013[Royzen, M. & Canary, J. W. (2013). Polyhedron, 58, 85-91.]; RIZROI; Xue et al., 2008[Xue, L., Wang, H.-H., Wang, X.-J. & Jiang, H. (2008). Inorg. Chem. 47, 4310-4318.]; TEHDOA; Royzen et al., 2006[Royzen, M., Durandin, A., Young, V. G. Jr, Geacintov, N. E. & Canary, J. W. (2006). J. Am. Chem. Soc. 128, 3854-3855.]). In the three structures, the phenolic hy­droxy group is deprotonated and coordinated by ZnII.

5. Synthesis and crystallization

The HClqdpa ligand (97.7 mg, 0.250 mmol) was dissolved in 15 mL of hot aceto­nitrile. Then a solution of zinc(II) bromide (56.4 mg, 0.250 mmol) in 15 mL of hot aceto­nitrile was added to the ligand solution. The mixture was stirred for 20 min at 333 K. After removal of the solvent at room temperature in air for one week, colorless crystals of the title compound were obtained (yield 35%; m.p. 496–497 K). Analysis calculated for C22H19Br2ClN4OZn: C 42.89, H 3.11, N 9.09%; found: C 42.94, H 3.02, N 8.95%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hy­droxy H atom was located in a difference-Fourier map and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C). One outlier reflex (002) was omitted from the refinement.

Table 2
Experimental details

Crystal data
Chemical formula [ZnBr2(C22H19ClN4O)]
Mr 616.05
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 7.6779 (3), 8.7860 (4), 18.1379 (8)
α, β, γ (°) 89.460 (6), 89.617 (6), 66.878 (5)
V3) 1125.21 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 4.78
Crystal size (mm) 0.35 × 0.20 × 0.15
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.316, 0.487
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 11009, 5114, 4386
Rint 0.017
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.059, 1.07
No. of reflections 5114
No. of parameters 284
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.59, −0.65
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare, et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), and CrystalStructure (Rigaku, 2016[Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SIR92 (Altomare, et al., 1993); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: CrystalStructure (Rigaku, 2016).

(7-{[Bis(pyridin-2-ylmethyl)amino-κ3N,N',N'']methyl}-5-chloroquinolin-8-ol)dibromidozinc(II) top
Crystal data top
[ZnBr2(C22H19ClN4O)]Z = 2
Mr = 616.05F(000) = 608.00
Triclinic, P1Dx = 1.818 Mg m3
a = 7.6779 (3) ÅMo Kα radiation, λ = 0.71075 Å
