research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tetra­kis­(μ-4-benzyl-4H-1,2,4-triazole-κ2N1:N2)tetra­fluoridodi-μ2-oxido-dioxidodisilver(I)divanadium(V)

crossmark logo

aInorganic Chemistry Department, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, Kyiv 01033, Ukraine, and bInstitute of Organic Chemistry, Murmanska Street, 5, Kyiv, 02660, Ukraine
*Correspondence e-mail: senchyk.ganna@gmail.com

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 14 October 2021; accepted 14 February 2022; online 15 March 2022)

The crystal structure of the title compound, [Ag2(VO2F2)2(C9H9N3)4], is presented. The mol­ecular complex is based on the heterobimetallic AgI—VV fragment {AgI2(VVO2F2)2(tr)4} supported by four 1,2,4-triazole ligands [4-benzyl-(4H-1,2,4-triazol-4-yl)]. The triazole functional group demonstrates homo- and heterometallic connectivity (Ag—Ag and Ag—V) of the metal centers through the [–NN–] double and single bridges, respectively. The vanadium atom possesses a distorted trigonal–bipyramidal coordination environment [VO2F2N] with the Reedijk structural parameter τ = 0.59. In the crystal, C—H⋯O and C—H⋯F hydrogen bonds as well as C—H⋯π contacts are observed involving the organic ligands and the vanadium oxofluoride anions. A Hirshfeld surface analysis of the hydrogen-bonding inter­actions is also described.

1. Chemical context

There is considerable inter­est in the chemistry of organic–inorganic hybrids, including the vanadium oxide–fluoride (VOF) matrix, which is motivated by the numerous potential applications in catalysis, magnetism, optics, etc. (Dolbecq et al., 2010[Dolbecq, A., Dumas, E., Mayer, C. R. & Mialane, P. (2010). Chem. Rev. 110, 6009-6048.]; Monakhov et al., 2015[Monakhov, K. Yu., Bensch, W. & Kögerler, P. (2015). Chem. Soc. Rev. 44, 8443-8483.]). Incorporation of silver(I) in VOF solid can afford materials such as Ag4V2O6F2 (Sorensen et al., 2005[Sorensen, E. M., Izumi, H. K., Vaughey, J. T., Stern, C. L. & Poeppelmeier, K. R. (2005). J. Am. Chem. Soc. 127, 6347-6352.]; Albrecht et al., 2009[Albrecht, T. A., Sauvage, F., Bodenez, V., Tarascon, J.-M. & Poeppelmeier, K. R. (2009). Chem. Mater. 21, 3017-3020.]) and Ag3VO2F4 (Chamberlain et al., 2010[Chamberlain, J. M., Albrecht, T. A., Lesage, J., Sauvage, F., Stern, C. L. & Poeppelmeier, K. R. (2010). Cryst. Growth Des. 10, 4868-4873.]), which are attractive candidates for solid-state battery technologies. The formation of AgI–VOF heterobimetallic secondary building units (SBUs) in coordination compounds remains a non-trivial challenge. The 1,2,4-triazole heterocycle, as a functional group, demonstrates a favorable coordination affinity towards AgI cations, connecting them into polynuclear units (Aromí et al., 2011[Aromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485-546.]). At the same time, it possesses a hidden capability to bind two different metal ions through a short –NN– bridge, usually CuIItr–MoVI (Tian et al., 2011[Tian, A., Liu, X., Ying, J., Zhu, D., Wang, X. & Peng, J. (2011). CrystEngComm, 13, 6680-6686.]; Lysenko et al., 2016[Lysenko, A. B., Senchyk, G. A., Lukashuk, L. V., Domasevitch, K. V., Handke, M., Lincke, J., Krautscheid, H., Rusanov, E. B., Krämer, K. W., Decurtins, S. & Liu, S.-X. (2016). Inorg. Chem. 55, 239-250.]; Senchyk et al., 2017[Senchyk, G. A., Lysenko, A. B., Domasevitch, K. V., Erhart, O., Henfling, S., Krautscheid, H., Rusanov, E. B., Krämer, K. W., Decurtins, S. & Liu, S.-X. (2017). Inorg. Chem. 56, 12952-12966.]; Zhu et al., 2012[Zhu, M., Su, S.-Q., Song, X.-Z., Hao, Z.-M., Song, S.-Y. & Zhang, H.-J. (2012). Dalton Trans. 41, 13267-13270.]) but there are some other rare examples including CuItr–VIV (Sharga et al., 2010[Sharga, O. V., Lysenko, A. B., Krautscheid, H. & Domasevitch, K. V. (2010). Acta Cryst. C66, m269-m272.]) and AgItr–MoVI (Tian et al., 2017[Tian, A., Ni, H., Ji, X., Tian, Y., Liu, G. & Ying, J. (2017). RSC Adv. 7, 30573-30581.]). This may be realized in the case of constructing SBUs with a terminal N1-triazole function that has an open site accessible to coordination. We demonstrated this principle in the self-association of AgI–VOF heterobimetallic coordination compounds based on {AgI2(VVO2F2)2(tr)4} SBUs with bi-1,2,4-triazole ligands with different geometries (Senchyk et al., 2012[Senchyk, G. A., Bukhan'ko, V. A., Lysenko, A. B., Krautscheid, H., Rusanov, E. B., Chernega, A. N., Karbowiak, M. & Domasevitch, K. V. (2012). Inorg. Chem. 51, 8025-8033.]). Such units seem to be very favorable and stable, and form even in the presence of a heterobifunctional 1,2,4-triazole-carboxyl­ate ligand (Senchyk et al., 2019[Senchyk, G. A., Lysenko, A. B., Rusanov, E. B. & Domasevitch, K. V. (2019). Acta Cryst. E75, 808-811.]). In the present contribution we extend the library of AgI–VOF compounds, adding the title complex [Ag2(VO2F2)2(tr-CH2Ph)4] (I), which has the ligand 4-benzyl-(4H-1,2,4-triazol-4-yl) (tr-CH2Ph).

[Scheme 1]

2. Structural commentary

Compound I crystallizes in the monoclinic space group P21/c. Its asymmetric unit contains one AgI cation, one [VVO2F2] anion and two organic ligands (tr-CH2Ph), which, after inversion across a center of symmetry, form the mol­ecular tetra­nuclear cluster {AgI2(VVO2F2)2(tr-CH2Ph)4} (Fig. 1[link]). Two 1,2,4-triazole ligands bridge two adjacent silver atoms [the Ag⋯Agi distance is 4.2497 (5) Å; symmetry code (i) −x, −y + 1, −z], while the other two link Ag and V centers [the Ag⋯V distance is 3.8044 (6) Å]. Thus, the coordination environment of the AgI cation can be described as [AgN3O] with typical Ag—N(triazole) bond lengths [in the range of 2.197 (2) – 2.390 (3) Å] and a slightly elongated Ag—O bond [2.562 (2) Å] (Table 1[link]). The VV atom possesses a distorted trigonal–bipyramidal coordination environment [VO2F2N] with V—F [1.828 (2) and 1.8330 (18) Å], two short V—O [1.632 (2) and 1.660 (2) Å] and elongated V—N [2.203 (2) Å] bonds (Table 1[link]). The geometry of the vanadium oxofluoride polyhedra is characterized by the Reedijk structural parameter τ (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) of 0.59 (for a square-pyramidal geometry, τ = 0 and for trigonal–bipyramidal, τ = 1). A bond-valence-sum calculation for the {VO2F2N} polyhedra confirms the +5 oxidation state for the vanadium atom.

Table 1
Selected geometric parameters (Å, °)

Ag1—N5i 2.197 (2) V1—O2 1.660 (2)
Ag1—N1 2.233 (2) V1—F1 1.828 (2)
Ag1—N4 2.390 (3) V1—F2 1.8330 (18)
Ag1—O1 2.562 (2) V1—N2 2.203 (2)
V1—O1 1.632 (2)    
       
N5i—Ag1—N1 140.62 (9) O1—V1—F2 117.63 (10)
N5i—Ag1—N4 102.45 (9) O2—V1—F2 132.25 (10)
N1—Ag1—N4 112.90 (9) F1—V1—F2 86.76 (10)
N5i—Ag1—O1 129.87 (8) O1—V1—N2 87.14 (10)
N1—Ag1—O1 75.28 (8) O2—V1—N2 88.78 (11)
N4—Ag1—O1 79.39 (8) F1—V1—N2 167.32 (10)
O1—V1—O2 108.04 (11) F2—V1—N2 80.59 (9)
O1—V1—F1 99.57 (11) V1—O1—Ag1 128.89 (11)
O2—V1—F1 99.21 (13)    
Symmetry code: (i) [-x, -y+1, -z].
[Figure 1]
Figure 1
The mol­ecular structure of compound I, showing the atom-labeling scheme [symmetry code: (i) −x, −y + 1, −z]. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

Since the organic ligand contains a hydro­phobic benzyl tail, the crystal structure of I involves no solvate water mol­ecules. Thus, the only hydrogen bonds observed are of the type C—H⋯O, C—H⋯F and C—H⋯π contacts (Figs. 2[link] and 3[link], Table 2[link]). The central 1,2,4-triazole unit, which bridges two Ag ions, displays intra­molecular C10—H10⋯O2 [3.082 (4) Å] and inter­molecular C11—H11⋯F1v [2.935 (4) Å, symmetry code (v) −x + 1, −y + 1, −z] hydrogen-bond contacts. The other triazole group, which provides the heterometallic Ag–V linkage, forms bifurcated C—H⋯O and C—H⋯F contacts with vanadium oxofluoride anions of neighboring mol­ecular complexes. Additionally, methyl­ene –CH2– fragments show directed C—H⋯O and C—H⋯F contacts to the VOF fragments. The phenyl rings are here oriented towards each other in an edge-to-face C—H⋯π inter­action mode.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2ii 0.93 2.44 3.289 (4) 153
C1—H1⋯F2iii 0.93 2.63 3.108 (4) 113
C2—H2⋯F1iv 0.93 2.07 2.935 (4) 154
C2—H2⋯F2iv 0.93 2.60 3.304 (4) 133
C3—H3A⋯O1iii 0.97 2.73 3.465 (4) 133
C3—H3B⋯F2iii 0.97 2.37 3.006 (4) 123
C10—H10⋯O2 0.93 2.16 3.082 (4) 170
C11—H11⋯F1v 0.93 2.07 2.935 (4) 153
C12—H12A⋯O1v 0.97 2.65 3.388 (2) 133
C16—H16⋯O2vi 0.93 2.42 3.339 (9) 172
C18—H18⋯O1v 0.93 2.83 3.589 (15) 139
Symmetry codes: (ii) [x-1, y, z]; (iii) [-x, -y+1, -z+1]; (iv) [-x+1, -y+1, -z+1]; (v) [-x+1, -y+1, -z]; (vi) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Projection on the bc plane showing the crystal packing of compound I. Vanadium oxofluoride anions are shown as polyhedra. [Atoms are colored as follows: silver – cyan, vanadium – dark green, oxygen – red, fluorine – green, nitro­gen – blue, carbon – gray, hydrogen – white.]
[Figure 3]
Figure 3
Hydrogen-bonding arrangement in the structure of I showing C—H⋯O and C—H⋯F contacts [symmetry codes: (ii) x − 1, y, z; (iii) −x, −y + 1, −z + 1; (iv) −x + 1, −y + 1, −z + 1; (v) −x + 1, −y + 1, −z; (vi) x, −y + [{3\over 2}], z − [{1\over 2}].]. Phenyl groups are omitted for clarity.

Supra­molecular inter­actions in the title structure were studied through Hirshfeld surface analysis (Spackman & Byrom, 1997[Spackman, M. A. & Byrom, P. G. A. (1997). Chem. Phys. Lett. 267, 215-220.]; McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]; Hirshfeld, 1977[Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]), performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://crystalexplorer.scb.uwa.edu.au/]), taking into account only the major contribution of the disordered group. The Hirshfeld surface, mapped over dnorm using a fixed color scale of −0.488 (red) to 1.385 (blue) a.u. visualizes the set of shortest inter­molecular contacts (Fig. 4[link]). All of them correspond to the hydrogen-bond inter­actions, which fall into three categories. The strongest hydrogen bonds to F-atom acceptors are reflected by the most prominent red spots (−0.469 to −0.488 a.u.), whereas a group of medium intensity spots (−0.182 to −0.261 a.u.) identify weaker C—H⋯O bonds with the terminal oxide O2. However, even more distal inter­actions with the bridging oxide O1 are still distinguishable on the surface, in the form of very diffuse, less intense spots (−0.066 to −0.142 a.u.).

[Figure 4]
Figure 4
The Hirshfeld surface of the title compound mapped over dnorm in the color range −0.488 (red) to 1.385 (blue) a.u., in the environment of the closest neighbor [symmetry code: −x + 1, −y + 1, −z], with the red spots indicating different kinds of inter­molecular inter­actions.

The contribution of different kinds of inter­atomic contacts to the Hirshfeld surface is shown in the fingerprint plots in Fig. 5[link]. A significant fraction of the E⋯H/H⋯E (E = C, N, O, F) contacts (in total 60.1%) suggests the dominant role of the hydrogen-bond inter­actions. The strongest ones (E = O, F) have a similar nature and they are reflected by pairs of spikes pointing to the lower left of the plot. However, the contribution from the contacts with F-atom acceptors is higher (15.6% for F⋯H/H⋯F and 11.6% for O⋯H/H⋯O) and they are also essentially shorter, as indicated by different lengths of the spikes (the shortest contacts are F⋯H = 2.0 and O⋯H = 2.2 Å). One may suppose that the preferable sites for hydrogen bonding of the vanadium oxofluoride groups are the F atoms. This is consistent with the results of Hirshfeld analysis for the [VOF5]2− anion 4,4′-(propane-1,3-di­yl)bis­(4H-1,2,4-triazol-1-ium) salt (Senchyk et al., 2020[Senchyk, G. A., Lysenko, A. B., Krautscheid, H. & Domasevitch, K. V. (2020). Acta Cryst. E76, 780-784.]).

[Figure 5]
Figure 5
Two-dimensional fingerprint plots for the title compound, and those delineated into the principal contributions of H⋯H, C⋯H/H⋯C, F⋯H/H⋯F, O⋯H/H⋯O, N⋯H/H⋯N, C⋯C, C⋯N/N⋯C and Ag⋯H/H⋯Ag contacts. Other observed contacts are N⋯N (0.4%), C⋯F/F⋯C (0.1%) and C⋯O/O⋯C (0.1%).

The plots indicate close resemblance of the N⋯H/H⋯N (10.7%) and C⋯H/H⋯C (22.2%) contacts, which appear as pairs of nearly identical, very diffuse and short features (N⋯H = 2.9 and C⋯H = 2.9 Å). Both of them correspond to edge-to-face stacking or C—H⋯π inter­actions involving either the phenyl or triazole rings. The contribution from mutual ππ inter­actions of the latter delivers minor fractions of the C⋯C, N⋯N and C⋯N/N⋯C contacts, which account in total for only 2.6%. The shortest contact of this series [C⋯N = 3.5 Å] exceeds the sum of the van der Waals radii [3.25 Å] and ππ inter­actions are not associated with red spots of the dnorm surface. A comparable contribution is due to the distal anagostic contacts Ag⋯H/H⋯Ag (2.9%) with the polarized methyl­ene H atoms. There are no mutual ππ inter­actions involving phenyl rings, which are responsible for larger fractions of the C⋯C contacts in the case of polycyclic species (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]).

4. Database survey

A structure survey was carried out in the Cambridge Structural Database (CSD version 5.43, update of November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 4-benzyl-(4H-1,2,4-triazol-4-yl) and it revealed five hits for coordination compounds based on this ligand. There are no examples of AgI compounds, only two FeII complexes [FAYQAA (Pittala et al., 2017a[Pittala, N., Thétiot, F., Charles, C., Triki, S., Boukheddaden, K., Chastanet, G. & Marchivie, M. (2017a). Chem. Commun. 53, 8356-8359.]) and XASVEV (Pittala et al., 2017b[Pittala, N., Thétiot, F., Triki, S., Boukheddaden, K., Chastanet, G. & Marchivie, M. (2017b). Chem. Mater. 29, 490-494.])] and three CuII–POM complexes [YUGLIX and YUGLOD (Tian et al., 2015[Tian, A.-X., Ning, Y.-L., Ying, J., Liu, G.-C., Hou, X., Li, T.-J. & Wang, X.-L. (2015). CrystEngComm, 17, 5569-5578.]) and ZUXLAI (Zhang et al., 2020[Zhang, B., Ying, J., Zhang, X., Wang, C. & Tian, A. (2020). New J. Chem. 44, 18074-18083.])]. Moreover, there are no examples of heterometallic connection through an –NN– triazole bridge for the 4-benzyl-(4H-1,2,4-triazol-4-yl) ligand.

5. Synthesis and crystallization

4-Benzyl-(4H-1,2,4-triazol-4-yl) (tr-CH2Ph) was synthesized by refluxing benzyl­amine (5.35 g, 50.0 mmol) and di­methyl­formamide azine (17.75 g, 125.0 mmol) in the presence of toluene­sulfonic acid monohydrate (0.86 g, 5.0 mmol) as a catalyst in DMF (30.0 ml).

Compound I was prepared under hydro­thermal conditions. A mixture of AgOAc (16.7 mg, 0.100 mmol), tr-CH2Ph (20.7 mg, 0.130 mmol), V2O5 (9.1 mg, 0.050 mmol) and 5 mL of water with aqueous HF (50%, 150 µL, 4.33 mmol) was added into a Teflon vessel. Then the components were heated at 423 K for 24 h and slowly cooled to room temperature over 50 h, yielding light-yellow prisms of I (yield 33.4 mg, 61%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For one of the organic ligands, the benzyl linkage (C12–C18) is unequally disordered over two overlapping positions with refined partial contribution factors of 0.68 (3) and 0.32 (3). The major part of the disorder was freely refined anisotropically, while atoms of the minor contributor were refined anisotropically with a restrained geometry for the phenyl ring, rigid-bond restraints applied to the –CH2C6H5 linkage and similarity restraints applied to the closely separated contributions of C12 and C12A, C13 and C13A. H atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å (CH) and 0.97 Å (CH2) and with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Ag2V2F4O4(C9H9N3)4]
Mr 1094.39
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 7.5484 (2), 21.2439 (6), 12.5910 (4)
β (°) 90.910 (2)
V3) 2018.81 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.48
Crystal size (mm) 0.27 × 0.14 × 0.12
 
Data collection
Diffractometer Bruker APEXII area-detector
Absorption correction multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.657, 0.856
No. of measured, independent and observed [I > 2σ(I)] reflections 22923, 5125, 3468
Rint 0.044
(sin θ/λ)max−1) 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.078, 1.02
No. of reflections 5125
No. of parameters 323
No. of restraints 65
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.58, −0.42
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Tetrakis(µ-4-benzyl-4H-1,2,4-triazole-κ2N1:N2)tetrafluoridodi-µ2-oxido-dioxidodisilver(I)divanadium(V) top
Crystal data top
[Ag2V2F4O4(C9H9N3)4]F(000) = 1088
Mr = 1094.39Dx = 1.800 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.5484 (2) ÅCell parameters from 4931 reflections
b = 21.2439 (6) Åθ = 2.5–23.8°
c = 12.5910 (4) ŵ = 1.48 mm1
β = 90.910 (2)°T = 296 K
V = 2018.81 (10) Å3Block, colorless
Z = 20.27 × 0.14 × 0.12 mm
Data collection top
Bruker APEXII area-detector
diffractometer
3468 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
ω scansθmax = 28.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.657, Tmax = 0.856k = 2628
22923 measured reflectionsl = 1614
5125 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0194P)2 + 2.1764P]
where P = (Fo2 + 2Fc2)/3
5125 reflections(Δ/σ)max = 0.001
323 parametersΔρmax = 0.58 e Å3
65 restraintsΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.00892 (3)0.49751 (2)0.16871 (2)0.04174 (9)
V10.43103 (7)0.48341 (2)0.33615 (4)0.03165 (13)
F10.6173 (3)0.42871 (13)0.32820 (16)0.0802 (8)
F20.3957 (2)0.45217 (9)0.46985 (15)0.0471 (5)
O10.3065 (3)0.45593 (10)0.23966 (17)0.0407 (5)
O20.5296 (3)0.54823 (11)0.29314 (16)0.0424 (6)
N10.0417 (3)0.54163 (12)0.32878 (19)0.0315 (6)
N20.2025 (3)0.54132 (11)0.38181 (19)0.0301 (6)
N30.0147 (3)0.59315 (11)0.47783 (18)0.0292 (6)
N40.2055 (4)0.54025 (13)0.0405 (2)0.0386 (6)
N50.1929 (3)0.54905 (12)0.06853 (19)0.0345 (6)
N60.4464 (3)0.58619 (12)0.0125 (2)0.0342 (6)
C10.0684 (4)0.57241 (14)0.3893 (2)0.0337 (7)
H10.18760.57900.37320.040*
C20.1821 (4)0.57219 (14)0.4702 (2)0.0328 (7)
H20.27100.57880.52090.039*
C30.0650 (4)0.62351 (15)0.5708 (2)0.0400 (8)
H3A0.05790.59450.63010.048*
H3B0.18960.63080.55520.048*
C40.0174 (4)0.68457 (14)0.6044 (2)0.0308 (7)
C50.0024 (5)0.73774 (17)0.5430 (3)0.0490 (9)
H50.04930.73540.47560.059*
C60.0646 (6)0.79525 (19)0.5816 (4)0.0696 (13)
H60.05370.83140.54030.084*
C70.1417 (6)0.7982 (2)0.6806 (5)0.0775 (15)
H70.18170.83670.70680.093*
C80.1607 (6)0.7456 (3)0.7410 (4)0.0752 (14)
H80.21520.74790.80760.090*
C90.0986 (5)0.68877 (19)0.7030 (3)0.0517 (10)
H90.11180.65280.74440.062*
C100.3594 (4)0.56283 (15)0.0704 (2)0.0385 (8)
H100.40250.56270.14000.046*
C110.3391 (4)0.57667 (15)0.0972 (2)0.0369 (7)
H110.36520.58810.16650.044*
C120.6224 (7)0.6171 (4)0.0050 (16)0.040 (3)0.68 (3)
H12A0.70760.59360.04620.048*0.68 (3)
H12B0.66330.61780.06840.048*0.68 (3)
C130.608 (2)0.6830 (4)0.0465 (10)0.0356 (18)0.68 (3)
C140.5342 (18)0.7259 (6)0.0216 (12)0.049 (2)0.68 (3)
H140.49900.71310.08870.058*0.68 (3)
C150.5119 (14)0.7881 (5)0.009 (2)0.068 (4)0.68 (3)
H150.46230.81710.03700.081*0.68 (3)
C160.5640 (18)0.8063 (5)0.1083 (18)0.065 (5)0.68 (3)
H160.54700.84780.12950.078*0.68 (3)
C170.639 (2)0.7654 (8)0.1755 (12)0.072 (4)0.68 (3)
H170.67670.77870.24170.086*0.68 (3)
C180.660 (2)0.7029 (7)0.1450 (11)0.057 (3)0.68 (3)
H180.71020.67430.19170.069*0.68 (3)
C12A0.6197 (12)0.6178 (8)0.026 (3)0.034 (4)0.32 (3)
H12C0.68620.59510.07940.041*0.32 (3)
H12D0.68620.61570.04000.041*0.32 (3)
C13A0.605 (4)0.6853 (8)0.060 (2)0.035 (4)0.32 (3)
C14A0.530 (3)0.7370 (10)0.0096 (18)0.038 (4)0.32 (3)
H14A0.48030.73240.05700.046*0.32 (3)
C15A0.530 (2)0.7955 (8)0.059 (2)0.048 (5)0.32 (3)
H15A0.47970.83000.02540.057*0.32 (3)
C16A0.604 (2)0.8023 (6)0.1587 (19)0.047 (4)0.32 (3)
H16A0.60380.84150.19170.056*0.32 (3)
C17A0.679 (3)0.7507 (8)0.2089 (17)0.044 (4)0.32 (3)
H17A0.72840.75530.27550.053*0.32 (3)
C18A0.679 (4)0.6922 (7)0.159 (2)0.039 (5)0.32 (3)
H18A0.72890.65760.19310.046*0.32 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.04650 (15)0.04865 (17)0.02972 (13)0.00637 (12)0.01010 (10)0.00375 (12)
V10.0375 (3)0.0324 (3)0.0249 (3)0.0025 (2)0.0031 (2)0.0009 (2)
F10.0848 (17)0.121 (2)0.0337 (12)0.0688 (16)0.0171 (12)0.0150 (13)
F20.0453 (11)0.0559 (13)0.0398 (11)0.0063 (9)0.0038 (9)0.0181 (9)
O10.0490 (14)0.0397 (13)0.0330 (12)0.0045 (10)0.0085 (11)0.0072 (10)
O20.0326 (12)0.0692 (16)0.0253 (11)0.0118 (11)0.0045 (10)0.0048 (11)
N10.0264 (13)0.0414 (16)0.0264 (13)0.0014 (11)0.0060 (11)0.0052 (11)
N20.0282 (13)0.0329 (14)0.0290 (14)0.0001 (11)0.0083 (11)0.0044 (11)
N30.0341 (14)0.0300 (14)0.0235 (14)0.0013 (11)0.0001 (11)0.0039 (10)
N40.0502 (17)0.0411 (16)0.0242 (14)0.0115 (13)0.0049 (12)0.0053 (12)
N50.0402 (15)0.0408 (16)0.0223 (13)0.0068 (12)0.0028 (12)0.0022 (11)
N60.0363 (14)0.0373 (15)0.0287 (14)0.0043 (11)0.0056 (12)0.0021 (11)
C10.0256 (16)0.0412 (19)0.0341 (17)0.0004 (13)0.0084 (14)0.0044 (14)
C20.0309 (16)0.0373 (18)0.0300 (17)0.0005 (13)0.0085 (14)0.0051 (14)
C30.047 (2)0.0395 (19)0.0337 (18)0.0056 (15)0.0107 (16)0.0084 (15)
C40.0270 (16)0.0316 (17)0.0339 (17)0.0017 (13)0.0031 (13)0.0065 (13)
C50.046 (2)0.046 (2)0.055 (2)0.0040 (17)0.0043 (18)0.0073 (18)
C60.062 (3)0.037 (2)0.110 (4)0.004 (2)0.013 (3)0.009 (2)
C70.070 (3)0.062 (3)0.101 (4)0.024 (2)0.023 (3)0.043 (3)
C80.067 (3)0.105 (4)0.053 (3)0.028 (3)0.001 (2)0.034 (3)
C90.054 (2)0.062 (3)0.039 (2)0.0041 (19)0.0045 (18)0.0032 (18)
C100.052 (2)0.0395 (19)0.0239 (16)0.0072 (16)0.0098 (15)0.0055 (14)
C110.0428 (19)0.046 (2)0.0220 (16)0.0028 (16)0.0040 (14)0.0020 (14)
C120.036 (3)0.049 (3)0.036 (8)0.008 (3)0.010 (3)0.006 (3)
C130.031 (3)0.036 (3)0.040 (4)0.008 (3)0.008 (3)0.004 (3)
C140.046 (4)0.049 (5)0.052 (5)0.001 (4)0.003 (4)0.003 (4)
C150.046 (4)0.042 (5)0.115 (12)0.002 (3)0.008 (6)0.012 (6)
C160.052 (6)0.050 (5)0.093 (13)0.016 (4)0.022 (7)0.033 (6)
C170.080 (9)0.081 (9)0.053 (7)0.027 (7)0.009 (5)0.019 (6)
C180.066 (8)0.054 (5)0.052 (6)0.017 (5)0.005 (5)0.008 (5)
C12A0.037 (6)0.046 (5)0.020 (9)0.001 (5)0.009 (4)0.003 (4)
C13A0.035 (6)0.032 (5)0.037 (7)0.004 (5)0.005 (6)0.001 (5)
C14A0.034 (7)0.044 (8)0.036 (9)0.004 (5)0.001 (7)0.004 (6)
C15A0.061 (11)0.035 (8)0.048 (11)0.005 (7)0.004 (9)0.001 (7)
C16A0.045 (9)0.040 (7)0.055 (10)0.010 (6)0.002 (7)0.005 (7)
C17A0.047 (9)0.036 (7)0.050 (9)0.006 (5)0.005 (6)0.000 (6)
C18A0.048 (10)0.036 (7)0.032 (8)0.010 (6)0.004 (6)0.002 (5)
Geometric parameters (Å, º) top
Ag1—N5i2.197 (2)C7—H70.9300
Ag1—N12.233 (2)C8—C91.378 (6)
Ag1—N42.390 (3)C8—H80.9300
Ag1—O12.562 (2)C9—H90.9300
V1—O11.632 (2)C10—H100.9300
V1—O21.660 (2)C11—H110.9300
V1—F11.828 (2)C12—C131.497 (5)
V1—F21.8330 (18)C12—H12A0.9700
V1—N22.203 (2)C12—H12B0.9700
N1—C11.311 (4)C13—C181.374 (9)
N1—N21.376 (3)C13—C141.375 (8)
N2—C21.303 (4)C14—C151.386 (11)
N3—C11.345 (4)C14—H140.9300
N3—C21.345 (4)C15—C161.371 (12)
N3—C31.473 (4)C15—H150.9300
N4—C101.306 (4)C16—C171.344 (13)
N4—N51.387 (3)C16—H160.9300
N5—C111.306 (4)C17—C181.390 (11)
N5—Ag1i2.197 (2)C17—H170.9300
N6—C101.339 (4)C18—H180.9300
N6—C111.344 (4)C12A—C13A1.497 (6)
N6—C12A1.484 (5)C12A—H12C0.9700
N6—C121.484 (5)C12A—H12D0.9700
C1—H10.9300C13A—C14A1.3900
C2—H20.9300C13A—C18A1.3900
C3—C41.497 (4)C14A—C15A1.3900
C3—H3A0.9700C14A—H14A0.9300
C3—H3B0.9700C15A—C16A1.3900
C4—C51.372 (5)C15A—H15A0.9300
C4—C91.378 (4)C16A—C17A1.3900
C5—C61.393 (5)C16A—H16A0.9300
C5—H50.9300C17A—C18A1.3900
C6—C71.369 (6)C17A—H17A0.9300
C6—H60.9300C18A—H18A0.9300
C7—C81.358 (7)
N5i—Ag1—N1140.62 (9)C7—C8—C9119.6 (4)
N5i—Ag1—N4102.45 (9)C7—C8—H8120.2
N1—Ag1—N4112.90 (9)C9—C8—H8120.2
N5i—Ag1—O1129.87 (8)C8—C9—C4120.9 (4)
N1—Ag1—O175.28 (8)C8—C9—H9119.6
N4—Ag1—O179.39 (8)C4—C9—H9119.6
O1—V1—O2108.04 (11)N4—C10—N6110.8 (3)
O1—V1—F199.57 (11)N4—C10—H10124.6
O2—V1—F199.21 (13)N6—C10—H10124.6
O1—V1—F2117.63 (10)N5—C11—N6110.5 (3)
O2—V1—F2132.25 (10)N5—C11—H11124.8
F1—V1—F286.76 (10)N6—C11—H11124.8
O1—V1—N287.14 (10)N6—C12—C13109.3 (8)
O2—V1—N288.78 (11)N6—C12—H12A109.8
F1—V1—N2167.32 (10)C13—C12—H12A109.8
F2—V1—N280.59 (9)N6—C12—H12B109.8
V1—O1—Ag1128.89 (11)C13—C12—H12B109.8
C1—N1—N2106.4 (2)H12A—C12—H12B108.3
C1—N1—Ag1132.19 (19)C18—C13—C14118.9 (7)
N2—N1—Ag1121.35 (18)C18—C13—C12125.6 (13)
C2—N2—N1107.3 (2)C14—C13—C12115.5 (13)
C2—N2—V1127.4 (2)C13—C14—C15120.4 (8)
N1—N2—V1124.36 (18)C13—C14—H14119.8
C1—N3—C2105.0 (2)C15—C14—H14119.8
C1—N3—C3127.7 (3)C16—C15—C14119.2 (9)
C2—N3—C3126.7 (3)C16—C15—H15120.4
C10—N4—N5106.5 (2)C14—C15—H15120.4
C10—N4—Ag1120.2 (2)C17—C16—C15121.4 (8)
N5—N4—Ag1133.30 (19)C17—C16—H16119.3
C11—N5—N4106.8 (2)C15—C16—H16119.3
C11—N5—Ag1i128.7 (2)C16—C17—C18119.4 (8)
N4—N5—Ag1i122.94 (19)C16—C17—H17120.3
C10—N6—C11105.4 (3)C18—C17—H17120.3
C10—N6—C12A134.8 (15)C13—C18—C17120.7 (9)
C11—N6—C12A119.7 (15)C13—C18—H18119.7
C10—N6—C12124.3 (8)C17—C18—H18119.7
C11—N6—C12130.2 (7)N6—C12A—C13A113.8 (16)
N1—C1—N3110.7 (3)N6—C12A—H12C108.8
N1—C1—H1124.6C13A—C12A—H12C108.8
N3—C1—H1124.6N6—C12A—H12D108.8
N2—C2—N3110.6 (3)C13A—C12A—H12D108.8
N2—C2—H2124.7H12C—C12A—H12D107.7
N3—C2—H2124.7C14A—C13A—C18A120.0
N3—C3—C4115.5 (3)C14A—C13A—C12A131.1 (18)
N3—C3—H3A108.4C18A—C13A—C12A108.9 (19)
C4—C3—H3A108.4C13A—C14A—C15A120.0
N3—C3—H3B108.4C13A—C14A—H14A120.0
C4—C3—H3B108.4C15A—C14A—H14A120.0
H3A—C3—H3B107.5C16A—C15A—C14A120.0
C5—C4—C9119.0 (3)C16A—C15A—H15A120.0
C5—C4—C3121.6 (3)C14A—C15A—H15A120.0
C9—C4—C3119.2 (3)C15A—C16A—C17A120.0
C4—C5—C6120.1 (4)C15A—C16A—H16A120.0
C4—C5—H5120.0C17A—C16A—H16A120.0
C6—C5—H5120.0C18A—C17A—C16A120.0
C7—C6—C5119.6 (4)C18A—C17A—H17A120.0
C7—C6—H6120.2C16A—C17A—H17A120.0
C5—C6—H6120.2C17A—C18A—C13A120.0
C8—C7—C6120.8 (4)C17A—C18A—H18A120.0
C8—C7—H7119.6C13A—C18A—H18A120.0
C6—C7—H7119.6
O2—V1—O1—Ag174.41 (17)Ag1—N4—C10—N6178.0 (2)
F1—V1—O1—Ag1177.46 (15)C11—N6—C10—N40.4 (4)
F2—V1—O1—Ag191.19 (15)C12A—N6—C10—N4178.8 (12)
N2—V1—O1—Ag113.37 (14)C12—N6—C10—N4178.0 (6)
C1—N1—N2—C20.7 (3)N4—N5—C11—N60.1 (4)
Ag1—N1—N2—C2177.7 (2)Ag1i—N5—C11—N6165.5 (2)
C1—N1—N2—V1168.9 (2)C10—N6—C11—N50.2 (4)
Ag1—N1—N2—V112.7 (3)C12A—N6—C11—N5179.2 (10)
C10—N4—N5—C110.4 (4)C12—N6—C11—N5178.1 (7)
Ag1—N4—N5—C11177.9 (2)C10—N6—C12—C13120.7 (10)
C10—N4—N5—Ag1i166.2 (2)C11—N6—C12—C1357.3 (15)
Ag1—N4—N5—Ag1i15.5 (4)N6—C12—C13—C18101.7 (13)
N2—N1—C1—N31.3 (3)N6—C12—C13—C1477.8 (15)
Ag1—N1—C1—N3176.8 (2)C18—C13—C14—C150.4 (10)
C2—N3—C1—N11.4 (3)C12—C13—C14—C15179.1 (13)
C3—N3—C1—N1172.8 (3)C13—C14—C15—C160.1 (13)
N1—N2—C2—N30.2 (3)C14—C15—C16—C171.3 (15)
V1—N2—C2—N3169.37 (19)C15—C16—C17—C181.8 (15)
C1—N3—C2—N21.0 (3)C14—C13—C18—C170.0 (10)
C3—N3—C2—N2172.5 (3)C12—C13—C18—C17179.5 (15)
C1—N3—C3—C4128.2 (3)C16—C17—C18—C131.1 (13)
C2—N3—C3—C462.2 (4)C10—N6—C12A—C13A113 (2)
N3—C3—C4—C568.5 (4)C11—N6—C12A—C13A66 (3)
N3—C3—C4—C9116.6 (3)N6—C12A—C13A—C14A62 (4)
C9—C4—C5—C61.7 (5)N6—C12A—C13A—C18A117 (2)
C3—C4—C5—C6173.3 (3)C18A—C13A—C14A—C15A0.0
C4—C5—C6—C70.5 (6)C12A—C13A—C14A—C15A179 (3)
C5—C6—C7—C80.9 (7)C13A—C14A—C15A—C16A0.0
C6—C7—C8—C91.1 (7)C14A—C15A—C16A—C17A0.0
C7—C8—C9—C40.1 (7)C15A—C16A—C17A—C18A0.0
C5—C4—C9—C81.5 (5)C16A—C17A—C18A—C13A0.0
C3—C4—C9—C8173.6 (4)C14A—C13A—C18A—C17A0.0
N5—N4—C10—N60.5 (4)C12A—C13A—C18A—C17A179 (2)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2ii0.932.443.289 (4)153
C1—H1···F2iii0.932.633.108 (4)113
C2—H2···F1iv0.932.072.935 (4)154
C2—H2···F2iv0.932.603.304 (4)133
C3—H3A···O1iii0.972.733.465 (4)133
C3—H3B···F2iii0.972.373.006 (4)123
C10—H10···O20.932.163.082 (4)170
C11—H11···F1v0.932.072.935 (4)153
C12—H12A···O1v0.972.653.388 (2)133
C16—H16···O2vi0.932.423.339 (9)172
C18—H18···O1v0.932.833.589 (15)139
Symmetry codes: (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x+1, y+1, z; (vi) x, y+3/2, z1/2.
 

Funding information

Funding for this research was provided by: National Research Foundation of Ukraine (Project No. 2020.20/0071).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAlbrecht, T. A., Sauvage, F., Bodenez, V., Tarascon, J.-M. & Poeppelmeier, K. R. (2009). Chem. Mater. 21, 3017–3020.  Web of Science CrossRef CAS Google Scholar
First citationAromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485–546.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChamberlain, J. M., Albrecht, T. A., Lesage, J., Sauvage, F., Stern, C. L. & Poeppelmeier, K. R. (2010). Cryst. Growth Des. 10, 4868–4873.  Web of Science CrossRef ICSD CAS Google Scholar
First citationDolbecq, A., Dumas, E., Mayer, C. R. & Mialane, P. (2010). Chem. Rev. 110, 6009–6048.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationLysenko, A. B., Senchyk, G. A., Lukashuk, L. V., Domasevitch, K. V., Handke, M., Lincke, J., Krautscheid, H., Rusanov, E. B., Krämer, K. W., Decurtins, S. & Liu, S.-X. (2016). Inorg. Chem. 55, 239–250.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMonakhov, K. Yu., Bensch, W. & Kögerler, P. (2015). Chem. Soc. Rev. 44, 8443–8483.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPittala, N., Thétiot, F., Charles, C., Triki, S., Boukheddaden, K., Chastanet, G. & Marchivie, M. (2017a). Chem. Commun. 53, 8356–8359.  Web of Science CSD CrossRef CAS Google Scholar
First citationPittala, N., Thétiot, F., Triki, S., Boukheddaden, K., Chastanet, G. & Marchivie, M. (2017b). Chem. Mater. 29, 490–494.  Web of Science CSD CrossRef CAS Google Scholar
First citationSenchyk, G. A., Bukhan'ko, V. A., Lysenko, A. B., Krautscheid, H., Rusanov, E. B., Chernega, A. N., Karbowiak, M. & Domasevitch, K. V. (2012). Inorg. Chem. 51, 8025–8033.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSenchyk, G. A., Lysenko, A. B., Domasevitch, K. V., Erhart, O., Henfling, S., Krautscheid, H., Rusanov, E. B., Krämer, K. W., Decurtins, S. & Liu, S.-X. (2017). Inorg. Chem. 56, 12952–12966.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSenchyk, G. A., Lysenko, A. B., Krautscheid, H. & Domasevitch, K. V. (2020). Acta Cryst. E76, 780–784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSenchyk, G. A., Lysenko, A. B., Rusanov, E. B. & Domasevitch, K. V. (2019). Acta Cryst. E75, 808–811.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharga, O. V., Lysenko, A. B., Krautscheid, H. & Domasevitch, K. V. (2010). Acta Cryst. C66, m269–m272.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSorensen, E. M., Izumi, H. K., Vaughey, J. T., Stern, C. L. & Poeppelmeier, K. R. (2005). J. Am. Chem. Soc. 127, 6347–6352.  Web of Science CrossRef ICSD PubMed CAS Google Scholar
First citationSpackman, M. A. & Byrom, P. G. A. (1997). Chem. Phys. Lett. 267, 215–220.  CrossRef CAS Web of Science Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationTian, A., Liu, X., Ying, J., Zhu, D., Wang, X. & Peng, J. (2011). CrystEngComm, 13, 6680–6686.  Web of Science CSD CrossRef CAS Google Scholar
First citationTian, A., Ni, H., Ji, X., Tian, Y., Liu, G. & Ying, J. (2017). RSC Adv. 7, 30573–30581.  Web of Science CSD CrossRef CAS Google Scholar
First citationTian, A.-X., Ning, Y.-L., Ying, J., Liu, G.-C., Hou, X., Li, T.-J. & Wang, X.-L. (2015). CrystEngComm, 17, 5569–5578.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://crystalexplorer.scb.uwa.edu.au/  Google Scholar
First citationZhang, B., Ying, J., Zhang, X., Wang, C. & Tian, A. (2020). New J. Chem. 44, 18074–18083.  Web of Science CSD CrossRef Google Scholar
First citationZhu, M., Su, S.-Q., Song, X.-Z., Hao, Z.-M., Song, S.-Y. & Zhang, H.-J. (2012). Dalton Trans. 41, 13267–13270.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds