research communications
Tetranuclear copper(II) complex of 2-hydroxy-N,N′-bis[1-(2-hydroxyphenyl)ethylidene]propane-1,3-diamine
aDépartement de Chimie, UFR SATIC, Université Alioune Diop, Bambey, Senegal, bDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheik Anta Diop, Dakar, Senegal, and cUK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, UK
*Correspondence e-mail: mlgayeastou@yahoo.fr
The title molecular structure, namely, (μ3-acetato)(μ2-acetato)bis(μ3-1,3-bis{[1-(2-oxidophenyl)ethylidene]amino}propan-2-olato)tetracopper(II) monohydrate, [Cu4(C19H19N2O3)2(CH3CO2)2]·H2O, corresponds to a non-symmetric tetranuclear copper complex. The complex exhibits one ligand molecule that connects two copper CuII metal centres via its ethanolato oxygen anion acting in a μ2-mode and one ligand molecule that connects three copper CuII metal centres via its ethanolato oxygen anion acting in a μ3-mode. One bridging acetate group acting in an η1:η1-μ2-mode connects two copper(II) ions while another bridging acetate group connects three copper(II) ions in an η1:-η2-μ3-mode. A chair-like Cu3O3 structure is generated in which the two CuO4N units are connected by one μ2-O ethanolate oxygen atom. These two units are connected respectively to the CuO3N unit via one μ3-O ethanolate oxygen atom and one μ2-O atom from an acetate group. The μ3-O atom also connects one of the CuO4N units and the CuO3N unit to another CuO3N unit, which is out of the chair-like structure. Each of the two pentacoordinated CuII cations has a distorted NO4 square-pyramidal environment. The geometry of each of the two CuNO3 units is best described as a slightly square-planar environment. A series of intramolecular O—H⋯O hydrogen bonds is observed. In the crystal, the units are connected by intermolecular C—H⋯O and O—H⋯O hydrogen bonds, thus forming sheets parallel to the ac plane
CCDC reference: 2154581
1. Chemical context
The controlled design of new coordination complexes of transition metals from polydentate ligands is of great interest for research, because of the potential applications that these functional materials can have and for their interesting structural diversity (Popov et al., 2012; Mitra et al., 2014). In this context, important research is being devoted to the chemistry of transition-metal complexes with different oxidation states incorporating polydentate ligands with N and O donor sites (Xie et al., 2012; Banerjee & Chattopadhyay, 2019; Ferguson et al., 2006). These ligands can act in a versatile manner and generate compounds with very different structures, depending on the metal–ligand ratio and the nature of the metal cation (Fernandes et al., 2000). In this context, pentadentate have made it possible to synthesize several complexes with various transition-metal cations, resulting in an unusual coordination environment with interesting stereochemistry (Banerjee et al., 2011). Depending on the size of the cation and its external and the flexibility of the ligand, novel structures with high nuclearity have been obtained (Aly, 1999). These compounds are very attractive for the above reasons, and they have been widely used in several studies. Many multinuclear transition-metal complexes with various structures have been generated, depending on the disposition of the metal ions and donor sites (N or O). Tetranuclear (Asadi et al., 2018; Manna et al., 2019), pentanuclear (Hari et al., 2019; Ghosh, Clérac et al., 2013) hexanuclear (Shit et al., 2013; Kébé et al., 2021) and heptanuclear (Gheorghe et al., 2019; Ghosh, Bauzá et al., 2013) forms have reported with potential applications in the fields of magnetism (Gheorghe et al., 2019), catalysis (Nesterova et al., 2020; Das et al., 2018) or biomimetic synthesis (Nesterova et al., 2020; Sanyal et al., 2017). Our research group has already enabled us to prepare several multidentate Schiff base complexes (Mamour et al., 2018; Sarr et al., 2018a,b; Sall et al., 2019). We then explored the possibility of preparing complexes with several metal cations from a pentadentate Schiff base obtained by condensation of 1,3-diaminopropan-2-ol and 1-(2-hydroxyphenyl)ethanone, which is rich in hydroxyl groups. From this Schiff base we prepared a hexanuclear complex with an open-cube structure (Kébé et al., 2021). In a continuation of our work with this Schiff base, we obtained the title tetranuclear copper complex (Fig. 1) whose structure is presented herein.
2. Structural commentary
N,N′-Bis{[1-(2-hydroxyphenyl)ethylidene)]}-2-hydroxypropane-1, 3-diamine (H3L was synthesized via a condensation reaction between 1,3-diaminopropan-2-ol and 1-(2-hydroxyphenyl)ethanone in a 1:2 ratio in ethanol. Mixing H3L and hydrated copper acetate yielded a tetranuclear complex formulated as [Cu4L2(CH3CO2)2]·H2O in which the ligand acts in its tri-deprotonated L−3 form. In the tetranuclear complex, one of the L−3 anions acts in μ2-mode, connecting the two pentacoordinated CuII cations. The second L−3 anion acts in μ3 mode, connecting the two tetracoordinated CuII cations and one of the pentacoordinated CuII cations. The second pentacoordinated CuII cation is connected to the two tetracoordinated CuII cations via an acetate group acting in η1:η2-μ3 mode. Additionally, the two pentacoordinated CuII cations are connected by an acetate group acting in η1:η1-μ2 mode. For each ligand, the azomethine nitrogen atom and the phenolate oxygen atom of one arm are both linked to one CuII cation while the corresponding atoms of the other arm are bonded to another CuII cation. No phenolate oxygen atom acts in bridging mode. In one ligand the ethanolate oxygen atom bridges the two pentacoordinated CuII cations, and in the second ligand the ethanolate oxygen atom bridges the two tetracoordinated CuII cations and one pentacoordinated CuII cation. The two L−3 ligands are coordinated differently in hexadentate (-η1-Ophenolate, -η1-Nimino, -μ2-Oenolato, -η1-Nimino, -η1-Ophenolato) and heptadentate (-η1-Ophenolate, -η1-Nimino, -μ3-Oenolato, -η1-Nimino, -η1-Ophenolato) fashions. Four five-membered CuOCCN rings and four six-membered CuOCCCN rings are formed upon the coordination of the ligand molecules. In the tetranuclear complex, two discrete CuO4N and CuO3N units are observed.
Atoms Cu1 and Cu2 are pentacoordinated and their environments can be best described as slightly distorted square-pyramidal. The Addison τ parameter (Addison et al., 1984) calculated from the largest angles (Table 1; τ = 0 for perfect square-pyramidal and τ = 1 for perfect trigonal–bipyramidal geometries, respectively) around the metal ion are τ = 0.1103 for Cu1 and τ = 0.1887 for Cu2. For Cu1 and Cu2, the basal planes are occupied by one phenolate oxygen anion, one azomethine nitrogen atom, one ethanolate oxygen atom and one oxygen atom from the η1:η1-μ2 acetate group, the apical position being occupied by an ethanolate oxygen atom from a second ligand molecule for Cu1 and an oxygen atom from the η1:η2-μ3 acetate group for Cu2. The atoms forming the basal plane for Cu1 (N1, O1, O2, O10) are almost coplanar (r.m.s. deviation = 0.1088 Å) and the Cu1 atom is displaced toward the O5 atom, which occupies the apical position, by 0.0545 (2) Å. The Cu1—O5 distance of 2.749 (3) Å is longer than the distances between Cu1 and the atoms in the basal plane [Cu1—Nligand = 1.966 (4) Å, Cu1—Oligand = 1.878 (3) and 1.916 (3) Å and Cu1—Oacetate = 1.982 (3) Å)], as expected for a Jahn–Teller distortion (Monfared et al., 2009), typical of a CuII d9 configuration (Monfared et al., 2009). These values are in accordance with those in similar copper(II) complexes (Haldar et al., 2016; Siluvai & Murthy, 2009). The cisoid and transoid angles are in the ranges 85.01 (14)–95.10 (14)° and 169.71 (16)–176.33 (14)°, respectively. The atoms forming the basal plane for Cu2 (N2, O2, O11, O3) are less coplanar than those around Cu1 (r.m.s. deviation = 0.2086 Å) and the Cu2 atom is displaced toward the O8 atom, which occupies the apical position, by 0.0808 (1) Å. The from Cu2—O8 distance of 2.703 (4) Å is longer than those to atoms in the equatorial plane [Cu2—Nligand = 1.961 (4) Å, Cu2—Oligand = 1.877 (3) and 1.920 (3) Å and Cu2—Oacetate = 1.940 (3) Å]. As observed for Cu1, Jahn–Teller distortion (Monfared et al., 2009) is responsible of the elongation of the distance between Cu2 and the apical atom O8. The cisoid and transoid angles are in the ranges 85.74 (15)–96.89 (14)° and 161.66 (15)–173.00 (15)°, respectively. The bond lengths involving the μ2-bridging ethanolato oxygen atom and the copper cations are asymmetrical: Cu1—O2 = 1.916 (3) Å and Cu2—O2 = 1.920 (3) Å. The distances between the μ3-bridging ethanolato oxygen atom and the copper cations are very different: Cu1—O5 = 2.749 (3) Å, Cu3—O5 = 1.907 (3) Å and Cu4—O5 = 1.921 (3) Å. The copper cations Cu3 and Cu4 are coordinated by one ethanolato oxygen anion, one phenoxo oxygen anion, one azomethine nitrogen atom of the ligand and one oxygen atom of a η1:η2-μ3 acetate group (O8 for Cu3 and O7 for Cu4). The Cu3—O4 [1.873 (3) Å], Cu3—O5 [1.907 (3) Å], Cu3—N3 [1.947 (4) Å], Cu3—O8 [1.957 (3) Å], Cu4—O6 [1.869 (3) Å], Cu4—O5 [1.921 (3) Å], Cu4—N4 [1.962 (4) Å] and Cu4—O7 [1.955 (3) Å] distances are in close proximity to values reported for copper(II) complexes with analogous Schiff base ligands (Patra et al., 2015; Lukov et al., 2017). For the Cu3 and Cu4 centres, the coordination environment can be best described as distorted square planar with r.m.s. deviations of 0.7870 Å for N3/O4/O8/O5/Cu3 and 0.7921 Å for O5/O7/O6/N4/Cu4. These planes, which share one vertex (O5), form a dihedral angle of 65.67 (1)°. The tetragonality parameter (Singh et al., 2017) τ4 values of 0.0993 (Cu3) and 0.1801 (Cu4) suggested distorted square-planar geometries. For the two copper cations the cisoid angles are in the ranges 86.17 (14)–93.29 (15)° for Cu3 and 84.04 (14)–96.93 (14)° for Cu4 and the transoid angles are O4—Cu3—O5 = 177.07 (15)°, O8—Cu3—N3 = 173.28 (15)°, O6—Cu4—O5 = 170.48 (14)° and O7—Cu3—N4 = 164.11 (15)°. The C—N bonds are in the range 1.291 (6)–1.300 (6) Å, indicative of double-bond character and the presence of the imino groups in the two ligands.
|
3. Supramolecular features
Intramolecular O—H⋯O hydrogen bonds involving the uncoordinated water molecule, a phenoxo oxygen atom and an oxygen atom of acetate group and C—H⋯Ophenoxo are observed (Fig. 2, Table 2). The uncoordinated water molecule is situated into the void of the tetranuclear complex and has O⋯O contacts of 2.894 (5) and 3.158 (5) Å suggesting medium-strength hydrogen bonds. In the crystal, the complex molecules are arranged in sheets parallel to the ac plane (Fig. 3). The sheets are connected by C—H⋯O bonds (C—H⋯Ophenoxo, C—H⋯Owater, C—H⋯Oacetate; Table 2). The series of intermolecular and intramolecular hydrogen bonds stabilize and link the components into two-dimensional sheets parallel to the ac plane (Fig. 4).
4. Database survey
N,N′–Bis[(1-(2-hydroxyphenyl)ethylidene)]-2-hydroxypropane-1,3-diamine is widely used in coordination chemistry. The current release of the CSD (Version 5.42, November 2021 update; Groom et al., 2016) gave eleven hits. Three are complexes of the ligand with NiII cations [KARPOK and KARPUQ (Liu et al., 2012); OMOFUS (Banerjee et al., 2011)]. Four entries are complexes of CuII cations [KUKTAM (Basak et al., 2009), NADDIJ and NADDOP (Osypiuk et al., 2020), OVOWAA (Kébé et al., 2021)]. In addition, two CoII complexes (OMOFOM and OMOGAZ; Banerjee et al., 2011), one FeII (RIDHUJ; Biswas et al., 2013) and one VV complex (KEWGUQ; Maurya et al., 2013) have been reported. In all eleven cases, the ligand acts in a pentadentate mode through the two soft azomethine nitrogen atoms, the two hard phenolate oxygen anions and the one hard enolate oxygen anion. In seven cases (KARPOK, KARPUQ, OMOFUS, KUKTAM, NADDIJ, NADDOP and OMOGAZ), the complexes are tetranuclear while two dinuclear (OMOFOM and RIDHUJ), one mononuclear (KEWGUQ) and one hexanuclear (OVOWAA) complex have been reported.
5. Synthesis and crystallization
The ligand N,N'-bis[(1-(2-hydroxyphenyl)ethylidene)]-2-hydroxypropane-1,3-diamine (HL3) was prepared from 1-(2-hydroxyphenyl)ethanone and 2-hydroxypropane-1,3-diamine in a 2:1 ratio in ethanol according to a slight modification of a literature method (Song et al., 2003). To a solution of 1,3-diaminopropane-2-ol (0.900 g, 10 mmol) in 25 mL of ethanol was added dropwise (2-hydroxyphenyl)ethanone (2.720 g, 20 mmol). The resulting orange mixture was refluxed for 3 h, affording the organic ligand H3L. On cooling, the yellow precipitate that appeared was recovered by filtration and dried in air. Yield 75%. m.p. 479–480 K. FT–IR (KBr, ν, cm−1): 3538 (OH), 3268 (OH), 1605 (C=N), 1538 (C=C), 1528 (C=C), 1455 (C=C), 1247 (C—O), 1043, 760. Analysis calculated for C19H22N2O3: C, 69.92; H, 6.79; N, 8.58. Found: C, 69.90; H, 6.76; N, 8.56%.
A solution of Cu(CH3CO2)2·(H2O) (0.1996 g, 1 mmol) in 5 mL of ethanol was added to a solution of H3L (0.163 g, 0.5 mmol) in 10 mL of ethanol at room temperature. The initial yellow solution immediately turned deep green and was stirred for 30 min before being filtered. The filtrate was kept at 298 K. After one week, light-green crystals suitable for X-ray diffraction were collected and formulated as [Cu4L2(CH3CO2)2]·H2O. FT–IR (KBr, ν, cm−1): 3404, 1601, 1532, 1332, 1299, 895, 760. Analysis calculated for C42H46Cu4N4O11: C, 48.64; H, 4.47; N, 5.40. Found: C, 48.60; H, 4.49; N, 5.44%.
6. Refinement
Crystal data, data collection and structure . H atoms attached to the hydroxyl group and water molecules were located in a difference-Fourier map and freely refined. Other H atoms (CH, CH2, CH3 groups and hydroxyl of ethanol molecules) were geometrically optimized (O—H = 0.85 Å, C—H = 0.93–0.97 Å) and refined using a riding model (AFIX instructions) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for CH3 and OH groups.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2154581
https://doi.org/10.1107/S2056989022002225/ex2053sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022002225/ex2053Isup3.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Cu4(C19H19N2O3)2(C2H3O2)2]·H2O | F(000) = 2120 |
Mr = 1037.02 | Dx = 1.685 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71075 Å |
a = 6.9688 (1) Å | Cell parameters from 5800 reflections |
b = 25.8066 (4) Å | θ = 2.4–28.7° |
c = 22.8290 (4) Å | µ = 2.12 mm−1 |
β = 95.418 (2)° | T = 293 K |
V = 4087.25 (11) Å3 | Prismatic, light-green |
Z = 4 | 0.25 × 0.2 × 0.1 mm |
Nonius KappaCCD diffractometer | 10024 reflections with I > 2σ(I) |
CCD scans | Rint = 0.008 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 27.6°, θmin = 1.8° |
Tmin = 0.967, Tmax = 1.000 | h = −9→9 |
12039 measured reflections | k = −33→33 |
12039 independent reflections | l = −29→28 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.056 | H-atom parameters constrained |
wR(F2) = 0.131 | w = 1/[σ2(Fo2) + (0.038P)2 + 21.6332P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max = 0.001 |
12039 reflections | Δρmax = 1.69 e Å−3 |
560 parameters | Δρmin = −0.88 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
Cu2 | 0.60863 (8) | 0.28366 (2) | 0.32611 (2) | 0.01219 (13) | |
Cu1 | 0.52144 (8) | 0.38573 (2) | 0.22819 (2) | 0.01203 (13) | |
Cu3 | 0.84495 (8) | 0.29191 (2) | 0.17735 (2) | 0.01246 (13) | |
Cu4 | 1.01850 (8) | 0.39019 (2) | 0.27079 (2) | 0.01232 (13) | |
O5 | 0.8865 (4) | 0.36243 (12) | 0.20000 (13) | 0.0132 (6) | |
O2 | 0.6231 (5) | 0.35435 (12) | 0.30062 (14) | 0.0140 (6) | |
O10 | 0.4526 (5) | 0.31935 (13) | 0.18788 (15) | 0.0222 (8) | |
O7 | 1.1025 (5) | 0.32394 (12) | 0.30599 (15) | 0.0181 (7) | |
O3 | 0.6275 (5) | 0.21453 (12) | 0.35156 (15) | 0.0185 (7) | |
O4 | 0.7906 (5) | 0.22334 (12) | 0.15452 (14) | 0.0181 (7) | |
O1 | 0.4344 (5) | 0.41970 (12) | 0.15789 (14) | 0.0152 (7) | |
O6 | 1.1072 (5) | 0.42189 (12) | 0.34184 (15) | 0.0180 (7) | |
O11 | 0.4548 (5) | 0.25787 (13) | 0.25696 (15) | 0.0202 (7) | |
O8 | 0.9004 (5) | 0.26730 (13) | 0.25825 (15) | 0.0208 (7) | |
N1 | 0.5427 (5) | 0.45103 (14) | 0.27266 (17) | 0.0126 (8) | |
C41 | 1.0334 (7) | 0.27956 (17) | 0.2974 (2) | 0.0137 (9) | |
N3 | 0.8224 (5) | 0.31721 (14) | 0.09664 (16) | 0.0111 (7) | |
O9 | 0.7291 (6) | 0.15395 (13) | 0.25055 (17) | 0.0264 (8) | |
H9C | 0.770732 | 0.177114 | 0.228491 | 0.040* | |
H9D | 0.703080 | 0.170249 | 0.281168 | 0.040* | |
N2 | 0.6827 (5) | 0.31062 (14) | 0.40532 (16) | 0.0114 (7) | |
N4 | 1.0044 (5) | 0.45572 (14) | 0.22705 (16) | 0.0121 (7) | |
C39 | 0.4116 (6) | 0.27589 (17) | 0.2067 (2) | 0.0143 (9) | |
C19 | 0.6706 (6) | 0.19719 (18) | 0.4053 (2) | 0.0135 (9) | |
C26 | 0.7822 (6) | 0.29142 (17) | 0.04858 (19) | 0.0110 (8) | |
C16 | 0.7556 (7) | 0.15045 (19) | 0.5168 (2) | 0.0180 (10) | |
H16 | 0.781948 | 0.135243 | 0.553591 | 0.022* | |
C20 | 0.7860 (6) | 0.20455 (18) | 0.1007 (2) | 0.0145 (9) | |
C13 | 0.7848 (7) | 0.31399 (18) | 0.5103 (2) | 0.0156 (9) | |
H13A | 0.823194 | 0.348621 | 0.501483 | 0.023* | |
H13B | 0.890648 | 0.296314 | 0.531695 | 0.023* | |
H13C | 0.677661 | 0.315238 | 0.533833 | 0.023* | |
C27 | 0.7355 (6) | 0.31943 (17) | −0.00920 (19) | 0.0138 (9) | |
H27A | 0.688273 | 0.353526 | −0.001780 | 0.021* | |
H27B | 0.638722 | 0.300470 | −0.033070 | 0.021* | |
H27C | 0.849757 | 0.322077 | −0.029428 | 0.021* | |
C14 | 0.7197 (6) | 0.22864 (17) | 0.45570 (19) | 0.0113 (8) | |
C25 | 0.7812 (6) | 0.23439 (17) | 0.0480 (2) | 0.0117 (8) | |
C17 | 0.7117 (7) | 0.12003 (18) | 0.4666 (2) | 0.0174 (10) | |
H17 | 0.710667 | 0.084111 | 0.469778 | 0.021* | |
C28 | 0.8313 (6) | 0.37427 (16) | 0.09623 (19) | 0.0121 (9) | |
H28A | 0.702933 | 0.388882 | 0.095759 | 0.014* | |
H28B | 0.889213 | 0.386413 | 0.061739 | 0.014* | |
C29 | 0.9539 (6) | 0.39016 (17) | 0.1520 (2) | 0.0122 (9) | |
H29 | 1.088626 | 0.380870 | 0.148407 | 0.015* | |
C11 | 0.6906 (6) | 0.36775 (17) | 0.40348 (19) | 0.0126 (9) | |
H11A | 0.822806 | 0.379269 | 0.402534 | 0.015* | |
H11B | 0.640320 | 0.382256 | 0.438117 | 0.015* | |
C10 | 0.5701 (6) | 0.38526 (17) | 0.3486 (2) | 0.0129 (9) | |
H10 | 0.433277 | 0.380043 | 0.353554 | 0.015* | |
C6 | 0.4719 (6) | 0.50930 (18) | 0.1912 (2) | 0.0149 (9) | |
C7 | 0.5306 (6) | 0.49832 (17) | 0.2530 (2) | 0.0123 (9) | |
C1 | 0.4262 (6) | 0.47000 (17) | 0.1482 (2) | 0.0149 (9) | |
C12 | 0.7266 (6) | 0.28539 (17) | 0.45387 (19) | 0.0113 (8) | |
C15 | 0.7586 (7) | 0.20325 (18) | 0.5103 (2) | 0.0150 (9) | |
H15 | 0.787888 | 0.223430 | 0.543726 | 0.018* | |
C30 | 0.9411 (7) | 0.44745 (17) | 0.1646 (2) | 0.0132 (9) | |
H30A | 1.022816 | 0.466698 | 0.140256 | 0.016* | |
H30B | 0.809436 | 0.459367 | 0.155977 | 0.016* | |
C8 | 0.5798 (7) | 0.54254 (18) | 0.2947 (2) | 0.0182 (10) | |
H8A | 0.633216 | 0.570576 | 0.273896 | 0.027* | |
H8B | 0.672434 | 0.531122 | 0.325863 | 0.027* | |
H8C | 0.465288 | 0.554100 | 0.311060 | 0.027* | |
C31 | 1.0235 (6) | 0.50243 (18) | 0.2480 (2) | 0.0150 (9) | |
C22 | 0.7727 (7) | 0.12579 (18) | 0.0412 (2) | 0.0197 (10) | |
H22 | 0.769101 | 0.089808 | 0.039118 | 0.024* | |
C23 | 0.7695 (7) | 0.15510 (19) | −0.0106 (2) | 0.0190 (10) | |
H23 | 0.764424 | 0.138974 | −0.047193 | 0.023* | |
C24 | 0.7741 (7) | 0.20798 (18) | −0.0062 (2) | 0.0158 (9) | |
H24 | 0.772348 | 0.227402 | −0.040560 | 0.019* | |
C9 | 0.6056 (7) | 0.44167 (17) | 0.33513 (19) | 0.0136 (9) | |
H9A | 0.533894 | 0.463677 | 0.359735 | 0.016* | |
H9B | 0.741610 | 0.449663 | 0.343064 | 0.016* | |
C38 | 1.1219 (7) | 0.47204 (18) | 0.3522 (2) | 0.0171 (10) | |
C33 | 1.0824 (6) | 0.51236 (18) | 0.3101 (2) | 0.0156 (9) | |
C5 | 0.4589 (7) | 0.56179 (18) | 0.1719 (2) | 0.0189 (10) | |
H5 | 0.490277 | 0.587974 | 0.199175 | 0.023* | |
C40 | 0.2961 (8) | 0.23976 (18) | 0.1642 (2) | 0.0206 (10) | |
H40A | 0.208940 | 0.259722 | 0.138055 | 0.031* | |
H40B | 0.224171 | 0.215968 | 0.185905 | 0.031* | |
H40C | 0.382332 | 0.220786 | 0.141722 | 0.031* | |
C32 | 0.9831 (7) | 0.54776 (18) | 0.2068 (2) | 0.0202 (10) | |
H32A | 0.930339 | 0.575865 | 0.227686 | 0.030* | |
H32B | 0.892338 | 0.537490 | 0.174626 | 0.030* | |
H32C | 1.100792 | 0.558715 | 0.191900 | 0.030* | |
C34 | 1.1021 (7) | 0.56421 (19) | 0.3302 (2) | 0.0227 (11) | |
H34 | 1.074325 | 0.590881 | 0.303313 | 0.027* | |
C4 | 0.4018 (8) | 0.57527 (19) | 0.1147 (2) | 0.0243 (11) | |
H4 | 0.392435 | 0.609970 | 0.103828 | 0.029* | |
C18 | 0.6705 (7) | 0.14284 (19) | 0.4130 (2) | 0.0196 (10) | |
H18 | 0.641327 | 0.121833 | 0.380232 | 0.023* | |
C2 | 0.3711 (7) | 0.48541 (19) | 0.0895 (2) | 0.0211 (10) | |
H2 | 0.342570 | 0.460076 | 0.061062 | 0.025* | |
C3 | 0.3585 (8) | 0.5367 (2) | 0.0733 (2) | 0.0236 (11) | |
H3 | 0.320682 | 0.545600 | 0.034466 | 0.028* | |
C21 | 0.7810 (7) | 0.14995 (18) | 0.0949 (2) | 0.0194 (10) | |
H21 | 0.783417 | 0.129738 | 0.128740 | 0.023* | |
C42 | 1.1047 (8) | 0.2371 (2) | 0.3389 (2) | 0.0256 (11) | |
H42A | 1.242630 | 0.238701 | 0.345497 | 0.038* | |
H42B | 1.067072 | 0.204078 | 0.322069 | 0.038* | |
H42C | 1.049827 | 0.241244 | 0.375637 | 0.038* | |
C35 | 1.1599 (9) | 0.5768 (2) | 0.3872 (3) | 0.0300 (13) | |
H35 | 1.173262 | 0.611278 | 0.398564 | 0.036* | |
C36 | 1.1985 (9) | 0.5374 (2) | 0.4282 (3) | 0.0339 (14) | |
H36 | 1.236433 | 0.545609 | 0.467253 | 0.041* | |
C37 | 1.1808 (8) | 0.4863 (2) | 0.4112 (2) | 0.0249 (11) | |
H37 | 1.208207 | 0.460476 | 0.439069 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu2 | 0.0193 (3) | 0.0094 (3) | 0.0074 (3) | 0.0025 (2) | −0.0014 (2) | −0.0003 (2) |
Cu1 | 0.0176 (3) | 0.0091 (3) | 0.0087 (3) | −0.0023 (2) | −0.0022 (2) | 0.0013 (2) |
Cu3 | 0.0198 (3) | 0.0098 (3) | 0.0073 (3) | −0.0045 (2) | −0.0008 (2) | 0.0007 (2) |
Cu4 | 0.0161 (3) | 0.0101 (3) | 0.0100 (3) | 0.0023 (2) | −0.0029 (2) | −0.0027 (2) |
O5 | 0.0194 (16) | 0.0129 (16) | 0.0070 (15) | −0.0049 (13) | 0.0006 (12) | −0.0013 (12) |
O2 | 0.0222 (17) | 0.0105 (15) | 0.0091 (15) | 0.0017 (12) | −0.0001 (12) | −0.0017 (12) |
O10 | 0.040 (2) | 0.0114 (17) | 0.0146 (17) | −0.0102 (15) | 0.0000 (15) | 0.0005 (13) |
O7 | 0.0219 (17) | 0.0133 (17) | 0.0176 (18) | 0.0033 (13) | −0.0062 (13) | −0.0013 (13) |
O3 | 0.0324 (19) | 0.0102 (16) | 0.0123 (16) | 0.0036 (14) | −0.0016 (14) | −0.0016 (13) |
O4 | 0.0315 (19) | 0.0108 (16) | 0.0113 (16) | −0.0033 (13) | −0.0014 (14) | 0.0001 (13) |
O1 | 0.0227 (17) | 0.0093 (15) | 0.0125 (17) | −0.0023 (12) | −0.0040 (13) | 0.0029 (12) |
O6 | 0.0260 (18) | 0.0109 (16) | 0.0158 (18) | 0.0015 (13) | −0.0054 (14) | −0.0052 (13) |
O11 | 0.0298 (19) | 0.0160 (17) | 0.0137 (17) | −0.0020 (14) | −0.0034 (14) | 0.0002 (13) |
O8 | 0.0314 (19) | 0.0184 (18) | 0.0114 (17) | −0.0083 (14) | −0.0038 (14) | 0.0047 (13) |
N1 | 0.0165 (18) | 0.0117 (19) | 0.0093 (19) | 0.0018 (14) | −0.0001 (15) | 0.0004 (14) |
C41 | 0.020 (2) | 0.012 (2) | 0.008 (2) | −0.0020 (17) | 0.0000 (17) | 0.0008 (17) |
N3 | 0.0141 (18) | 0.0114 (18) | 0.0076 (18) | −0.0008 (14) | 0.0005 (14) | 0.0007 (14) |
O9 | 0.053 (2) | 0.0092 (16) | 0.0194 (19) | −0.0017 (16) | 0.0144 (17) | −0.0007 (14) |
N2 | 0.0147 (18) | 0.0110 (18) | 0.0086 (18) | −0.0016 (14) | 0.0015 (14) | −0.0024 (14) |
N4 | 0.0136 (18) | 0.0144 (19) | 0.0080 (18) | 0.0009 (14) | −0.0006 (14) | −0.0019 (14) |
C39 | 0.017 (2) | 0.014 (2) | 0.012 (2) | 0.0041 (17) | 0.0022 (17) | −0.0051 (18) |
C19 | 0.016 (2) | 0.015 (2) | 0.009 (2) | 0.0034 (17) | 0.0010 (17) | 0.0008 (17) |
C26 | 0.0094 (19) | 0.014 (2) | 0.009 (2) | 0.0010 (16) | 0.0019 (16) | 0.0022 (17) |
C16 | 0.023 (2) | 0.018 (2) | 0.013 (2) | 0.0036 (19) | 0.0018 (19) | 0.0033 (18) |
C20 | 0.016 (2) | 0.014 (2) | 0.013 (2) | −0.0024 (17) | −0.0026 (17) | −0.0024 (17) |
C13 | 0.021 (2) | 0.015 (2) | 0.010 (2) | −0.0007 (18) | −0.0033 (18) | −0.0007 (17) |
C27 | 0.019 (2) | 0.012 (2) | 0.010 (2) | −0.0004 (17) | −0.0016 (17) | 0.0010 (17) |
C14 | 0.013 (2) | 0.011 (2) | 0.010 (2) | 0.0027 (16) | 0.0008 (16) | 0.0011 (16) |
C25 | 0.011 (2) | 0.010 (2) | 0.013 (2) | −0.0013 (16) | −0.0007 (16) | 0.0006 (17) |
C17 | 0.026 (2) | 0.011 (2) | 0.016 (2) | 0.0021 (18) | 0.0032 (19) | 0.0027 (18) |
C28 | 0.018 (2) | 0.009 (2) | 0.009 (2) | 0.0009 (16) | 0.0009 (17) | 0.0005 (16) |
C29 | 0.013 (2) | 0.010 (2) | 0.013 (2) | 0.0006 (16) | 0.0026 (17) | 0.0008 (17) |
C11 | 0.019 (2) | 0.012 (2) | 0.006 (2) | −0.0015 (17) | −0.0012 (17) | −0.0015 (16) |
C10 | 0.015 (2) | 0.011 (2) | 0.013 (2) | 0.0004 (16) | 0.0002 (17) | −0.0010 (17) |
C6 | 0.016 (2) | 0.013 (2) | 0.015 (2) | −0.0029 (17) | 0.0019 (18) | 0.0025 (18) |
C7 | 0.011 (2) | 0.011 (2) | 0.015 (2) | −0.0008 (16) | 0.0027 (17) | −0.0006 (17) |
C1 | 0.015 (2) | 0.011 (2) | 0.019 (2) | −0.0008 (17) | 0.0009 (18) | 0.0035 (18) |
C12 | 0.0106 (19) | 0.012 (2) | 0.011 (2) | −0.0005 (16) | 0.0024 (16) | −0.0007 (17) |
C15 | 0.018 (2) | 0.017 (2) | 0.009 (2) | 0.0005 (17) | 0.0011 (17) | 0.0002 (18) |
C30 | 0.018 (2) | 0.013 (2) | 0.009 (2) | −0.0024 (17) | 0.0006 (17) | −0.0027 (17) |
C8 | 0.024 (2) | 0.012 (2) | 0.017 (2) | −0.0014 (18) | −0.0004 (19) | −0.0027 (19) |
C31 | 0.011 (2) | 0.013 (2) | 0.021 (3) | 0.0017 (17) | 0.0033 (17) | −0.0001 (18) |
C22 | 0.027 (3) | 0.010 (2) | 0.022 (3) | −0.0043 (18) | 0.004 (2) | −0.0017 (19) |
C23 | 0.024 (2) | 0.018 (2) | 0.016 (2) | −0.0026 (19) | 0.0020 (19) | −0.0049 (19) |
C24 | 0.018 (2) | 0.018 (2) | 0.011 (2) | −0.0009 (18) | 0.0012 (17) | 0.0015 (18) |
C9 | 0.018 (2) | 0.014 (2) | 0.009 (2) | 0.0018 (17) | 0.0029 (17) | 0.0004 (17) |
C38 | 0.016 (2) | 0.016 (2) | 0.019 (2) | 0.0026 (17) | −0.0010 (18) | −0.0039 (19) |
C33 | 0.016 (2) | 0.013 (2) | 0.018 (2) | 0.0001 (17) | 0.0012 (18) | −0.0063 (18) |
C5 | 0.024 (2) | 0.012 (2) | 0.021 (3) | −0.0036 (18) | 0.004 (2) | 0.0026 (19) |
C40 | 0.032 (3) | 0.013 (2) | 0.016 (2) | −0.003 (2) | −0.002 (2) | 0.0004 (19) |
C32 | 0.026 (3) | 0.013 (2) | 0.021 (3) | −0.0004 (19) | −0.001 (2) | 0.0007 (19) |
C34 | 0.025 (3) | 0.016 (2) | 0.026 (3) | 0.003 (2) | 0.002 (2) | −0.005 (2) |
C4 | 0.036 (3) | 0.012 (2) | 0.024 (3) | −0.001 (2) | 0.004 (2) | 0.008 (2) |
C18 | 0.027 (3) | 0.016 (2) | 0.015 (2) | 0.0018 (19) | 0.0003 (19) | −0.0048 (19) |
C2 | 0.029 (3) | 0.015 (2) | 0.019 (3) | −0.004 (2) | −0.004 (2) | 0.0023 (19) |
C3 | 0.029 (3) | 0.021 (3) | 0.019 (3) | −0.001 (2) | −0.005 (2) | 0.011 (2) |
C21 | 0.028 (3) | 0.013 (2) | 0.016 (2) | −0.0007 (19) | −0.003 (2) | 0.0024 (18) |
C42 | 0.033 (3) | 0.021 (3) | 0.021 (3) | −0.002 (2) | −0.008 (2) | 0.008 (2) |
C35 | 0.044 (3) | 0.017 (3) | 0.028 (3) | 0.003 (2) | −0.003 (2) | −0.013 (2) |
C36 | 0.052 (4) | 0.028 (3) | 0.019 (3) | 0.002 (3) | −0.007 (3) | −0.015 (2) |
C37 | 0.035 (3) | 0.020 (3) | 0.018 (3) | 0.003 (2) | −0.004 (2) | −0.006 (2) |
Cu2—O2 | 1.920 (3) | C17—C18 | 1.364 (7) |
Cu2—O3 | 1.877 (3) | C28—H28A | 0.9700 |
Cu2—O11 | 1.940 (3) | C28—H28B | 0.9700 |
Cu2—O8 | 2.703 (4) | C28—C29 | 1.522 (6) |
Cu2—N2 | 1.961 (4) | C29—H29 | 0.9800 |
Cu1—O5 | 2.749 (3) | C29—C30 | 1.510 (6) |
Cu1—O2 | 1.916 (3) | C11—H11A | 0.9700 |
Cu1—O10 | 1.982 (3) | C11—H11B | 0.9700 |
Cu1—O1 | 1.878 (3) | C11—C10 | 1.509 (6) |
Cu1—N1 | 1.966 (4) | C10—H10 | 0.9800 |
Cu3—O5 | 1.907 (3) | C10—C9 | 1.513 (6) |
Cu3—O4 | 1.873 (3) | C6—C7 | 1.458 (6) |
Cu3—O8 | 1.957 (3) | C6—C1 | 1.427 (7) |
Cu3—N3 | 1.947 (4) | C6—C5 | 1.424 (6) |
Cu4—O5 | 1.921 (3) | C7—C8 | 1.506 (6) |
Cu4—O7 | 1.955 (3) | C1—C2 | 1.415 (7) |
Cu4—O6 | 1.869 (3) | C15—H15 | 0.9300 |
Cu4—N4 | 1.962 (4) | C30—H30A | 0.9700 |
O5—C29 | 1.424 (5) | C30—H30B | 0.9700 |
O2—C10 | 1.432 (5) | C8—H8A | 0.9600 |
O10—C39 | 1.244 (6) | C8—H8B | 0.9600 |
O7—C41 | 1.251 (5) | C8—H8C | 0.9600 |
O3—C19 | 1.313 (5) | C31—C33 | 1.461 (7) |
O4—C20 | 1.319 (5) | C31—C32 | 1.511 (7) |
O1—C1 | 1.317 (5) | C22—H22 | 0.9300 |
O6—C38 | 1.318 (6) | C22—C23 | 1.403 (7) |
O11—C39 | 1.248 (6) | C22—C21 | 1.373 (7) |
O8—C41 | 1.266 (6) | C23—H23 | 0.9300 |
N1—C7 | 1.300 (6) | C23—C24 | 1.369 (7) |
N1—C9 | 1.472 (6) | C24—H24 | 0.9300 |
C41—C42 | 1.503 (6) | C9—H9A | 0.9700 |
N3—C26 | 1.291 (6) | C9—H9B | 0.9700 |
N3—C28 | 1.474 (5) | C38—C33 | 1.426 (7) |
O9—H9C | 0.8499 | C38—C37 | 1.418 (7) |
O9—H9D | 0.8500 | C33—C34 | 1.417 (6) |
N2—C11 | 1.476 (6) | C5—H5 | 0.9300 |
N2—C12 | 1.297 (6) | C5—C4 | 1.374 (7) |
N4—C30 | 1.467 (5) | C40—H40A | 0.9600 |
N4—C31 | 1.299 (6) | C40—H40B | 0.9600 |
C39—C40 | 1.520 (6) | C40—H40C | 0.9600 |
C19—C14 | 1.424 (6) | C32—H32A | 0.9600 |
C19—C18 | 1.414 (7) | C32—H32B | 0.9600 |
C26—C27 | 1.512 (6) | C32—H32C | 0.9600 |
C26—C25 | 1.472 (6) | C34—H34 | 0.9300 |
C16—H16 | 0.9300 | C34—C35 | 1.366 (7) |
C16—C17 | 1.399 (7) | C4—H4 | 0.9300 |
C16—C15 | 1.371 (7) | C4—C3 | 1.385 (8) |
C20—C25 | 1.427 (6) | C18—H18 | 0.9300 |
C20—C21 | 1.415 (6) | C2—H2 | 0.9300 |
C13—H13A | 0.9600 | C2—C3 | 1.376 (7) |
C13—H13B | 0.9600 | C3—H3 | 0.9300 |
C13—H13C | 0.9600 | C21—H21 | 0.9300 |
C13—C12 | 1.508 (6) | C42—H42A | 0.9600 |
C27—H27A | 0.9600 | C42—H42B | 0.9600 |
C27—H27B | 0.9600 | C42—H42C | 0.9600 |
C27—H27C | 0.9600 | C35—H35 | 0.9300 |
C14—C12 | 1.466 (6) | C35—C36 | 1.389 (8) |
C14—C15 | 1.412 (6) | C36—H36 | 0.9300 |
C25—C24 | 1.409 (6) | C36—C37 | 1.377 (7) |
C17—H17 | 0.9300 | C37—H37 | 0.9300 |
O2—Cu2—O11 | 96.89 (14) | C30—C29—C28 | 112.6 (4) |
O2—Cu2—O8 | 84.89 (12) | C30—C29—H29 | 109.3 |
O2—Cu2—N2 | 85.74 (14) | N2—C11—H11A | 110.2 |
O3—Cu2—O2 | 173.00 (15) | N2—C11—H11B | 110.2 |
O3—Cu2—O11 | 86.73 (14) | N2—C11—C10 | 107.7 (3) |
O3—Cu2—O8 | 89.68 (13) | H11A—C11—H11B | 108.5 |
O3—Cu2—N2 | 92.70 (15) | C10—C11—H11A | 110.2 |
O11—Cu2—O8 | 82.40 (13) | C10—C11—H11B | 110.2 |
O11—Cu2—N2 | 161.66 (15) | O2—C10—C11 | 107.7 (4) |
N2—Cu2—O8 | 115.93 (13) | O2—C10—H10 | 109.6 |
O2—Cu1—O5 | 80.48 (12) | O2—C10—C9 | 108.7 (4) |
O2—Cu1—O10 | 95.10 (14) | C11—C10—H10 | 109.6 |
O2—Cu1—N1 | 85.01 (14) | C11—C10—C9 | 111.6 (4) |
O10—Cu1—O5 | 83.75 (13) | C9—C10—H10 | 109.6 |
O1—Cu1—O5 | 97.68 (12) | C1—C6—C7 | 123.5 (4) |
O1—Cu1—O2 | 176.33 (14) | C5—C6—C7 | 119.2 (4) |
O1—Cu1—O10 | 87.83 (14) | C5—C6—C1 | 117.4 (4) |
O1—Cu1—N1 | 92.51 (15) | N1—C7—C6 | 121.3 (4) |
N1—Cu1—O5 | 106.38 (13) | N1—C7—C8 | 119.3 (4) |
N1—Cu1—O10 | 169.71 (16) | C6—C7—C8 | 119.4 (4) |
O5—Cu3—O8 | 92.44 (14) | O1—C1—C6 | 125.6 (4) |
O5—Cu3—N3 | 86.17 (14) | O1—C1—C2 | 116.1 (4) |
O4—Cu3—O5 | 177.07 (15) | C2—C1—C6 | 118.3 (4) |
O4—Cu3—O8 | 88.43 (14) | N2—C12—C13 | 120.5 (4) |
O4—Cu3—N3 | 93.29 (15) | N2—C12—C14 | 121.3 (4) |
N3—Cu3—O8 | 173.28 (15) | C14—C12—C13 | 118.1 (4) |
O5—Cu4—O7 | 96.93 (14) | C16—C15—C14 | 123.5 (4) |
O5—Cu4—N4 | 84.04 (14) | C16—C15—H15 | 118.2 |
O7—Cu4—N4 | 164.11 (15) | C14—C15—H15 | 118.2 |
O6—Cu4—O5 | 170.48 (14) | N4—C30—C29 | 108.0 (4) |
O6—Cu4—O7 | 87.96 (14) | N4—C30—H30A | 110.1 |
O6—Cu4—N4 | 93.50 (15) | N4—C30—H30B | 110.1 |
Cu3—O5—Cu1 | 98.74 (12) | C29—C30—H30A | 110.1 |
Cu3—O5—Cu4 | 129.24 (17) | C29—C30—H30B | 110.1 |
Cu4—O5—Cu1 | 95.83 (12) | H30A—C30—H30B | 108.4 |
C29—O5—Cu1 | 116.7 (2) | C7—C8—H8A | 109.5 |
C29—O5—Cu3 | 108.9 (3) | C7—C8—H8B | 109.5 |
C29—O5—Cu4 | 107.0 (2) | C7—C8—H8C | 109.5 |
Cu1—O2—Cu2 | 129.60 (17) | H8A—C8—H8B | 109.5 |
C10—O2—Cu2 | 105.8 (3) | H8A—C8—H8C | 109.5 |
C10—O2—Cu1 | 108.9 (3) | H8B—C8—H8C | 109.5 |
C39—O10—Cu1 | 132.3 (3) | N4—C31—C33 | 122.0 (4) |
C41—O7—Cu4 | 129.8 (3) | N4—C31—C32 | 118.8 (4) |
C19—O3—Cu2 | 128.0 (3) | C33—C31—C32 | 119.2 (4) |
C20—O4—Cu3 | 126.4 (3) | C23—C22—H22 | 119.8 |
C1—O1—Cu1 | 127.5 (3) | C21—C22—H22 | 119.8 |
C38—O6—Cu4 | 126.8 (3) | C21—C22—C23 | 120.3 (4) |
C39—O11—Cu2 | 133.4 (3) | C22—C23—H23 | 120.8 |
Cu3—O8—Cu2 | 113.47 (15) | C24—C23—C22 | 118.5 (5) |
C41—O8—Cu2 | 95.5 (3) | C24—C23—H23 | 120.8 |
C41—O8—Cu3 | 130.7 (3) | C25—C24—H24 | 118.4 |
C7—N1—Cu1 | 128.8 (3) | C23—C24—C25 | 123.1 (4) |
C7—N1—C9 | 119.5 (4) | C23—C24—H24 | 118.4 |
C9—N1—Cu1 | 111.1 (3) | N1—C9—C10 | 108.4 (4) |
O7—C41—O8 | 125.8 (4) | N1—C9—H9A | 110.0 |
O7—C41—C42 | 118.0 (4) | N1—C9—H9B | 110.0 |
O8—C41—C42 | 116.1 (4) | C10—C9—H9A | 110.0 |
C26—N3—Cu3 | 128.5 (3) | C10—C9—H9B | 110.0 |
C26—N3—C28 | 121.0 (4) | H9A—C9—H9B | 108.4 |
C28—N3—Cu3 | 110.0 (3) | O6—C38—C33 | 126.0 (4) |
H9C—O9—H9D | 104.5 | O6—C38—C37 | 115.9 (4) |
C11—N2—Cu2 | 109.6 (3) | C37—C38—C33 | 118.1 (4) |
C12—N2—Cu2 | 129.1 (3) | C38—C33—C31 | 123.0 (4) |
C12—N2—C11 | 121.3 (4) | C34—C33—C31 | 119.3 (4) |
C30—N4—Cu4 | 111.4 (3) | C34—C33—C38 | 117.6 (5) |
C31—N4—Cu4 | 127.9 (3) | C6—C5—H5 | 118.7 |
C31—N4—C30 | 120.3 (4) | C4—C5—C6 | 122.6 (5) |
O10—C39—O11 | 127.6 (4) | C4—C5—H5 | 118.7 |
O10—C39—C40 | 117.2 (4) | C39—C40—H40A | 109.5 |
O11—C39—C40 | 115.2 (4) | C39—C40—H40B | 109.5 |
O3—C19—C14 | 125.2 (4) | C39—C40—H40C | 109.5 |
O3—C19—C18 | 116.8 (4) | H40A—C40—H40B | 109.5 |
C18—C19—C14 | 117.9 (4) | H40A—C40—H40C | 109.5 |
N3—C26—C27 | 120.4 (4) | H40B—C40—H40C | 109.5 |
N3—C26—C25 | 121.6 (4) | C31—C32—H32A | 109.5 |
C25—C26—C27 | 118.0 (4) | C31—C32—H32B | 109.5 |
C17—C16—H16 | 120.8 | C31—C32—H32C | 109.5 |
C15—C16—H16 | 120.8 | H32A—C32—H32B | 109.5 |
C15—C16—C17 | 118.3 (4) | H32A—C32—H32C | 109.5 |
O4—C20—C25 | 125.8 (4) | H32B—C32—H32C | 109.5 |
O4—C20—C21 | 116.8 (4) | C33—C34—H34 | 118.5 |
C21—C20—C25 | 117.4 (4) | C35—C34—C33 | 122.9 (5) |
H13A—C13—H13B | 109.5 | C35—C34—H34 | 118.5 |
H13A—C13—H13C | 109.5 | C5—C4—H4 | 120.3 |
H13B—C13—H13C | 109.5 | C5—C4—C3 | 119.5 (5) |
C12—C13—H13A | 109.5 | C3—C4—H4 | 120.3 |
C12—C13—H13B | 109.5 | C19—C18—H18 | 118.8 |
C12—C13—H13C | 109.5 | C17—C18—C19 | 122.5 (4) |
C26—C27—H27A | 109.5 | C17—C18—H18 | 118.8 |
C26—C27—H27B | 109.5 | C1—C2—H2 | 119.0 |
C26—C27—H27C | 109.5 | C3—C2—C1 | 122.0 (5) |
H27A—C27—H27B | 109.5 | C3—C2—H2 | 119.0 |
H27A—C27—H27C | 109.5 | C4—C3—H3 | 119.9 |
H27B—C27—H27C | 109.5 | C2—C3—C4 | 120.2 (5) |
C19—C14—C12 | 123.5 (4) | C2—C3—H3 | 119.9 |
C15—C14—C19 | 117.5 (4) | C20—C21—H21 | 118.9 |
C15—C14—C12 | 119.0 (4) | C22—C21—C20 | 122.2 (5) |
C20—C25—C26 | 122.2 (4) | C22—C21—H21 | 118.9 |
C24—C25—C26 | 119.4 (4) | C41—C42—H42A | 109.5 |
C24—C25—C20 | 118.4 (4) | C41—C42—H42B | 109.5 |
C16—C17—H17 | 119.9 | C41—C42—H42C | 109.5 |
C18—C17—C16 | 120.3 (4) | H42A—C42—H42B | 109.5 |
C18—C17—H17 | 119.9 | H42A—C42—H42C | 109.5 |
N3—C28—H28A | 110.4 | H42B—C42—H42C | 109.5 |
N3—C28—H28B | 110.4 | C34—C35—H35 | 120.3 |
N3—C28—C29 | 106.5 (3) | C34—C35—C36 | 119.3 (5) |
H28A—C28—H28B | 108.6 | C36—C35—H35 | 120.3 |
C29—C28—H28A | 110.4 | C35—C36—H36 | 119.9 |
C29—C28—H28B | 110.4 | C37—C36—C35 | 120.2 (5) |
O5—C29—C28 | 108.0 (3) | C37—C36—H36 | 119.9 |
O5—C29—H29 | 109.3 | C38—C37—H37 | 119.1 |
O5—C29—C30 | 108.4 (4) | C36—C37—C38 | 121.8 (5) |
C28—C29—H29 | 109.3 | C36—C37—H37 | 119.1 |
Cu2—O2—C10—C11 | 50.9 (4) | N2—C11—C10—O2 | −47.4 (5) |
Cu2—O2—C10—C9 | 172.0 (3) | N2—C11—C10—C9 | −166.7 (4) |
Cu2—O3—C19—C14 | −2.5 (7) | N4—Cu4—O6—C38 | 7.3 (4) |
Cu2—O3—C19—C18 | 178.5 (3) | N4—C31—C33—C38 | −0.5 (7) |
Cu2—O11—C39—O10 | −4.0 (8) | N4—C31—C33—C34 | 179.5 (4) |
Cu2—O11—C39—C40 | 175.8 (3) | C19—C14—C12—N2 | 1.8 (7) |
Cu2—O8—C41—O7 | −90.7 (5) | C19—C14—C12—C13 | −178.8 (4) |
Cu2—O8—C41—C42 | 85.7 (4) | C19—C14—C15—C16 | 1.5 (7) |
Cu2—N2—C11—C10 | 21.0 (4) | C26—N3—C28—C29 | −158.3 (4) |
Cu2—N2—C12—C13 | 178.5 (3) | C26—C25—C24—C23 | −178.9 (4) |
Cu2—N2—C12—C14 | −2.0 (6) | C16—C17—C18—C19 | 0.2 (8) |
Cu1—O5—C29—C28 | −66.2 (4) | C20—C25—C24—C23 | 0.7 (7) |
Cu1—O5—C29—C30 | 56.0 (4) | C27—C26—C25—C20 | −167.5 (4) |
Cu1—O2—C10—C11 | −166.2 (3) | C27—C26—C25—C24 | 12.0 (6) |
Cu1—O2—C10—C9 | −45.1 (4) | C14—C19—C18—C17 | 1.3 (7) |
Cu1—O10—C39—O11 | −22.5 (8) | C25—C20—C21—C22 | 0.3 (7) |
Cu1—O10—C39—C40 | 157.7 (4) | C17—C16—C15—C14 | 0.1 (7) |
Cu1—O1—C1—C6 | −4.2 (7) | C28—N3—C26—C27 | −2.4 (6) |
Cu1—O1—C1—C2 | 174.4 (3) | C28—N3—C26—C25 | 177.3 (4) |
Cu1—N1—C7—C6 | 8.2 (6) | C28—C29—C30—N4 | 160.4 (4) |
Cu1—N1—C7—C8 | −171.3 (3) | C11—N2—C12—C13 | 0.8 (6) |
Cu1—N1—C9—C10 | −18.5 (4) | C11—N2—C12—C14 | −179.7 (4) |
Cu3—O5—C29—C28 | 44.4 (4) | C11—C10—C9—N1 | 159.8 (4) |
Cu3—O5—C29—C30 | 166.7 (3) | C6—C1—C2—C3 | −0.8 (7) |
Cu3—O4—C20—C25 | −14.1 (7) | C6—C5—C4—C3 | −1.3 (8) |
Cu3—O4—C20—C21 | 167.4 (3) | C7—N1—C9—C10 | 169.2 (4) |
Cu3—O8—C41—O7 | 36.9 (7) | C7—C6—C1—O1 | −1.4 (7) |
Cu3—O8—C41—C42 | −146.7 (4) | C7—C6—C1—C2 | −179.9 (4) |
Cu3—N3—C26—C27 | 168.8 (3) | C7—C6—C5—C4 | −179.0 (5) |
Cu3—N3—C26—C25 | −11.5 (6) | C1—C6—C7—N1 | −0.8 (7) |
Cu3—N3—C28—C29 | 29.0 (4) | C1—C6—C7—C8 | 178.7 (4) |
Cu4—O5—C29—C28 | −172.1 (3) | C1—C6—C5—C4 | 1.1 (7) |
Cu4—O5—C29—C30 | −49.8 (4) | C1—C2—C3—C4 | 0.6 (8) |
Cu4—O7—C41—O8 | 7.7 (7) | C12—N2—C11—C10 | −160.9 (4) |
Cu4—O7—C41—C42 | −168.7 (3) | C12—C14—C15—C16 | 179.9 (4) |
Cu4—O6—C38—C33 | −3.7 (7) | C15—C16—C17—C18 | −1.0 (7) |
Cu4—O6—C38—C37 | 175.7 (3) | C15—C14—C12—N2 | −176.6 (4) |
Cu4—N4—C30—C29 | −13.5 (4) | C15—C14—C12—C13 | 2.9 (6) |
Cu4—N4—C31—C33 | 7.3 (6) | C30—N4—C31—C33 | 178.8 (4) |
Cu4—N4—C31—C32 | −172.6 (3) | C30—N4—C31—C32 | −1.1 (6) |
O5—Cu1—O1—C1 | −98.9 (4) | C31—N4—C30—C29 | 173.8 (4) |
O5—C29—C30—N4 | 41.0 (5) | C31—C33—C34—C35 | −178.8 (5) |
O2—C10—C9—N1 | 41.1 (5) | C22—C23—C24—C25 | −0.2 (7) |
O10—Cu1—O1—C1 | 177.7 (4) | C23—C22—C21—C20 | 0.2 (8) |
O7—Cu4—O6—C38 | 171.5 (4) | C9—N1—C7—C6 | 179.0 (4) |
O3—C19—C14—C12 | 0.6 (7) | C9—N1—C7—C8 | −0.5 (6) |
O3—C19—C14—C15 | 178.9 (4) | C38—C33—C34—C35 | 1.3 (8) |
O3—C19—C18—C17 | −179.6 (4) | C33—C38—C37—C36 | 0.6 (8) |
O4—C20—C25—C26 | 0.4 (7) | C33—C34—C35—C36 | −1.2 (9) |
O4—C20—C25—C24 | −179.2 (4) | C5—C6—C7—N1 | 179.4 (4) |
O4—C20—C21—C22 | 178.9 (4) | C5—C6—C7—C8 | −1.2 (6) |
O1—C1—C2—C3 | −179.4 (5) | C5—C6—C1—O1 | 178.5 (4) |
O6—C38—C33—C31 | −1.5 (7) | C5—C6—C1—C2 | 0.0 (7) |
O6—C38—C33—C34 | 178.4 (4) | C5—C4—C3—C2 | 0.5 (8) |
O6—C38—C37—C36 | −178.8 (5) | C32—C31—C33—C38 | 179.4 (4) |
O11—Cu2—O3—C19 | −159.8 (4) | C32—C31—C33—C34 | −0.5 (7) |
O8—Cu2—O3—C19 | 117.8 (4) | C34—C35—C36—C37 | 0.8 (9) |
O8—Cu3—O4—C20 | −161.1 (4) | C18—C19—C14—C12 | 179.6 (4) |
N1—Cu1—O1—C1 | 8.0 (4) | C18—C19—C14—C15 | −2.1 (6) |
N3—Cu3—O4—C20 | 12.3 (4) | C21—C20—C25—C26 | 178.9 (4) |
N3—C26—C25—C20 | 12.8 (6) | C21—C20—C25—C24 | −0.7 (6) |
N3—C26—C25—C24 | −167.7 (4) | C21—C22—C23—C24 | −0.3 (7) |
N3—C28—C29—O5 | −47.9 (4) | C35—C36—C37—C38 | −0.5 (9) |
N3—C28—C29—C30 | −167.5 (4) | C37—C38—C33—C31 | 179.1 (4) |
N2—Cu2—O3—C19 | 1.9 (4) | C37—C38—C33—C34 | −0.9 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9C···O4 | 0.85 | 2.08 | 2.894 (5) | 159 |
O9—H9C···O8 | 0.85 | 2.56 | 3.158 (5) | 128 |
O9—H9D···O3 | 0.85 | 2.08 | 2.928 (5) | 175 |
C28—H28A···O1 | 0.97 | 2.58 | 3.427 (6) | 146 |
C29—H29···O1i | 0.98 | 2.60 | 3.424 (5) | 142 |
C10—H10···O6ii | 0.98 | 2.51 | 3.351 (6) | 144 |
C8—H8A···O9iii | 0.96 | 2.44 | 3.372 (6) | 163 |
C9—H9B···O6 | 0.97 | 2.65 | 3.521 (6) | 150 |
C32—H32A···O9iii | 0.96 | 2.38 | 3.304 (6) | 162 |
C42—H42A···O11i | 0.96 | 2.66 | 3.256 (7) | 121 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) −x+3/2, y+1/2, −z+1/2. |
Acknowledgements
Authors' contributions are as follows: Conceptualization, MD, MG, MGN, ASD and IET; investigation, ASD and IET; writing (original draft), MG; writing (review and editing of the manuscript), MG, IET, MNG and MD; formal analysis, IET, JO and SC; resources, MG and MD; supervision, MG and IET.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Aly, M. M. (1999). J. Coord. Chem. 47, 505–521. Web of Science CrossRef CAS Google Scholar
Asadi, Z., Golchin, M., Eigner, V., Dusek, M. & Amirghofran, Z. (2018). J. Photochem. Photobiol. Chem. 361, 93–104. Web of Science CSD CrossRef CAS Google Scholar
Banerjee, A. & Chattopadhyay, S. (2019). Polyhedron, 159, 1–11. Web of Science CrossRef CAS Google Scholar
Banerjee, S., Nandy, M., Sen, S., Mandal, S., Rosair, G. M., Slawin, A. M. Z., Gómez García, C. J., Clemente-Juan, J. M., Zangrando, E., Guidolin, N. & Mitra, S. (2011). Dalton Trans. 40, 1652–1661. Web of Science CSD CrossRef CAS PubMed Google Scholar
Basak, S., Sen, S., Rosair, G., Desplanches, C., Garribba, E. & Mitra, S. (2009). Aust. J. Chem. 62, 366–375. Web of Science CSD CrossRef CAS Google Scholar
Biswas, R., Diaz, C., Bauzá, A., Frontera, A. & Ghosh, A. (2013). Dalton Trans. 42, 12274–12283. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Das, A., Goswami, S. & Ghosh, A. (2018). New J. Chem. 42, 19377–19389. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ferguson, A., Parkin, A. & Murrie, M. (2006). Dalton Trans. pp. 3627–3628. Web of Science CSD CrossRef Google Scholar
Fernandes, C., Neves, A., Vencato, I., Bortoluzzi, A. J., Drago, V., Weyhermüller, T. & Rentschler, E. (2000). Chem. Lett. 29, 540–541. Web of Science CSD CrossRef Google Scholar
Gheorghe, R., Ionita, G. A., Maxim, C., Caneschi, A., Sorace, L. & Andruh, M. (2019). Polyhedron, 171, 269–278. Web of Science CSD CrossRef CAS Google Scholar
Ghosh, A. K., Bauzá, A., Bertolasi, V., Frontera, A. & Ray, D. (2013). Polyhedron, 53, 32–39. Web of Science CSD CrossRef CAS Google Scholar
Ghosh, A. K., Clérac, R., Mathonière, C. & Ray, D. (2013). Polyhedron, 54, 196–200. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Haldar, S., Patra, A., Vijaykumar, G., Carrella, L. & Bera, M. (2016). Polyhedron, 117, 542–551. Web of Science CSD CrossRef CAS Google Scholar
Hari, N., Ghosh, S. & Mohanta, S. (2019). Inorg. Chim. Acta, 491, 34–41. Web of Science CSD CrossRef CAS Google Scholar
Kébé, M., Thiam, I. E., Sow, M. M., Diouf, O., Barry, A. H., Sall, A. S., Retailleau, P. & Gaye, M. (2021). Acta Cryst. E77, 708–713. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Liu, S., Wang, S., Cao, F., Fu, H., Li, D. & Dou, J. (2012). RSC Adv. 2, 1310–1313. Web of Science CSD CrossRef CAS Google Scholar
Lukov, V. V., Shcherbakov, I. N., Levchenkov, S. I., Popov, L. D. & Pankov, I. V. (2017). Russ. J. Coord. Chem. 43, 1–20. Web of Science CrossRef CAS Google Scholar
Mamour, S., Mayoro, D., Elhadj Ibrahima, T., Mohamed, G., Aliou Hamady, B. & Ellena, J. (2018). Acta Cryst. E74, 642–645. Web of Science CSD CrossRef IUCr Journals Google Scholar
Manna, S., Zangrando, E., Puschmann, H. & Manna, S. C. (2019). Polyhedron, 162, 285–292. Web of Science CSD CrossRef CAS Google Scholar
Maurya, M. R., Bisht, M., Chaudhary, N., Avecilla, F., Kumar, U. & Hsu, H.-F. (2013). Polyhedron, 54, 180–188. Web of Science CSD CrossRef CAS Google Scholar
Mitra, M., Maji, A. K., Ghosh, B. K., Raghavaiah, P., Ribas, J. & Ghosh, R. (2014). Polyhedron, 67, 19–26. Web of Science CSD CrossRef CAS Google Scholar
Monfared, H. H., Sanchiz, J., Kalantari, Z. & Janiak, C. (2009). Inorg. Chim. Acta, 362, 3791–3795. Web of Science CSD CrossRef CAS Google Scholar
Nesterova, O. V., Bondarenko, O. E., Pombeiro, A. J. L. & Nesterov, D. S. (2020). Dalton Trans. 49, 4710–4724. Web of Science CSD CrossRef CAS PubMed Google Scholar
Osypiuk, D., Cristóvão, B. & Bartyzel, A. (2020). Crystals, 10, 1004. Web of Science CSD CrossRef Google Scholar
Patra, A., Haldar, S., Kumar, G. V., Carrella, L., Ghosh, A. K. & Bera, M. (2015). Inorg. Chim. Acta, 436, 195–204. Web of Science CSD CrossRef CAS Google Scholar
Popov, L. D., Levchenkov, S. I., Shcherbakov, I. N., Lukov, V. V., Suponitsky, K. Y. & Kogan, V. A. (2012). Inorg. Chem. Commun. 17, 1–4. Web of Science CSD CrossRef CAS Google Scholar
Sall, O., Tamboura, F. B., Sy, A., Barry, A. H., Thiam, E. I., Gaye, M. & Ellena, J. (2019). Acta Cryst. E75, 1069–1075. Web of Science CSD CrossRef ICSD IUCr Journals Google Scholar
Sanyal, R., Ketkov, S., Purkait, S., Mautner, F. A., Zhigulin, G. & Das, D. (2017). New J. Chem. 41, 8586–8597. Web of Science CSD CrossRef CAS Google Scholar
Sarr, M., Diop, M., Thiam, I. E., Gaye, M., Barry, A. H., Alvarez, N. & Ellena, J. (2018a). Eur. J. Chem. 9, 67–73. CSD CrossRef CAS Google Scholar
Sarr, M., Diop, M., Thiam, E. I., Gaye, M., Barry, A. H., Orton, J. B. & Coles, S. J. (2018b). Acta Cryst. E74, 1862–1866. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shit, S., Nandy, M., Rosair, G., Fallah, M. S. E., Ribas, J., Garribba, E. & Mitra, S. (2013). Polyhedron, 52, 963–969. Web of Science CSD CrossRef CAS Google Scholar
Siluvai, G. S. & Murthy, N. N. (2009). Polyhedron, 28, 2149–2156. Web of Science CSD CrossRef CAS Google Scholar
Singh, Y. P., Patel, R. N., Singh, Y., Choquesillo-Lazarte, D. & Butcher, R. J. (2017). Dalton Trans. 46, 2803–2820. Web of Science CSD CrossRef CAS PubMed Google Scholar
Song, Y., Gamez, P., Roubeau, O., Lutz, M., Spek, A. L. & Reedijk, J. (2003). Eur. J. Inorg. Chem. pp. 2924–2928. Web of Science CSD CrossRef Google Scholar
Xie, Q.-W., Chen, X., Hu, K.-Q., Wang, Y.-T., Cui, A.-L. & Kou, H.-Z. (2012). Polyhedron, 38, 213–217. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.