research communications
μ-4-benzyl-4H-1,2,4-triazole-κ2N1:N2)tetrafluoridodi-μ2-oxido-dioxidodisilver(I)divanadium(V)
of tetrakis(aInorganic Chemistry Department, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, Kyiv 01033, Ukraine, and bInstitute of Organic Chemistry, Murmanska Street, 5, Kyiv, 02660, Ukraine
*Correspondence e-mail: senchyk.ganna@gmail.com
The 2(VO2F2)2(C9H9N3)4], is presented. The molecular complex is based on the heterobimetallic AgI—VV fragment {AgI2(VVO2F2)2(tr)4} supported by four 1,2,4-triazole ligands [4-benzyl-(4H-1,2,4-triazol-4-yl)]. The triazole demonstrates homo- and heterometallic connectivity (Ag—Ag and Ag—V) of the metal centers through the [–NN–] double and single bridges, respectively. The vanadium atom possesses a distorted trigonal–bipyramidal coordination environment [VO2F2N] with the Reedijk structural parameter τ = 0.59. In the crystal, C—H⋯O and C—H⋯F hydrogen bonds as well as C—H⋯π contacts are observed involving the organic ligands and the vanadium oxofluoride anions. A Hirshfeld surface analysis of the hydrogen-bonding interactions is also described.
of the title compound, [AgKeywords: silver(I); vanadium(V) oxofluoride; 1,2,4-triazole; Hirshfeld surface analysis; crystal structure.
CCDC reference: 2151864
1. Chemical context
There is considerable interest in the chemistry of organic–inorganic hybrids, including the vanadium oxide–fluoride (VOF) matrix, which is motivated by the numerous potential applications in catalysis, magnetism, optics, etc. (Dolbecq et al., 2010; Monakhov et al., 2015). Incorporation of silver(I) in VOF solid can afford materials such as Ag4V2O6F2 (Sorensen et al., 2005; Albrecht et al., 2009) and Ag3VO2F4 (Chamberlain et al., 2010), which are attractive candidates for solid-state battery technologies. The formation of AgI–VOF heterobimetallic secondary building units (SBUs) in coordination compounds remains a non-trivial challenge. The 1,2,4-triazole heterocycle, as a demonstrates a favorable coordination affinity towards AgI cations, connecting them into polynuclear units (Aromí et al., 2011). At the same time, it possesses a hidden capability to bind two different metal ions through a short –NN– bridge, usually CuII–tr–MoVI (Tian et al., 2011; Lysenko et al., 2016; Senchyk et al., 2017; Zhu et al., 2012) but there are some other rare examples including CuI–tr–VIV (Sharga et al., 2010) and AgI–tr–MoVI (Tian et al., 2017). This may be realized in the case of constructing SBUs with a terminal N1-triazole function that has an open site accessible to coordination. We demonstrated this principle in the self-association of AgI–VOF heterobimetallic coordination compounds based on {AgI2(VVO2F2)2(tr)4} SBUs with bi-1,2,4-triazole ligands with different geometries (Senchyk et al., 2012). Such units seem to be very favorable and stable, and form even in the presence of a heterobifunctional 1,2,4-triazole-carboxylate ligand (Senchyk et al., 2019). In the present contribution we extend the library of AgI–VOF compounds, adding the title complex [Ag2(VO2F2)2(tr-CH2Ph)4] (I), which has the ligand 4-benzyl-(4H-1,2,4-triazol-4-yl) (tr-CH2Ph).
2. Structural commentary
Compound I crystallizes in the monoclinic P21/c. Its contains one AgI cation, one [VVO2F2]− anion and two organic ligands (tr-CH2Ph), which, after inversion across a center of symmetry, form the molecular tetranuclear cluster {AgI2(VVO2F2)2(tr-CH2Ph)4} (Fig. 1). Two 1,2,4-triazole ligands bridge two adjacent silver atoms [the Ag⋯Agi distance is 4.2497 (5) Å; symmetry code (i) −x, −y + 1, −z], while the other two link Ag and V centers [the Ag⋯V distance is 3.8044 (6) Å]. Thus, the coordination environment of the AgI cation can be described as [AgN3O] with typical Ag—N(triazole) bond lengths [in the range of 2.197 (2) – 2.390 (3) Å] and a slightly elongated Ag—O bond [2.562 (2) Å] (Table 1). The VV atom possesses a distorted trigonal–bipyramidal coordination environment [VO2F2N] with V—F [1.828 (2) and 1.8330 (18) Å], two short V—O [1.632 (2) and 1.660 (2) Å] and elongated V—N [2.203 (2) Å] bonds (Table 1). The geometry of the vanadium oxofluoride polyhedra is characterized by the Reedijk structural parameter τ (Addison et al., 1984) of 0.59 (for a square-pyramidal geometry, τ = 0 and for trigonal–bipyramidal, τ = 1). A bond-valence-sum calculation for the {VO2F2N} polyhedra confirms the +5 for the vanadium atom.