b = 8.7860 (4) ÅCell parameters from 9577 reflections
c = 18.1379 (8) Åθ = 2.5–27.4°
α = 89.460 (6)°µ = 4.78 mm1
β = 89.617 (6)°T = 173 K
γ = 66.878 (5)°Block, colorless
V = 1125.21 (9) Å30.35 × 0.20 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4386 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.017
ω scansθmax = 27.4°, θmin = 2.8°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.316, Tmax = 0.487k = 1111
11009 measured reflectionsl = 2323
5114 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.024P)2 + 0.8532P]
where P = (Fo2 + 2Fc2)/3
5114 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.65 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.27928 (3)0.13134 (3)0.42388 (2)0.02925 (7)
Br20.21673 (4)0.34246 (3)0.22122 (2)0.03710 (7)
Zn30.43550 (3)0.18902 (3)0.31584 (2)0.02169 (7)
Cl40.52345 (11)0.31327 (11)0.04318 (5)0.0578 (2)
O51.0962 (2)0.2077 (2)0.21912 (11)0.0350 (4)
N61.0498 (3)0.2729 (3)0.07984 (13)0.0399 (5)
N70.7489 (3)0.0783 (2)0.34256 (10)0.0226 (4)
N80.5357 (3)0.0510 (2)0.26615 (11)0.0249 (4)
N90.4920 (3)0.3899 (2)0.36144 (10)0.0252 (4)
C100.9635 (3)0.0864 (3)0.17935 (13)0.0259 (5)
C110.8577 (3)0.0643 (3)0.21048 (13)0.0248 (5)
C120.7210 (3)0.1857 (3)0.16621 (14)0.0294 (5)
H120.6490310.2909770.1867410.035*
C130.6895 (4)0.1560 (3)0.09501 (15)0.0337 (5)
C140.7943 (4)0.0008 (3)0.06192 (14)0.0337 (6)
C150.7731 (5)0.0458 (4)0.01112 (16)0.0489 (8)
H150.6797890.0291740.0426710.059*
C160.8870 (5)0.1980 (5)0.03553 (17)0.0595 (10)
H160.8738420.2303410.0843180.071*
C171.0237 (5)0.3070 (4)0.01133 (17)0.0521 (8)
H171.1027710.4123960.0073940.063*
C180.9343 (3)0.1194 (3)0.10505 (13)0.0297 (5)
C190.8847 (3)0.1035 (3)0.28896 (13)0.0291 (5)
H19A1.0153820.0329030.3042280.035*
H19B0.8709460.2201360.2914340.035*
C200.7877 (3)0.0985 (3)0.35371 (14)0.0278 (5)
H20A0.7360520.1142140.4020070.033*
H20B0.9262840.1632490.3541440.033*
C210.6994 (3)0.1604 (3)0.29331 (13)0.0255 (5)
C220.7819 (4)0.3211 (3)0.26675 (15)0.0334 (6)
H220.8963300.3978440.2874790.040*
C230.6955 (4)0.3673 (3)0.21001 (17)0.0401 (6)
H230.7514600.4757800.1903560.048*
C240.5265 (4)0.2547 (3)0.18174 (16)0.0396 (6)
H240.4644420.2843380.1426500.048*
C250.4499 (3)0.0976 (3)0.21191 (14)0.0325 (5)
H250.3326820.0203310.1935080.039*
C260.7580 (3)0.1610 (3)0.41217 (12)0.0260 (5)
H26A0.8914710.1384940.4241560.031*
H26B0.7039990.1175460.4529780.031*
C270.6470 (3)0.3453 (3)0.40353 (12)0.0258 (5)
C280.6961 (4)0.4618 (3)0.43949 (14)0.0349 (6)
H280.8080690.4284280.4682540.042*
C290.5782 (5)0.6278 (3)0.43250 (15)0.0412 (7)
H290.6075170.7096330.4571630.049*
C300.4187 (4)0.6729 (3)0.38959 (15)0.0380 (6)
H300.3360910.7859450.3843800.046*
C310.3804 (4)0.5510 (3)0.35418 (14)0.0327 (5)
H310.2716130.5823210.3236890.039*
H51.131 (6)0.285 (5)0.193 (2)0.071 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02994 (12)0.03405 (13)0.02819 (12)0.01729 (10)0.00204 (9)0.00401 (9)
Br20.03370 (13)0.03205 (13)0.03195 (13)0.00201 (10)0.00934 (10)0.00635 (10)
Zn30.01991 (12)0.01955 (12)0.02461 (13)0.00657 (10)0.00128 (10)0.00394 (10)
Cl40.0467 (4)0.0647 (5)0.0546 (5)0.0144 (4)0.0121 (4)0.0322 (4)
O50.0269 (9)0.0347 (10)0.0364 (10)0.0046 (8)0.0016 (8)0.0014 (8)
N60.0514 (14)0.0411 (13)0.0359 (12)0.0276 (11)0.0146 (11)0.0090 (10)
N70.0225 (9)0.0236 (9)0.0229 (9)0.0104 (8)0.0006 (7)0.0011 (7)
N80.0220 (9)0.0220 (9)0.0308 (10)0.0089 (8)0.0037 (8)0.0054 (8)
N90.0297 (10)0.0228 (9)0.0243 (10)0.0114 (8)0.0001 (8)0.0022 (8)
C100.0246 (11)0.0282 (11)0.0273 (12)0.0131 (10)0.0011 (9)0.0033 (9)
C110.0240 (11)0.0275 (11)0.0266 (11)0.0140 (9)0.0021 (9)0.0002 (9)
C120.0289 (12)0.0257 (12)0.0354 (13)0.0128 (10)0.0030 (10)0.0036 (10)
C130.0309 (12)0.0373 (14)0.0351 (13)0.0161 (11)0.0043 (11)0.0146 (11)
C140.0398 (14)0.0455 (15)0.0274 (12)0.0295 (13)0.0022 (11)0.0052 (11)
C150.0577 (19)0.074 (2)0.0294 (14)0.0417 (18)0.0053 (13)0.0042 (14)
C160.082 (2)0.087 (3)0.0349 (16)0.060 (2)0.0105 (16)0.0206 (17)
C170.072 (2)0.0547 (19)0.0442 (17)0.0404 (18)0.0201 (16)0.0204 (15)
C180.0347 (13)0.0332 (13)0.0286 (12)0.0216 (11)0.0066 (10)0.0022 (10)
C190.0277 (12)0.0354 (13)0.0284 (12)0.0167 (10)0.0039 (9)0.0059 (10)
C200.0231 (11)0.0241 (11)0.0335 (13)0.0063 (9)0.0015 (10)0.0020 (10)
C210.0226 (10)0.0211 (11)0.0334 (12)0.0092 (9)0.0071 (9)0.0021 (9)
C220.0290 (12)0.0198 (11)0.0488 (16)0.0067 (10)0.0130 (11)0.0038 (11)
C230.0406 (15)0.0268 (13)0.0563 (17)0.0169 (12)0.0190 (13)0.0170 (12)
C240.0438 (15)0.0392 (15)0.0447 (16)0.0255 (13)0.0087 (12)0.0165 (12)
C250.0287 (12)0.0323 (13)0.0389 (14)0.0142 (11)0.0032 (11)0.0102 (11)
C260.0251 (11)0.0328 (12)0.0225 (11)0.0137 (10)0.0033 (9)0.0009 (9)
C270.0313 (12)0.0322 (12)0.0200 (10)0.0189 (10)0.0046 (9)0.0044 (9)
C280.0456 (15)0.0472 (15)0.0254 (12)0.0327 (13)0.0033 (11)0.0065 (11)
C290.0684 (19)0.0396 (15)0.0326 (14)0.0393 (15)0.0181 (13)0.0140 (11)
C300.0573 (17)0.0252 (12)0.0356 (14)0.0206 (12)0.0143 (13)0.0059 (10)
C310.0415 (14)0.0252 (12)0.0313 (13)0.0129 (11)0.0049 (11)0.0017 (10)
Geometric parameters (Å, º) top
Br1—Zn32.4419 (4)C16—C171.396 (5)
Br2—Zn32.4085 (4)C16—H160.9500
Zn3—N82.1455 (18)C17—H170.9500
Zn3—N92.1497 (18)C19—H19A0.9900
Zn3—N72.2670 (18)C19—H19B0.9900
Cl4—C131.740 (3)C20—C211.506 (3)
O5—C101.355 (3)C20—H20A0.9900
O5—H50.79 (4)C20—H20B0.9900
N6—C171.316 (4)C21—C221.390 (3)
N6—C181.371 (3)C22—C231.376 (4)
N7—C201.474 (3)C22—H220.9500
N7—C261.478 (3)C23—C241.385 (4)
N7—C191.498 (3)C23—H230.9500
N8—C211.341 (3)C24—C251.387 (3)
N8—C251.341 (3)C24—H240.9500
N9—C271.339 (3)C25—H250.9500
N9—C311.342 (3)C26—C271.512 (3)
C10—C111.377 (3)C26—H26A0.9900
C10—C181.419 (3)C26—H26B0.9900
C11—C121.414 (3)C27—C281.391 (3)
C11—C191.502 (3)C28—C291.386 (4)
C12—C131.362 (4)C28—H280.9500
C12—H120.9500C29—C301.374 (4)
C13—C141.420 (4)C29—H290.9500
C14—C181.409 (4)C30—C311.381 (3)
C14—C151.419 (4)C30—H300.9500
C15—C161.355 (5)C31—H310.9500
C15—H150.9500
N8—Zn3—N9149.88 (7)C14—C18—C10120.6 (2)
N8—Zn3—N776.13 (7)N7—C19—C11114.29 (18)
N9—Zn3—N775.20 (7)N7—C19—H19A108.7
N8—Zn3—Br298.53 (5)C11—C19—H19A108.7
N9—Zn3—Br298.16 (5)N7—C19—H19B108.7
N7—Zn3—Br2141.63 (5)C11—C19—H19B108.7
N8—Zn3—Br198.76 (5)H19A—C19—H19B107.6
N9—Zn3—Br197.48 (5)N7—C20—C21110.67 (19)
N7—Zn3—Br1105.26 (5)N7—C20—H20A109.5
Br2—Zn3—Br1113.102 (14)C21—C20—H20A109.5
C10—O5—H5104 (3)N7—C20—H20B109.5
C17—N6—C18116.6 (3)C21—C20—H20B109.5
C20—N7—C26112.22 (18)H20A—C20—H20B108.1
C20—N7—C19111.92 (18)N8—C21—C22121.6 (2)
C26—N7—C19108.08 (16)N8—C21—C20116.01 (19)
C20—N7—Zn3102.79 (13)C22—C21—C20122.4 (2)
C26—N7—Zn3102.85 (13)C23—C22—C21119.1 (2)
C19—N7—Zn3118.69 (14)C23—C22—H22120.5
C21—N8—C25119.2 (2)C21—C22—H22120.5
C21—N8—Zn3114.94 (14)C22—C23—C24119.5 (2)
C25—N8—Zn3125.90 (16)C22—C23—H23120.2
C27—N9—C31119.2 (2)C24—C23—H23120.2
C27—N9—Zn3115.33 (15)C23—C24—C25118.3 (2)
C31—N9—Zn3125.38 (16)C23—C24—H24120.8
O5—C10—C11120.9 (2)C25—C24—H24120.8
O5—C10—C18118.3 (2)N8—C25—C24122.3 (2)
C11—C10—C18120.8 (2)N8—C25—H25118.9
C10—C11—C12118.2 (2)C24—C25—H25118.9
C10—C11—C19122.2 (2)N7—C26—C27109.09 (18)
C12—C11—C19119.6 (2)N7—C26—H26A109.9
C13—C12—C11122.0 (2)C27—C26—H26A109.9
C13—C12—H12119.0N7—C26—H26B109.9
C11—C12—H12119.0C27—C26—H26B109.9
C12—C13—C14121.0 (2)H26A—C26—H26B108.3
C12—C13—Cl4119.3 (2)N9—C27—C28121.6 (2)
C14—C13—Cl4119.7 (2)N9—C27—C26115.59 (19)
C18—C14—C15116.3 (3)C28—C27—C26122.7 (2)
C18—C14—C13117.4 (2)C29—C28—C27118.6 (2)
C15—C14—C13126.3 (3)C29—C28—H28120.7
C16—C15—C14119.5 (3)C27—C28—H28120.7
C16—C15—H15120.2C30—C29—C28119.5 (2)
C14—C15—H15120.2C30—C29—H29120.3
C15—C16—C17119.7 (3)C28—C29—H29120.3
C15—C16—H16120.1C29—C30—C31118.9 (3)
C17—C16—H16120.1C29—C30—H30120.6
N6—C17—C16124.0 (3)C31—C30—H30120.6
N6—C17—H17118.0N9—C31—C30122.1 (3)
C16—C17—H17118.0N9—C31—H31118.9
N6—C18—C14123.9 (2)C30—C31—H31118.9
N6—C18—C10115.5 (2)
O5—C10—C11—C12179.8 (2)C26—N7—C20—C21155.72 (18)
C18—C10—C11—C120.7 (3)C19—N7—C20—C2182.6 (2)
O5—C10—C11—C190.8 (3)Zn3—N7—C20—C2145.9 (2)
C18—C10—C11—C19179.9 (2)C25—N8—C21—C220.2 (3)
C10—C11—C12—C131.3 (3)Zn3—N8—C21—C22179.88 (18)
C19—C11—C12—C13179.3 (2)C25—N8—C21—C20179.6 (2)
C11—C12—C13—C140.3 (4)Zn3—N8—C21—C200.3 (3)
C11—C12—C13—Cl4178.28 (18)N7—C20—C21—N833.3 (3)
C12—C13—C14—C181.4 (4)N7—C20—C21—C22146.4 (2)
Cl4—C13—C14—C18176.63 (18)N8—C21—C22—C231.6 (4)
C12—C13—C14—C15179.1 (2)C20—C21—C22—C23178.2 (2)
Cl4—C13—C14—C152.9 (4)C21—C22—C23—C241.5 (4)
C18—C14—C15—C161.0 (4)C22—C23—C24—C250.2 (4)
C13—C14—C15—C16178.5 (3)C21—N8—C25—C241.3 (4)
C14—C15—C16—C170.0 (5)Zn3—N8—C25—C24178.66 (19)
C18—N6—C17—C160.5 (4)C23—C24—C25—N81.3 (4)
C15—C16—C17—N60.8 (5)C20—N7—C26—C27158.30 (18)
C17—N6—C18—C140.7 (4)C19—N7—C26—C2777.8 (2)
C17—N6—C18—C10179.2 (2)Zn3—N7—C26—C2748.52 (19)
C15—C14—C18—N61.4 (4)C31—N9—C27—C280.5 (3)
C13—C14—C18—N6178.1 (2)Zn3—N9—C27—C28176.89 (17)
C15—C14—C18—C10178.5 (2)C31—N9—C27—C26176.6 (2)
C13—C14—C18—C102.0 (3)Zn3—N9—C27—C260.2 (2)
O5—C10—C18—N61.7 (3)N7—C26—C27—N935.0 (3)
C11—C10—C18—N6179.1 (2)N7—C26—C27—C28147.9 (2)
O5—C10—C18—C14178.2 (2)N9—C27—C28—C291.5 (4)
C11—C10—C18—C141.0 (3)C26—C27—C28—C29175.4 (2)
C20—N7—C19—C1170.4 (3)C27—C28—C29—C301.0 (4)
C26—N7—C19—C11165.5 (2)C28—C29—C30—C310.3 (4)
Zn3—N7—C19—C1149.1 (2)C27—N9—C31—C300.9 (4)
C10—C11—C19—N796.5 (3)Zn3—N9—C31—C30175.09 (18)
C12—C11—C19—N784.1 (3)C29—C30—C31—N91.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N60.79 (4)2.14 (4)2.653 (3)124 (3)
C16—H16···Br2i0.952.873.808 (3)170
C22—H22···Br2ii0.952.883.581 (3)131
C29—H29···Br1iii0.952.903.798 (3)158
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z; (iii) x+1, y+1, z+1.
 

Funding information

Funding for this research was provided by: JSPS KAKENHI (grant No. JP20K05565).

References

First citationAbufarag, A. & Vahrenkamp, H. (1995). Inorg. Chem. 34, 2207–2216.  CSD CrossRef CAS Web of Science Google Scholar
First citationAcharya, J., Sarkar, A., Kumar, P., Kumar, V., Gonzalez, J. F., Cador, O., Pointillart, F., Rajaraman, G. & Chandrasekhar, V. (2020). Dalton Trans. 49, 4785–4796.  CSD CrossRef CAS PubMed Google Scholar
First citationAddison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAoki, K., Osako, R., Deng, J., Hayashita, T., Hashimoto, T. & Suzuki, Y. (2020). RSC Adv. 10, 15299–15306.  CrossRef CAS Google Scholar
First citationBazany-Rodríguez, I. J., Salomón-Flores, M. K., Bautista-Renedo, J. M., González-Rivas, N. & Dorazco-González, A. (2020). Inorg. Chem. 59, 7739–7751.  PubMed Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEguchi, A., Morita, K. & Hirayama, N. (2019). Anal. Sci. 35, 1003–1007.  CrossRef CAS PubMed Google Scholar
First citationGao, C.-Y., Qiao, X., Ma, Z.-Y., Wang, Z.-G., Lu, J., Tian, J.-L., Xu, J.-Y. & Yan, S.-P. (2012). Dalton Trans. 41, 12220–12232.  CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJuraj, N. P., Muratović, S., Perić, B., Vujičić, N. Š., Vianello, R., Žilić, D., Jagličić, Z. & Kirin, S. I. (2020). Cryst. Growth Des. 20, 2440–2453.  Google Scholar
First citationKubono, K., Kado, K., Kashiwagi, Y., Tani, K. & Yokoi, K. (2015). Acta Cryst. E71, 1545–1547.  CSD CrossRef IUCr Journals Google Scholar
First citationLai, H., Feng, M., Roxas-Duncan, V., Dakshanamurthy, S., Smith, L. A. & Yang, D. C. H. (2009). Arch. Biochem. Biophys. 491, 75–84.  CrossRef PubMed CAS Google Scholar
First citationLamshöft, M., Storp, J., Ivanova, B. & Spiteller, M. (2011). Polyhedron, 30, 2564–2573.  Google Scholar
First citationLi, S., Wen, H., Yuan, N., Xie, P., Qin, J. & Wang, Z. (2020). RSC Adv. 10, 32490–32496.  CSD CrossRef CAS Google Scholar
First citationLin, W., Buccella, D. & Lippard, S. J. (2013). J. Am. Chem. Soc. 135, 13512–13520.  CSD CrossRef CAS PubMed Google Scholar
First citationMcDonald, F. C., Applefield, R. C., Halkides, C. J., Reibenspies, J. H. & Hancock, R. D. (2008). Inorg. Chim. Acta, 361, 1937–1946.  Web of Science CSD CrossRef CAS Google Scholar
First citationMedlin, W. L. (1960). Anal. Chem. 32, 632–634.  CrossRef CAS Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m1282.  CSD CrossRef IUCr Journals Google Scholar
First citationPlenio, H. & Burth, D. (1996). Organometallics, 15, 4054–4062.  CSD CrossRef CAS Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRoyzen, M. & Canary, J. W. (2013). Polyhedron, 58, 85–91.  CSD CrossRef CAS Google Scholar
First citationRoyzen, M., Durandin, A., Young, V. G. Jr, Geacintov, N. E. & Canary, J. W. (2006). J. Am. Chem. Soc. 128, 3854–3855.  CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, M. P., Shankar, K. & Baruah, J. B. (2019). Inorg. Chim. Acta, 489, 204–210.  CSD CrossRef CAS Google Scholar
First citationŠkalamera, Đ., Sanders, E., Vianello, R., Maršavelski, A., Pevec, A., Turel, I. & Kirin, S. I. (2016). Dalton Trans. 45, 2845–2858.  PubMed Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXue, L., Wang, H.-H., Wang, X.-J. & Jiang, H. (2008). Inorg. Chem. 47, 4310–4318.  CSD CrossRef PubMed CAS Google Scholar
First citationZhang, Y.-P., Ma, Z.-Y., Gao, C.-Y., Qiao, X., Tian, J.-L., Gu, W., Liu, X., Xu, J.-Y., Zhao, J.-Z. & Yan, S.-P. (2016). New J. Chem. 40, 7513–7521.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds