research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of anhydrous and hydrated ceftibuten

crossmark logo

aPharmaceutical Sciences, Pfizer Global Research & Development, Groton, Connecticut 06340, USA, and bDepartment of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, USA
*Correspondence e-mail: geoffrey.wood@pfizer.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 23 December 2021; accepted 22 February 2022; online 10 March 2022)

Ceftibuten, C15H14N4O6S2, with the systematic name (6R,7R)-7-{[(Z)-2-(2-amino-1,3-thia­zol-4-yl)-4-carb­oxy­but-2-eno­yl]amino}-8-oxo-5-thia-1-aza­bicyclo­[4.2.0]oct-2-ene-2-carb­oxy­lic acid, is a third generation, orally administered cephalosporin anti­biotic with broad anti­microbial activity and stability against extended spectrum β-lactamases. Ceftibuten can exist in various hydration states and to better understand the location of the water mol­ecules of crystallization and their effect on the structure, the crystal structures of anhydrous (I) and hydrated (II) ceftibuten were determined and both occur as zwitterions with proton transfer from the carboxyl­ate group adjacent to the β-lactam ring to the N atom of the thia­zole ring. The β-lactam ring in (I) is almost planar but the equivalent grouping in (II) is slightly buckled. In the extended structure of (I), O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. In (II), O—H⋯Oc, N—H⋯Oc, O—H⋯Ow, N—H⋯Ow and Ow—H⋯Ow (c = ceftibuten, w = water) hydrogen bonds link the components into a three-dimensional network. A large void space is present within the anhydrous crystal structure that can accommodate between two and three mol­ecules of water.

1. Chemical context

Ceftibuten, originally marketed under the tradename Cedax in the USA, is a third-generation cephalosporin anti­biotic with activity against a variety of bacterial strains and resistance to extended spectrum β-lactamases (Wiseman & Balfour, 1994[Wiseman, L. R. & Balfour, J. A. (1994). Drugs, 47, 784-808.]; Hamashima et al., 1990[Hamashima, Y., Minami, K., Kawata, K., Sakamoto, T., Takeda, T., Suzuki, Y. & Tujikawa, M. (1990). Crystalline hydrate of oral cephalosporin and its composition. US Patent 4812561A.]). Oral administration of ceftibuten is effective for treating urinary tract or respiratory tract infections, including many caused by β-lactamase-expressing bacterial strains (Owens et al., 1997[Owens, R. C. Jr, Nightingale, C. H. & Nicolau, D. P. (1997). Pharmacotherapy, 17, 707-720.]). Despite its withdrawal from the US market, because of its effectiveness and stability against β-lactamases, renewed inter­est in ceftibuten for multi-drug-resistant urinary tract infections (UTIs) has emerged, and studies are underway investigating oral administration of ceftibuten co-administered with a β-lactamase inhibitor as an alternative to hospitalization for complicated UTIs (Veeraraghavan et al., 2021[Veeraraghavan, B., Bakthavatchalam, Y. D. & Sahni, R. D. (2021). Infect Dis Ther. 10, 1815-1835.]; Chatwin et al., 2021[Chatwin, C. L., Hamrick, J. C., Trout, R. E., Myers, C. L., Cusick, S. M., Weiss, W. J., Pulse, M. E., Xerri, L., Burns, C. J., Moeck, G., Daigle, D. M., John, K., Uehara, T. & Pevear, D. C. (2021). Antimicrob. Agents Chemother. 65, e00552-21.]).

Despite its long-time commercial availability, to our knowledge no crystal structures of ceftibuten have been previously reported. The structures of anhydrous ceftibuten (I)[link] and hydrated ceftibuten (II)[link] are reported herein.

[Scheme 1]

2. Structural commentary

The anhydrous compound (I)[link] (Fig. 1[link]) has the formula C15H14N4O6S2 and crystallizes in the ortho­rhom­bic space group P212121. The asymmetric unit of (I)[link] contains one mol­ecule of ceftibuten: the chiral C8 and C12 centers both have an absolute configuration of R. This is reflected in the N13—C12—C8—S7 torsion angle of 5.0 (10)°. The C24—C25—O26—O27 atoms were treated as disordered over two adjacent sets of sites with a population ratio of 0.841 (11): 0.159 (11). The β-lactam ring is almost planar with the C8/C12/C10/N9 atoms in the ring having a calculated r.m.s. deviation of 0.032 Å. Based on the refined bond distances of C3—O1 = 1.258 (9) Å and C3—O2 = 1.254 (9) Å, we have assigned the O1—O2—C3 group as a carboxyl­ate and the N22 atom of the thia­zole ring as protonated based on peaks in the residual electron density map, i.e., the mol­ecule exists as a zwitterion in the solid state.

[Figure 1]
Figure 1
Mol­ecular structure of (I)[link]. Ellipsoids of non-H elements are drawn at 50% probability.

The hydrated compound (II)[link] (Fig. 2[link]) has the formula C15H14N4O6S2·2.7H2O and crystallizes in the ortho­rhom­bic space group P212121 with similar unit-cell parameters to (I)[link]. The asymmetric unit of (II)[link] includes one ceftibuten mol­ecule, one fully occupied O31 water mol­ecule, and two partially occupied O32 and O33 water mol­ecules, which were independently refined to occupancies of 0.828 (10) and 0.824 (12), respectively. The chiral C8 and C12 centers both have an absolute configuration of R and N13—C12—C8—S7 = 17.2 (4)°. The β-lactam ring is slightly buckled in (II)[link] compared to (I)[link], with the atoms in the ring having a calculated r.m.s. deviation of 0.078 Å. As in (I)[link], we have assigned the O1—C3—O2 group as a carboxyl­ate anion based on bond distances of C3—O1 = 1.252 (4) Å and C3—O2 = 1.256 (4) Å and the N22 atom as protonated based on peaks in the residual electron-density map.

[Figure 2]
Figure 2
Mol­ecular structure of (II)[link]. Ellipsoids of non-H elements are drawn at 50% probability.

3. Supra­molecular features

The extended structure of (I)[link] displays a three-dimensional hydrogen-bonding network with O—H⋯O and N—H⋯O hydrogen bonds linking adjacent ceftibuten mol­ecules (Table 1[link]). The structure of (I)[link] contains four void spaces per unit cell of about 42 Å3 each (total void volume = 167.3 Å3), which account for 9.2% of the unit-cell volume, as calculated in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). The void spaces form channels propagating along the [100] direction (Fig. 3[link]). The layers of ceftibuten mol­ecules are linked along the a-axis direction by N—H⋯O hydrogen bonds. Two weak C—H⋯O inter­actions are also present.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N13—H13⋯O15i 0.90 (3) 1.91 (3) 2.807 (9) 177 (7)
N21—H21A⋯O2ii 0.87 (3) 2.02 (5) 2.824 (8) 153 (8)
N21—H21B⋯O2iii 0.88 (3) 1.96 (4) 2.816 (9) 164 (8)
N22—H22⋯O1iii 0.89 (3) 1.75 (3) 2.637 (9) 172 (9)
O27A—H27A⋯O26Aiv 0.84 1.85 2.683 (9) 170
O27B—H27B⋯O26Biv 0.84 1.84 2.62 (6) 154
C12—H12⋯O11v 1.00 2.27 3.172 (10) 150
C23—H23⋯O1iii 0.95 2.35 3.237 (9) 156
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (v) x+1, y, z.
[Figure 3]
Figure 3
Packing diagram of (I)[link]. Void spaces are shown in orange. Hydrogen atoms are omitted for clarity.

Compound (II)[link] displays a three-dimensional hydrogen-bonding network composed of O—H⋯O and N—H⋯O hydrogen bonds between ceftibuten mol­ecules, O—H⋯O and N—H⋯O hydrogen bonds between ceftibuten and the free water mol­ecules, and O—H⋯O hydrogen bonds between the free water mol­ecules (Table 2[link]). Four weak C—H⋯O bonds occur. The O32 and O33 water mol­ecules occupy the channel void space that is present in (I)[link] (Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N13—H13⋯O15i 0.85 (2) 2.01 (3) 2.799 (4) 154 (4)
N21—H21A⋯O31ii 0.86 (5) 2.05 (5) 2.838 (4) 153 (4)
N21—H21B⋯O2iii 0.85 (4) 1.97 (5) 2.811 (4) 173 (4)
N22—H22⋯O1iii 0.87 (5) 1.78 (5) 2.654 (4) 178 (5)
O26—H26⋯O27iv 0.87 (5) 1.80 (5) 2.647 (4) 164 (4)
O31—H31A⋯O2v 0.85 (2) 2.29 (3) 3.071 (4) 154 (5)
O31—H31B⋯O2 0.86 (3) 1.91 (3) 2.756 (4) 167 (6)
O32—H32A⋯O33v 0.88 (3) 2.02 (3) 2.874 (6) 164 (8)
O32—H32B⋯O31i 0.87 (3) 2.46 (3) 3.305 (5) 167 (6)
O33—H33A⋯O15vi 0.87 (8) 2.40 (8) 3.226 (5) 159 (6)
O33—H33B⋯O32 0.88 (8) 1.97 (8) 2.837 (6) 165 (6)
C12—H12⋯O11v 1.00 2.39 3.349 (4) 161
C23—H23⋯O1iii 0.95 2.41 3.281 (4) 152
C24—H24B⋯O26v 0.99 2.54 3.387 (5) 143
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (v) x+1, y, z; (vi) [x-2, y, z].
[Figure 4]
Figure 4
Packing diagram of (II)[link]. Non-water H atoms are omitted for clarity.

4. Database survey

A Cambridge Structural Database search for compounds containing a β-lactam ring resulted in 1381 hits [CSD version 5.42 (December 2020), ConQuest version 2020.3.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]]. Atoms in the β-lactam rings in these compounds have an average r.m.s. deviation of 0.024 Å, with the r.m.s. deviations of atoms in the β-lactam rings in (I)[link] and (II)[link] falling in the 69th and 98th percentiles of the distribution, respectively.

A previous study examined the structures of 32 known water-containing β-lactams (Hickey et al., 2007[Hickey, M. B., Peterson, M. L., Manas, E. S., Alvarez, J., Haeffner, F. & Almarsson, O. (2007). J. Pharm. Sci. 96, 1090-1099.]). Following the system of Gillon et al. (2003[Gillon, A. L., Feeder, N., Davey, R. J. & Storey, R. (2003). Cryst. Growth Des. 3, 663-673.]), the authors describe three distinct hydrogen-bonding motifs in hydrated β-lactam compounds based on the donor/acceptor roles of the water mol­ecules in hydrogen bonds. The O31 water mol­ecule in (II)[link] acts as a donor in two hydrogen bonds and acceptor in two hydrogen bonds, meaning that the hydrogen-bonding behavior of the O31 water mol­ecule in (II)[link] can be classified as `environment C′. In contrast, the O32 and O33 water mol­ecules can be assigned environment B based on their participation as donors in two hydrogen bonds and as acceptors in one hydrogen bond.

5. Synthesis and crystallization

Ceftibuten hydrate was purchased from ACS Dobfar (Tribiano, Italy). Dehydration occurs following exposure to an atmosphere below 30% relative humidity at 298 K, and the material was confirmed to be anhydrous following receipt at the University of South Florida X-Ray Facility. A crystal in the form of a colorless needle was selected directly from the bulk sample (I)[link] and deemed suitable for analysis.

For rehydration, ceftibuten powder was placed in an uncapped scintillation vial within a container of pure water. The sealed container was stored at room temperature for four weeks, and a sufficiently large crystal (a colorless needle) was selected for analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The N—H and O—H hydrogen positions were assigned from residual electron density peaks and refined with distances constrained. All remaining hydrogen atoms were assigned with a riding model. The C24—C25—O26—O27 atoms in (I)[link] were treated as disordered with a population ratio of approximately 80:20 and refined with restrained inter­atomic distances. The occupancies of the O32 and O33 water mol­ecules in (II)[link] were freely refined.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C15H14N4O6S2 C15H14N4O6S2·2.652H2O
Mr 410.42 458.21
Crystal system, space group Orthorhombic, P212121 Orthorhombic, P212121
Temperature (K) 100 100
a, b, c (Å) 4.7727 (2), 17.5228 (8), 21.8526 (9) 4.6690 (1), 17.8029 (4), 23.1486 (5)
V3) 1827.56 (14) 1924.15 (7)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 3.02 3.04
Crystal size (mm) 0.04 × 0.01 × 0.01 0.1 × 0.02 × 0.02
 
Data collection
Diffractometer Bruker D8 Venture Photon-II CPAD Bruker D8 Venture Photon-II CPAD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.])
Tmin, Tmax 0.790, 1.000 0.919, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14411, 3215, 1954 26013, 4040, 3605
Rint 0.128 0.070
(sin θ/λ)max−1) 0.603 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.146, 1.02 0.038, 0.085, 1.04
No. of reflections 3215 4040
No. of parameters 297 317
No. of restraints 127 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.31 0.30, −0.23
Absolute structure Flack x determined using 544 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 1302 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.02 (3) 0.029 (11)
Computer programs: SAINT (Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: SAINT (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(6R,7R)-7-{[(Z)-2-(2-Amino-1,3-thiazol-4-yl)-4-carboxybut-2-enoyl]amino}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid (I) top
Crystal data top
C15H14N4O6S2Dx = 1.492 Mg m3
Mr = 410.42Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 3229 reflections
a = 4.7727 (2) Åθ = 3.2–66.0°
b = 17.5228 (8) ŵ = 3.02 mm1
c = 21.8526 (9) ÅT = 100 K
V = 1827.56 (14) Å3Needle, colourless
Z = 40.04 × 0.01 × 0.01 mm
F(000) = 848
Data collection top
Bruker D8 Venture Photon-II CPAD
diffractometer
1954 reflections with I > 2σ(I)
ω scansRint = 0.128
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 68.3°, θmin = 3.2°
Tmin = 0.790, Tmax = 1.000h = 55
14411 measured reflectionsk = 2020
3215 independent reflectionsl = 2525
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.1157P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.146(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.25 e Å3
3215 reflectionsΔρmin = 0.30 e Å3
297 parametersAbsolute structure: Flack x determined using 544 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
127 restraintsAbsolute structure parameter: 0.02 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.1910 (13)0.4734 (3)0.5240 (2)0.0496 (15)
O20.3613 (13)0.3637 (3)0.4870 (2)0.0478 (15)
C30.3498 (19)0.4351 (5)0.4898 (3)0.046 (2)
C40.5398 (18)0.4812 (4)0.4497 (3)0.0386 (19)
C50.577 (2)0.5565 (4)0.4568 (3)0.048 (2)
H50.4777360.5797120.4895830.057*
C60.756 (2)0.6079 (5)0.4189 (3)0.053 (2)
H6A0.9436430.6117090.4379760.064*
H6B0.6724550.6595950.4185550.064*
S70.7947 (5)0.57482 (13)0.34071 (8)0.0534 (6)
C80.9042 (19)0.4805 (4)0.3648 (3)0.043 (2)
H81.0933380.4801210.3844870.052*
N90.6880 (14)0.4440 (3)0.4024 (2)0.0381 (16)
C100.626 (2)0.3886 (4)0.3593 (3)0.043 (2)
O110.4465 (13)0.3410 (3)0.3547 (2)0.0452 (14)
C120.8659 (17)0.4161 (4)0.3178 (3)0.041 (2)
H121.0276510.3798240.3171860.049*
N130.7684 (15)0.4356 (4)0.2567 (2)0.0389 (16)
H130.587 (7)0.442 (4)0.247 (3)0.047*
C140.955 (2)0.4546 (4)0.2131 (3)0.0386 (19)
O151.2075 (14)0.4538 (3)0.2209 (2)0.0522 (16)
C160.8241 (17)0.4785 (4)0.1533 (3)0.0360 (18)
C170.8370 (17)0.5608 (4)0.1416 (3)0.0373 (19)
C181.0011 (19)0.6113 (4)0.1705 (3)0.047 (2)
H181.1326800.5982090.2014020.057*
S190.9437 (5)0.70346 (12)0.14471 (9)0.0518 (6)
C200.6983 (19)0.6708 (4)0.0931 (3)0.045 (2)
N210.5589 (17)0.7123 (4)0.0538 (3)0.0439 (17)
H21A0.586 (19)0.7617 (17)0.054 (4)0.06 (3)*
H21B0.448 (15)0.690 (4)0.027 (3)0.07 (3)*
N220.6717 (15)0.5942 (4)0.0971 (2)0.0402 (17)
H220.548 (16)0.568 (4)0.075 (4)0.09 (4)*
C230.6960 (18)0.4289 (4)0.1170 (3)0.0421 (19)
H230.6099510.4479770.0809440.051*0.841 (11)
H23A0.6410910.4472750.0779350.051*0.159 (11)
C24A0.677 (4)0.3432 (5)0.1291 (4)0.044 (4)0.841 (11)
H24A0.7928810.3299120.1650940.053*0.841 (11)
H24B0.4801670.3292730.1383720.053*0.841 (11)
C25A0.773 (3)0.3002 (6)0.0761 (4)0.042 (3)0.841 (11)
O26A0.6199 (19)0.2666 (5)0.0399 (3)0.064 (3)0.841 (11)
O27A1.0463 (18)0.3017 (4)0.0688 (3)0.058 (2)0.841 (11)
H27A1.0874860.2829340.0345470.087*0.841 (11)
C24B0.63 (2)0.3455 (15)0.1308 (17)0.050 (15)0.159 (11)
H24C0.7818270.3221570.1541770.060*0.159 (11)
H24D0.4549380.3429490.1562210.060*0.159 (11)
C25B0.582 (10)0.3031 (19)0.0741 (18)0.063 (12)0.159 (11)
O26B0.401 (12)0.318 (3)0.037 (2)0.130 (19)0.159 (11)
O27B0.760 (13)0.247 (3)0.066 (3)0.118 (19)0.159 (11)
H27B0.7779280.2378180.0288300.177*0.159 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.066 (4)0.048 (3)0.035 (3)0.004 (3)0.013 (3)0.003 (2)
O20.068 (4)0.042 (3)0.034 (3)0.006 (3)0.004 (3)0.002 (2)
C30.059 (6)0.054 (6)0.023 (4)0.003 (5)0.006 (4)0.002 (4)
C40.048 (6)0.047 (5)0.021 (3)0.004 (4)0.001 (4)0.002 (3)
C50.062 (6)0.050 (5)0.031 (4)0.001 (5)0.001 (4)0.001 (4)
C60.067 (7)0.046 (5)0.046 (4)0.001 (5)0.002 (5)0.011 (4)
S70.0756 (17)0.0481 (12)0.0365 (10)0.0027 (12)0.0074 (11)0.0017 (9)
C80.054 (6)0.046 (5)0.029 (4)0.005 (4)0.001 (4)0.001 (3)
N90.050 (4)0.042 (4)0.022 (3)0.002 (3)0.005 (3)0.001 (2)
C100.063 (7)0.040 (5)0.025 (4)0.008 (5)0.004 (4)0.004 (3)
O110.065 (4)0.046 (3)0.025 (2)0.002 (3)0.000 (3)0.002 (2)
C120.048 (6)0.050 (5)0.025 (4)0.005 (4)0.002 (4)0.001 (3)
N130.050 (5)0.050 (4)0.017 (3)0.003 (4)0.003 (3)0.002 (3)
C140.046 (6)0.039 (4)0.031 (4)0.001 (4)0.004 (4)0.003 (3)
O150.040 (4)0.080 (4)0.037 (3)0.003 (3)0.002 (3)0.013 (3)
C160.044 (5)0.044 (4)0.020 (3)0.000 (4)0.005 (3)0.001 (3)
C170.051 (5)0.042 (5)0.019 (3)0.001 (4)0.001 (4)0.001 (3)
C180.063 (7)0.046 (5)0.033 (4)0.002 (4)0.000 (4)0.002 (3)
S190.0628 (15)0.0459 (12)0.0466 (11)0.0040 (12)0.0053 (11)0.0022 (10)
C200.069 (7)0.041 (5)0.025 (4)0.002 (5)0.008 (4)0.000 (3)
N210.068 (5)0.035 (4)0.029 (3)0.002 (4)0.000 (4)0.002 (3)
N220.051 (5)0.044 (5)0.025 (3)0.001 (4)0.000 (3)0.001 (3)
C230.060 (5)0.045 (5)0.021 (3)0.004 (4)0.001 (4)0.006 (3)
C24A0.063 (10)0.041 (6)0.029 (6)0.001 (6)0.003 (6)0.003 (5)
C25A0.059 (8)0.037 (6)0.029 (5)0.003 (6)0.002 (5)0.008 (4)
O26A0.074 (7)0.083 (6)0.034 (4)0.013 (5)0.004 (4)0.018 (4)
O27A0.072 (6)0.065 (5)0.036 (4)0.010 (5)0.001 (4)0.013 (3)
C24B0.07 (3)0.05 (3)0.03 (2)0.00 (2)0.01 (2)0.00 (2)
C25B0.09 (2)0.06 (2)0.043 (19)0.01 (2)0.001 (18)0.015 (17)
O26B0.15 (3)0.12 (4)0.11 (3)0.01 (3)0.07 (3)0.02 (3)
O27B0.14 (4)0.09 (3)0.13 (4)0.02 (3)0.01 (3)0.05 (3)
Geometric parameters (Å, º) top
O1—C31.258 (9)C17—N221.382 (9)
O2—C31.254 (9)C18—H180.9500
C3—C41.497 (11)C18—S191.732 (8)
C4—C51.340 (10)S19—C201.724 (8)
C4—N91.412 (9)C20—N211.307 (10)
C5—H50.9500C20—N221.351 (10)
C5—C61.493 (11)N21—H21A0.87 (3)
C6—H6A0.9900N21—H21B0.88 (3)
C6—H6B0.9900N22—H220.89 (3)
C6—S71.814 (8)C23—H230.9500
S7—C81.812 (8)C23—H23A0.9500
C8—H81.0000C23—C24A1.527 (11)
C8—N91.467 (10)C23—C24B1.527 (16)
C8—C121.536 (10)C24A—H24A0.9900
N9—C101.384 (9)C24A—H24B0.9900
C10—O111.202 (9)C24A—C25A1.456 (14)
C10—C121.536 (11)C25A—O26A1.226 (12)
C12—H121.0000C25A—O27A1.315 (12)
C12—N131.455 (8)O27A—H27A0.8400
N13—H130.90 (3)C24B—H24C0.9900
N13—C141.345 (10)C24B—H24D0.9900
C14—O151.220 (9)C24B—C25B1.460 (18)
C14—C161.506 (10)C25B—O26B1.21 (2)
C16—C171.466 (10)C25B—O27B1.31 (2)
C16—C231.327 (10)O27B—H27B0.8400
C17—C181.340 (10)
O1—C3—C4115.1 (7)C18—C17—C16126.3 (7)
O2—C3—O1126.0 (8)C18—C17—N22112.7 (7)
O2—C3—C4118.9 (7)N22—C17—C16121.0 (7)
C5—C4—C3122.9 (7)C17—C18—H18124.2
C5—C4—N9118.2 (7)C17—C18—S19111.7 (6)
N9—C4—C3118.9 (6)S19—C18—H18124.2
C4—C5—H5116.4C20—S19—C1890.6 (4)
C4—C5—C6127.3 (7)N21—C20—S19126.2 (7)
C6—C5—H5116.4N21—C20—N22123.2 (8)
C5—C6—H6A109.0N22—C20—S19110.5 (6)
C5—C6—H6B109.0C20—N21—H21A118 (6)
C5—C6—S7112.8 (5)C20—N21—H21B120 (6)
H6A—C6—H6B107.8H21A—N21—H21B122 (8)
S7—C6—H6A109.0C17—N22—H22123 (6)
S7—C6—H6B109.0C20—N22—C17114.4 (7)
C8—S7—C692.7 (3)C20—N22—H22123 (6)
S7—C8—H8113.0C16—C23—H23117.6
N9—C8—S7111.0 (6)C16—C23—H23A116.2
N9—C8—H8113.0C16—C23—C24A124.7 (8)
N9—C8—C1288.3 (5)C16—C23—C24B128 (2)
C12—C8—S7116.2 (5)C24A—C23—H23117.6
C12—C8—H8113.0C24B—C23—H23A116.2
C4—N9—C8124.2 (6)C23—C24A—H24A109.5
C10—N9—C4135.7 (7)C23—C24A—H24B109.5
C10—N9—C894.2 (5)H24A—C24A—H24B108.1
N9—C10—C1291.4 (6)C25A—C24A—C23110.6 (8)
O11—C10—N9134.1 (7)C25A—C24A—H24A109.5
O11—C10—C12134.4 (7)C25A—C24A—H24B109.5
C8—C12—H12112.6O26A—C25A—C24A125.0 (14)
C10—C12—C885.7 (5)O26A—C25A—O27A121.4 (9)
C10—C12—H12112.6O27A—C25A—C24A113.6 (12)
N13—C12—C8118.6 (6)C25A—O27A—H27A109.5
N13—C12—C10112.2 (7)C23—C24B—H24C109.5
N13—C12—H12112.6C23—C24B—H24D109.5
C12—N13—H13124 (5)H24C—C24B—H24D108.1
C14—N13—C12119.9 (7)C25B—C24B—C23111 (2)
C14—N13—H13116 (5)C25B—C24B—H24C109.5
N13—C14—C16114.2 (8)C25B—C24B—H24D109.5
O15—C14—N13123.5 (7)O26B—C25B—C24B124 (4)
O15—C14—C16122.3 (7)O26B—C25B—O27B123 (4)
C17—C16—C14114.1 (6)O27B—C25B—C24B114 (4)
C23—C16—C14121.7 (7)C25B—O27B—H27B109.5
C23—C16—C17124.1 (6)
O1—C3—C4—C511.5 (11)C12—C8—N9—C105.2 (6)
O1—C3—C4—N9168.8 (7)C12—N13—C14—O152.8 (11)
O2—C3—C4—C5168.4 (8)C12—N13—C14—C16176.1 (6)
O2—C3—C4—N911.4 (11)N13—C14—C16—C17105.8 (8)
C3—C4—C5—C6178.8 (8)N13—C14—C16—C2370.5 (10)
C3—C4—N9—C8172.5 (7)C14—C16—C17—C1815.9 (11)
C3—C4—N9—C1042.2 (11)C14—C16—C17—N22164.4 (7)
C4—C5—C6—S728.5 (12)C14—C16—C23—C24A3.0 (15)
C4—N9—C10—O1119.3 (14)C14—C16—C23—C24B8 (5)
C4—N9—C10—C12157.0 (8)O15—C14—C16—C1773.1 (9)
C5—C4—N9—C87.2 (11)O15—C14—C16—C23110.6 (10)
C5—C4—N9—C10138.0 (8)C16—C17—C18—S19178.0 (6)
C5—C6—S7—C852.2 (7)C16—C17—N22—C20177.7 (7)
C6—S7—C8—N959.2 (6)C16—C23—C24A—C25A127.6 (12)
C6—S7—C8—C12158.0 (7)C16—C23—C24B—C25B159 (3)
S7—C8—N9—C444.1 (8)C17—C16—C23—C24A179.0 (11)
S7—C8—N9—C10112.3 (5)C17—C16—C23—C24B168 (5)
S7—C8—C12—C10107.9 (6)C17—C18—S19—C201.1 (6)
S7—C8—C12—N135.0 (10)C18—C17—N22—C202.5 (9)
C8—N9—C10—O11171.1 (9)C18—S19—C20—N21178.7 (8)
C8—N9—C10—C125.2 (6)C18—S19—C20—N220.3 (6)
C8—C12—N13—C1488.2 (9)S19—C20—N22—C171.6 (8)
N9—C4—C5—C61.4 (13)N21—C20—N22—C17179.9 (7)
N9—C8—C12—C104.7 (5)N22—C17—C18—S192.2 (9)
N9—C8—C12—N13117.6 (7)C23—C16—C17—C18167.9 (8)
N9—C10—C12—C84.9 (6)C23—C16—C17—N2211.9 (12)
N9—C10—C12—N13124.1 (6)C23—C24A—C25A—O26A104.7 (14)
C10—C12—N13—C14174.4 (6)C23—C24A—C25A—O27A73.7 (15)
O11—C10—C12—C8171.3 (9)C23—C24B—C25B—O26B61 (7)
O11—C10—C12—N1352.2 (12)C23—C24B—C25B—O27B119 (7)
C12—C8—N9—C4161.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13···O15i0.90 (3)1.91 (3)2.807 (9)177 (7)
N21—H21A···O2ii0.87 (3)2.02 (5)2.824 (8)153 (8)
N21—H21B···O2iii0.88 (3)1.96 (4)2.816 (9)164 (8)
N22—H22···O1iii0.89 (3)1.75 (3)2.637 (9)172 (9)
O27A—H27A···O26Aiv0.841.852.683 (9)170
O27B—H27B···O26Biv0.841.842.62 (6)154
C12—H12···O11v1.002.273.172 (10)150
C23—H23···O1iii0.952.353.237 (9)156
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y+1, z1/2; (iv) x+1/2, y+1/2, z; (v) x+1, y, z.
(6R,7R)-7-{[(Z)-2-(2-Amino-1,3-thiazol-4-yl)-4-carboxybut-2-enoyl]amino}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid 2.652-hydrate (II) top
Crystal data top
C15H14N4O6S2·2.652H2ODx = 1.582 Mg m3
Mr = 458.21Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 8801 reflections
a = 4.6690 (1) Åθ = 3.1–77.2°
b = 17.8029 (4) ŵ = 3.04 mm1
c = 23.1486 (5) ÅT = 100 K
V = 1924.15 (7) Å3Needle, colourless
Z = 40.1 × 0.02 × 0.02 mm
F(000) = 954
Data collection top
Bruker D8 Venture Photon-II CPAD
diffractometer
4040 independent reflections
Radiation source: INCOATEC Imus micro-focus source3605 reflections with I > 2σ(I)
Mirrors monochromatorRint = 0.070
ω scansθmax = 78.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 55
Tmin = 0.919, Tmax = 1.000k = 2221
26013 measured reflectionsl = 2829
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.5445P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.30 e Å3
4040 reflectionsΔρmin = 0.23 e Å3
317 parametersAbsolute structure: Flack x determined using 1302 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
7 restraintsAbsolute structure parameter: 0.029 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.2135 (6)0.50647 (13)0.50496 (10)0.0213 (6)
O20.5160 (6)0.59068 (13)0.54303 (10)0.0232 (6)
C30.4020 (8)0.52690 (19)0.54008 (14)0.0180 (7)
C40.5001 (8)0.46858 (18)0.58327 (14)0.0160 (7)
C50.4378 (8)0.39600 (19)0.57856 (14)0.0192 (7)
H50.3290920.3814980.5457040.023*
C60.5210 (10)0.3343 (2)0.61975 (15)0.0273 (9)
H6A0.6874570.3070060.6036070.033*
H6B0.3602690.2982880.6227940.033*
S70.6123 (2)0.36755 (5)0.69200 (4)0.0228 (2)
C80.8320 (8)0.4455 (2)0.66878 (15)0.0186 (7)
H81.0251710.4305050.6541040.022*
N90.6706 (6)0.49483 (15)0.62916 (12)0.0163 (6)
C100.6178 (8)0.54808 (19)0.67132 (14)0.0167 (7)
O110.4464 (5)0.59867 (13)0.67441 (10)0.0198 (5)
C120.8375 (8)0.5122 (2)0.71215 (14)0.0172 (7)
H121.0247800.5393350.7108280.021*
N130.7457 (7)0.50003 (17)0.77034 (13)0.0172 (6)
H130.572 (6)0.491 (2)0.7776 (16)0.016 (10)*
C140.9261 (7)0.50079 (17)0.81555 (14)0.0146 (7)
O151.1831 (5)0.51428 (16)0.81065 (11)0.0261 (6)
C160.7879 (7)0.48572 (18)0.87346 (14)0.0140 (7)
C170.6484 (8)0.41288 (19)0.87863 (14)0.0160 (7)
C180.6852 (8)0.35256 (18)0.84425 (15)0.0179 (7)
H180.8112180.3516540.8120400.021*
S190.4772 (2)0.27702 (4)0.86532 (4)0.0196 (2)
C200.3429 (8)0.32934 (19)0.92227 (15)0.0176 (7)
N210.1548 (7)0.30362 (18)0.95965 (14)0.0199 (7)
H21A0.081 (10)0.260 (3)0.9539 (18)0.029 (12)*
H21B0.089 (10)0.333 (2)0.9849 (18)0.023 (11)*
N220.4532 (6)0.39822 (15)0.92347 (12)0.0149 (6)
H220.398 (13)0.430 (3)0.949 (2)0.056 (16)*
C230.8045 (8)0.53727 (19)0.91527 (15)0.0169 (7)
H230.7092850.5266310.9505970.020*
C240.9607 (8)0.61028 (19)0.91095 (15)0.0198 (7)
H24A0.9575740.6266790.8700870.024*
H24B1.1633280.6015590.9216180.024*
C250.8476 (8)0.6731 (2)0.94744 (15)0.0189 (7)
O260.5947 (6)0.66103 (15)0.97034 (12)0.0249 (6)
H260.559 (11)0.702 (3)0.989 (2)0.039 (14)*
O270.9818 (6)0.73087 (14)0.95451 (11)0.0270 (6)
O310.9738 (6)0.66362 (14)0.59300 (12)0.0247 (6)
H31A1.136 (7)0.643 (3)0.591 (2)0.050 (16)*
H31B0.849 (10)0.635 (3)0.577 (3)0.09 (2)*
O320.0194 (9)0.7050 (2)0.73219 (18)0.0412 (14)0.828 (10)
H32A0.153 (9)0.700 (5)0.747 (3)0.09 (3)*0.828 (10)
H32B0.013 (15)0.686 (4)0.6976 (15)0.07 (2)*0.828 (10)
O330.5146 (9)0.6766 (2)0.79978 (17)0.0357 (14)0.824 (12)
H33A0.563 (16)0.630 (5)0.795 (3)0.07 (2)*0.824 (12)
H33B0.382 (16)0.689 (3)0.774 (3)0.04 (2)*0.824 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0269 (14)0.0204 (12)0.0167 (12)0.0034 (11)0.0091 (11)0.0025 (10)
O20.0267 (14)0.0194 (12)0.0236 (12)0.0047 (11)0.0078 (12)0.0047 (10)
C30.0193 (18)0.0208 (17)0.0138 (16)0.0021 (14)0.0040 (15)0.0003 (13)
C40.0169 (17)0.0201 (16)0.0110 (14)0.0023 (14)0.0027 (14)0.0002 (12)
C50.0237 (19)0.0213 (16)0.0127 (15)0.0040 (15)0.0025 (15)0.0010 (13)
C60.044 (2)0.0194 (16)0.0190 (17)0.0040 (18)0.0067 (18)0.0022 (14)
S70.0331 (5)0.0195 (4)0.0158 (4)0.0004 (4)0.0037 (4)0.0026 (3)
C80.0152 (18)0.0262 (18)0.0142 (17)0.0053 (14)0.0007 (14)0.0026 (14)
N90.0169 (15)0.0166 (14)0.0154 (14)0.0009 (11)0.0001 (12)0.0037 (11)
C100.0159 (16)0.0187 (16)0.0154 (16)0.0044 (15)0.0031 (15)0.0027 (13)
O110.0207 (13)0.0197 (12)0.0190 (11)0.0004 (10)0.0030 (10)0.0007 (10)
C120.0137 (17)0.0257 (18)0.0121 (15)0.0035 (14)0.0020 (14)0.0014 (13)
N130.0127 (14)0.0256 (16)0.0132 (14)0.0059 (13)0.0011 (12)0.0004 (12)
C140.0157 (16)0.0144 (15)0.0139 (15)0.0006 (13)0.0001 (13)0.0024 (12)
O150.0165 (13)0.0451 (16)0.0166 (12)0.0002 (11)0.0004 (11)0.0013 (12)
C160.0146 (16)0.0150 (15)0.0125 (16)0.0024 (13)0.0005 (13)0.0007 (13)
C170.0177 (17)0.0183 (16)0.0122 (15)0.0017 (14)0.0005 (14)0.0006 (13)
C180.0236 (19)0.0139 (16)0.0161 (16)0.0004 (13)0.0006 (15)0.0008 (13)
S190.0289 (5)0.0134 (4)0.0165 (4)0.0009 (4)0.0025 (4)0.0031 (3)
C200.0233 (18)0.0174 (16)0.0122 (15)0.0005 (15)0.0039 (15)0.0001 (13)
N210.0277 (18)0.0135 (15)0.0186 (16)0.0040 (13)0.0039 (14)0.0020 (12)
N220.0164 (15)0.0145 (13)0.0139 (13)0.0005 (12)0.0010 (12)0.0011 (11)
C230.0190 (19)0.0172 (16)0.0146 (16)0.0012 (14)0.0011 (14)0.0008 (13)
C240.0216 (19)0.0198 (16)0.0180 (16)0.0033 (15)0.0003 (15)0.0044 (13)
C250.0219 (19)0.0186 (17)0.0162 (16)0.0038 (15)0.0035 (15)0.0014 (13)
O260.0243 (14)0.0187 (12)0.0317 (14)0.0015 (11)0.0046 (12)0.0078 (11)
O270.0301 (15)0.0207 (13)0.0301 (14)0.0055 (12)0.0043 (12)0.0073 (11)
O310.0174 (14)0.0176 (12)0.0390 (16)0.0012 (12)0.0020 (13)0.0008 (11)
O320.038 (3)0.039 (2)0.046 (3)0.0030 (19)0.010 (2)0.0041 (18)
O330.040 (2)0.030 (2)0.038 (2)0.0079 (18)0.003 (2)0.0082 (16)
Geometric parameters (Å, º) top
O1—C31.252 (4)C17—C181.348 (5)
O2—C31.256 (4)C17—N221.406 (4)
C3—C41.512 (5)C18—H180.9500
C4—C51.329 (5)C18—S191.729 (4)
C4—N91.407 (4)S19—C201.732 (4)
C5—H50.9500C20—N211.315 (5)
C5—C61.505 (5)C20—N221.330 (4)
C6—H6A0.9900N21—H21A0.86 (5)
C6—H6B0.9900N21—H21B0.85 (4)
C6—S71.824 (4)N22—H220.87 (5)
S7—C81.807 (4)C23—H230.9500
C8—H81.0000C23—C241.494 (5)
C8—N91.477 (4)C24—H24A0.9900
C8—C121.555 (5)C24—H24B0.9900
N9—C101.383 (4)C24—C251.498 (5)
C10—O111.207 (4)C25—O261.312 (5)
C10—C121.534 (5)C25—O271.215 (4)
C12—H121.0000O26—H260.87 (5)
C12—N131.430 (4)O31—H31A0.85 (2)
N13—H130.85 (2)O31—H31B0.86 (3)
N13—C141.343 (5)O32—H32A0.88 (3)
C14—O151.229 (4)O32—H32B0.87 (3)
C14—C161.512 (5)O33—H33A0.87 (8)
C16—C171.456 (5)O33—H33B0.88 (8)
C16—C231.336 (5)
O1—C3—O2126.6 (3)O15—C14—N13122.8 (3)
O1—C3—C4116.3 (3)O15—C14—C16122.2 (3)
O2—C3—C4117.2 (3)C17—C16—C14115.0 (3)
C5—C4—C3123.2 (3)C23—C16—C14119.7 (3)
C5—C4—N9120.6 (3)C23—C16—C17125.3 (3)
N9—C4—C3116.2 (3)C18—C17—C16127.2 (3)
C4—C5—H5116.5C18—C17—N22111.8 (3)
C4—C5—C6126.9 (3)N22—C17—C16121.1 (3)
C6—C5—H5116.5C17—C18—H18123.8
C5—C6—H6A108.8C17—C18—S19112.4 (3)
C5—C6—H6B108.8S19—C18—H18123.8
C5—C6—S7113.9 (2)C18—S19—C2089.99 (17)
H6A—C6—H6B107.7N21—C20—S19123.7 (3)
S7—C6—H6A108.8N21—C20—N22124.5 (3)
S7—C6—H6B108.8N22—C20—S19111.8 (3)
C8—S7—C696.25 (17)C20—N21—H21A119 (3)
S7—C8—H8114.1C20—N21—H21B119 (3)
N9—C8—S7110.6 (2)H21A—N21—H21B122 (4)
N9—C8—H8114.1C17—N22—H22126 (4)
N9—C8—C1287.4 (2)C20—N22—C17114.0 (3)
C12—C8—S7113.8 (2)C20—N22—H22120 (4)
C12—C8—H8114.1C16—C23—H23117.4
C4—N9—C8124.0 (3)C16—C23—C24125.3 (3)
C10—N9—C4131.3 (3)C24—C23—H23117.4
C10—N9—C893.5 (3)C23—C24—H24A108.3
N9—C10—C1291.7 (3)C23—C24—H24B108.3
O11—C10—N9132.2 (3)C23—C24—C25116.1 (3)
O11—C10—C12135.9 (3)H24A—C24—H24B107.4
C8—C12—H12111.3C25—C24—H24A108.3
C10—C12—C884.8 (2)C25—C24—H24B108.3
C10—C12—H12111.3O26—C25—C24115.0 (3)
N13—C12—C8119.2 (3)O27—C25—C24121.7 (3)
N13—C12—C10116.3 (3)O27—C25—O26123.3 (3)
N13—C12—H12111.3C25—O26—H26104 (3)
C12—N13—H13120 (3)H31A—O31—H31B109 (4)
C14—N13—C12123.0 (3)H32A—O32—H32B107 (5)
C14—N13—H13117 (3)H33A—O33—H33B110 (6)
N13—C14—C16114.9 (3)
O1—C3—C4—C512.9 (5)O11—C10—C12—C8162.7 (4)
O1—C3—C4—N9168.6 (3)O11—C10—C12—N1342.6 (6)
O2—C3—C4—C5167.3 (4)C12—C8—N9—C4159.5 (3)
O2—C3—C4—N911.2 (5)C12—C8—N9—C1012.5 (3)
C3—C4—C5—C6178.8 (4)C12—N13—C14—O152.3 (5)
C3—C4—N9—C8167.6 (3)C12—N13—C14—C16179.2 (3)
C3—C4—N9—C1058.7 (5)N13—C14—C16—C1760.6 (4)
C4—C5—C6—S720.6 (5)N13—C14—C16—C23120.4 (4)
C4—N9—C10—O1119.3 (6)C14—C16—C17—C1816.9 (5)
C4—N9—C10—C12155.7 (3)C14—C16—C17—N22164.0 (3)
C5—C4—N9—C810.9 (5)C14—C16—C23—C242.2 (5)
C5—C4—N9—C10122.7 (4)O15—C14—C16—C17120.9 (4)
C5—C6—S7—C844.7 (3)O15—C14—C16—C2358.1 (5)
C6—S7—C8—N955.0 (3)C16—C17—C18—S19179.8 (3)
C6—S7—C8—C12151.5 (3)C16—C17—N22—C20179.7 (3)
S7—C8—N9—C445.0 (4)C16—C23—C24—C25151.9 (3)
S7—C8—N9—C10102.0 (3)C17—C16—C23—C24176.6 (3)
S7—C8—C12—C10100.1 (3)C17—C18—S19—C200.6 (3)
S7—C8—C12—N1317.2 (4)C18—C17—N22—C201.0 (4)
C8—N9—C10—O11162.4 (4)C18—S19—C20—N21179.9 (3)
C8—N9—C10—C1212.7 (3)C18—S19—C20—N220.0 (3)
C8—C12—N13—C14110.4 (4)S19—C20—N22—C170.6 (4)
N9—C4—C5—C62.7 (6)N21—C20—N22—C17179.5 (3)
N9—C8—C12—C1011.3 (2)N22—C17—C18—S191.0 (4)
N9—C8—C12—N13128.6 (3)C23—C16—C17—C18162.1 (4)
N9—C10—C12—C812.0 (2)C23—C16—C17—N2217.0 (5)
N9—C10—C12—N13132.2 (3)C23—C24—C25—O2612.3 (5)
C10—C12—N13—C14150.3 (3)C23—C24—C25—O27168.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13···O15i0.85 (2)2.01 (3)2.799 (4)154 (4)
N21—H21A···O31ii0.86 (5)2.05 (5)2.838 (4)153 (4)
N21—H21B···O2iii0.85 (4)1.97 (5)2.811 (4)173 (4)
N22—H22···O1iii0.87 (5)1.78 (5)2.654 (4)178 (5)
O26—H26···O27iv0.87 (5)1.80 (5)2.647 (4)164 (4)
O31—H31A···O2v0.85 (2)2.29 (3)3.071 (4)154 (5)
O31—H31B···O20.86 (3)1.91 (3)2.756 (4)167 (6)
O32—H32A···O33v0.88 (3)2.02 (3)2.874 (6)164 (8)
O32—H32B···O31i0.87 (3)2.46 (3)3.305 (5)167 (6)
O33—H33A···O15vi0.87 (8)2.40 (8)3.226 (5)159 (6)
O33—H33B···O320.88 (8)1.97 (8)2.837 (6)165 (6)
C12—H12···O11v1.002.393.349 (4)161
C23—H23···O1iii0.952.413.281 (4)152
C24—H24B···O26v0.992.543.387 (5)143
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+3/2; (iii) x+1/2, y+1, z+1/2; (iv) x1/2, y+3/2, z+2; (v) x+1, y, z; (vi) x2, y, z.
 

References

First citationBruker (2016). SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationChatwin, C. L., Hamrick, J. C., Trout, R. E., Myers, C. L., Cusick, S. M., Weiss, W. J., Pulse, M. E., Xerri, L., Burns, C. J., Moeck, G., Daigle, D. M., John, K., Uehara, T. & Pevear, D. C. (2021). Antimicrob. Agents Chemother. 65, e00552-21.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGillon, A. L., Feeder, N., Davey, R. J. & Storey, R. (2003). Cryst. Growth Des. 3, 663–673.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHamashima, Y., Minami, K., Kawata, K., Sakamoto, T., Takeda, T., Suzuki, Y. & Tujikawa, M. (1990). Crystalline hydrate of oral cephalosporin and its composition. US Patent 4812561A.  Google Scholar
First citationHickey, M. B., Peterson, M. L., Manas, E. S., Alvarez, J., Haeffner, F. & Almarsson, O. (2007). J. Pharm. Sci. 96, 1090–1099.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOwens, R. C. Jr, Nightingale, C. H. & Nicolau, D. P. (1997). Pharmacotherapy, 17, 707–720.  CAS PubMed Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVeeraraghavan, B., Bakthavatchalam, Y. D. & Sahni, R. D. (2021). Infect Dis Ther. 10, 1815–1835.  Web of Science CrossRef PubMed Google Scholar
First citationWiseman, L. R. & Balfour, J. A. (1994). Drugs, 47, 784–808.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds