research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure, Hirshfeld surface and void analysis of bis­­(μ2-4-amino­benzoato-κ2O:O′)bis­­[bis­­(4-amino­benzoato-κ2O,O′)di­aquathulium(III)] dihydrate

crossmark logo

aAzerbaijan State Aqrarian University, Ganja City, Azerbaijan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, cDepartment of Physics, University of Minawali, Miamwali, Pakistan, dDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and eDepartment of Chemistry, University of Minawali, Miamwali, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 9 December 2021; accepted 31 January 2022; online 3 February 2022)

The asymmetric unit of the title compound, [Tm2(C7H6NO2)6(H2O)4]·2H2O, contains three 4-amino­benzoate (4ABA) ligands, two coordinated water mol­ecules, a thulium metal ion, and a water mol­ecule of crystallization. The overall structure of the complex (4ABA-Tm) is in the form of a dimer. In the dinuclear thulium complex, symmetry-relevant TmO8 coordination polyhedra are formed by the O atoms of two chelating 4-amino­benzoate ligands, the O atoms of two non-chelating 4-amino­benzoate ligands, and two water mol­ecules. The Tm—O bond lengths range from 2.216 (3) to 2.471 (3) Å with the Tm⋯Tm separation in the dinuclear complex being 4.7863 (5) Å. The crystal structure features O—H⋯N, N—H⋯O, and O—H⋯O hydrogen-bonding inter­actions. Further stabilization of the crystal packing is due to C—H⋯π and off-set ππ stacking inter­actions. Hirshfeld surface analysis indicates that H⋯H contacts are the most significant contributors to the crystal packing (45.9%). In addition, a void analysis was performed to check the strength of the crystal packing.

1. Chemical context

The coordination chemistry of rare-earth metals has been widely studied, and the structures of a significant variety of complexes with diverse kinds of ligands have been reported (You et al., 2021[You, F., Zhai, J., So, Y. M. & Shi, X. (2021). Inorg. Chem. 60, 1797-1805.]). In particular, the lanthanide contraction along the series is of inter­est, and in a detailed analysis of this phenomenon using elements from the lanthanide series, p-amino­benzoic acid (HL) was found to be a very useful and biologically important ligand (Smith & Lynch, 2015[Smith, G. & Lynch, D. E. (2015). Acta Cryst. E71, 1457-1461.]). The carboxyl­ate group of HL can be coordinated with the metals simultaneously in three different modes, namely chelating, bridging, and chelating-bridging (Ali et al., 2014[Ali, N., Tahir, M. N., Ali, S., Iqbal, M., Munawar, K. S. & Perveen, S. (2014). J. Coord. Chem. 67, 1290-1308.]). In the complexes of HL with alkali metals such as Na+ or K+, the ligand is not directly coordinated to the metal ion, but rather it is surrounded by coordinated water mol­ecules (You et al., 2021[You, F., Zhai, J., So, Y. M. & Shi, X. (2021). Inorg. Chem. 60, 1797-1805.]). Both the carb­oxy­lic and amino groups of the ligand are coordinated to the metal in complexes with Ba2+, Ag+, Zn2+, Cd2+, and Ni2+ (Mamedov et al., 1982[Mamedov, K. S., Movsumov, E. M., Amirasłanov, I. R. & Shkurpieło, A. I. (1982). Inst. Prikł. Fiziki, Kishiniev, p. 111.]; Amirasłanov et al., 1982a[Amirasłanov, I. R., Musaev, F. N. & Mamedov, Kh. S. (1982a). Zh. Strukt. Khim. 23, 114.]), while only the oxygen atoms of the carb­oxy­lic groups are coordinated to the metal ion in complexes of Sr2+, Mg2+, and Co2+ with this ligand (Amirasłanov et al., 1982b[Amirasłanov, I. R., Musaev, F. N. & Mamedov, Kh. S. (1982b). Zh. Strukt. Khim. 23, 118.]; Sun et al., 2004[Sun, H. L., Ye, C. H., Wang, X. Y., Li, J. R., Gao, S. & Yu, K. B. (2004). J. Mol. Struct. 702, 77-83.]). In comparison to the above coordination diversity, in the complexes of HL with rare-earth elements like Nd+3 and Sm+3 (Khiyalov et al., 1981[Khiyalov, M. S., Amiraslanov, I. R., Mamedov, K. S. & Movsumov, É. M. (1981). J. Struct. Chem. 22, 400-405.]; Mao & Lianq, 2016[Mao, L. H. & Lianq, F. K. (2016). Chem. Res. Aplic. 18, 245-249.]), only the nitro­gen atom of the amino group is coordinated by the central metal atom, while in complexes of Lu+3 and Ho+3 with HL (Sun et al., 2004[Sun, H. L., Ye, C. H., Wang, X. Y., Li, J. R., Gao, S. & Yu, K. B. (2004). J. Mol. Struct. 702, 77-83.]), the nitro­gen atom of the amino group is not coordinated while the ligands are attached to the metal atom by the oxygen atoms of the carboxyl­ate moiety. In this context, we report the synthesis, crystal structure, Hirshfeld surface, void, thermogravimetric and FT–IR analysis of the title compound, [Tm2(C7H6NO2)6(H2O)4]·2H2O, which is closely related to its Lu+3 and Ho+3 analogues (Sun et al., 2004[Sun, H. L., Ye, C. H., Wang, X. Y., Li, J. R., Gao, S. & Yu, K. B. (2004). J. Mol. Struct. 702, 77-83.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound 4ABA-Tm (Fig. 1[link]) contains a centrosymmetric thulium dinuclear complex and one water mol­ecule of crystallization. Each TmIII atom is octa­coordinated by two chelating 4-amino­benzoate ligands, two bridging 4-amino­benzoate ligands and two coordinated water mol­ecules. In the coordination sphere, bond lengths range from 2.216 (3) to 2.471 (3) Å, while bond angles range from 53.82 (10) to 161.28 (12)° (Table 1[link]). The Tm⋯Tmi separation in the 4ABA-Tm complex is 4.7863 (5) Å (Table 1[link]). The oxygen atoms O2 of the first 4-amino­benzoate chelate (ligand A, C1–C7/N1/O1/O2), O4 of the second 4-amino­benzoate chelate (ligand B, C8–C14/N2/O3/O4) and O5 of the 4-amino­benzoate non-chelate (ligand C, C15–C21/N3/O5/O6) show maximum deviations from their respective planes with values of 0.1748 (3) Å for O2, 0.3087 (3) Å for O4, and 0.1351 (3) Å for O5. Ligand B is twisted at a dihedral angle of 70.83 (7)° with respect to ligand A. The non-chelating ligand C is twisted at dihedral angles of 79.7 (9) and 72.7 (9)°, respectively, to the planes of ligands A and B. Intra­molecular O—H⋯O hydrogen bonding (Table 2[link]) involving OH from the non-coordinating water and the O atom (hydrogen-bond acceptor) of the chelating 4-amino­benzoate ligand stabilizes the mol­ecular configuration.

Table 1
Selected geometric parameters (Å, °)

Tm1—O5 2.216 (3) Tm1—O3 2.374 (3)
Tm1—O6i 2.223 (3) Tm1—O8 2.382 (3)
Tm1—O7 2.293 (3) Tm1—O4 2.457 (3)
Tm1—O2 2.329 (3) Tm1—O1 2.471 (3)
       
O5—Tm1—O6i 108.53 (13) O3—Tm1—O8 124.48 (11)
O5—Tm1—O7 156.90 (13) O5—Tm1—O4 80.34 (11)
O6i—Tm1—O7 84.40 (13) O6i—Tm1—O4 142.65 (11)
O5—Tm1—O2 125.29 (12) O7—Tm1—O4 78.06 (11)
O6i—Tm1—O2 81.97 (13) O2—Tm1—O4 123.35 (10)
O7—Tm1—O2 74.42 (11) O3—Tm1—O4 53.82 (10)
O5—Tm1—O3 80.05 (12) O8—Tm1—O4 72.41 (10)
O6i—Tm1—O3 161.28 (12) O5—Tm1—O1 75.80 (11)
O7—Tm1—O3 93.61 (13) O6i—Tm1—O1 76.29 (11)
O2—Tm1—O3 79.58 (11) O7—Tm1—O1 126.75 (11)
O5—Tm1—O8 78.30 (11) O2—Tm1—O1 54.20 (10)
O6i—Tm1—O8 74.11 (12) O3—Tm1—O1 90.29 (10)
O7—Tm1—O8 87.42 (11) O8—Tm1—O1 131.47 (10)
O2—Tm1—O8 151.26 (11) O4—Tm1—O1 139.92 (9)
Symmetry code: (i) [-x+1, -y, -z].

Table 2
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C16–C21 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯N3ii 0.82 (1) 1.95 (2) 2.753 (6) 169 (5)
O7—H7B⋯N2iii 0.82 (1) 2.18 (2) 2.940 (5) 154 (5)
O8—H8A⋯O1i 0.82 (1) 1.98 (1) 2.791 (4) 172 (4)
O8—H8B⋯O4iv 0.82 (1) 1.96 (1) 2.780 (4) 174 (4)
N1—H1B⋯O9v 0.85 (1) 2.06 (3) 2.870 (8) 158 (7)
N2—H2B⋯O9vi 0.85 (1) 2.24 (2) 3.051 (7) 161 (5)
N3—H3B⋯O5vii 0.84 (1) 2.46 (3) 3.173 (6) 144 (5)
N3—H3B⋯O8vii 0.84 (1) 2.56 (5) 3.092 (5) 122 (4)
O9—H9A⋯O3 0.83 (1) 2.00 (1) 2.828 (6) 172 (7)
O9—H9B⋯O2viii 0.84 (1) 2.34 (6) 2.849 (6) 119 (5)
C11—H11⋯Cg3ix 0.93 2.68 3.538 (5) 155
Symmetry codes: (i) [-x+1, -y, -z]; (ii) [x+1, y-1, z]; (iii) [x, y-1, z]; (iv) [-x+2, -y, -z]; (v) [-x, -y, -z+1]; (vi) [-x+1, -y+1, -z+1]; (vii) [-x+1, -y+1, -z]; (viii) [-x+1, -y, -z+1]; (ix) x+1, y, z.
[Figure 1]
Figure 1
ORTEP view of 4ABA-Tm with ellipsoids drawn at a 30% probability level with H atoms shown as small circles of arbitrary radii.

3. Supra­molecular features

The centrosymmetric dinuclear thulium complexes are linked through O—H⋯O, O—H⋯N and N—H⋯O hydrogen-bonding inter­actions. A C11 chain running along the b-axis direction is formed through O7—H7A⋯N3 H bonds while a loop is formed through the O7—H7A⋯N3 inter­actions. The water mol­ecule of crystallization plays an important role in the stabilization of the crystal packing, acting as a hydrogen-bond donor and as well as a hydrogen-bond acceptor, connecting the centrosymmetric dinuclear thulium complex with each other. The hydrogen bonds lead to the formation of layers parallel to the bc plane (Fig. 2[link], Table 2[link]). These layers are linked through C—H⋯π (Fig. 3[link]), with H⋯π distance of 2.68 Å and off-set ππ stacking inter­actions (Fig. 4[link]) with inter-centroid distances ranging from 3.661 (3) to 3.709 (3) Å, forming a three-dimensional network.

[Figure 2]
Figure 2
Packing diagram of 4ABA-Tm. Selected H atoms are shown for clarity.
[Figure 3]
Figure 3
Graphical representation of C—H⋯π inter­actions in 4ABA-Tm. Selected H atoms are shown while the water mol­ecules are omitted for clarity.
[Figure 4]
Figure 4
Graphical representation of off-set ππ inter­actions in 4ABA-Tm. H atoms and water mol­ecules are not shown for simplicity.

4. Hirshfeld surface analysis

A Hirshfeld surface (HS) analysis was carried out using Crystal Explorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) in order to explore the non-covalent inter­actions in terms of the Hirshfeld surface and two-dimensional fingerprint plots. The HS of a mol­ecule is the region in the crystal where the electron density relevant to the promolecule is greater than the electron density relevant to the procrystal (Spackman et al., 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; Ashfaq et al., 2020[Ashfaq, M., Tahir, M. N., Kuznetsov, A., Mirza, S. H., Khalid, M. & Ali, A. (2020). J. Mol. Struct. 1199, 127041.]). The Hirshfeld surface is constructed by employing colour coding to show the inter­atomic contacts that are shorter (red areas), equal to (white areas), or longer than (blue areas) the sum of the van der Waals radii (Ashfaq et al., 2021a[Ashfaq, M., Munawar, K. S., Bogdanov, G., Ali, A., Tahir, M. N., Ahmed, G., Ramalingam, A., Alam, M. M., Imran, M., Sambandam, S. & Munir, B. (2021a). J. Iran. Chem. Soc. pp. 1-9.],b[Ashfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021b). ACS Omega, 6, 31211-31225.]). The red spots on the surface mapped over dnorm (Fig. 5[link]a) indicate the involvement of atoms in hydrogen-bonding inter­actions. The HS mapped over shape-index (Fig. 5[link]b) is used to check for the presence of inter­actions such as C—H⋯π and ππ stacking (Ashfaq et al., 2021a[Ashfaq, M., Munawar, K. S., Bogdanov, G., Ali, A., Tahir, M. N., Ahmed, G., Ramalingam, A., Alam, M. M., Imran, M., Sambandam, S. & Munir, B. (2021a). J. Iran. Chem. Soc. pp. 1-9.],b[Ashfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021b). ACS Omega, 6, 31211-31225.]). The existence of adjacent red and blue triangular regions around the aromatic rings conforms to the presence of ππ stacking inter­actions in the title compound.

[Figure 5]
Figure 5
HS plotted over (a) dnorm in the range −1.073 to 1.740 a.u. and (b) shape-index in the range −1 to 1 a.u.

Two-dimensional fingerprint plots provide unique information about the non-covalent inter­actions and the crystal packing in terms of the percentage contribution of the inter­atomic contacts (Spackman et al., 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; Ashfaq et al., 2021a[Ashfaq, M., Munawar, K. S., Bogdanov, G., Ali, A., Tahir, M. N., Ahmed, G., Ramalingam, A., Alam, M. M., Imran, M., Sambandam, S. & Munir, B. (2021a). J. Iran. Chem. Soc. pp. 1-9.],b[Ashfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021b). ACS Omega, 6, 31211-31225.][Ashfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021b). ACS Omega, 6, 31211-31225.]). Fig. 6[link]a shows the two-dimensional fingerprint plot for the overall inter­actions in 4ABA-Tm where di and de are the distances from the Hirshfeld surface to the nearest atom inside the Hirshfeld surface and outside it, respectively. The most important inter­atomic contact is H⋯H (Fig. 6[link]b) as it makes the highest contribution to the crystal packing (45.9%). Other major contributors are C⋯H (26.1%, Fig. 6[link]c) and O⋯H (15.5%, Fig. 6[link]d) inter­actions. The inter­atomic contacts that make comparatively smaller contributions in the crystal packing are shown in Fig. 6[link]el.

[Figure 6]
Figure 6
Two-dimensional fingerprint plots of 4ABA-Tm for (a) all inter­actions and (b)–(l) individual inter­atomic contacts.

The response to applied stress or force mainly depends on the strength of the crystal packing in single crystals, which have a high mechanical strength as the mol­ecules are strongly packed into them. To check whether the title compound is mechanically stable or not, a void analysis was performed. In order to calculate voids in the crystal packing, the electron densities of all of the atoms in the mol­ecules present in the asymmetric unit are added up, the atoms being assumed to be spherically symmetric (Turner et al., 2011[Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804-1813.]; Kargar et al., 2022[Kargar, H., Fallah-Mehrjardi, M., Behjatmanesh-Ardakani, R., Munawar, K. S., Ashfaq, M. & Tahir, M. N. (2022). J. Mol. Struct. 1250, 131691.]). The volume of the void in the crystal packing of the title compound is 120.81 Å3 (Fig. 7[link]), which infers that voids occupy 10.51% of the space and, hence, the mol­ecules are strongly packed in the title compound.

[Figure 7]
Figure 7
Graphical representation of 4ABA-Tm in (a) a view along the a axis and (b) a view along the b axis.

5. Infra-red spectroscopy

The structure of the newly synthesized complex was also investigated by FT–IR spectroscopy. It was found that the absorption bands of the –NH2 group appeared in the region of 3200 cm−1 while the absorption bands due to Tm—OH2 are visible in the region of 325 cm−1. The aromatic carbons show their absorption band at 1225 cm−1, while the Tm—O band is visible in the region of 650 cm−1. The absorption bands observed in the FT–IR spectrum of the free ligand in the regions of 1715 and 1435 cm−1 are caused by symmetric (νs) and asymmetric (νas) stretching of the carboxyl group, which are shifted to 1635 and 1436 cm−1, respectively, upon coordination with the TmIII metal ion. The difference between νs and νas is 199 cm−1, indicating that the carboxyl groups are coordinated to the central metal ion by chelate and bidentate-bridging coordination modes.

6. Thermogravimetric analysis

The title complex was further characterized by thermogravimetry. Thermolysis occurs in three stages. In the first stage, at a temperature of 20–200°C, inter­molecular and coordinated water mol­ecules are released, with a weight loss of 4.69%. The complex remains stable over the temperature 200–400°C. In the second stage, at a temperature of 400–600°C, the hydro­carbon residues are decomposed and simultaneously burned out. Thulium carbonate is formed in the last stage at a temperature between 600 and 800°C. The final product of decomposition above 800°C is metal oxide.

It is known that lanthanide carboxyl­ates have good spectroscopic characteristics; they have enhanced thermal stability and are also resistant to moisture and oxygen in the air, which is of great importance in the production and operation of photoluminescent and electroluminescent devices based on them.

7. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40; update February 2021; Groom et al., 2016) gave 206 hits, some of whose crystal structures are closely related to 4ABA-Tm. These include the yttrium (NADYEX), holmium (NADZAU), lutetium (NADZIC) and ytterbium (YENRAK01) complexes reported by Sun et al. (2004[Sun, H. L., Ye, C. H., Wang, X. Y., Li, J. R., Gao, S. & Yu, K. B. (2004). J. Mol. Struct. 702, 77-83.]). Erbium (YUTNAE; Smith & Lynch, 2015[Smith, G. & Lynch, D. E. (2015). Acta Cryst. E71, 1457-1461.]) and terbium (NADXEW01; Ye et al., 2004[Ye, C. H., Sun, H. L., Wang, X. Y., Li, J. R., Nie, D. B., Fu, W. F. & Gao, S. (2004). J. Solid State Chem. 177, 3735-3742.]) complexes were also found in the literature.

8. Synthesis and crystallization

The infra-red spectrum of 4ABA-Tm in the range 4000 to 250 cm−1 was recorded on an FT–IR Prestige 21 spectrophotometer after preparing the samples with KBr pellets. Thermal analysis was carried out using a NETSCHSTA-409 PC/PG derivatograph, TG, DTG and DTA curves were obtained in a static air atmosphere at a heating rate of 10°C min−1 from 20–800°C using platinum crucibles. Highly sintered Al2O3 was used as a reference. The elemental analysis for C, H, and N was performed using a Costech ECS 4010 CHNSO analyzer.

Preparation of the title complex

The reaction of aqueous solutions of TmCl3 and sodium p-amino­benzoate (1:3) yielded single crystals of tris-(p-amino­benzoato)thulium(III) dihydrate suitable for X-ray diffraction analysis. The mixture was refluxed for 30 minutes and then cooled to room temperature. After filtration, the filtrate was left for several days, covered with aluminum foil, until yellow prismatic crystals appeared. C42H48N6O18Tm2, M: 1262.72 g mol−1. Elemental analysis: calculated %: C:41.11; N: 6.25; Tm: 27.57: found %: C:41.24; N:6.72; Tm: 27.41.

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms of all the water mol­ecules and the amino groups of 4-amino­benzoate ligands were found by the careful inspection of residual electron-density peaks and positional parameters were refined using bond-length restraints (O—H = 0.82 Å, N—H = 0.85 Å) with Uiso(H) = 1.5Ueq(O) or 1.2Ueq(N). All other H atoms were refined at calculated positions using a riding-model approximation [C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C)]. The highest positive and negative features in the final difference map are within 0.83 Å of the Tm atom.

Table 3
Experimental details

Crystal data
Chemical formula C42H48N6O18Tm2
Mr 1262.72
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.9659 (6), 10.9722 (7), 12.8027 (8)
α, β, γ (°) 88.195 (3), 71.599 (3), 74.402 (3)
V3) 1149.10 (13)
Z 1
Radiation type Mo Kα
μ (mm−1) 3.92
Crystal size (mm) 0.32 × 0.18 × 0.16
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.983, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 13239, 4891, 4358
Rint 0.037
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.064, 1.04
No. of reflections 4891
No. of parameters 343
No. of restraints 19
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.80, −1.07
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2020).

Bis(µ2-4-aminobenzoato-κ2O:O')bis[bis(4-aminobenzoato-κ2O,O')diaquathulium(III)] dihydrate top
Crystal data top
C42H48N6O18Tm2Z = 1
Mr = 1262.72F(000) = 624
Triclinic, P1Dx = 1.825 Mg m3
a = 8.9659 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9722 (7) ÅCell parameters from 4358 reflections
c = 12.8027 (8) Åθ = 2.5–27.0°
α = 88.195 (3)°µ = 3.92 mm1
β = 71.599 (3)°T = 296 K
γ = 74.402 (3)°Prism, light yellow
V = 1149.10 (13) Å30.32 × 0.18 × 0.16 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4891 independent reflections
Radiation source: fine-focus sealed tube4358 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 7.828 pixels mm-1θmax = 27.0°, θmin = 2.5°
ω scansh = 119
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1114
Tmin = 0.983, Tmax = 0.986l = 1616
13239 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0257P)2 + 0.6134P]
where P = (Fo2 + 2Fc2)/3
4891 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 1.80 e Å3
19 restraintsΔρmin = 1.07 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tm10.63601 (2)0.01205 (2)0.13511 (2)0.02731 (7)
O10.3377 (4)0.0164 (3)0.2017 (2)0.0380 (7)
O20.4938 (4)0.1008 (3)0.2892 (2)0.0458 (8)
O30.6097 (4)0.1341 (3)0.2770 (2)0.0468 (8)
O40.8365 (3)0.1015 (2)0.1382 (2)0.0351 (6)
O50.5346 (4)0.1682 (3)0.0675 (3)0.0518 (9)
O60.3957 (5)0.1706 (3)0.0479 (3)0.0601 (10)
O70.8305 (4)0.1673 (3)0.1803 (3)0.0469 (8)
H7A0.9297 (15)0.183 (4)0.164 (4)0.056*
H7B0.801 (5)0.221 (3)0.221 (3)0.056*
O80.8252 (4)0.0313 (3)0.0465 (2)0.0372 (7)
H8A0.783 (5)0.034 (4)0.094 (3)0.045*
H8B0.9240 (14)0.053 (4)0.077 (3)0.045*
N10.1604 (7)0.2330 (6)0.5608 (4)0.0795 (16)
H1A0.163 (7)0.258 (6)0.625 (2)0.095*
H1B0.248 (4)0.193 (6)0.549 (5)0.095*
N20.8267 (6)0.6323 (4)0.3384 (3)0.0520 (11)
H2A0.922 (3)0.629 (5)0.340 (4)0.062*
H2B0.753 (4)0.677 (4)0.393 (3)0.062*
N30.1667 (6)0.7572 (3)0.1054 (4)0.0595 (12)
H3A0.184 (7)0.781 (5)0.162 (3)0.071*
H3B0.209 (6)0.792 (5)0.049 (2)0.071*
C10.3548 (6)0.0615 (4)0.2755 (3)0.0342 (9)
C20.2186 (6)0.1081 (4)0.3440 (3)0.0350 (9)
C30.0591 (6)0.0550 (4)0.3473 (3)0.0407 (10)
H30.03640.00970.30130.049*
C40.0683 (6)0.0961 (5)0.4179 (4)0.0502 (12)
H40.17520.05940.41910.060*
C50.0343 (7)0.1938 (5)0.4876 (4)0.0576 (15)
C60.1255 (7)0.2498 (5)0.4815 (4)0.0558 (13)
H60.14970.31720.52480.067*
C70.2475 (6)0.2070 (4)0.4126 (4)0.0474 (11)
H70.35440.24490.41100.057*
C80.7365 (5)0.1669 (4)0.2249 (3)0.0330 (9)
C90.7643 (5)0.2844 (4)0.2605 (3)0.0315 (9)
C100.9155 (5)0.3092 (4)0.2208 (3)0.0349 (9)
H101.00380.24870.17440.042*
C110.9373 (6)0.4220 (4)0.2489 (3)0.0370 (10)
H111.04010.43600.22250.044*
C120.8074 (6)0.5145 (4)0.3160 (3)0.0379 (10)
C130.6544 (6)0.4907 (4)0.3559 (3)0.0421 (11)
H130.56580.55240.40060.051*
C140.6336 (6)0.3768 (4)0.3299 (3)0.0379 (10)
H140.53180.36140.35880.046*
C150.4332 (5)0.2238 (3)0.0213 (4)0.0347 (9)
C160.3553 (5)0.3619 (3)0.0476 (3)0.0260 (8)
C170.3834 (5)0.4241 (4)0.1289 (3)0.0359 (10)
H170.44610.37810.17000.043*
C180.3196 (6)0.5536 (4)0.1497 (4)0.0425 (11)
H180.33770.59380.20560.051*
C190.2295 (5)0.6232 (3)0.0884 (4)0.0377 (10)
C200.1950 (6)0.5613 (4)0.0106 (4)0.0431 (11)
H200.12830.60700.02800.052*
C210.2592 (5)0.4313 (4)0.0104 (3)0.0372 (10)
H210.23700.39080.06420.045*
O90.4466 (6)0.1607 (6)0.5070 (4)0.0969 (15)
H9A0.499 (8)0.146 (6)0.4401 (15)0.116*
H9B0.491 (9)0.094 (4)0.532 (5)0.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tm10.03208 (11)0.02149 (9)0.02871 (10)0.00610 (7)0.01104 (7)0.00037 (6)
O10.0419 (18)0.0381 (15)0.0329 (15)0.0097 (13)0.0122 (13)0.0087 (12)
O20.0425 (19)0.0590 (19)0.0446 (18)0.0195 (16)0.0225 (15)0.0214 (15)
O30.054 (2)0.0528 (18)0.0336 (17)0.0295 (16)0.0005 (15)0.0096 (14)
O40.0367 (17)0.0360 (14)0.0327 (15)0.0106 (13)0.0096 (13)0.0083 (12)
O50.049 (2)0.0259 (14)0.071 (2)0.0004 (14)0.0142 (17)0.0154 (14)
O60.061 (2)0.0425 (18)0.074 (2)0.0184 (17)0.0109 (19)0.0271 (17)
O70.0337 (18)0.0453 (18)0.061 (2)0.0087 (15)0.0182 (17)0.0238 (15)
O80.0377 (17)0.0431 (16)0.0277 (15)0.0052 (14)0.0104 (13)0.0040 (12)
N10.096 (4)0.106 (5)0.052 (3)0.064 (4)0.014 (3)0.014 (3)
N20.077 (3)0.0324 (19)0.047 (2)0.025 (2)0.012 (2)0.0010 (17)
N30.047 (3)0.0211 (17)0.087 (3)0.0036 (17)0.006 (2)0.0008 (19)
C10.045 (3)0.0304 (19)0.028 (2)0.0130 (18)0.0115 (18)0.0008 (16)
C20.041 (3)0.035 (2)0.032 (2)0.0134 (19)0.0137 (18)0.0021 (17)
C30.046 (3)0.050 (3)0.032 (2)0.025 (2)0.011 (2)0.0033 (19)
C40.042 (3)0.073 (3)0.042 (3)0.027 (3)0.012 (2)0.005 (2)
C50.086 (4)0.069 (3)0.033 (3)0.055 (3)0.010 (3)0.001 (2)
C60.071 (4)0.058 (3)0.052 (3)0.032 (3)0.029 (3)0.019 (2)
C70.052 (3)0.047 (3)0.047 (3)0.018 (2)0.018 (2)0.010 (2)
C80.040 (2)0.037 (2)0.025 (2)0.0137 (19)0.0115 (18)0.0023 (16)
C90.041 (2)0.0311 (19)0.026 (2)0.0114 (18)0.0125 (17)0.0005 (15)
C100.041 (3)0.033 (2)0.029 (2)0.0115 (18)0.0075 (18)0.0031 (16)
C110.045 (3)0.040 (2)0.029 (2)0.020 (2)0.0084 (19)0.0022 (17)
C120.064 (3)0.0270 (19)0.027 (2)0.018 (2)0.016 (2)0.0047 (16)
C130.052 (3)0.030 (2)0.036 (2)0.006 (2)0.006 (2)0.0047 (17)
C140.043 (3)0.041 (2)0.028 (2)0.014 (2)0.0059 (18)0.0004 (17)
C150.031 (2)0.0228 (18)0.045 (2)0.0109 (17)0.0009 (18)0.0006 (17)
C160.029 (2)0.0219 (17)0.0278 (19)0.0073 (15)0.0100 (16)0.0011 (14)
C170.041 (3)0.031 (2)0.038 (2)0.0037 (18)0.0210 (19)0.0019 (17)
C180.044 (3)0.036 (2)0.050 (3)0.011 (2)0.017 (2)0.013 (2)
C190.035 (2)0.0201 (17)0.050 (3)0.0087 (17)0.0014 (19)0.0031 (17)
C200.043 (3)0.039 (2)0.043 (3)0.002 (2)0.016 (2)0.0157 (19)
C210.044 (3)0.040 (2)0.030 (2)0.0086 (19)0.0168 (19)0.0002 (17)
O90.067 (3)0.148 (5)0.066 (3)0.019 (3)0.016 (2)0.010 (3)
Geometric parameters (Å, º) top
Tm1—O52.216 (3)C3—C41.388 (6)
Tm1—O6i2.223 (3)C3—H30.9300
Tm1—O72.293 (3)C4—C51.405 (7)
Tm1—O22.329 (3)C4—H40.9300
Tm1—O32.374 (3)C5—C61.376 (6)
Tm1—O82.382 (3)C6—C71.355 (7)
Tm1—O42.457 (3)C6—H60.9300
Tm1—O12.471 (3)C7—H70.9300
Tm1—C12.774 (4)C8—C91.488 (5)
Tm1—C82.781 (4)C9—C101.387 (6)
O1—C11.272 (5)C9—C141.397 (5)
O2—C11.270 (5)C10—C111.379 (5)
O3—C81.262 (5)C10—H100.9300
O4—C81.275 (5)C11—C121.383 (6)
O5—C151.253 (5)C11—H110.9300
O6—C151.251 (5)C12—C131.397 (6)
O6—Tm1i2.223 (3)C13—C141.377 (6)
O7—H7A0.817 (10)C13—H130.9300
O7—H7B0.816 (10)C14—H140.9300
O8—H8A0.820 (10)C15—C161.487 (5)
O8—H8B0.819 (10)C16—C211.375 (5)
N1—C51.381 (7)C16—C171.383 (5)
N1—H1A0.847 (10)C17—C181.381 (5)
N1—H1B0.850 (10)C17—H170.9300
N2—C121.399 (5)C18—C191.372 (6)
N2—H2A0.850 (10)C18—H180.9300
N2—H2B0.850 (10)C19—C201.378 (6)
N3—C191.423 (5)C20—C211.387 (6)
N3—H3A0.851 (10)C20—H200.9300
N3—H3B0.842 (10)C21—H210.9300
C1—C21.467 (6)O9—H9A0.832 (10)
C2—C31.379 (6)O9—H9B0.835 (10)
C2—C71.397 (6)
O5—Tm1—O6i108.53 (13)O1—C1—C2121.6 (4)
O5—Tm1—O7156.90 (13)O2—C1—Tm156.5 (2)
O6i—Tm1—O784.40 (13)O1—C1—Tm162.9 (2)
O5—Tm1—O2125.29 (12)C2—C1—Tm1171.2 (3)
O6i—Tm1—O281.97 (13)C3—C2—C7117.4 (4)
O7—Tm1—O274.42 (11)C3—C2—C1122.8 (4)
O5—Tm1—O380.05 (12)C7—C2—C1119.8 (4)
O6i—Tm1—O3161.28 (12)C2—C3—C4121.4 (4)
O7—Tm1—O393.61 (13)C2—C3—H3119.3
O2—Tm1—O379.58 (11)C4—C3—H3119.3
O5—Tm1—O878.30 (11)C3—C4—C5119.4 (5)
O6i—Tm1—O874.11 (12)C3—C4—H4120.3
O7—Tm1—O887.42 (11)C5—C4—H4120.3
O2—Tm1—O8151.26 (11)C6—C5—N1120.8 (5)
O3—Tm1—O8124.48 (11)C6—C5—C4119.2 (5)
O5—Tm1—O480.34 (11)N1—C5—C4120.0 (6)
O6i—Tm1—O4142.65 (11)C7—C6—C5120.2 (5)
O7—Tm1—O478.06 (11)C7—C6—H6119.9
O2—Tm1—O4123.35 (10)C5—C6—H6119.9
O3—Tm1—O453.82 (10)C6—C7—C2122.3 (5)
O8—Tm1—O472.41 (10)C6—C7—H7118.8
O5—Tm1—O175.80 (11)C2—C7—H7118.8
O6i—Tm1—O176.29 (11)O3—C8—O4119.1 (4)
O7—Tm1—O1126.75 (11)O3—C8—C9120.4 (4)
O2—Tm1—O154.20 (10)O4—C8—C9120.4 (4)
O3—Tm1—O190.29 (10)O3—C8—Tm158.3 (2)
O8—Tm1—O1131.47 (10)O4—C8—Tm162.0 (2)
O4—Tm1—O1139.92 (9)C9—C8—Tm1166.2 (3)
O5—Tm1—C1101.68 (12)C10—C9—C14118.4 (4)
O6i—Tm1—C175.71 (12)C10—C9—C8121.6 (4)
O7—Tm1—C1100.03 (12)C14—C9—C8119.8 (4)
O2—Tm1—C127.06 (11)C11—C10—C9121.1 (4)
O3—Tm1—C186.36 (11)C11—C10—H10119.4
O8—Tm1—C1148.00 (11)C9—C10—H10119.4
O4—Tm1—C1139.52 (10)C10—C11—C12120.6 (4)
O1—Tm1—C127.28 (10)C10—C11—H11119.7
O5—Tm1—C875.79 (12)C12—C11—H11119.7
O6i—Tm1—C8169.50 (13)C11—C12—C13118.7 (4)
O7—Tm1—C888.48 (13)C11—C12—N2120.6 (4)
O2—Tm1—C8103.56 (11)C13—C12—N2120.6 (4)
O3—Tm1—C826.88 (11)C14—C13—C12120.7 (4)
O8—Tm1—C897.92 (11)C14—C13—H13119.7
O4—Tm1—C827.29 (11)C12—C13—H13119.7
O1—Tm1—C8114.19 (11)C13—C14—C9120.5 (4)
C1—Tm1—C8113.24 (12)C13—C14—H14119.8
C1—O1—Tm189.8 (3)C9—C14—H14119.8
C1—O2—Tm196.4 (2)O6—C15—O5123.8 (4)
C8—O3—Tm194.8 (2)O6—C15—C16117.8 (4)
C8—O4—Tm190.7 (2)O5—C15—C16118.4 (4)
C15—O5—Tm1145.2 (3)C21—C16—C17118.6 (3)
C15—O6—Tm1i157.5 (3)C21—C16—C15121.1 (3)
Tm1—O7—H7A134 (3)C17—C16—C15120.3 (3)
Tm1—O7—H7B118 (3)C18—C17—C16120.9 (4)
H7A—O7—H7B108 (4)C18—C17—H17119.6
Tm1—O8—H8A113 (3)C16—C17—H17119.6
Tm1—O8—H8B139 (3)C19—C18—C17120.3 (4)
H8A—O8—H8B106 (3)C19—C18—H18119.8
C5—N1—H1A126 (4)C17—C18—H18119.8
C5—N1—H1B107 (5)C18—C19—C20119.1 (4)
H1A—N1—H1B120 (4)C18—C19—N3121.7 (4)
C12—N2—H2A114 (4)C20—C19—N3119.2 (4)
C12—N2—H2B116 (3)C19—C20—C21120.5 (4)
H2A—N2—H2B111 (4)C19—C20—H20119.8
C19—N3—H3A109 (4)C21—C20—H20119.8
C19—N3—H3B110 (4)C16—C21—C20120.5 (4)
H3A—N3—H3B112 (4)C16—C21—H21119.7
O2—C1—O1119.0 (4)C20—C21—H21119.7
O2—C1—C2119.4 (4)H9A—O9—H9B100 (4)
Tm1—O2—C1—O18.3 (4)C14—C9—C10—C110.1 (6)
Tm1—O2—C1—C2170.8 (3)C8—C9—C10—C11175.8 (4)
Tm1—O1—C1—O27.8 (4)C9—C10—C11—C121.2 (6)
Tm1—O1—C1—C2171.3 (3)C10—C11—C12—C130.9 (6)
O2—C1—C2—C3168.9 (4)C10—C11—C12—N2175.6 (4)
O1—C1—C2—C312.0 (6)C11—C12—C13—C140.6 (6)
O2—C1—C2—C78.5 (6)N2—C12—C13—C14177.1 (4)
O1—C1—C2—C7170.6 (4)C12—C13—C14—C91.8 (6)
C7—C2—C3—C41.5 (6)C10—C9—C14—C131.4 (6)
C1—C2—C3—C4176.0 (4)C8—C9—C14—C13174.4 (4)
C2—C3—C4—C50.1 (7)Tm1i—O6—C15—O523.7 (11)
C3—C4—C5—C62.4 (7)Tm1i—O6—C15—C16157.9 (6)
C3—C4—C5—N1178.0 (5)Tm1—O5—C15—O634.8 (8)
N1—C5—C6—C7177.3 (5)Tm1—O5—C15—C16146.8 (4)
C4—C5—C6—C73.1 (8)O6—C15—C16—C216.8 (6)
C5—C6—C7—C21.5 (8)O5—C15—C16—C21171.7 (4)
C3—C2—C7—C60.8 (7)O6—C15—C16—C17175.6 (4)
C1—C2—C7—C6176.7 (4)O5—C15—C16—C175.9 (6)
Tm1—O3—C8—O412.7 (4)C21—C16—C17—C181.5 (7)
Tm1—O3—C8—C9164.0 (3)C15—C16—C17—C18176.2 (4)
Tm1—O4—C8—O312.2 (4)C16—C17—C18—C191.2 (7)
Tm1—O4—C8—C9164.5 (3)C17—C18—C19—C204.0 (7)
O3—C8—C9—C10166.1 (4)C17—C18—C19—N3177.9 (4)
O4—C8—C9—C1017.3 (6)C18—C19—C20—C214.1 (7)
Tm1—C8—C9—C10113.5 (12)N3—C19—C20—C21177.8 (4)
O3—C8—C9—C1418.2 (6)C17—C16—C21—C201.4 (6)
O4—C8—C9—C14158.4 (4)C15—C16—C21—C20176.2 (4)
Tm1—C8—C9—C1462.2 (13)C19—C20—C21—C161.4 (7)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C16–C21 ring.
D—H···AD—HH···AD···AD—H···A
O7—H7A···N3ii0.82 (1)1.95 (2)2.753 (6)169 (5)
O7—H7B···N2iii0.82 (1)2.18 (2)2.940 (5)154 (5)
O8—H8A···O1i0.82 (1)1.98 (1)2.791 (4)172 (4)
O8—H8B···O4iv0.82 (1)1.96 (1)2.780 (4)174 (4)
N1—H1B···O9v0.85 (1)2.06 (3)2.870 (8)158 (7)
N2—H2B···O9vi0.85 (1)2.24 (2)3.051 (7)161 (5)
N3—H3B···O5vii0.84 (1)2.46 (3)3.173 (6)144 (5)
N3—H3B···O8vii0.84 (1)2.56 (5)3.092 (5)122 (4)
O9—H9A···O30.83 (1)2.00 (1)2.828 (6)172 (7)
O9—H9B···O2viii0.84 (1)2.34 (6)2.849 (6)119 (5)
C11—H11···Cg3ix0.932.683.538 (5)155
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z; (iii) x, y1, z; (iv) x+2, y, z; (v) x, y, z+1; (vi) x+1, y+1, z+1; (vii) x+1, y+1, z; (viii) x+1, y, z+1; (ix) x+1, y, z.
 

Acknowledgements

The authors acknowledge support from the Department of Physics, University of Sargodha.

Funding information

Funding for this research was provided by: University of Sargodha.

References

First citationAli, N., Tahir, M. N., Ali, S., Iqbal, M., Munawar, K. S. & Perveen, S. (2014). J. Coord. Chem. 67, 1290–1308.  Web of Science CSD CrossRef CAS Google Scholar
First citationAmirasłanov, I. R., Musaev, F. N. & Mamedov, Kh. S. (1982a). Zh. Strukt. Khim. 23, 114.  Google Scholar
First citationAmirasłanov, I. R., Musaev, F. N. & Mamedov, Kh. S. (1982b). Zh. Strukt. Khim. 23, 118.  Google Scholar
First citationAshfaq, M., Munawar, K. S., Bogdanov, G., Ali, A., Tahir, M. N., Ahmed, G., Ramalingam, A., Alam, M. M., Imran, M., Sambandam, S. & Munir, B. (2021a). J. Iran. Chem. Soc. pp. 1–9.  Google Scholar
First citationAshfaq, M., Tahir, M. N., Kuznetsov, A., Mirza, S. H., Khalid, M. & Ali, A. (2020). J. Mol. Struct. 1199, 127041.  Web of Science CSD CrossRef Google Scholar
First citationAshfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021b). ACS Omega, 6, 31211–31225.  CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKargar, H., Fallah-Mehrjardi, M., Behjatmanesh-Ardakani, R., Munawar, K. S., Ashfaq, M. & Tahir, M. N. (2022). J. Mol. Struct. 1250, 131691.  Web of Science CSD CrossRef Google Scholar
First citationKhiyalov, M. S., Amiraslanov, I. R., Mamedov, K. S. & Movsumov, É. M. (1981). J. Struct. Chem. 22, 400–405.  CrossRef Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMamedov, K. S., Movsumov, E. M., Amirasłanov, I. R. & Shkurpieło, A. I. (1982). Inst. Prikł. Fiziki, Kishiniev, p. 111.  Google Scholar
First citationMao, L. H. & Lianq, F. K. (2016). Chem. Res. Aplic. 18, 245–249.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Lynch, D. E. (2015). Acta Cryst. E71, 1457–1461.  CSD CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, H. L., Ye, C. H., Wang, X. Y., Li, J. R., Gao, S. & Yu, K. B. (2004). J. Mol. Struct. 702, 77–83.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813.  Web of Science CrossRef CAS Google Scholar
First citationYe, C. H., Sun, H. L., Wang, X. Y., Li, J. R., Nie, D. B., Fu, W. F. & Gao, S. (2004). J. Solid State Chem. 177, 3735–3742.  Web of Science CSD CrossRef CAS Google Scholar
First citationYou, F., Zhai, J., So, Y. M. & Shi, X. (2021). Inorg. Chem. 60, 1797–1805.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds