research communications
Synthesis, μ2-4-aminobenzoato-κ2O:O′)bis[bis(4-aminobenzoato-κ2O,O′)diaquathulium(III)] dihydrate
Hirshfeld surface and void analysis of bis(aAzerbaijan State Aqrarian University, Ganja City, Azerbaijan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, cDepartment of Physics, University of Minawali, Miamwali, Pakistan, dDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and eDepartment of Chemistry, University of Minawali, Miamwali, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com
The 2(C7H6NO2)6(H2O)4]·2H2O, contains three 4-aminobenzoate (4ABA) ligands, two coordinated water molecules, a thulium metal ion, and a water molecule of crystallization. The overall structure of the complex (4ABA-Tm) is in the form of a dimer. In the dinuclear thulium complex, symmetry-relevant TmO8 coordination polyhedra are formed by the O atoms of two chelating 4-aminobenzoate ligands, the O atoms of two non-chelating 4-aminobenzoate ligands, and two water molecules. The Tm—O bond lengths range from 2.216 (3) to 2.471 (3) Å with the Tm⋯Tm separation in the dinuclear complex being 4.7863 (5) Å. The features O—H⋯N, N—H⋯O, and O—H⋯O hydrogen-bonding interactions. Further stabilization of the crystal packing is due to C—H⋯π and off-set π–π stacking interactions. Hirshfeld surface analysis indicates that H⋯H contacts are the most significant contributors to the crystal packing (45.9%). In addition, a void analysis was performed to check the strength of the crystal packing.
of the title compound, [TmKeywords: p-aminobenzoic acid; dinuclear thulium complex; single crystal; Hirshfeld analysis; crystal structure.
CCDC reference: 2118339
1. Chemical context
The coordination chemistry of rare-earth metals has been widely studied, and the structures of a significant variety of complexes with diverse kinds of ligands have been reported (You et al., 2021). In particular, the lanthanide contraction along the series is of interest, and in a detailed analysis of this phenomenon using elements from the lanthanide series, p-aminobenzoic acid (HL) was found to be a very useful and biologically important ligand (Smith & Lynch, 2015). The carboxylate group of HL can be coordinated with the metals simultaneously in three different modes, namely chelating, bridging, and chelating-bridging (Ali et al., 2014). In the complexes of HL with alkali metals such as Na+ or K+, the ligand is not directly coordinated to the metal ion, but rather it is surrounded by coordinated water molecules (You et al., 2021). Both the carboxylic and amino groups of the ligand are coordinated to the metal in complexes with Ba2+, Ag+, Zn2+, Cd2+, and Ni2+ (Mamedov et al., 1982; Amirasłanov et al., 1982a), while only the oxygen atoms of the carboxylic groups are coordinated to the metal ion in complexes of Sr2+, Mg2+, and Co2+ with this ligand (Amirasłanov et al., 1982b; Sun et al., 2004). In comparison to the above coordination diversity, in the complexes of HL with rare-earth elements like Nd+3 and Sm+3 (Khiyalov et al., 1981; Mao & Lianq, 2016), only the nitrogen atom of the amino group is coordinated by the central metal atom, while in complexes of Lu+3 and Ho+3 with HL (Sun et al., 2004), the nitrogen atom of the amino group is not coordinated while the ligands are attached to the metal atom by the oxygen atoms of the carboxylate moiety. In this context, we report the synthesis, Hirshfeld surface, void, thermogravimetric and FT–IR analysis of the title compound, [Tm2(C7H6NO2)6(H2O)4]·2H2O, which is closely related to its Lu+3 and Ho+3 analogues (Sun et al., 2004).
2. Structural commentary
The 4ABA-Tm (Fig. 1) contains a centrosymmetric thulium dinuclear complex and one water molecule of crystallization. Each TmIII atom is octacoordinated by two chelating 4-aminobenzoate ligands, two bridging 4-aminobenzoate ligands and two coordinated water molecules. In the coordination sphere, bond lengths range from 2.216 (3) to 2.471 (3) Å, while bond angles range from 53.82 (10) to 161.28 (12)° (Table 1). The Tm⋯Tmi separation in the 4ABA-Tm complex is 4.7863 (5) Å (Table 1). The oxygen atoms O2 of the first 4-aminobenzoate chelate (ligand A, C1–C7/N1/O1/O2), O4 of the second 4-aminobenzoate chelate (ligand B, C8–C14/N2/O3/O4) and O5 of the 4-aminobenzoate non-chelate (ligand C, C15–C21/N3/O5/O6) show maximum deviations from their respective planes with values of 0.1748 (3) Å for O2, 0.3087 (3) Å for O4, and 0.1351 (3) Å for O5. Ligand B is twisted at a dihedral angle of 70.83 (7)° with respect to ligand A. The non-chelating ligand C is twisted at dihedral angles of 79.7 (9) and 72.7 (9)°, respectively, to the planes of ligands A and B. Intramolecular O—H⋯O hydrogen bonding (Table 2) involving OH from the non-coordinating water and the O atom (hydrogen-bond acceptor) of the chelating 4-aminobenzoate ligand stabilizes the molecular configuration.
of the title compound
|
3. Supramolecular features
The centrosymmetric dinuclear thulium complexes are linked through O—H⋯O, O—H⋯N and N—H⋯O hydrogen-bonding interactions. A C11 chain running along the b-axis direction is formed through O7—H7A⋯N3 H bonds while a loop is formed through the O7—H7A⋯N3 interactions. The water molecule of crystallization plays an important role in the stabilization of the crystal packing, acting as a hydrogen-bond donor and as well as a hydrogen-bond acceptor, connecting the centrosymmetric dinuclear thulium complex with each other. The hydrogen bonds lead to the formation of layers parallel to the bc plane (Fig. 2, Table 2). These layers are linked through C—H⋯π (Fig. 3), with H⋯π distance of 2.68 Å and off-set π–π stacking interactions (Fig. 4) with inter-centroid distances ranging from 3.661 (3) to 3.709 (3) Å, forming a three-dimensional network.
4. Hirshfeld surface analysis
A Hirshfeld surface (HS) analysis was carried out using Crystal Explorer 21.5 (Spackman et al., 2021) in order to explore the non-covalent interactions in terms of the Hirshfeld surface and two-dimensional fingerprint plots. The HS of a molecule is the region in the crystal where the electron density relevant to the promolecule is greater than the electron density relevant to the procrystal (Spackman et al., 2009; Ashfaq et al., 2020). The Hirshfeld surface is constructed by employing colour coding to show the interatomic contacts that are shorter (red areas), equal to (white areas), or longer than (blue areas) the sum of the van der Waals radii (Ashfaq et al., 2021a,b). The red spots on the surface mapped over dnorm (Fig. 5a) indicate the involvement of atoms in hydrogen-bonding interactions. The HS mapped over shape-index (Fig. 5b) is used to check for the presence of interactions such as C—H⋯π and π–π stacking (Ashfaq et al., 2021a,b). The existence of adjacent red and blue triangular regions around the aromatic rings conforms to the presence of π–π stacking interactions in the title compound.
Two-dimensional fingerprint plots provide unique information about the non-covalent interactions and the crystal packing in terms of the percentage contribution of the interatomic contacts (Spackman et al., 2002; Ashfaq et al., 2021a,b). Fig. 6a shows the two-dimensional fingerprint plot for the overall interactions in 4ABA-Tm where di and de are the distances from the Hirshfeld surface to the nearest atom inside the Hirshfeld surface and outside it, respectively. The most important interatomic contact is H⋯H (Fig. 6b) as it makes the highest contribution to the crystal packing (45.9%). Other major contributors are C⋯H (26.1%, Fig. 6c) and O⋯H (15.5%, Fig. 6d) interactions. The interatomic contacts that make comparatively smaller contributions in the crystal packing are shown in Fig. 6e–l.
The response to applied stress or force mainly depends on the strength of the crystal packing in single crystals, which have a high mechanical strength as the molecules are strongly packed into them. To check whether the title compound is mechanically stable or not, a void analysis was performed. In order to calculate voids in the crystal packing, the electron densities of all of the atoms in the molecules present in the et al., 2011; Kargar et al., 2022). The volume of the void in the crystal packing of the title compound is 120.81 Å3 (Fig. 7), which infers that voids occupy 10.51% of the space and, hence, the molecules are strongly packed in the title compound.
are added up, the atoms being assumed to be spherically symmetric (Turner5. Infra-red spectroscopy
The structure of the newly synthesized complex was also investigated by FT–IR spectroscopy. It was found that the absorption bands of the –NH2 group appeared in the region of 3200 cm−1 while the absorption bands due to Tm—OH2 are visible in the region of 325 cm−1. The aromatic carbons show their absorption band at 1225 cm−1, while the Tm—O band is visible in the region of 650 cm−1. The absorption bands observed in the FT–IR spectrum of the free ligand in the regions of 1715 and 1435 cm−1 are caused by symmetric (νs) and asymmetric (νas) stretching of the carboxyl group, which are shifted to 1635 and 1436 cm−1, respectively, upon coordination with the TmIII metal ion. The difference between νs and νas is 199 cm−1, indicating that the carboxyl groups are coordinated to the central metal ion by chelate and bidentate-bridging coordination modes.
6. Thermogravimetric analysis
The title complex was further characterized by thermogravimetry. Thermolysis occurs in three stages. In the first stage, at a temperature of 20–200°C, intermolecular and coordinated water molecules are released, with a weight loss of 4.69%. The complex remains stable over the temperature 200–400°C. In the second stage, at a temperature of 400–600°C, the hydrocarbon residues are decomposed and simultaneously burned out. Thulium carbonate is formed in the last stage at a temperature between 600 and 800°C. The final product of decomposition above 800°C is metal oxide.
It is known that lanthanide carboxylates have good spectroscopic characteristics; they have enhanced thermal stability and are also resistant to moisture and oxygen in the air, which is of great importance in the production and operation of photoluminescent and electroluminescent devices based on them.
7. Database survey
A search of the Cambridge Structural Database (CSD, version 5.40; update February 2021; Groom et al., 2016) gave 206 hits, some of whose crystal structures are closely related to 4ABA-Tm. These include the yttrium (NADYEX), holmium (NADZAU), lutetium (NADZIC) and ytterbium (YENRAK01) complexes reported by Sun et al. (2004). Erbium (YUTNAE; Smith & Lynch, 2015) and terbium (NADXEW01; Ye et al., 2004) complexes were also found in the literature.
8. Synthesis and crystallization
The infra-red spectrum of 4ABA-Tm in the range 4000 to 250 cm−1 was recorded on an FT–IR Prestige 21 spectrophotometer after preparing the samples with KBr pellets. was carried out using a NETSCHSTA-409 PC/PG derivatograph, TG, DTG and DTA curves were obtained in a static air atmosphere at a heating rate of 10°C min−1 from 20–800°C using platinum crucibles. Highly sintered Al2O3 was used as a reference. The elemental analysis for C, H, and N was performed using a Costech ECS 4010 CHNSO analyzer.
Preparation of the title complex
The reaction of aqueous solutions of TmCl3 and sodium p-aminobenzoate (1:3) yielded single crystals of tris-(p-aminobenzoato)thulium(III) dihydrate suitable for X-ray The mixture was refluxed for 30 minutes and then cooled to room temperature. After filtration, the filtrate was left for several days, covered with aluminum foil, until yellow prismatic crystals appeared. C42H48N6O18Tm2, M: 1262.72 g mol−1. Elemental analysis: calculated %: C:41.11; N: 6.25; Tm: 27.57: found %: C:41.24; N:6.72; Tm: 27.41.
9. Refinement
Crystal data, data collection and structure . H atoms of all the water molecules and the amino groups of 4-aminobenzoate ligands were found by the careful inspection of residual electron-density peaks and positional parameters were refined using bond-length restraints (O—H = 0.82 Å, N—H = 0.85 Å) with Uiso(H) = 1.5Ueq(O) or 1.2Ueq(N). All other H atoms were refined at calculated positions using a riding-model approximation [C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C)]. The highest positive and negative features in the final difference map are within 0.83 Å of the Tm atom.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2118339
https://doi.org/10.1107/S2056989022001116/zn2014sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022001116/zn2014Isup3.hkl
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2020).C42H48N6O18Tm2 | Z = 1 |
Mr = 1262.72 | F(000) = 624 |
Triclinic, P1 | Dx = 1.825 Mg m−3 |
a = 8.9659 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.9722 (7) Å | Cell parameters from 4358 reflections |
c = 12.8027 (8) Å | θ = 2.5–27.0° |
α = 88.195 (3)° | µ = 3.92 mm−1 |
β = 71.599 (3)° | T = 296 K |
γ = 74.402 (3)° | Prism, light yellow |
V = 1149.10 (13) Å3 | 0.32 × 0.18 × 0.16 mm |
Bruker Kappa APEXII CCD diffractometer | 4891 independent reflections |
Radiation source: fine-focus sealed tube | 4358 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 7.828 pixels mm-1 | θmax = 27.0°, θmin = 2.5° |
ω scans | h = −11→9 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −11→14 |
Tmin = 0.983, Tmax = 0.986 | l = −16→16 |
13239 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.064 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0257P)2 + 0.6134P] where P = (Fo2 + 2Fc2)/3 |
4891 reflections | (Δ/σ)max = 0.001 |
343 parameters | Δρmax = 1.80 e Å−3 |
19 restraints | Δρmin = −1.07 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Tm1 | 0.63601 (2) | −0.01205 (2) | 0.13511 (2) | 0.02731 (7) | |
O1 | 0.3377 (4) | 0.0164 (3) | 0.2017 (2) | 0.0380 (7) | |
O2 | 0.4938 (4) | −0.1008 (3) | 0.2892 (2) | 0.0458 (8) | |
O3 | 0.6097 (4) | 0.1341 (3) | 0.2770 (2) | 0.0468 (8) | |
O4 | 0.8365 (3) | 0.1015 (2) | 0.1382 (2) | 0.0351 (6) | |
O5 | 0.5346 (4) | 0.1682 (3) | 0.0675 (3) | 0.0518 (9) | |
O6 | 0.3957 (5) | 0.1706 (3) | −0.0479 (3) | 0.0601 (10) | |
O7 | 0.8305 (4) | −0.1673 (3) | 0.1803 (3) | 0.0469 (8) | |
H7A | 0.9297 (15) | −0.183 (4) | 0.164 (4) | 0.056* | |
H7B | 0.801 (5) | −0.221 (3) | 0.221 (3) | 0.056* | |
O8 | 0.8252 (4) | −0.0313 (3) | −0.0465 (2) | 0.0372 (7) | |
H8A | 0.783 (5) | −0.034 (4) | −0.094 (3) | 0.045* | |
H8B | 0.9240 (14) | −0.053 (4) | −0.077 (3) | 0.045* | |
N1 | −0.1604 (7) | −0.2330 (6) | 0.5608 (4) | 0.0795 (16) | |
H1A | −0.163 (7) | −0.258 (6) | 0.625 (2) | 0.095* | |
H1B | −0.248 (4) | −0.193 (6) | 0.549 (5) | 0.095* | |
N2 | 0.8267 (6) | 0.6323 (4) | 0.3384 (3) | 0.0520 (11) | |
H2A | 0.922 (3) | 0.629 (5) | 0.340 (4) | 0.062* | |
H2B | 0.753 (4) | 0.677 (4) | 0.393 (3) | 0.062* | |
N3 | 0.1667 (6) | 0.7572 (3) | 0.1054 (4) | 0.0595 (12) | |
H3A | 0.184 (7) | 0.781 (5) | 0.162 (3) | 0.071* | |
H3B | 0.209 (6) | 0.792 (5) | 0.049 (2) | 0.071* | |
C1 | 0.3548 (6) | −0.0615 (4) | 0.2755 (3) | 0.0342 (9) | |
C2 | 0.2186 (6) | −0.1081 (4) | 0.3440 (3) | 0.0350 (9) | |
C3 | 0.0591 (6) | −0.0550 (4) | 0.3473 (3) | 0.0407 (10) | |
H3 | 0.0364 | 0.0097 | 0.3013 | 0.049* | |
C4 | −0.0683 (6) | −0.0961 (5) | 0.4179 (4) | 0.0502 (12) | |
H4 | −0.1752 | −0.0594 | 0.4191 | 0.060* | |
C5 | −0.0343 (7) | −0.1938 (5) | 0.4876 (4) | 0.0576 (15) | |
C6 | 0.1255 (7) | −0.2498 (5) | 0.4815 (4) | 0.0558 (13) | |
H6 | 0.1497 | −0.3172 | 0.5248 | 0.067* | |
C7 | 0.2475 (6) | −0.2070 (4) | 0.4126 (4) | 0.0474 (11) | |
H7 | 0.3544 | −0.2449 | 0.4110 | 0.057* | |
C8 | 0.7365 (5) | 0.1669 (4) | 0.2249 (3) | 0.0330 (9) | |
C9 | 0.7643 (5) | 0.2844 (4) | 0.2605 (3) | 0.0315 (9) | |
C10 | 0.9155 (5) | 0.3092 (4) | 0.2208 (3) | 0.0349 (9) | |
H10 | 1.0038 | 0.2487 | 0.1744 | 0.042* | |
C11 | 0.9373 (6) | 0.4220 (4) | 0.2489 (3) | 0.0370 (10) | |
H11 | 1.0401 | 0.4360 | 0.2225 | 0.044* | |
C12 | 0.8074 (6) | 0.5145 (4) | 0.3160 (3) | 0.0379 (10) | |
C13 | 0.6544 (6) | 0.4907 (4) | 0.3559 (3) | 0.0421 (11) | |
H13 | 0.5658 | 0.5524 | 0.4006 | 0.051* | |
C14 | 0.6336 (6) | 0.3768 (4) | 0.3299 (3) | 0.0379 (10) | |
H14 | 0.5318 | 0.3614 | 0.3588 | 0.046* | |
C15 | 0.4332 (5) | 0.2238 (3) | 0.0213 (4) | 0.0347 (9) | |
C16 | 0.3553 (5) | 0.3619 (3) | 0.0476 (3) | 0.0260 (8) | |
C17 | 0.3834 (5) | 0.4241 (4) | 0.1289 (3) | 0.0359 (10) | |
H17 | 0.4461 | 0.3781 | 0.1700 | 0.043* | |
C18 | 0.3196 (6) | 0.5536 (4) | 0.1497 (4) | 0.0425 (11) | |
H18 | 0.3377 | 0.5938 | 0.2056 | 0.051* | |
C19 | 0.2295 (5) | 0.6232 (3) | 0.0884 (4) | 0.0377 (10) | |
C20 | 0.1950 (6) | 0.5613 (4) | 0.0106 (4) | 0.0431 (11) | |
H20 | 0.1283 | 0.6070 | −0.0280 | 0.052* | |
C21 | 0.2592 (5) | 0.4313 (4) | −0.0104 (3) | 0.0372 (10) | |
H21 | 0.2370 | 0.3908 | −0.0642 | 0.045* | |
O9 | 0.4466 (6) | 0.1607 (6) | 0.5070 (4) | 0.0969 (15) | |
H9A | 0.499 (8) | 0.146 (6) | 0.4401 (15) | 0.116* | |
H9B | 0.491 (9) | 0.094 (4) | 0.532 (5) | 0.116* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tm1 | 0.03208 (11) | 0.02149 (9) | 0.02871 (10) | −0.00610 (7) | −0.01104 (7) | −0.00037 (6) |
O1 | 0.0419 (18) | 0.0381 (15) | 0.0329 (15) | −0.0097 (13) | −0.0122 (13) | 0.0087 (12) |
O2 | 0.0425 (19) | 0.0590 (19) | 0.0446 (18) | −0.0195 (16) | −0.0225 (15) | 0.0214 (15) |
O3 | 0.054 (2) | 0.0528 (18) | 0.0336 (17) | −0.0295 (16) | −0.0005 (15) | −0.0096 (14) |
O4 | 0.0367 (17) | 0.0360 (14) | 0.0327 (15) | −0.0106 (13) | −0.0096 (13) | −0.0083 (12) |
O5 | 0.049 (2) | 0.0259 (14) | 0.071 (2) | −0.0004 (14) | −0.0142 (17) | 0.0154 (14) |
O6 | 0.061 (2) | 0.0425 (18) | 0.074 (2) | −0.0184 (17) | −0.0109 (19) | −0.0271 (17) |
O7 | 0.0337 (18) | 0.0453 (18) | 0.061 (2) | −0.0087 (15) | −0.0182 (17) | 0.0238 (15) |
O8 | 0.0377 (17) | 0.0431 (16) | 0.0277 (15) | −0.0052 (14) | −0.0104 (13) | −0.0040 (12) |
N1 | 0.096 (4) | 0.106 (5) | 0.052 (3) | −0.064 (4) | −0.014 (3) | 0.014 (3) |
N2 | 0.077 (3) | 0.0324 (19) | 0.047 (2) | −0.025 (2) | −0.012 (2) | −0.0010 (17) |
N3 | 0.047 (3) | 0.0211 (17) | 0.087 (3) | −0.0036 (17) | 0.006 (2) | −0.0008 (19) |
C1 | 0.045 (3) | 0.0304 (19) | 0.028 (2) | −0.0130 (18) | −0.0115 (18) | 0.0008 (16) |
C2 | 0.041 (3) | 0.035 (2) | 0.032 (2) | −0.0134 (19) | −0.0137 (18) | 0.0021 (17) |
C3 | 0.046 (3) | 0.050 (3) | 0.032 (2) | −0.025 (2) | −0.011 (2) | 0.0033 (19) |
C4 | 0.042 (3) | 0.073 (3) | 0.042 (3) | −0.027 (3) | −0.012 (2) | −0.005 (2) |
C5 | 0.086 (4) | 0.069 (3) | 0.033 (3) | −0.055 (3) | −0.010 (3) | −0.001 (2) |
C6 | 0.071 (4) | 0.058 (3) | 0.052 (3) | −0.032 (3) | −0.029 (3) | 0.019 (2) |
C7 | 0.052 (3) | 0.047 (3) | 0.047 (3) | −0.018 (2) | −0.018 (2) | 0.010 (2) |
C8 | 0.040 (2) | 0.037 (2) | 0.025 (2) | −0.0137 (19) | −0.0115 (18) | 0.0023 (16) |
C9 | 0.041 (2) | 0.0311 (19) | 0.026 (2) | −0.0114 (18) | −0.0125 (17) | −0.0005 (15) |
C10 | 0.041 (3) | 0.033 (2) | 0.029 (2) | −0.0115 (18) | −0.0075 (18) | −0.0031 (16) |
C11 | 0.045 (3) | 0.040 (2) | 0.029 (2) | −0.020 (2) | −0.0084 (19) | 0.0022 (17) |
C12 | 0.064 (3) | 0.0270 (19) | 0.027 (2) | −0.018 (2) | −0.016 (2) | 0.0047 (16) |
C13 | 0.052 (3) | 0.030 (2) | 0.036 (2) | −0.006 (2) | −0.006 (2) | −0.0047 (17) |
C14 | 0.043 (3) | 0.041 (2) | 0.028 (2) | −0.014 (2) | −0.0059 (18) | −0.0004 (17) |
C15 | 0.031 (2) | 0.0228 (18) | 0.045 (2) | −0.0109 (17) | −0.0009 (18) | −0.0006 (17) |
C16 | 0.029 (2) | 0.0219 (17) | 0.0278 (19) | −0.0073 (15) | −0.0100 (16) | −0.0011 (14) |
C17 | 0.041 (3) | 0.031 (2) | 0.038 (2) | −0.0037 (18) | −0.0210 (19) | 0.0019 (17) |
C18 | 0.044 (3) | 0.036 (2) | 0.050 (3) | −0.011 (2) | −0.017 (2) | −0.013 (2) |
C19 | 0.035 (2) | 0.0201 (17) | 0.050 (3) | −0.0087 (17) | −0.0014 (19) | 0.0031 (17) |
C20 | 0.043 (3) | 0.039 (2) | 0.043 (3) | −0.002 (2) | −0.016 (2) | 0.0157 (19) |
C21 | 0.044 (3) | 0.040 (2) | 0.030 (2) | −0.0086 (19) | −0.0168 (19) | 0.0002 (17) |
O9 | 0.067 (3) | 0.148 (5) | 0.066 (3) | −0.019 (3) | −0.016 (2) | 0.010 (3) |
Tm1—O5 | 2.216 (3) | C3—C4 | 1.388 (6) |
Tm1—O6i | 2.223 (3) | C3—H3 | 0.9300 |
Tm1—O7 | 2.293 (3) | C4—C5 | 1.405 (7) |
Tm1—O2 | 2.329 (3) | C4—H4 | 0.9300 |
Tm1—O3 | 2.374 (3) | C5—C6 | 1.376 (6) |
Tm1—O8 | 2.382 (3) | C6—C7 | 1.355 (7) |
Tm1—O4 | 2.457 (3) | C6—H6 | 0.9300 |
Tm1—O1 | 2.471 (3) | C7—H7 | 0.9300 |
Tm1—C1 | 2.774 (4) | C8—C9 | 1.488 (5) |
Tm1—C8 | 2.781 (4) | C9—C10 | 1.387 (6) |
O1—C1 | 1.272 (5) | C9—C14 | 1.397 (5) |
O2—C1 | 1.270 (5) | C10—C11 | 1.379 (5) |
O3—C8 | 1.262 (5) | C10—H10 | 0.9300 |
O4—C8 | 1.275 (5) | C11—C12 | 1.383 (6) |
O5—C15 | 1.253 (5) | C11—H11 | 0.9300 |
O6—C15 | 1.251 (5) | C12—C13 | 1.397 (6) |
O6—Tm1i | 2.223 (3) | C13—C14 | 1.377 (6) |
O7—H7A | 0.817 (10) | C13—H13 | 0.9300 |
O7—H7B | 0.816 (10) | C14—H14 | 0.9300 |
O8—H8A | 0.820 (10) | C15—C16 | 1.487 (5) |
O8—H8B | 0.819 (10) | C16—C21 | 1.375 (5) |
N1—C5 | 1.381 (7) | C16—C17 | 1.383 (5) |
N1—H1A | 0.847 (10) | C17—C18 | 1.381 (5) |
N1—H1B | 0.850 (10) | C17—H17 | 0.9300 |
N2—C12 | 1.399 (5) | C18—C19 | 1.372 (6) |
N2—H2A | 0.850 (10) | C18—H18 | 0.9300 |
N2—H2B | 0.850 (10) | C19—C20 | 1.378 (6) |
N3—C19 | 1.423 (5) | C20—C21 | 1.387 (6) |
N3—H3A | 0.851 (10) | C20—H20 | 0.9300 |
N3—H3B | 0.842 (10) | C21—H21 | 0.9300 |
C1—C2 | 1.467 (6) | O9—H9A | 0.832 (10) |
C2—C3 | 1.379 (6) | O9—H9B | 0.835 (10) |
C2—C7 | 1.397 (6) | ||
O5—Tm1—O6i | 108.53 (13) | O1—C1—C2 | 121.6 (4) |
O5—Tm1—O7 | 156.90 (13) | O2—C1—Tm1 | 56.5 (2) |
O6i—Tm1—O7 | 84.40 (13) | O1—C1—Tm1 | 62.9 (2) |
O5—Tm1—O2 | 125.29 (12) | C2—C1—Tm1 | 171.2 (3) |
O6i—Tm1—O2 | 81.97 (13) | C3—C2—C7 | 117.4 (4) |
O7—Tm1—O2 | 74.42 (11) | C3—C2—C1 | 122.8 (4) |
O5—Tm1—O3 | 80.05 (12) | C7—C2—C1 | 119.8 (4) |
O6i—Tm1—O3 | 161.28 (12) | C2—C3—C4 | 121.4 (4) |
O7—Tm1—O3 | 93.61 (13) | C2—C3—H3 | 119.3 |
O2—Tm1—O3 | 79.58 (11) | C4—C3—H3 | 119.3 |
O5—Tm1—O8 | 78.30 (11) | C3—C4—C5 | 119.4 (5) |
O6i—Tm1—O8 | 74.11 (12) | C3—C4—H4 | 120.3 |
O7—Tm1—O8 | 87.42 (11) | C5—C4—H4 | 120.3 |
O2—Tm1—O8 | 151.26 (11) | C6—C5—N1 | 120.8 (5) |
O3—Tm1—O8 | 124.48 (11) | C6—C5—C4 | 119.2 (5) |
O5—Tm1—O4 | 80.34 (11) | N1—C5—C4 | 120.0 (6) |
O6i—Tm1—O4 | 142.65 (11) | C7—C6—C5 | 120.2 (5) |
O7—Tm1—O4 | 78.06 (11) | C7—C6—H6 | 119.9 |
O2—Tm1—O4 | 123.35 (10) | C5—C6—H6 | 119.9 |
O3—Tm1—O4 | 53.82 (10) | C6—C7—C2 | 122.3 (5) |
O8—Tm1—O4 | 72.41 (10) | C6—C7—H7 | 118.8 |
O5—Tm1—O1 | 75.80 (11) | C2—C7—H7 | 118.8 |
O6i—Tm1—O1 | 76.29 (11) | O3—C8—O4 | 119.1 (4) |
O7—Tm1—O1 | 126.75 (11) | O3—C8—C9 | 120.4 (4) |
O2—Tm1—O1 | 54.20 (10) | O4—C8—C9 | 120.4 (4) |
O3—Tm1—O1 | 90.29 (10) | O3—C8—Tm1 | 58.3 (2) |
O8—Tm1—O1 | 131.47 (10) | O4—C8—Tm1 | 62.0 (2) |
O4—Tm1—O1 | 139.92 (9) | C9—C8—Tm1 | 166.2 (3) |
O5—Tm1—C1 | 101.68 (12) | C10—C9—C14 | 118.4 (4) |
O6i—Tm1—C1 | 75.71 (12) | C10—C9—C8 | 121.6 (4) |
O7—Tm1—C1 | 100.03 (12) | C14—C9—C8 | 119.8 (4) |
O2—Tm1—C1 | 27.06 (11) | C11—C10—C9 | 121.1 (4) |
O3—Tm1—C1 | 86.36 (11) | C11—C10—H10 | 119.4 |
O8—Tm1—C1 | 148.00 (11) | C9—C10—H10 | 119.4 |
O4—Tm1—C1 | 139.52 (10) | C10—C11—C12 | 120.6 (4) |
O1—Tm1—C1 | 27.28 (10) | C10—C11—H11 | 119.7 |
O5—Tm1—C8 | 75.79 (12) | C12—C11—H11 | 119.7 |
O6i—Tm1—C8 | 169.50 (13) | C11—C12—C13 | 118.7 (4) |
O7—Tm1—C8 | 88.48 (13) | C11—C12—N2 | 120.6 (4) |
O2—Tm1—C8 | 103.56 (11) | C13—C12—N2 | 120.6 (4) |
O3—Tm1—C8 | 26.88 (11) | C14—C13—C12 | 120.7 (4) |
O8—Tm1—C8 | 97.92 (11) | C14—C13—H13 | 119.7 |
O4—Tm1—C8 | 27.29 (11) | C12—C13—H13 | 119.7 |
O1—Tm1—C8 | 114.19 (11) | C13—C14—C9 | 120.5 (4) |
C1—Tm1—C8 | 113.24 (12) | C13—C14—H14 | 119.8 |
C1—O1—Tm1 | 89.8 (3) | C9—C14—H14 | 119.8 |
C1—O2—Tm1 | 96.4 (2) | O6—C15—O5 | 123.8 (4) |
C8—O3—Tm1 | 94.8 (2) | O6—C15—C16 | 117.8 (4) |
C8—O4—Tm1 | 90.7 (2) | O5—C15—C16 | 118.4 (4) |
C15—O5—Tm1 | 145.2 (3) | C21—C16—C17 | 118.6 (3) |
C15—O6—Tm1i | 157.5 (3) | C21—C16—C15 | 121.1 (3) |
Tm1—O7—H7A | 134 (3) | C17—C16—C15 | 120.3 (3) |
Tm1—O7—H7B | 118 (3) | C18—C17—C16 | 120.9 (4) |
H7A—O7—H7B | 108 (4) | C18—C17—H17 | 119.6 |
Tm1—O8—H8A | 113 (3) | C16—C17—H17 | 119.6 |
Tm1—O8—H8B | 139 (3) | C19—C18—C17 | 120.3 (4) |
H8A—O8—H8B | 106 (3) | C19—C18—H18 | 119.8 |
C5—N1—H1A | 126 (4) | C17—C18—H18 | 119.8 |
C5—N1—H1B | 107 (5) | C18—C19—C20 | 119.1 (4) |
H1A—N1—H1B | 120 (4) | C18—C19—N3 | 121.7 (4) |
C12—N2—H2A | 114 (4) | C20—C19—N3 | 119.2 (4) |
C12—N2—H2B | 116 (3) | C19—C20—C21 | 120.5 (4) |
H2A—N2—H2B | 111 (4) | C19—C20—H20 | 119.8 |
C19—N3—H3A | 109 (4) | C21—C20—H20 | 119.8 |
C19—N3—H3B | 110 (4) | C16—C21—C20 | 120.5 (4) |
H3A—N3—H3B | 112 (4) | C16—C21—H21 | 119.7 |
O2—C1—O1 | 119.0 (4) | C20—C21—H21 | 119.7 |
O2—C1—C2 | 119.4 (4) | H9A—O9—H9B | 100 (4) |
Tm1—O2—C1—O1 | −8.3 (4) | C14—C9—C10—C11 | 0.1 (6) |
Tm1—O2—C1—C2 | 170.8 (3) | C8—C9—C10—C11 | 175.8 (4) |
Tm1—O1—C1—O2 | 7.8 (4) | C9—C10—C11—C12 | −1.2 (6) |
Tm1—O1—C1—C2 | −171.3 (3) | C10—C11—C12—C13 | 0.9 (6) |
O2—C1—C2—C3 | 168.9 (4) | C10—C11—C12—N2 | −175.6 (4) |
O1—C1—C2—C3 | −12.0 (6) | C11—C12—C13—C14 | 0.6 (6) |
O2—C1—C2—C7 | −8.5 (6) | N2—C12—C13—C14 | 177.1 (4) |
O1—C1—C2—C7 | 170.6 (4) | C12—C13—C14—C9 | −1.8 (6) |
C7—C2—C3—C4 | 1.5 (6) | C10—C9—C14—C13 | 1.4 (6) |
C1—C2—C3—C4 | −176.0 (4) | C8—C9—C14—C13 | −174.4 (4) |
C2—C3—C4—C5 | 0.1 (7) | Tm1i—O6—C15—O5 | 23.7 (11) |
C3—C4—C5—C6 | −2.4 (7) | Tm1i—O6—C15—C16 | −157.9 (6) |
C3—C4—C5—N1 | 178.0 (5) | Tm1—O5—C15—O6 | −34.8 (8) |
N1—C5—C6—C7 | −177.3 (5) | Tm1—O5—C15—C16 | 146.8 (4) |
C4—C5—C6—C7 | 3.1 (8) | O6—C15—C16—C21 | −6.8 (6) |
C5—C6—C7—C2 | −1.5 (8) | O5—C15—C16—C21 | 171.7 (4) |
C3—C2—C7—C6 | −0.8 (7) | O6—C15—C16—C17 | 175.6 (4) |
C1—C2—C7—C6 | 176.7 (4) | O5—C15—C16—C17 | −5.9 (6) |
Tm1—O3—C8—O4 | −12.7 (4) | C21—C16—C17—C18 | −1.5 (7) |
Tm1—O3—C8—C9 | 164.0 (3) | C15—C16—C17—C18 | 176.2 (4) |
Tm1—O4—C8—O3 | 12.2 (4) | C16—C17—C18—C19 | −1.2 (7) |
Tm1—O4—C8—C9 | −164.5 (3) | C17—C18—C19—C20 | 4.0 (7) |
O3—C8—C9—C10 | 166.1 (4) | C17—C18—C19—N3 | −177.9 (4) |
O4—C8—C9—C10 | −17.3 (6) | C18—C19—C20—C21 | −4.1 (7) |
Tm1—C8—C9—C10 | −113.5 (12) | N3—C19—C20—C21 | 177.8 (4) |
O3—C8—C9—C14 | −18.2 (6) | C17—C16—C21—C20 | 1.4 (6) |
O4—C8—C9—C14 | 158.4 (4) | C15—C16—C21—C20 | −176.2 (4) |
Tm1—C8—C9—C14 | 62.2 (13) | C19—C20—C21—C16 | 1.4 (7) |
Symmetry code: (i) −x+1, −y, −z. |
Cg3 is the centroid of the C16–C21 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7A···N3ii | 0.82 (1) | 1.95 (2) | 2.753 (6) | 169 (5) |
O7—H7B···N2iii | 0.82 (1) | 2.18 (2) | 2.940 (5) | 154 (5) |
O8—H8A···O1i | 0.82 (1) | 1.98 (1) | 2.791 (4) | 172 (4) |
O8—H8B···O4iv | 0.82 (1) | 1.96 (1) | 2.780 (4) | 174 (4) |
N1—H1B···O9v | 0.85 (1) | 2.06 (3) | 2.870 (8) | 158 (7) |
N2—H2B···O9vi | 0.85 (1) | 2.24 (2) | 3.051 (7) | 161 (5) |
N3—H3B···O5vii | 0.84 (1) | 2.46 (3) | 3.173 (6) | 144 (5) |
N3—H3B···O8vii | 0.84 (1) | 2.56 (5) | 3.092 (5) | 122 (4) |
O9—H9A···O3 | 0.83 (1) | 2.00 (1) | 2.828 (6) | 172 (7) |
O9—H9B···O2viii | 0.84 (1) | 2.34 (6) | 2.849 (6) | 119 (5) |
C11—H11···Cg3ix | 0.93 | 2.68 | 3.538 (5) | 155 |
Symmetry codes: (i) −x+1, −y, −z; (ii) x+1, y−1, z; (iii) x, y−1, z; (iv) −x+2, −y, −z; (v) −x, −y, −z+1; (vi) −x+1, −y+1, −z+1; (vii) −x+1, −y+1, −z; (viii) −x+1, −y, −z+1; (ix) x+1, y, z. |
Acknowledgements
The authors acknowledge support from the Department of Physics, University of Sargodha.
Funding information
Funding for this research was provided by: University of Sargodha.
References
Ali, N., Tahir, M. N., Ali, S., Iqbal, M., Munawar, K. S. & Perveen, S. (2014). J. Coord. Chem. 67, 1290–1308. Web of Science CSD CrossRef CAS Google Scholar
Amirasłanov, I. R., Musaev, F. N. & Mamedov, Kh. S. (1982a). Zh. Strukt. Khim. 23, 114. Google Scholar
Amirasłanov, I. R., Musaev, F. N. & Mamedov, Kh. S. (1982b). Zh. Strukt. Khim. 23, 118. Google Scholar
Ashfaq, M., Munawar, K. S., Bogdanov, G., Ali, A., Tahir, M. N., Ahmed, G., Ramalingam, A., Alam, M. M., Imran, M., Sambandam, S. & Munir, B. (2021a). J. Iran. Chem. Soc. pp. 1–9. Google Scholar
Ashfaq, M., Tahir, M. N., Kuznetsov, A., Mirza, S. H., Khalid, M. & Ali, A. (2020). J. Mol. Struct. 1199, 127041. Web of Science CSD CrossRef Google Scholar
Ashfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021b). ACS Omega, 6, 31211–31225. CSD CrossRef CAS PubMed Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kargar, H., Fallah-Mehrjardi, M., Behjatmanesh-Ardakani, R., Munawar, K. S., Ashfaq, M. & Tahir, M. N. (2022). J. Mol. Struct. 1250, 131691. Web of Science CSD CrossRef Google Scholar
Khiyalov, M. S., Amiraslanov, I. R., Mamedov, K. S. & Movsumov, É. M. (1981). J. Struct. Chem. 22, 400–405. CrossRef Web of Science Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mamedov, K. S., Movsumov, E. M., Amirasłanov, I. R. & Shkurpieło, A. I. (1982). Inst. Prikł. Fiziki, Kishiniev, p. 111. Google Scholar
Mao, L. H. & Lianq, F. K. (2016). Chem. Res. Aplic. 18, 245–249. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, G. & Lynch, D. E. (2015). Acta Cryst. E71, 1457–1461. CSD CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Sun, H. L., Ye, C. H., Wang, X. Y., Li, J. R., Gao, S. & Yu, K. B. (2004). J. Mol. Struct. 702, 77–83. Web of Science CSD CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813. Web of Science CrossRef CAS Google Scholar
Ye, C. H., Sun, H. L., Wang, X. Y., Li, J. R., Nie, D. B., Fu, W. F. & Gao, S. (2004). J. Solid State Chem. 177, 3735–3742. Web of Science CSD CrossRef CAS Google Scholar
You, F., Zhai, J., So, Y. M. & Shi, X. (2021). Inorg. Chem. 60, 1797–1805. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.