3. Supramolecular features
Since the organic ligand contains a hydrophobic benzyl tail, the I involves no solvate water molecules. Thus, the only hydrogen bonds observed are of the type C—H⋯O, C—H⋯F and C—H⋯π contacts (Figs. 2 and 3, Table 2). The central 1,2,4-triazole unit, which bridges two Ag ions, displays intramolecular C10—H10⋯O2 [3.082 (4) Å] and intermolecular C11—H11⋯F1v [2.935 (4) Å, symmetry code (v) −x + 1, −y + 1, −z] hydrogen-bond contacts. The other triazole group, which provides the heterometallic Ag–V linkage, forms bifurcated C—H⋯O and C—H⋯F contacts with vanadium oxofluoride anions of neighboring molecular complexes. Additionally, methylene –CH2– fragments show directed C—H⋯O and C—H⋯F contacts to the VOF fragments. The phenyl rings are here oriented towards each other in an edge-to-face C—H⋯π interaction mode.
of
|
Supramolecular interactions in the title structure were studied through Hirshfeld surface analysis (Spackman & Byrom, 1997; McKinnon et al., 2004; Hirshfeld, 1977; Spackman & McKinnon, 2002), performed with CrystalExplorer17 (Turner et al., 2017), taking into account only the major contribution of the disordered group. The Hirshfeld surface, mapped over dnorm using a fixed color scale of −0.488 (red) to 1.385 (blue) a.u. visualizes the set of shortest intermolecular contacts (Fig. 4). All of them correspond to the hydrogen-bond interactions, which fall into three categories. The strongest hydrogen bonds to F-atom acceptors are reflected by the most prominent red spots (−0.469 to −0.488 a.u.), whereas a group of medium intensity spots (−0.182 to −0.261 a.u.) identify weaker C—H⋯O bonds with the terminal oxide O2. However, even more distal interactions with the bridging oxide O1 are still distinguishable on the surface, in the form of very diffuse, less intense spots (−0.066 to −0.142 a.u.).
The contribution of different kinds of interatomic contacts to the Hirshfeld surface is shown in the fingerprint plots in Fig. 5. A significant fraction of the E⋯H/H⋯E (E = C, N, O, F) contacts (in total 60.1%) suggests the dominant role of the hydrogen-bond interactions. The strongest ones (E = O, F) have a similar nature and they are reflected by pairs of spikes pointing to the lower left of the plot. However, the contribution from the contacts with F-atom acceptors is higher (15.6% for F⋯H/H⋯F and 11.6% for O⋯H/H⋯O) and they are also essentially shorter, as indicated by different lengths of the spikes (the shortest contacts are F⋯H = 2.0 and O⋯H = 2.2 Å). One may suppose that the preferable sites for hydrogen bonding of the vanadium oxofluoride groups are the F atoms. This is consistent with the results of Hirshfeld analysis for the [VOF5]2− anion 4,4′-(propane-1,3-diyl)bis(4H-1,2,4-triazol-1-ium) salt (Senchyk et al., 2020).
The plots indicate close resemblance of the N⋯H/H⋯N (10.7%) and C⋯H/H⋯C (22.2%) contacts, which appear as pairs of nearly identical, very diffuse and short features (N⋯H = 2.9 and C⋯H = 2.9 Å). Both of them correspond to edge-to-face stacking or C—H⋯π interactions involving either the phenyl or triazole rings. The contribution from mutual π–π interactions of the latter delivers minor fractions of the C⋯C, N⋯N and C⋯N/N⋯C contacts, which account in total for only 2.6%. The shortest contact of this series [C⋯N = 3.5 Å] exceeds the sum of the van der Waals radii [3.25 Å] and π–π interactions are not associated with red spots of the dnorm surface. A comparable contribution is due to the distal anagostic contacts Ag⋯H/H⋯Ag (2.9%) with the polarized methylene H atoms. There are no mutual π–π interactions involving phenyl rings, which are responsible for larger fractions of the C⋯C contacts in the case of polycyclic species (Spackman & McKinnon, 2002).
4. Database survey
A structure survey was carried out in the Cambridge Structural Database (CSD version 5.43, update of November 2021; Groom et al., 2016) for 4-benzyl-(4H-1,2,4-triazol-4-yl) and it revealed five hits for coordination compounds based on this ligand. There are no examples of AgI compounds, only two FeII complexes [FAYQAA (Pittala et al., 2017a) and XASVEV (Pittala et al., 2017b)] and three CuII–POM complexes [YUGLIX and YUGLOD (Tian et al., 2015) and ZUXLAI (Zhang et al., 2020)]. Moreover, there are no examples of heterometallic connection through an –NN– triazole bridge for the 4-benzyl-(4H-1,2,4-triazol-4-yl) ligand.
5. Synthesis and crystallization
4-Benzyl-(4H-1,2,4-triazol-4-yl) (tr-CH2Ph) was synthesized by refluxing benzylamine (5.35 g, 50.0 mmol) and dimethylformamide azine (17.75 g, 125.0 mmol) in the presence of toluenesulfonic acid monohydrate (0.86 g, 5.0 mmol) as a catalyst in DMF (30.0 ml).
Compound I was prepared under hydrothermal conditions. A mixture of AgOAc (16.7 mg, 0.100 mmol), tr-CH2Ph (20.7 mg, 0.130 mmol), V2O5 (9.1 mg, 0.050 mmol) and 5 mL of water with aqueous HF (50%, 150 µL, 4.33 mmol) was added into a Teflon vessel. Then the components were heated at 423 K for 24 h and slowly cooled to room temperature over 50 h, yielding light-yellow prisms of I (yield 33.4 mg, 61%).
6. Refinement
Crystal data, data collection and structure . For one of the organic ligands, the benzyl linkage (C12–C18) is unequally disordered over two overlapping positions with refined partial contribution factors of 0.68 (3) and 0.32 (3). The major part of the disorder was freely refined anisotropically, while atoms of the minor contributor were refined anisotropically with a restrained geometry for the phenyl ring, rigid-bond restraints applied to the –CH2C6H5 linkage and similarity restraints applied to the closely separated contributions of C12 and C12A, C13 and C13A. H atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å (CH) and 0.97 Å (CH2) and with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2151864
https://doi.org/10.1107/S2056989022001712/dj2039sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022001712/dj2039Isup2.hkl
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).[Ag2V2F4O4(C9H9N3)4] | F(000) = 1088 |
Mr = 1094.39 | Dx = 1.800 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5484 (2) Å | Cell parameters from 4931 reflections |
b = 21.2439 (6) Å | θ = 2.5–23.8° |
c = 12.5910 (4) Å | µ = 1.48 mm−1 |
β = 90.910 (2)° | T = 296 K |
V = 2018.81 (10) Å3 | Block, colorless |
Z = 2 | 0.27 × 0.14 × 0.12 mm |
Bruker APEXII area-detector diffractometer | 3468 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.044 |
ω scans | θmax = 28.7°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −10→10 |
Tmin = 0.657, Tmax = 0.856 | k = −26→28 |
22923 measured reflections | l = −16→14 |
5125 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0194P)2 + 2.1764P] where P = (Fo2 + 2Fc2)/3 |
5125 reflections | (Δ/σ)max = 0.001 |
323 parameters | Δρmax = 0.58 e Å−3 |
65 restraints | Δρmin = −0.42 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ag1 | 0.00892 (3) | 0.49751 (2) | 0.16871 (2) | 0.04174 (9) | |
V1 | 0.43103 (7) | 0.48341 (2) | 0.33615 (4) | 0.03165 (13) | |
F1 | 0.6173 (3) | 0.42871 (13) | 0.32820 (16) | 0.0802 (8) | |
F2 | 0.3957 (2) | 0.45217 (9) | 0.46985 (15) | 0.0471 (5) | |
O1 | 0.3065 (3) | 0.45593 (10) | 0.23966 (17) | 0.0407 (5) | |
O2 | 0.5296 (3) | 0.54823 (11) | 0.29314 (16) | 0.0424 (6) | |
N1 | 0.0417 (3) | 0.54163 (12) | 0.32878 (19) | 0.0315 (6) | |
N2 | 0.2025 (3) | 0.54132 (11) | 0.38181 (19) | 0.0301 (6) | |
N3 | 0.0147 (3) | 0.59315 (11) | 0.47783 (18) | 0.0292 (6) | |
N4 | 0.2055 (4) | 0.54025 (13) | 0.0405 (2) | 0.0386 (6) | |
N5 | 0.1929 (3) | 0.54905 (12) | −0.06853 (19) | 0.0345 (6) | |
N6 | 0.4464 (3) | 0.58619 (12) | −0.0125 (2) | 0.0342 (6) | |
C1 | −0.0684 (4) | 0.57241 (14) | 0.3893 (2) | 0.0337 (7) | |
H1 | −0.1876 | 0.5790 | 0.3732 | 0.040* | |
C2 | 0.1821 (4) | 0.57219 (14) | 0.4702 (2) | 0.0328 (7) | |
H2 | 0.2710 | 0.5788 | 0.5209 | 0.039* | |
C3 | −0.0650 (4) | 0.62351 (15) | 0.5708 (2) | 0.0400 (8) | |
H3A | −0.0579 | 0.5945 | 0.6301 | 0.048* | |
H3B | −0.1896 | 0.6308 | 0.5552 | 0.048* | |
C4 | 0.0174 (4) | 0.68457 (14) | 0.6044 (2) | 0.0308 (7) | |
C5 | 0.0024 (5) | 0.73774 (17) | 0.5430 (3) | 0.0490 (9) | |
H5 | −0.0493 | 0.7354 | 0.4756 | 0.059* | |
C6 | 0.0646 (6) | 0.79525 (19) | 0.5816 (4) | 0.0696 (13) | |
H6 | 0.0537 | 0.8314 | 0.5403 | 0.084* | |
C7 | 0.1417 (6) | 0.7982 (2) | 0.6806 (5) | 0.0775 (15) | |
H7 | 0.1817 | 0.8367 | 0.7068 | 0.093* | |
C8 | 0.1607 (6) | 0.7456 (3) | 0.7410 (4) | 0.0752 (14) | |
H8 | 0.2152 | 0.7479 | 0.8076 | 0.090* | |
C9 | 0.0986 (5) | 0.68877 (19) | 0.7030 (3) | 0.0517 (10) | |
H9 | 0.1118 | 0.6528 | 0.7444 | 0.062* | |
C10 | 0.3594 (4) | 0.56283 (15) | 0.0704 (2) | 0.0385 (8) | |
H10 | 0.4025 | 0.5627 | 0.1400 | 0.046* | |
C11 | 0.3391 (4) | 0.57667 (15) | −0.0972 (2) | 0.0369 (7) | |
H11 | 0.3652 | 0.5881 | −0.1665 | 0.044* | |
C12 | 0.6224 (7) | 0.6171 (4) | −0.0050 (16) | 0.040 (3) | 0.68 (3) |
H12A | 0.7076 | 0.5936 | −0.0462 | 0.048* | 0.68 (3) |
H12B | 0.6633 | 0.6178 | 0.0684 | 0.048* | 0.68 (3) |
C13 | 0.608 (2) | 0.6830 (4) | −0.0465 (10) | 0.0356 (18) | 0.68 (3) |
C14 | 0.5342 (18) | 0.7259 (6) | 0.0216 (12) | 0.049 (2) | 0.68 (3) |
H14 | 0.4990 | 0.7131 | 0.0887 | 0.058* | 0.68 (3) |
C15 | 0.5119 (14) | 0.7881 (5) | −0.009 (2) | 0.068 (4) | 0.68 (3) |
H15 | 0.4623 | 0.8171 | 0.0370 | 0.081* | 0.68 (3) |
C16 | 0.5640 (18) | 0.8063 (5) | −0.1083 (18) | 0.065 (5) | 0.68 (3) |
H16 | 0.5470 | 0.8478 | −0.1295 | 0.078* | 0.68 (3) |
C17 | 0.639 (2) | 0.7654 (8) | −0.1755 (12) | 0.072 (4) | 0.68 (3) |
H17 | 0.6767 | 0.7787 | −0.2417 | 0.086* | 0.68 (3) |
C18 | 0.660 (2) | 0.7029 (7) | −0.1450 (11) | 0.057 (3) | 0.68 (3) |
H18 | 0.7102 | 0.6743 | −0.1917 | 0.069* | 0.68 (3) |
C12A | 0.6197 (12) | 0.6178 (8) | −0.026 (3) | 0.034 (4) | 0.32 (3) |
H12C | 0.6862 | 0.5951 | −0.0794 | 0.041* | 0.32 (3) |
H12D | 0.6862 | 0.6157 | 0.0400 | 0.041* | 0.32 (3) |
C13A | 0.605 (4) | 0.6853 (8) | −0.060 (2) | 0.035 (4) | 0.32 (3) |
C14A | 0.530 (3) | 0.7370 (10) | −0.0096 (18) | 0.038 (4) | 0.32 (3) |
H14A | 0.4803 | 0.7324 | 0.0570 | 0.046* | 0.32 (3) |
C15A | 0.530 (2) | 0.7955 (8) | −0.059 (2) | 0.048 (5) | 0.32 (3) |
H15A | 0.4797 | 0.8300 | −0.0254 | 0.057* | 0.32 (3) |
C16A | 0.604 (2) | 0.8023 (6) | −0.1587 (19) | 0.047 (4) | 0.32 (3) |
H16A | 0.6038 | 0.8415 | −0.1917 | 0.056* | 0.32 (3) |
C17A | 0.679 (3) | 0.7507 (8) | −0.2089 (17) | 0.044 (4) | 0.32 (3) |
H17A | 0.7284 | 0.7553 | −0.2755 | 0.053* | 0.32 (3) |
C18A | 0.679 (4) | 0.6922 (7) | −0.159 (2) | 0.039 (5) | 0.32 (3) |
H18A | 0.7289 | 0.6576 | −0.1931 | 0.046* | 0.32 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.04650 (15) | 0.04865 (17) | 0.02972 (13) | −0.00637 (12) | −0.01010 (10) | −0.00375 (12) |
V1 | 0.0375 (3) | 0.0324 (3) | 0.0249 (3) | 0.0025 (2) | −0.0031 (2) | 0.0009 (2) |
F1 | 0.0848 (17) | 0.121 (2) | 0.0337 (12) | 0.0688 (16) | −0.0171 (12) | −0.0150 (13) |
F2 | 0.0453 (11) | 0.0559 (13) | 0.0398 (11) | −0.0063 (9) | −0.0038 (9) | 0.0181 (9) |
O1 | 0.0490 (14) | 0.0397 (13) | 0.0330 (12) | 0.0045 (10) | −0.0085 (11) | −0.0072 (10) |
O2 | 0.0326 (12) | 0.0692 (16) | 0.0253 (11) | −0.0118 (11) | −0.0045 (10) | 0.0048 (11) |
N1 | 0.0264 (13) | 0.0414 (16) | 0.0264 (13) | −0.0014 (11) | −0.0060 (11) | −0.0052 (11) |
N2 | 0.0282 (13) | 0.0329 (14) | 0.0290 (14) | 0.0001 (11) | −0.0083 (11) | −0.0044 (11) |
N3 | 0.0341 (14) | 0.0300 (14) | 0.0235 (14) | −0.0013 (11) | −0.0001 (11) | −0.0039 (10) |
N4 | 0.0502 (17) | 0.0411 (16) | 0.0242 (14) | −0.0115 (13) | −0.0049 (12) | 0.0053 (12) |
N5 | 0.0402 (15) | 0.0408 (16) | 0.0223 (13) | −0.0068 (12) | −0.0028 (12) | −0.0022 (11) |
N6 | 0.0363 (14) | 0.0373 (15) | 0.0287 (14) | −0.0043 (11) | −0.0056 (12) | 0.0021 (11) |
C1 | 0.0256 (16) | 0.0412 (19) | 0.0341 (17) | 0.0004 (13) | −0.0084 (14) | −0.0044 (14) |
C2 | 0.0309 (16) | 0.0373 (18) | 0.0300 (17) | 0.0005 (13) | −0.0085 (14) | −0.0051 (14) |
C3 | 0.047 (2) | 0.0395 (19) | 0.0337 (18) | −0.0056 (15) | 0.0107 (16) | −0.0084 (15) |
C4 | 0.0270 (16) | 0.0316 (17) | 0.0339 (17) | 0.0017 (13) | 0.0031 (13) | −0.0065 (13) |
C5 | 0.046 (2) | 0.046 (2) | 0.055 (2) | −0.0040 (17) | −0.0043 (18) | 0.0073 (18) |
C6 | 0.062 (3) | 0.037 (2) | 0.110 (4) | −0.004 (2) | 0.013 (3) | 0.009 (2) |
C7 | 0.070 (3) | 0.062 (3) | 0.101 (4) | −0.024 (2) | 0.023 (3) | −0.043 (3) |
C8 | 0.067 (3) | 0.105 (4) | 0.053 (3) | −0.028 (3) | 0.001 (2) | −0.034 (3) |
C9 | 0.054 (2) | 0.062 (3) | 0.039 (2) | −0.0041 (19) | −0.0045 (18) | −0.0032 (18) |
C10 | 0.052 (2) | 0.0395 (19) | 0.0239 (16) | −0.0072 (16) | −0.0098 (15) | 0.0055 (14) |
C11 | 0.0428 (19) | 0.046 (2) | 0.0220 (16) | −0.0028 (16) | −0.0040 (14) | 0.0020 (14) |
C12 | 0.036 (3) | 0.049 (3) | 0.036 (8) | −0.008 (3) | −0.010 (3) | 0.006 (3) |
C13 | 0.031 (3) | 0.036 (3) | 0.040 (4) | −0.008 (3) | −0.008 (3) | −0.004 (3) |
C14 | 0.046 (4) | 0.049 (5) | 0.052 (5) | 0.001 (4) | −0.003 (4) | −0.003 (4) |
C15 | 0.046 (4) | 0.042 (5) | 0.115 (12) | 0.002 (3) | −0.008 (6) | −0.012 (6) |
C16 | 0.052 (6) | 0.050 (5) | 0.093 (13) | −0.016 (4) | −0.022 (7) | 0.033 (6) |
C17 | 0.080 (9) | 0.081 (9) | 0.053 (7) | −0.027 (7) | −0.009 (5) | 0.019 (6) |
C18 | 0.066 (8) | 0.054 (5) | 0.052 (6) | −0.017 (5) | −0.005 (5) | −0.008 (5) |
C12A | 0.037 (6) | 0.046 (5) | 0.020 (9) | 0.001 (5) | −0.009 (4) | 0.003 (4) |
C13A | 0.035 (6) | 0.032 (5) | 0.037 (7) | −0.004 (5) | −0.005 (6) | −0.001 (5) |
C14A | 0.034 (7) | 0.044 (8) | 0.036 (9) | −0.004 (5) | 0.001 (7) | 0.004 (6) |
C15A | 0.061 (11) | 0.035 (8) | 0.048 (11) | 0.005 (7) | 0.004 (9) | −0.001 (7) |
C16A | 0.045 (9) | 0.040 (7) | 0.055 (10) | −0.010 (6) | 0.002 (7) | 0.005 (7) |
C17A | 0.047 (9) | 0.036 (7) | 0.050 (9) | −0.006 (5) | 0.005 (6) | 0.000 (6) |
C18A | 0.048 (10) | 0.036 (7) | 0.032 (8) | −0.010 (6) | 0.004 (6) | 0.002 (5) |
Ag1—N5i | 2.197 (2) | C7—H7 | 0.9300 |
Ag1—N1 | 2.233 (2) | C8—C9 | 1.378 (6) |
Ag1—N4 | 2.390 (3) | C8—H8 | 0.9300 |
Ag1—O1 | 2.562 (2) | C9—H9 | 0.9300 |
V1—O1 | 1.632 (2) | C10—H10 | 0.9300 |
V1—O2 | 1.660 (2) | C11—H11 | 0.9300 |
V1—F1 | 1.828 (2) | C12—C13 | 1.497 (5) |
V1—F2 | 1.8330 (18) | C12—H12A | 0.9700 |
V1—N2 | 2.203 (2) | C12—H12B | 0.9700 |
N1—C1 | 1.311 (4) | C13—C18 | 1.374 (9) |
N1—N2 | 1.376 (3) | C13—C14 | 1.375 (8) |
N2—C2 | 1.303 (4) | C14—C15 | 1.386 (11) |
N3—C1 | 1.345 (4) | C14—H14 | 0.9300 |
N3—C2 | 1.345 (4) | C15—C16 | 1.371 (12) |
N3—C3 | 1.473 (4) | C15—H15 | 0.9300 |
N4—C10 | 1.306 (4) | C16—C17 | 1.344 (13) |
N4—N5 | 1.387 (3) | C16—H16 | 0.9300 |
N5—C11 | 1.306 (4) | C17—C18 | 1.390 (11) |
N5—Ag1i | 2.197 (2) | C17—H17 | 0.9300 |
N6—C10 | 1.339 (4) | C18—H18 | 0.9300 |
N6—C11 | 1.344 (4) | C12A—C13A | 1.497 (6) |
N6—C12A | 1.484 (5) | C12A—H12C | 0.9700 |
N6—C12 | 1.484 (5) | C12A—H12D | 0.9700 |
C1—H1 | 0.9300 | C13A—C14A | 1.3900 |
C2—H2 | 0.9300 | C13A—C18A | 1.3900 |
C3—C4 | 1.497 (4) | C14A—C15A | 1.3900 |
C3—H3A | 0.9700 | C14A—H14A | 0.9300 |
C3—H3B | 0.9700 | C15A—C16A | 1.3900 |
C4—C5 | 1.372 (5) | C15A—H15A | 0.9300 |
C4—C9 | 1.378 (4) | C16A—C17A | 1.3900 |
C5—C6 | 1.393 (5) | C16A—H16A | 0.9300 |
C5—H5 | 0.9300 | C17A—C18A | 1.3900 |
C6—C7 | 1.369 (6) | C17A—H17A | 0.9300 |
C6—H6 | 0.9300 | C18A—H18A | 0.9300 |
C7—C8 | 1.358 (7) | ||
N5i—Ag1—N1 | 140.62 (9) | C7—C8—C9 | 119.6 (4) |
N5i—Ag1—N4 | 102.45 (9) | C7—C8—H8 | 120.2 |
N1—Ag1—N4 | 112.90 (9) | C9—C8—H8 | 120.2 |
N5i—Ag1—O1 | 129.87 (8) | C8—C9—C4 | 120.9 (4) |
N1—Ag1—O1 | 75.28 (8) | C8—C9—H9 | 119.6 |
N4—Ag1—O1 | 79.39 (8) | C4—C9—H9 | 119.6 |
O1—V1—O2 | 108.04 (11) | N4—C10—N6 | 110.8 (3) |
O1—V1—F1 | 99.57 (11) | N4—C10—H10 | 124.6 |
O2—V1—F1 | 99.21 (13) | N6—C10—H10 | 124.6 |
O1—V1—F2 | 117.63 (10) | N5—C11—N6 | 110.5 (3) |
O2—V1—F2 | 132.25 (10) | N5—C11—H11 | 124.8 |
F1—V1—F2 | 86.76 (10) | N6—C11—H11 | 124.8 |
O1—V1—N2 | 87.14 (10) | N6—C12—C13 | 109.3 (8) |
O2—V1—N2 | 88.78 (11) | N6—C12—H12A | 109.8 |
F1—V1—N2 | 167.32 (10) | C13—C12—H12A | 109.8 |
F2—V1—N2 | 80.59 (9) | N6—C12—H12B | 109.8 |
V1—O1—Ag1 | 128.89 (11) | C13—C12—H12B | 109.8 |
C1—N1—N2 | 106.4 (2) | H12A—C12—H12B | 108.3 |
C1—N1—Ag1 | 132.19 (19) | C18—C13—C14 | 118.9 (7) |
N2—N1—Ag1 | 121.35 (18) | C18—C13—C12 | 125.6 (13) |
C2—N2—N1 | 107.3 (2) | C14—C13—C12 | 115.5 (13) |
C2—N2—V1 | 127.4 (2) | C13—C14—C15 | 120.4 (8) |
N1—N2—V1 | 124.36 (18) | C13—C14—H14 | 119.8 |
C1—N3—C2 | 105.0 (2) | C15—C14—H14 | 119.8 |
C1—N3—C3 | 127.7 (3) | C16—C15—C14 | 119.2 (9) |
C2—N3—C3 | 126.7 (3) | C16—C15—H15 | 120.4 |
C10—N4—N5 | 106.5 (2) | C14—C15—H15 | 120.4 |
C10—N4—Ag1 | 120.2 (2) | C17—C16—C15 | 121.4 (8) |
N5—N4—Ag1 | 133.30 (19) | C17—C16—H16 | 119.3 |
C11—N5—N4 | 106.8 (2) | C15—C16—H16 | 119.3 |
C11—N5—Ag1i | 128.7 (2) | C16—C17—C18 | 119.4 (8) |
N4—N5—Ag1i | 122.94 (19) | C16—C17—H17 | 120.3 |
C10—N6—C11 | 105.4 (3) | C18—C17—H17 | 120.3 |
C10—N6—C12A | 134.8 (15) | C13—C18—C17 | 120.7 (9) |
C11—N6—C12A | 119.7 (15) | C13—C18—H18 | 119.7 |
C10—N6—C12 | 124.3 (8) | C17—C18—H18 | 119.7 |
C11—N6—C12 | 130.2 (7) | N6—C12A—C13A | 113.8 (16) |
N1—C1—N3 | 110.7 (3) | N6—C12A—H12C | 108.8 |
N1—C1—H1 | 124.6 | C13A—C12A—H12C | 108.8 |
N3—C1—H1 | 124.6 | N6—C12A—H12D | 108.8 |
N2—C2—N3 | 110.6 (3) | C13A—C12A—H12D | 108.8 |
N2—C2—H2 | 124.7 | H12C—C12A—H12D | 107.7 |
N3—C2—H2 | 124.7 | C14A—C13A—C18A | 120.0 |
N3—C3—C4 | 115.5 (3) | C14A—C13A—C12A | 131.1 (18) |
N3—C3—H3A | 108.4 | C18A—C13A—C12A | 108.9 (19) |
C4—C3—H3A | 108.4 | C13A—C14A—C15A | 120.0 |
N3—C3—H3B | 108.4 | C13A—C14A—H14A | 120.0 |
C4—C3—H3B | 108.4 | C15A—C14A—H14A | 120.0 |
H3A—C3—H3B | 107.5 | C16A—C15A—C14A | 120.0 |
C5—C4—C9 | 119.0 (3) | C16A—C15A—H15A | 120.0 |
C5—C4—C3 | 121.6 (3) | C14A—C15A—H15A | 120.0 |
C9—C4—C3 | 119.2 (3) | C15A—C16A—C17A | 120.0 |
C4—C5—C6 | 120.1 (4) | C15A—C16A—H16A | 120.0 |
C4—C5—H5 | 120.0 | C17A—C16A—H16A | 120.0 |
C6—C5—H5 | 120.0 | C18A—C17A—C16A | 120.0 |
C7—C6—C5 | 119.6 (4) | C18A—C17A—H17A | 120.0 |
C7—C6—H6 | 120.2 | C16A—C17A—H17A | 120.0 |
C5—C6—H6 | 120.2 | C17A—C18A—C13A | 120.0 |
C8—C7—C6 | 120.8 (4) | C17A—C18A—H18A | 120.0 |
C8—C7—H7 | 119.6 | C13A—C18A—H18A | 120.0 |
C6—C7—H7 | 119.6 | ||
O2—V1—O1—Ag1 | −74.41 (17) | Ag1—N4—C10—N6 | −178.0 (2) |
F1—V1—O1—Ag1 | −177.46 (15) | C11—N6—C10—N4 | −0.4 (4) |
F2—V1—O1—Ag1 | 91.19 (15) | C12A—N6—C10—N4 | 178.8 (12) |
N2—V1—O1—Ag1 | 13.37 (14) | C12—N6—C10—N4 | 178.0 (6) |
C1—N1—N2—C2 | −0.7 (3) | N4—N5—C11—N6 | 0.1 (4) |
Ag1—N1—N2—C2 | 177.7 (2) | Ag1i—N5—C11—N6 | −165.5 (2) |
C1—N1—N2—V1 | 168.9 (2) | C10—N6—C11—N5 | 0.2 (4) |
Ag1—N1—N2—V1 | −12.7 (3) | C12A—N6—C11—N5 | −179.2 (10) |
C10—N4—N5—C11 | −0.4 (4) | C12—N6—C11—N5 | −178.1 (7) |
Ag1—N4—N5—C11 | 177.9 (2) | C10—N6—C12—C13 | −120.7 (10) |
C10—N4—N5—Ag1i | 166.2 (2) | C11—N6—C12—C13 | 57.3 (15) |
Ag1—N4—N5—Ag1i | −15.5 (4) | N6—C12—C13—C18 | −101.7 (13) |
N2—N1—C1—N3 | 1.3 (3) | N6—C12—C13—C14 | 77.8 (15) |
Ag1—N1—C1—N3 | −176.8 (2) | C18—C13—C14—C15 | 0.4 (10) |
C2—N3—C1—N1 | −1.4 (3) | C12—C13—C14—C15 | −179.1 (13) |
C3—N3—C1—N1 | −172.8 (3) | C13—C14—C15—C16 | 0.1 (13) |
N1—N2—C2—N3 | −0.2 (3) | C14—C15—C16—C17 | −1.3 (15) |
V1—N2—C2—N3 | −169.37 (19) | C15—C16—C17—C18 | 1.8 (15) |
C1—N3—C2—N2 | 1.0 (3) | C14—C13—C18—C17 | 0.0 (10) |
C3—N3—C2—N2 | 172.5 (3) | C12—C13—C18—C17 | 179.5 (15) |
C1—N3—C3—C4 | −128.2 (3) | C16—C17—C18—C13 | −1.1 (13) |
C2—N3—C3—C4 | 62.2 (4) | C10—N6—C12A—C13A | −113 (2) |
N3—C3—C4—C5 | 68.5 (4) | C11—N6—C12A—C13A | 66 (3) |
N3—C3—C4—C9 | −116.6 (3) | N6—C12A—C13A—C14A | 62 (4) |
C9—C4—C5—C6 | −1.7 (5) | N6—C12A—C13A—C18A | −117 (2) |
C3—C4—C5—C6 | 173.3 (3) | C18A—C13A—C14A—C15A | 0.0 |
C4—C5—C6—C7 | 0.5 (6) | C12A—C13A—C14A—C15A | −179 (3) |
C5—C6—C7—C8 | 0.9 (7) | C13A—C14A—C15A—C16A | 0.0 |
C6—C7—C8—C9 | −1.1 (7) | C14A—C15A—C16A—C17A | 0.0 |
C7—C8—C9—C4 | −0.1 (7) | C15A—C16A—C17A—C18A | 0.0 |
C5—C4—C9—C8 | 1.5 (5) | C16A—C17A—C18A—C13A | 0.0 |
C3—C4—C9—C8 | −173.6 (4) | C14A—C13A—C18A—C17A | 0.0 |
N5—N4—C10—N6 | 0.5 (4) | C12A—C13A—C18A—C17A | 179 (2) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O2ii | 0.93 | 2.44 | 3.289 (4) | 153 |
C1—H1···F2iii | 0.93 | 2.63 | 3.108 (4) | 113 |
C2—H2···F1iv | 0.93 | 2.07 | 2.935 (4) | 154 |
C2—H2···F2iv | 0.93 | 2.60 | 3.304 (4) | 133 |
C3—H3A···O1iii | 0.97 | 2.73 | 3.465 (4) | 133 |
C3—H3B···F2iii | 0.97 | 2.37 | 3.006 (4) | 123 |
C10—H10···O2 | 0.93 | 2.16 | 3.082 (4) | 170 |
C11—H11···F1v | 0.93 | 2.07 | 2.935 (4) | 153 |
C12—H12A···O1v | 0.97 | 2.65 | 3.388 (2) | 133 |
C16—H16···O2vi | 0.93 | 2.42 | 3.339 (9) | 172 |
C18—H18···O1v | 0.93 | 2.83 | 3.589 (15) | 139 |
Symmetry codes: (ii) x−1, y, z; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+1, −z; (vi) x, −y+3/2, z−1/2. |
Funding information
Funding for this research was provided by: National Research Foundation of Ukraine (Project No. 2020.20/0071).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Albrecht, T. A., Sauvage, F., Bodenez, V., Tarascon, J.-M. & Poeppelmeier, K. R. (2009). Chem. Mater. 21, 3017–3020. Web of Science CrossRef CAS Google Scholar
Aromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485–546. Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chamberlain, J. M., Albrecht, T. A., Lesage, J., Sauvage, F., Stern, C. L. & Poeppelmeier, K. R. (2010). Cryst. Growth Des. 10, 4868–4873. Web of Science CrossRef ICSD CAS Google Scholar
Dolbecq, A., Dumas, E., Mayer, C. R. & Mialane, P. (2010). Chem. Rev. 110, 6009–6048. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Lysenko, A. B., Senchyk, G. A., Lukashuk, L. V., Domasevitch, K. V., Handke, M., Lincke, J., Krautscheid, H., Rusanov, E. B., Krämer, K. W., Decurtins, S. & Liu, S.-X. (2016). Inorg. Chem. 55, 239–250. Web of Science CSD CrossRef CAS PubMed Google Scholar
McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. Web of Science CrossRef CAS IUCr Journals Google Scholar
Monakhov, K. Yu., Bensch, W. & Kögerler, P. (2015). Chem. Soc. Rev. 44, 8443–8483. Web of Science CrossRef CAS PubMed Google Scholar
Pittala, N., Thétiot, F., Charles, C., Triki, S., Boukheddaden, K., Chastanet, G. & Marchivie, M. (2017a). Chem. Commun. 53, 8356–8359. Web of Science CSD CrossRef CAS Google Scholar
Pittala, N., Thétiot, F., Triki, S., Boukheddaden, K., Chastanet, G. & Marchivie, M. (2017b). Chem. Mater. 29, 490–494. Web of Science CSD CrossRef CAS Google Scholar
Senchyk, G. A., Bukhan'ko, V. A., Lysenko, A. B., Krautscheid, H., Rusanov, E. B., Chernega, A. N., Karbowiak, M. & Domasevitch, K. V. (2012). Inorg. Chem. 51, 8025–8033. Web of Science CSD CrossRef CAS PubMed Google Scholar
Senchyk, G. A., Lysenko, A. B., Domasevitch, K. V., Erhart, O., Henfling, S., Krautscheid, H., Rusanov, E. B., Krämer, K. W., Decurtins, S. & Liu, S.-X. (2017). Inorg. Chem. 56, 12952–12966. Web of Science CSD CrossRef CAS PubMed Google Scholar
Senchyk, G. A., Lysenko, A. B., Krautscheid, H. & Domasevitch, K. V. (2020). Acta Cryst. E76, 780–784. Web of Science CSD CrossRef IUCr Journals Google Scholar
Senchyk, G. A., Lysenko, A. B., Rusanov, E. B. & Domasevitch, K. V. (2019). Acta Cryst. E75, 808–811. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sharga, O. V., Lysenko, A. B., Krautscheid, H. & Domasevitch, K. V. (2010). Acta Cryst. C66, m269–m272. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sorensen, E. M., Izumi, H. K., Vaughey, J. T., Stern, C. L. & Poeppelmeier, K. R. (2005). J. Am. Chem. Soc. 127, 6347–6352. Web of Science CrossRef ICSD PubMed CAS Google Scholar
Spackman, M. A. & Byrom, P. G. A. (1997). Chem. Phys. Lett. 267, 215–220. CrossRef CAS Web of Science Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Tian, A., Liu, X., Ying, J., Zhu, D., Wang, X. & Peng, J. (2011). CrystEngComm, 13, 6680–6686. Web of Science CSD CrossRef CAS Google Scholar
Tian, A., Ni, H., Ji, X., Tian, Y., Liu, G. & Ying, J. (2017). RSC Adv. 7, 30573–30581. Web of Science CSD CrossRef CAS Google Scholar
Tian, A.-X., Ning, Y.-L., Ying, J., Liu, G.-C., Hou, X., Li, T.-J. & Wang, X.-L. (2015). CrystEngComm, 17, 5569–5578. Web of Science CSD CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://crystalexplorer.scb.uwa.edu.au/ Google Scholar
Zhang, B., Ying, J., Zhang, X., Wang, C. & Tian, A. (2020). New J. Chem. 44, 18074–18083. Web of Science CSD CrossRef Google Scholar
Zhu, M., Su, S.-Q., Song, X.-Z., Hao, Z.-M., Song, S.-Y. & Zhang, H.-J. (2012). Dalton Trans. 41, 13267–13270. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.