research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-(benzo[d]thia­zol-2-yl)-3,3-bis­­(ethyl­sulfan­yl)acrylo­nitrile

crossmark logo

aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 3 March 2022; accepted 7 March 2022; online 10 March 2022)

In the title compound, C14H14N2S3, the double-bond system of the acrylo­nitrile moiety is significantly non-planar, with absolute cis torsion angles of 13.9 (2) and 15.1 (2)°. The ring system and the double bond system subtend an inter­planar angle of 11.16 (4)°. The wide angle C—C(CN)=C of 129.40 (12)° may be associated with a balance between planarity and avoidance of a very short S⋯S contact.

1. Chemical context

Research into medicinal chemistry based on benzo­thia­zoles has become a fast developing and progressively more active topic. The high degree of structural diversity has proved to be important in the search for new effective treatments (Ammazzalorso et al., 2020[Ammazzalorso, A., Carradori, S., Amoroso, R. & Fernández, I. F. (2020). Eur. J. Med. Chem. 207, 112762.]; Elgemeie, 1989[Elgemeie, G. H. (1989). Chem. Ind. 19, 653-654.]). A large number of therapeutic agents based on benzo­thia­zole systems have been synthesized and evaluated in terms of their pharmacological properties (Gill et al., 2015[Gill, R. K., Rawal, R. K. & Bariwal, J. (2015). Arch. Pharm. Chem. Life Sci. 348, 155-178.]; Fathy et al., 1988[Fathy, N. M., Motti, F. M. & Elgemeie, G. H. (1988). Arch. Pharm. Pharm. Med. Chem. 321, 509-512.]). Much information about benzo­thia­zoles has been reported in the scientific literature, describing their anti-inflammatory, anti­microbial, neuroprotective, anti­convulsant and anti­proliferative effects (Seenaiah et al., 2014[Seenaiah, D., Reddy, P. R., Reddy, G. M., Padmaja, A., Padmavathi, V. & Siva krishna, N. (2014). Eur. J. Med. Chem. 77, 1-7.]). The mol­ecular mechanisms responsible for this variety of pharmacological activity have not been completely established, and various biological pathways have been indicated as possible targets of this class of mol­ecules (Keri et al., 2015[Keri, R. S., Patil, M. R., Patil, S. A. & Budagumpi, S. (2015). Eur. J. Med. Chem. 89, 207-251.]). We are engaged in developing synthetic strategies for benzothaizole systems that show important biological activity as novel anti­microbial and anti­viral agents (Azzam et al. 2017a[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820-1822.],b[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041-1043.], 2020a[Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023-30036.],b[Azzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182-26194.],c[Azzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640-1655.], 2021[Azzam, R. A., Elgemeie, G. H., Seif, M. M. & Jones, P. G. (2021). Acta Cryst. E77, 891-894.]; Elgemeie et al., 2000a[Elgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000a). Phosphorus Sulfur Silicon, 165, 265-272.],b[Elgemeie, G. H., Shams, Z., Elkholy, M. & Abbas, N. S. (2000b). Heterocycl. Commun. 6, 363-268.]; 2020[Elgemeie, G. H., Azzam, R. A. & Osman, R. R. (2020). Inorg. Chim. Acta, 502, 119302.]).

As an extension of this research (Fathy & Elgemeie, 1988[Fathy, N. M. & Elgemeie, G. H. (1988). Sulfur Lett. 7, 189-193.]; Elgemeie & Elghandour, 1990[Elgemeie, G. H. & Elghandour, A. H. (1990). Phosphorus Sulfur Silicon, 48, 281-284.]), we report here a novel benzo­thia­zole cyano­ketene di­thio­acetal (2). Compound 2 was synthesized by the reaction of 2-cyano­methyl­benzo­thia­zole 1 with carbon di­sulfide in the presence of sodium ethoxide, followed by alkyl­ation with ethyl iodide. The structure of 2 was originally based on its elemental analysis and spectroscopic data (see Experimental). In order to establish the structure of the compound unambiguously, the crystal structure was determined.

2. Structural commentary

The mol­ecule of 2 is shown in Fig. 1[link]. The heterocyclic system is coplanar to within an r.m.s. deviation of only 0.007 Å, and its dimensions are as expected (a selection of mol­ecular dimensions are presented in Table 1[link]). There is appreciable twisting of ca 14° about the double bond C8=C9 (see torsion angles in Table 1[link]), so that the `plane' of the atoms C2, C8, C9, C10, S2 and S3 displays an r.m.s. deviation of 0.14 Å; the two planes subtend an inter­planar angle of 11.16 (4)°. The angle C2—C8=C9 (formally sp2) is strikingly wide, at 129.40 (12)°; for comparison, the corresponding angles in the five structures mentioned below (with refcodes) range from 122–126°. One might speculate that this large angle and the deviation from planarity about the double bond represent aspects of a compromise between (i) achieving coplanarity of the heterocycle with the double-bond system and (ii) avoiding too short an S⋯S contact. The intra­molecular S⋯S distances are S1⋯S3 = 3.1155 (5) and S2⋯S3 = 3.0496 (5) Å. The ethyl groups project to opposite sides of the mol­ecule.

[Scheme 1]

Table 1
Selected geometric parameters (Å, °)

S1—C7A 1.7371 (13) C3A—C7A 1.4057 (17)
S1—C2 1.7519 (13) C9—S3 1.7489 (13)
C2—N3 1.3078 (16) C9—S2 1.7526 (13)
N3—C3A 1.3813 (16)    
       
C7A—S1—C2 88.97 (6) C9—C8—C2 129.40 (12)
N3—C2—S1 115.52 (9) C10—C8—C2 111.90 (10)
C2—N3—C3A 110.98 (11) C8—C9—S3 121.13 (10)
N3—C3A—C7A 115.03 (11) C8—C9—S2 117.68 (10)
C3A—C7A—S1 109.49 (9) S3—C9—S2 121.14 (7)
C9—C8—C10 118.69 (11)    
       
C2—C8—C9—S3 13.90 (19) C2—C8—C9—S2 −163.46 (10)
C10—C8—C9—S2 15.10 (16) C8—C9—S2—C11 −146.43 (10)
[Figure 1]
Figure 1
The mol­ecule of 2 in the crystal. Ellipsoids represent 50% probability levels.

3. Supra­molecular features

The mol­ecular packing is fairly featureless; a general view is given in Fig. 2[link] and some borderline possible `weak' hydrogen bonds are listed in Table 2[link]. The main feature is the loose association of pairs of mol­ecules across inversion centres, whereby the heterocyclic systems face each other; however, there is a considerable offset. The centroids of the five-membered rings lie 3.72 Å apart, and the shortest contact is C7A⋯C7A′ (operator 1 − x, 1 − y, 1 − z) 3.741 (2) Å. The sulfur atom S1 lies 3.61 Å from the centroid of the six-membered ring in the facing mol­ecule; such potential S⋯π inter­actions have been discussed by e.g. Ringer et al. (2007[Ringer, A. L., Senenko, A. & Sherrill, C. D. (2007). Protein Sci. 16, 2216-2223.]) and Silva et al. (2018[Silva, R. F. N., Sacco, A. C. S., Caracelli, I., Zukerman-Schpector, J. & Tiekink, E. R. T. (2018). Z. Krist. Cryst. Mater. 233, 531-537.]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯S2i 0.95 3.02 3.6083 (13) 122
C12—H12B⋯S1ii 0.98 3.03 3.9677 (15) 161
C13—H13A⋯N3i 0.99 2.68 3.5746 (17) 151
C14—H14A⋯S1iii 0.98 2.91 3.7648 (15) 146
C14—H14B⋯N3iv 0.98 2.63 3.5277 (18) 152
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
Crystal packing of 2 viewed parallel to the a axis (hydrogen atoms omitted for clarity). The loose association of the heterocyclic systems across inversion centres can be recognized in the central horizontal rows of rings.

4. Database survey

Searches of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) were performed using ConQuest Version 2021.3.0. A search for the moiety benzo[d]thia­zol-2-yl joined to C(CN)=C gave 27 hits, but none in which any further atom at the double bond was sulfur. A search for the group C—C(CN)=C(S—C)2, with the first carbon atom three-coordinate, both sulfur atoms two-coordinate and not involving cyclicity, gave only five hits. The refcodes, references and absolute cis torsion angles NC—C=C—S were as follows: CIYDIY, Kumar et al. (2008[Kumar, S., Peruncheralathan, S., Ila, H. & Junjappa, H. (2008). Org. Lett. 10, 965-968.]), 9.9°; MTBCEY, Abrahamsson et al. (1974[Abrahamsson, S., Rehnberg, G., Liljefors, T. & Sandström, J. (1974). Acta Chem. Scand. 28b, 1109-1120.]), 15.4°; VAPJAA, Azzam et al. (2017c[Azzam, R. A., Elgemeie, G. H., Ramadan, R. & Jones, P. G. (2017c). Acta Cryst. E73, 752-754.]), 7.3°; VELSIP, Peng et al. (2006[Peng, T., Fu, Y., Yu, C.-Y., Wang, L.-B. & Huang, Z.-T. (2006). Acta Cryst. E62, o3382-o3383.]), 3.6°; ZEDJEX, Osaka et al. (1994[Osaka, H., Ishida, T., Nogami, T., Yamazaki, R., Yasui, M., Iwasaki, F., Mizoguchi, A., Kubata, M., Uemiya, T. & Nishimura, A. (1994). Bull. Chem. Soc. Jpn, 67, 918-923.]), 10.5°.

5. Synthesis and crystallization

A mixture of sodium ethoxide (0.08 mol) and 2-cyano­methyl­benzo­thia­zole (0.04 mol) in absolute ethanol (100 ml) was refluxed for 20 min. After cooling, carbon di­sulfide (0.04 mol) was added gradually and then the solution was warmed for 20 min. Ethyl iodide (0.08 mol) was then added, and the reaction mixture was stirred overnight at room temperature. The solution was poured onto ice–water and the solid product thus formed was filtered off. The product was purified by dissolving it in hot petroleum ether, filtering, and allowing the solution to cool. The solid that formed was recrystallized from DMF to give pale-yellow crystals, m.p. = 366–368 K, yield 72%; IR (KBr, cm−1): υ 3056 (ArCH), 2924 (CH3), 2213 (CN), 1502 (C=N); 1H NMR (300 MHz, DMSO-d6): δ 1.27–1.34 (m, 6H, 2 SCH2CH3), 3.16–3.23 (m, 4H, 2 SCH2CH3), 7.50–7.57 (m, 2H, benzo­thia­zole H), 8.04–8.15 (m, 2H, benzo­thia­zole H); analysis, calculated for C14H14N2S3 (306.47): C% 54.87; H% 4.60; N% 9.14; S% 31.39; found: C% 54.85, H% 4.58; N% 9.16; MS m/z (%): 306 (M+, 15%), 276 (100%), 273 (57%), 248 (26%), 217 (76%), 204 (26%), 146 (20%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The methyl groups were refined as idealized rigid groups allowed to rotate but not tip, with C—H = 0.98 Å and H—C—H = 109.5°. Other hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic = 0.95, C—Hmethyl­ene = 0.99 Å). The U(H) values were fixed at 1.5 or 1.2 times the equivalent Uiso value of the parent carbon atoms for methyl and non-methyl hydrogen atoms, respectively.

Table 3
Experimental details

Crystal data
Chemical formula C14H14N2S3
Mr 306.45
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 10.0771 (3), 16.0292 (5), 17.8768 (6)
V3) 2887.58 (16)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.50
Crystal size (mm) 0.4 × 0.4 × 0.15
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.954, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 58593, 4475, 3679
Rint 0.053
(sin θ/λ)max−1) 0.729
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.077, 1.05
No. of reflections 4475
No. of parameters 174
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.33
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015).

2-(Benzo[d]thiazol-2-yl)-3,3-bis(ethylsulfanyl)acrylonitrile top
Crystal data top
C14H14N2S3Dx = 1.410 Mg m3
Mr = 306.45Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 10579 reflections
a = 10.0771 (3) Åθ = 2.6–30.3°
b = 16.0292 (5) ŵ = 0.50 mm1
c = 17.8768 (6) ÅT = 100 K
V = 2887.58 (16) Å3Tablet, pale yellow
Z = 80.4 × 0.4 × 0.15 mm
F(000) = 1280
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4475 independent reflections
Radiation source: Enhance (Mo) X-ray Source3679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 16.1419 pixels mm-1θmax = 31.2°, θmin = 2.3°
ω–scanh = 1414
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2014)
k = 2322
Tmin = 0.954, Tmax = 1.000l = 2525
58593 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0318P)2 + 1.3474P]
where P = (Fo2 + 2Fc2)/3
4475 reflections(Δ/σ)max = 0.002
174 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48621 (3)0.63526 (2)0.48864 (2)0.01440 (8)
C20.64877 (12)0.62079 (7)0.52085 (7)0.0129 (2)
N30.72242 (10)0.57082 (6)0.48059 (6)0.0141 (2)
C3A0.65225 (12)0.54010 (7)0.42020 (7)0.0135 (2)
C40.70382 (14)0.48489 (8)0.36681 (7)0.0169 (2)
H40.7931370.4662080.3697500.020*
C50.62153 (14)0.45833 (8)0.30983 (7)0.0194 (3)
H50.6548220.4209830.2730820.023*
C60.48945 (14)0.48568 (8)0.30536 (7)0.0198 (3)
H60.4350440.4665380.2654990.024*
C70.43675 (14)0.53990 (8)0.35774 (7)0.0179 (3)
H70.3470760.5578690.3546950.022*
C7A0.51995 (12)0.56737 (7)0.41532 (7)0.0141 (2)
C80.70646 (12)0.65707 (7)0.58882 (7)0.0135 (2)
C90.66224 (12)0.72227 (7)0.63140 (7)0.0137 (2)
C100.82871 (13)0.61618 (8)0.60980 (7)0.0147 (2)
N10.92273 (12)0.58066 (7)0.62713 (6)0.0200 (2)
S20.77453 (3)0.76792 (2)0.69408 (2)0.01682 (8)
C110.67428 (14)0.80013 (8)0.77350 (7)0.0190 (3)
H11A0.7238280.8423570.8027100.023*
H11B0.5919430.8266940.7549150.023*
C120.63786 (15)0.72831 (9)0.82435 (8)0.0224 (3)
H12A0.5847320.6876260.7964660.034*
H12B0.5863210.7492990.8668590.034*
H12C0.7189420.7014440.8426930.034*
S30.50142 (3)0.76155 (2)0.62083 (2)0.01684 (8)
C130.53315 (14)0.87150 (8)0.60082 (8)0.0192 (3)
H13A0.4473420.9008150.5947730.023*
H13B0.5798830.8968220.6439200.023*
C140.61552 (15)0.88404 (9)0.53106 (8)0.0242 (3)
H14A0.7014890.8562820.5371510.036*
H14B0.6295380.9438370.5228070.036*
H14C0.5689270.8601300.4879760.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01247 (14)0.01380 (15)0.01694 (15)0.00051 (11)0.00032 (11)0.00103 (11)
C20.0125 (5)0.0120 (5)0.0143 (5)0.0005 (4)0.0015 (4)0.0019 (4)
N30.0150 (5)0.0129 (5)0.0143 (5)0.0007 (4)0.0011 (4)0.0009 (4)
C3A0.0158 (6)0.0119 (5)0.0129 (5)0.0019 (4)0.0006 (4)0.0020 (4)
C40.0197 (6)0.0152 (6)0.0158 (6)0.0014 (5)0.0009 (5)0.0003 (5)
C50.0268 (7)0.0158 (6)0.0157 (6)0.0009 (5)0.0002 (5)0.0016 (5)
C60.0261 (7)0.0171 (6)0.0163 (6)0.0023 (5)0.0067 (5)0.0011 (5)
C70.0184 (6)0.0153 (6)0.0200 (6)0.0014 (5)0.0039 (5)0.0021 (5)
C7A0.0173 (6)0.0106 (5)0.0144 (5)0.0013 (4)0.0003 (5)0.0012 (4)
C80.0131 (6)0.0127 (5)0.0145 (5)0.0018 (4)0.0018 (4)0.0008 (4)
C90.0134 (6)0.0127 (5)0.0150 (6)0.0017 (4)0.0024 (4)0.0010 (4)
C100.0182 (6)0.0137 (5)0.0122 (5)0.0011 (5)0.0010 (4)0.0028 (4)
N10.0218 (6)0.0205 (5)0.0177 (5)0.0028 (5)0.0026 (4)0.0029 (4)
S20.01627 (15)0.01690 (16)0.01730 (15)0.00122 (12)0.00140 (11)0.00523 (12)
C110.0250 (7)0.0161 (6)0.0159 (6)0.0035 (5)0.0025 (5)0.0049 (5)
C120.0231 (7)0.0208 (7)0.0232 (7)0.0015 (5)0.0051 (5)0.0012 (5)
S30.01226 (15)0.01522 (15)0.02304 (17)0.00007 (11)0.00338 (11)0.00326 (12)
C130.0198 (6)0.0139 (6)0.0240 (7)0.0024 (5)0.0015 (5)0.0002 (5)
C140.0270 (7)0.0238 (7)0.0218 (7)0.0025 (6)0.0011 (6)0.0031 (5)
Geometric parameters (Å, º) top
S1—C7A1.7371 (13)C9—S31.7489 (13)
S1—C21.7519 (13)C9—S21.7526 (13)
C2—N31.3078 (16)C10—N11.1480 (17)
C2—C81.4672 (17)S2—C111.8174 (13)
N3—C3A1.3813 (16)C11—C121.5121 (19)
C3A—C41.4015 (17)C11—H11A0.9900
C3A—C7A1.4057 (17)C11—H11B0.9900
C4—C51.3807 (18)C12—H12A0.9800
C4—H40.9500C12—H12B0.9800
C5—C61.404 (2)C12—H12C0.9800
C5—H50.9500S3—C131.8265 (14)
C6—C71.3835 (19)C13—C141.512 (2)
C6—H60.9500C13—H13A0.9900
C7—C7A1.3988 (18)C13—H13B0.9900
C7—H70.9500C14—H14A0.9800
C8—C91.3675 (17)C14—H14B0.9800
C8—C101.4449 (18)C14—H14C0.9800
C7A—S1—C288.97 (6)S3—C9—S2121.14 (7)
N3—C2—C8118.28 (11)N1—C10—C8177.05 (14)
N3—C2—S1115.52 (9)C9—S2—C11105.02 (6)
C8—C2—S1126.18 (9)C12—C11—S2112.85 (9)
C2—N3—C3A110.98 (11)C12—C11—H11A109.0
N3—C3A—C4124.58 (12)S2—C11—H11A109.0
N3—C3A—C7A115.03 (11)C12—C11—H11B109.0
C4—C3A—C7A120.38 (12)S2—C11—H11B109.0
C5—C4—C3A118.32 (12)H11A—C11—H11B107.8
C5—C4—H4120.8C11—C12—H12A109.5
C3A—C4—H4120.8C11—C12—H12B109.5
C4—C5—C6121.01 (12)H12A—C12—H12B109.5
C4—C5—H5119.5C11—C12—H12C109.5
C6—C5—H5119.5H12A—C12—H12C109.5
C7—C6—C5121.44 (12)H12B—C12—H12C109.5
C7—C6—H6119.3C9—S3—C13101.91 (6)
C5—C6—H6119.3C14—C13—S3112.70 (10)
C6—C7—C7A117.76 (12)C14—C13—H13A109.1
C6—C7—H7121.1S3—C13—H13A109.1
C7A—C7—H7121.1C14—C13—H13B109.1
C7—C7A—C3A121.08 (12)S3—C13—H13B109.1
C7—C7A—S1129.43 (10)H13A—C13—H13B107.8
C3A—C7A—S1109.49 (9)C13—C14—H14A109.5
C9—C8—C10118.69 (11)C13—C14—H14B109.5
C9—C8—C2129.40 (12)H14A—C14—H14B109.5
C10—C8—C2111.90 (10)C13—C14—H14C109.5
C8—C9—S3121.13 (10)H14A—C14—H14C109.5
C8—C9—S2117.68 (10)H14B—C14—H14C109.5
C7A—S1—C2—N30.65 (10)C2—S1—C7A—C7178.99 (13)
C7A—S1—C2—C8177.35 (11)C2—S1—C7A—C3A0.97 (9)
C8—C2—N3—C3A178.07 (10)N3—C2—C8—C9165.41 (12)
S1—C2—N3—C3A0.10 (13)S1—C2—C8—C916.64 (19)
C2—N3—C3A—C4179.85 (12)N3—C2—C8—C1013.23 (16)
C2—N3—C3A—C7A0.71 (15)S1—C2—C8—C10164.72 (9)
N3—C3A—C4—C5179.09 (12)C10—C8—C9—S3167.54 (9)
C7A—C3A—C4—C50.01 (18)C2—C8—C9—S313.90 (19)
C3A—C4—C5—C60.11 (19)C10—C8—C9—S215.10 (16)
C4—C5—C6—C70.2 (2)C2—C8—C9—S2163.46 (10)
C5—C6—C7—C7A0.5 (2)C8—C9—S2—C11146.43 (10)
C6—C7—C7A—C3A0.63 (19)S3—C9—S2—C1136.21 (9)
C6—C7—C7A—S1179.41 (10)C9—S2—C11—C1277.62 (11)
N3—C3A—C7A—C7178.79 (11)C8—C9—S3—C13123.70 (11)
C4—C3A—C7A—C70.39 (18)S2—C9—S3—C1353.57 (9)
N3—C3A—C7A—S11.17 (13)C9—S3—C13—C1459.99 (11)
C4—C3A—C7A—S1179.64 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···S2i0.953.023.6083 (13)122
C12—H12B···S1ii0.983.033.9677 (15)161
C13—H13A···N3i0.992.683.5746 (17)151
C14—H14A···S1iii0.982.913.7648 (15)146
C14—H14B···N3iv0.982.633.5277 (18)152
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1/2, y+3/2, z+1; (iv) x+3/2, y+1/2, z.
 

Acknowledgements

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

First citationAbrahamsson, S., Rehnberg, G., Liljefors, T. & Sandström, J. (1974). Acta Chem. Scand. 28b, 1109–1120.  CSD CrossRef Web of Science Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAmmazzalorso, A., Carradori, S., Amoroso, R. & Fernández, I. F. (2020). Eur. J. Med. Chem. 207, 112762.  Web of Science CrossRef PubMed Google Scholar
First citationAzzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023–30036.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820–1822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041–1043.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Ramadan, R. & Jones, P. G. (2017c). Acta Cryst. E73, 752–754.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Seif, M. M. & Jones, P. G. (2021). Acta Cryst. E77, 891–894.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182–26194.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAzzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640–1655.  Web of Science CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H. (1989). Chem. Ind. 19, 653–654.  Google Scholar
First citationElgemeie, G. H., Azzam, R. A. & Osman, R. R. (2020). Inorg. Chim. Acta, 502, 119302.  Web of Science CrossRef Google Scholar
First citationElgemeie, G. H. & Elghandour, A. H. (1990). Phosphorus Sulfur Silicon, 48, 281–284.  CrossRef CAS Web of Science Google Scholar
First citationElgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000a). Phosphorus Sulfur Silicon, 165, 265–272.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., Shams, Z., Elkholy, M. & Abbas, N. S. (2000b). Heterocycl. Commun. 6, 363–268.  CrossRef CAS Google Scholar
First citationFathy, N. M. & Elgemeie, G. H. (1988). Sulfur Lett. 7, 189–193.  CAS Google Scholar
First citationFathy, N. M., Motti, F. M. & Elgemeie, G. H. (1988). Arch. Pharm. Pharm. Med. Chem. 321, 509–512.  CrossRef CAS Web of Science Google Scholar
First citationGill, R. K., Rawal, R. K. & Bariwal, J. (2015). Arch. Pharm. Chem. Life Sci. 348, 155–178.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKeri, R. S., Patil, M. R., Patil, S. A. & Budagumpi, S. (2015). Eur. J. Med. Chem. 89, 207–251.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKumar, S., Peruncheralathan, S., Ila, H. & Junjappa, H. (2008). Org. Lett. 10, 965–968.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOsaka, H., Ishida, T., Nogami, T., Yamazaki, R., Yasui, M., Iwasaki, F., Mizoguchi, A., Kubata, M., Uemiya, T. & Nishimura, A. (1994). Bull. Chem. Soc. Jpn, 67, 918–923.  CSD CrossRef CAS Web of Science Google Scholar
First citationPeng, T., Fu, Y., Yu, C.-Y., Wang, L.-B. & Huang, Z.-T. (2006). Acta Cryst. E62, o3382–o3383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRinger, A. L., Senenko, A. & Sherrill, C. D. (2007). Protein Sci. 16, 2216–2223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeenaiah, D., Reddy, P. R., Reddy, G. M., Padmaja, A., Padmavathi, V. & Siva krishna, N. (2014). Eur. J. Med. Chem. 77, 1–7.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSilva, R. F. N., Sacco, A. C. S., Caracelli, I., Zukerman-Schpector, J. & Tiekink, E. R. T. (2018). Z. Krist. Cryst. Mater. 233, 531–537.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds