research communications
E)-1-[2,2-dibromo-1-(2-nitrophenyl)ethenyl]-2-(4-fluorophenyl)diazene
and Hirshfeld surface analysis of (aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, cPeoples' Friendship University of Russia, 6 Miklukho-Maklaya, Moscow, Russian Federation, dN.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Av., Moscow, Russian Federation, and eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: bkajaya@yahoo.com
In the title compound, C14H8Br2FN3O2, the nitro-substituted benzene ring and the 4-fluorophenyl ring form a dihedral angle of 65.73 (7)°. In the crystal, molecules are linked into chains by C—H⋯O hydrogen bonds running parallel to the c-axis direction. The crystal packing is consolidated by C—F⋯π interactions and π–π stacking interactions, and short Br⋯O [2.9828 (13) Å] contacts are observed. The Hirshfeld surface analysis of the indicates that the most important contributions to the crystal packing are from H⋯H (17.4%), O⋯H/H⋯O (16.3%), Br⋯H/H⋯Br (15.5%), Br⋯C/C⋯Br (10.1%) and F⋯H/H⋯F (8.1%) contacts.
Keywords: crystal structure; C—F⋯π interaction; π–π stacking interaction; Hirshfeld surface analysis.
CCDC reference: 2158375
1. Chemical context
Azo dyes are chemical compounds with the general formula R—N=N—R′, where R and R′ can be either aryl, hetrocycle or alkyl functional groups. They find many applications such as molecular switches, optical data storage, antimicrobial agent, colour-changing materials, non-linear optics, molecular recognition, dye-sensitized solar cells, liquid crystals, catalysis, etc. (see, for example, Kopylovich et al., 2012; MacLeod et al., 2012; Viswanathan et al., 2019). Both E/Z isomerization and azo-to-hydrazo of azo dyes is an important feature in the synthesis and design of new functional materials (Mahmudov et al., 2012, 2020; Mizar et al., 2012). On the other hand, the attachment of non-covalent bond-donor or acceptor centres to the azo dyes can be used as a synthetic strategy for the improvement of the functional properties of this class of organic compounds (Gurbanov et al., 2020a,b).
As part of our ongoing work in this area we have attached –F, –Br and –NO2 functional groups and aryl rings to the —N=N— moiety, leading to the title compound, C14H8Br2FN3O2, and determined its crystal structure.
2. Structural commentary
As shown in Fig. 1, the molecular conformation of the title compound is not planar, the nitro-substituted benzene ring and the 4-fluorophenyl ring forming a dihedral angle of 65.73 (7)°. There is a slight twist about the C1=C2 double bond with the dihedral angle between C1/Br1/Br2 and C2/C3/N2 being 3.35 (15)°, perhaps to minimize steric repulsion between Br2 and H8. Considered together, the N3/N2/C2/C1/Br1/Br2 moiety subtends dihedral angles of 70.40 (7) and 14.14 (7)° with the C3–C8 and C9–C14 rings, respectively. In the molecule, the aromatic ring and olefin synthon adopt a trans-configuration with respect to the N=N double bond and are almost coplanar with a C2—N2=N3—C9 torsion angle of −178.50 (11)°. All of the other bond lengths and angles in the title compound are similar to those in the related reported in the Database survey.
3. Supramolecular features
In the crystal, molecules are linked by C—H⋯O hydrogen bonds into chains propagating parallel to the c axis (Table 1; Fig. 2). The crystal packing is consolidated by weak C—F⋯π [F1⋯Cg1(x, 1 − y, − + z) = 3.4095 (12) Å; C—F⋯Cg1 = 136.95 (9)°] interactions and weak aromatic π–π stacking [Cg2⋯Cg2(1 − x, y, − z) = 3.9694 (9) Å], where Cg1 and Cg2 are the centroids of the C3–C8 and C9–C14 rings, respectively (Fig. 2). In addition, short bromine–oxygen contacts [Br2⋯O2( − x, + y, z) = 2.9828 (13) Å; van der Waals contact distance = 3.37 Å] are observed.
4. Hirshfeld surface analysis
CrystalExplorer17 (Turner et al., 2017) was used to calculate the Hirshfeld surfaces for the title compound and generate the two-dimensional fingerprint plots. On the dnorm surface, red, white, and blue regions indicate contacts with distances shorter, longer, and roughly equal to the van der Waals radii for the title compound (Fig. 3, Tables 1 and 2).
|
The overall two-dimensional fingerprint plot (Fig. 4a) and those delineated into H⋯H, O⋯H/H⋯O, Br⋯H/H⋯Br, Br⋯C/C⋯Br and F⋯H/H⋯F contacts (McKinnon et al., 2007) are illustrated in Fig. 4b–f, respectively. The most important interaction is H⋯H, contributing 17.4% to the overall surface, which is reflected in Fig. 4b as widely scattered points of high density due to the large hydrogen content of the molecule, with the tip at de = di = 1.15 Å. The reciprocal O⋯H/H⋯O interactions appear as two symmetrical broad wings with de + di ≃ 2.40 Å and contribute 16.3% to the Hirshfeld surface (Fig. 4c). In the Br⋯H/H⋯Br fingerprint plot, there are two symmetrical wings with de + di ≃ 2.85 Å and they contribute 15.5% to the Hirshfeld surface (Fig. 4d). The pair of characteristic wings in the fingerprint plot delineated into Br⋯C/C⋯Br contacts (Fig. 8e; 10.1% contribution to the Hirshfeld surface), have the tips at de + di ≃ 3.80 Å, while for F⋯H/H⋯F contacts (Fig. 4f; 8.1% contribution to the Hirshfeld surface), they have the tips at de + di ≃ 2.60 Å. The remaining contributions from the other different interatomic contacts to the Hirshfeld surfaces are listed in Table 3. The dominance of H-atom contacts suggest that van der Waals interactions play the major role in establishing the crystal packing for the title compound (Hathwar et al., 2015).
|
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for the (E)-1-(2,2-dichloro-1-phenylethenyl)-2-phenyldiazene unit gave 26 hits. Seven compounds are closely related to the title compound, viz. CSD refcode GUPHIL (I) (Özkaraca et al., 2020), HONBUK (II) (Akkurt et al., 2019), HONBOE (III) (Akkurt et al., 2019), HODQAV (IV) (Shikhaliyev et al., 2019), XIZREG (V) (Atioğlu et al., 2019), LEQXOX (VI) (Shikhaliyev et al., 2018) and LEQXIR (VII) (Shikhaliyev et al., 2018).
In the crystal of (I), molecules are linked into inversion dimers via short halogen–halogen contacts [Cl1⋯Cl1 = 3.3763 (9) Å C16—Cl1⋯Cl1 = 141.47 (7)°] compared to the van der Waals radius sum of 3.50 Å for two chlorine atoms. No other directional contacts could be identified and the shortest aromatic-ring-centroid separation is greater than 5.25 Å. In the crystals of (II) and (III), the aromatic rings form dihedral angles of 64.1 (2) and 60.9 (2)°, respectively. Molecules are linked through weak X⋯Cl contacts [X = Cl for (II) and Br for (III)], C—H⋯Cl and C—Cl⋯π interactions into sheets lying parallel to the ab plane. In the crystal of (IV), the planes of the benzene rings make a dihedral angle of 56.13 (13)°. Molecules are stacked in columns along the a-axis direction via weak C—H⋯Cl hydrogen bonds and face-to-face π–π stacking interactions. The crystal packing is further consolidated by short Cl⋯Cl contacts. In (V), the benzene rings form a dihedral angle of 63.29 (8)°. Molecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π interactions. In the crystals of (VI) and (VII), the dihedral angles between the aromatic rings are 60.31 (14) and 56.18 (12) °, respectively. In (VI) C—H⋯N and short Cl⋯Cl contacts are observed and in (VII), C—H⋯N and C—H⋯O hydrogen bonds and short Cl⋯O contacts occur.
6. Synthesis and crystallization
A 20 ml screw-neck vial was charged with DMSO (10 ml), (E)-1-(4-fluorophenyl)-2-(2-nitrobenzylidene)hydrazine (1 mmol), tetramethylethylenediamine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CBr4 (4.5 mmol). After 1–3h (until TLC analysis showed complete consumption of corresponding Schiff base) the reaction mixture was poured into a ∼0.01 M solution of HCl (100 ml, pH = 2–3), and extracted with dichloromethane (3 × 20 ml). The combined organic phase was washed with water (3 × 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by on silica gel using appropriate mixtures of hexane and dichloromethane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Light-orange solid (52%); m.p. 377 K. Analysis calculated for C14H8Br2FN3O2 (M = 429.04): C 39.19, H 1.88, N 9.79; found: C 39.14, H 1.87, N 9.73%. 1H NMR (300MHz, CDCl3) δ 7.86–7.14 (8H, Ar–H). 13C NMR (75MHz, CDCl3) δ 165.02, 163.23, 163.01, 149.72, 133.01, 132.10, 129.70, 124.98, 124.87, 124.80, 124.29, 116.07, 115.91, 86.88. ESI–MS: m/z: 430.02 [M + H]+.
7. details
Crystal data, data collection and structure . All H atoms were positioned geometrically [C—H = 0.95 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 4Supporting information
CCDC reference: 2158375
https://doi.org/10.1107/S205698902200278X/hb8012sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902200278X/hb8012Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902200278X/hb8012Isup3.cml
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C14H8Br2FN3O2 | Dx = 1.913 Mg m−3 |
Mr = 429.05 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbcn | Cell parameters from 9970 reflections |
a = 14.8700 (4) Å | θ = 2.5–34.3° |
b = 15.2915 (4) Å | µ = 5.46 mm−1 |
c = 13.1030 (4) Å | T = 100 K |
V = 2979.42 (14) Å3 | Block, light orange |
Z = 8 | 0.59 × 0.26 × 0.20 mm |
F(000) = 1664 |
Bruker AXS D8 QUEST Photon III detector diffractometer | 5429 independent reflections |
Radiation source: fine-focus sealed X-Ray tube | 4773 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
Detector resolution: 7.31 pixels mm-1 | θmax = 32.6°, θmin = 2.5° |
φ and ω shutterless scans | h = −22→22 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −23→23 |
Tmin = 0.047, Tmax = 0.115 | l = −19→19 |
87568 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.057 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0274P)2 + 1.6564P] where P = (Fo2 + 2Fc2)/3 |
5429 reflections | (Δ/σ)max = 0.005 |
199 parameters | Δρmax = 0.83 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.62265 (2) | 0.95963 (2) | 0.16792 (2) | 0.02193 (4) | |
Br2 | 0.64744 (2) | 1.02154 (2) | 0.39424 (2) | 0.02154 (4) | |
F1 | 0.61074 (8) | 0.42468 (7) | 0.03550 (8) | 0.0350 (2) | |
O1 | 0.79994 (8) | 0.81157 (8) | 0.37024 (8) | 0.0279 (2) | |
O2 | 0.82768 (8) | 0.70323 (8) | 0.47212 (9) | 0.0279 (2) | |
N1 | 0.78022 (8) | 0.76388 (8) | 0.44249 (9) | 0.0204 (2) | |
N2 | 0.61421 (8) | 0.77830 (8) | 0.26409 (9) | 0.0173 (2) | |
N3 | 0.61871 (8) | 0.70235 (8) | 0.30197 (9) | 0.0180 (2) | |
C1 | 0.62788 (9) | 0.92776 (9) | 0.30578 (10) | 0.0172 (2) | |
C2 | 0.62325 (9) | 0.84437 (9) | 0.33887 (9) | 0.0163 (2) | |
C3 | 0.62473 (9) | 0.82188 (9) | 0.44946 (10) | 0.0160 (2) | |
C4 | 0.69718 (9) | 0.78201 (9) | 0.49868 (10) | 0.0167 (2) | |
C5 | 0.69526 (10) | 0.75800 (9) | 0.60064 (10) | 0.0198 (2) | |
H5 | 0.745761 | 0.730610 | 0.631466 | 0.024* | |
C6 | 0.61793 (10) | 0.77479 (10) | 0.65687 (10) | 0.0216 (3) | |
H6 | 0.615605 | 0.760257 | 0.727309 | 0.026* | |
C7 | 0.54428 (10) | 0.81279 (10) | 0.60985 (10) | 0.0221 (3) | |
H7 | 0.491119 | 0.823434 | 0.648092 | 0.026* | |
C8 | 0.54741 (10) | 0.83559 (9) | 0.50689 (10) | 0.0195 (2) | |
H8 | 0.495992 | 0.860845 | 0.475544 | 0.023* | |
C9 | 0.61222 (9) | 0.63404 (9) | 0.22921 (10) | 0.0173 (2) | |
C10 | 0.62860 (10) | 0.55039 (9) | 0.26748 (11) | 0.0214 (3) | |
H10 | 0.640277 | 0.542361 | 0.338142 | 0.026* | |
C11 | 0.62783 (11) | 0.47892 (10) | 0.20219 (13) | 0.0253 (3) | |
H11 | 0.639299 | 0.421601 | 0.226931 | 0.030* | |
C12 | 0.60996 (11) | 0.49353 (11) | 0.10055 (12) | 0.0245 (3) | |
C13 | 0.59060 (10) | 0.57525 (10) | 0.06081 (11) | 0.0224 (3) | |
H13 | 0.577105 | 0.582364 | −0.009565 | 0.027* | |
C14 | 0.59139 (10) | 0.64622 (9) | 0.12606 (10) | 0.0194 (2) | |
H14 | 0.577851 | 0.703011 | 0.101002 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02940 (8) | 0.02164 (7) | 0.01475 (6) | −0.00253 (5) | −0.00260 (5) | 0.00271 (5) |
Br2 | 0.02785 (8) | 0.01832 (7) | 0.01843 (6) | −0.00056 (5) | 0.00111 (5) | −0.00383 (5) |
F1 | 0.0542 (7) | 0.0220 (5) | 0.0287 (5) | 0.0035 (5) | −0.0047 (4) | −0.0101 (4) |
O1 | 0.0232 (5) | 0.0403 (6) | 0.0201 (5) | 0.0021 (5) | 0.0046 (4) | 0.0009 (4) |
O2 | 0.0267 (5) | 0.0279 (6) | 0.0292 (6) | 0.0120 (5) | −0.0039 (4) | −0.0073 (4) |
N1 | 0.0184 (5) | 0.0245 (6) | 0.0183 (5) | 0.0033 (5) | −0.0014 (4) | −0.0066 (4) |
N2 | 0.0197 (5) | 0.0170 (5) | 0.0152 (5) | 0.0005 (4) | 0.0008 (4) | −0.0012 (4) |
N3 | 0.0200 (5) | 0.0178 (5) | 0.0161 (5) | 0.0002 (4) | 0.0002 (4) | −0.0008 (4) |
C1 | 0.0205 (6) | 0.0179 (6) | 0.0134 (5) | 0.0009 (5) | 0.0000 (4) | −0.0017 (4) |
C2 | 0.0170 (5) | 0.0182 (6) | 0.0136 (5) | 0.0015 (5) | 0.0003 (4) | −0.0012 (4) |
C3 | 0.0185 (6) | 0.0154 (5) | 0.0140 (5) | 0.0012 (5) | −0.0003 (4) | −0.0006 (4) |
C4 | 0.0181 (6) | 0.0160 (5) | 0.0161 (5) | 0.0014 (5) | −0.0004 (4) | −0.0026 (4) |
C5 | 0.0236 (6) | 0.0192 (6) | 0.0166 (5) | 0.0031 (5) | −0.0031 (5) | −0.0001 (4) |
C6 | 0.0278 (7) | 0.0218 (6) | 0.0151 (5) | 0.0021 (5) | 0.0006 (5) | 0.0022 (5) |
C7 | 0.0235 (7) | 0.0262 (7) | 0.0165 (6) | 0.0037 (5) | 0.0046 (5) | 0.0027 (5) |
C8 | 0.0192 (6) | 0.0229 (6) | 0.0162 (5) | 0.0036 (5) | 0.0011 (4) | 0.0022 (5) |
C9 | 0.0183 (6) | 0.0173 (6) | 0.0162 (5) | 0.0002 (5) | 0.0001 (4) | −0.0007 (4) |
C10 | 0.0258 (7) | 0.0192 (6) | 0.0191 (6) | 0.0013 (5) | −0.0022 (5) | 0.0009 (5) |
C11 | 0.0321 (8) | 0.0180 (6) | 0.0259 (7) | 0.0029 (6) | −0.0028 (6) | −0.0009 (5) |
C12 | 0.0289 (7) | 0.0213 (6) | 0.0232 (7) | 0.0004 (6) | −0.0013 (5) | −0.0063 (5) |
C13 | 0.0273 (7) | 0.0225 (7) | 0.0175 (6) | −0.0003 (6) | −0.0012 (5) | −0.0027 (5) |
C14 | 0.0224 (6) | 0.0189 (6) | 0.0168 (5) | −0.0006 (5) | 0.0001 (5) | 0.0001 (4) |
Br1—C1 | 1.8725 (13) | C6—C7 | 1.384 (2) |
Br2—C1 | 1.8667 (13) | C6—H6 | 0.9500 |
F1—C12 | 1.3546 (17) | C7—C8 | 1.3942 (18) |
O1—N1 | 1.2304 (17) | C7—H7 | 0.9500 |
O2—N1 | 1.2284 (16) | C8—H8 | 0.9500 |
N1—C4 | 1.4641 (18) | C9—C10 | 1.3953 (19) |
N2—N3 | 1.2647 (16) | C9—C14 | 1.3992 (19) |
N2—C2 | 1.4138 (17) | C10—C11 | 1.388 (2) |
N3—C9 | 1.4175 (17) | C10—H10 | 0.9500 |
C1—C2 | 1.3486 (19) | C11—C12 | 1.376 (2) |
C2—C3 | 1.4895 (18) | C11—H11 | 0.9500 |
C3—C8 | 1.3900 (19) | C12—C13 | 1.384 (2) |
C3—C4 | 1.3958 (18) | C13—C14 | 1.382 (2) |
C4—C5 | 1.3859 (18) | C13—H13 | 0.9500 |
C5—C6 | 1.390 (2) | C14—H14 | 0.9500 |
C5—H5 | 0.9500 | ||
O2—N1—O1 | 123.62 (13) | C6—C7—H7 | 119.7 |
O2—N1—C4 | 117.94 (13) | C8—C7—H7 | 119.7 |
O1—N1—C4 | 118.41 (12) | C3—C8—C7 | 120.92 (13) |
N3—N2—C2 | 112.28 (11) | C3—C8—H8 | 119.5 |
N2—N3—C9 | 114.15 (11) | C7—C8—H8 | 119.5 |
C2—C1—Br2 | 122.32 (10) | C10—C9—C14 | 120.52 (13) |
C2—C1—Br1 | 123.65 (10) | C10—C9—N3 | 114.96 (12) |
Br2—C1—Br1 | 113.92 (7) | C14—C9—N3 | 124.52 (12) |
C1—C2—N2 | 117.24 (12) | C11—C10—C9 | 119.93 (14) |
C1—C2—C3 | 122.03 (12) | C11—C10—H10 | 120.0 |
N2—C2—C3 | 120.71 (12) | C9—C10—H10 | 120.0 |
C8—C3—C4 | 117.01 (12) | C12—C11—C10 | 118.05 (14) |
C8—C3—C2 | 118.66 (12) | C12—C11—H11 | 121.0 |
C4—C3—C2 | 124.19 (12) | C10—C11—H11 | 121.0 |
C5—C4—C3 | 123.04 (13) | F1—C12—C11 | 118.75 (14) |
C5—C4—N1 | 116.88 (12) | F1—C12—C13 | 117.83 (13) |
C3—C4—N1 | 120.08 (12) | C11—C12—C13 | 123.42 (14) |
C4—C5—C6 | 118.63 (13) | C14—C13—C12 | 118.34 (13) |
C4—C5—H5 | 120.7 | C14—C13—H13 | 120.8 |
C6—C5—H5 | 120.7 | C12—C13—H13 | 120.8 |
C7—C6—C5 | 119.75 (12) | C13—C14—C9 | 119.68 (13) |
C7—C6—H6 | 120.1 | C13—C14—H14 | 120.2 |
C5—C6—H6 | 120.1 | C9—C14—H14 | 120.2 |
C6—C7—C8 | 120.61 (13) | ||
C2—N2—N3—C9 | −178.50 (11) | C3—C4—C5—C6 | −0.4 (2) |
Br2—C1—C2—N2 | −175.87 (9) | N1—C4—C5—C6 | 179.45 (13) |
Br1—C1—C2—N2 | 0.19 (18) | C4—C5—C6—C7 | 1.6 (2) |
Br2—C1—C2—C3 | 5.92 (19) | C5—C6—C7—C8 | −1.0 (2) |
Br1—C1—C2—C3 | −178.02 (10) | C4—C3—C8—C7 | 2.0 (2) |
N3—N2—C2—C1 | 173.96 (13) | C2—C3—C8—C7 | 177.74 (13) |
N3—N2—C2—C3 | −7.80 (18) | C6—C7—C8—C3 | −0.9 (2) |
C1—C2—C3—C8 | 75.95 (18) | N2—N3—C9—C10 | 172.10 (13) |
N2—C2—C3—C8 | −102.20 (16) | N2—N3—C9—C14 | −7.8 (2) |
C1—C2—C3—C4 | −108.63 (17) | C14—C9—C10—C11 | 2.6 (2) |
N2—C2—C3—C4 | 73.22 (18) | N3—C9—C10—C11 | −177.28 (14) |
C8—C3—C4—C5 | −1.4 (2) | C9—C10—C11—C12 | −0.5 (2) |
C2—C3—C4—C5 | −176.84 (13) | C10—C11—C12—F1 | 178.69 (15) |
C8—C3—C4—N1 | 178.78 (12) | C10—C11—C12—C13 | −1.7 (3) |
C2—C3—C4—N1 | 3.3 (2) | F1—C12—C13—C14 | −178.71 (14) |
O2—N1—C4—C5 | 26.58 (18) | C11—C12—C13—C14 | 1.6 (2) |
O1—N1—C4—C5 | −151.37 (13) | C12—C13—C14—C9 | 0.5 (2) |
O2—N1—C4—C3 | −153.54 (13) | C10—C9—C14—C13 | −2.6 (2) |
O1—N1—C4—C3 | 28.51 (19) | N3—C9—C14—C13 | 177.24 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O1i | 0.95 | 2.51 | 3.3244 (18) | 144 |
Symmetry code: (i) −x+3/2, −y+3/2, z+1/2. |
Contact | Distance | Symmetry operation |
H8···Br1 | 2.99 | 1 - x, y, 1/2 - z |
O1···H11 | 2.68 | 3/2 - x, 1/2 + y, z |
Br1···Br2 | 3.6164 | x, 2 - y, -1/2 + z |
H7···Br2 | 3.19 | 1 - x, 2 - y, 1 - z |
H13···F1 | 2.82 | 1 - x, 1 - y, -z |
F1···H10 | 2.67 | x, 1 - y, -1/2 + z |
O1···H6 | 2.51 | 3/2 - x, 3/2 - y, -1/2 + z |
O2···H8 | 2.77 | 1/2 + x, 3/2 - y, 1 - z |
H7···H6 | 2.47 | 1 - x, y, 3/2 - z |
Contact | Percentage contribution |
H···H | 17.4 |
O···H/H···O | 16.3 |
Br···H/H···Br | 15.5 |
Br..C/C···Br | 10.1 |
F···H/H···F | 8.1 |
C···H/H···C | 7.0 |
N···H/H···N | 5.5 |
C···C | 4.7 |
Br..O/O···Br | 4.2 |
F···C/C···F | 3.5 |
Br···Br | 3.1 |
N···C/C···N | 1.4 |
Br···F/F···Br | 1.1 |
N···N | 0.9 |
O···C/C···O | 0.1 |
F···O/O···F | 0.6 |
F···N/N···F | 0.5 |
Acknowledgements
The authors' contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, NAM and GTS; X-ray analysis, STÇ, VNK and MA; writing (review and editing of the manuscript) STÇ, MA and AB; funding acquisition, NQS, NAM and GTS; supervision, NQS, MA and AB.
Funding information
This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4- RFTF-1/2017–21/13/4).
References
Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204. Web of Science CSD CrossRef IUCr Journals Google Scholar
Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Kopylovich, M. N., Mac Leod, T. C. O., Haukka, M., Amanullayeva, G. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). J. Inorg. Biochem. 115, 72–77. Web of Science CSD CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
MacLeod, T. C. O., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23. CAS Google Scholar
Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381. Web of Science CrossRef Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313. Web of Science CSD CrossRef Google Scholar
Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020). Acta Cryst. E76, 1251–1254. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381. Web of Science CSD CrossRef CAS Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.