research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of serotonin

crossmark logo

aUniversity of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and bCaaMTech, Inc., 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 February 2022; accepted 5 March 2022; online 10 March 2022)

The title compound, serotonin or 5-hy­droxy­tryptamine (5-HT) [systematic name: 3-(2-amino­eth­yl)-1H-indol-5-ol], C10H12N2O, has one mol­ecule in the asymmetric unit. The conformation of the ethyl­amino side chain is gauchegauche [Ca—Ca—Cm—Cm and Ca—Cm—Cm—N (a = aromatic, m = methyl­ene) torsion angles = −64.2 (3) and −61.9 (2)°, respectively]. In the crystal, the mol­ecules are linked into a three-dimensional network by N—H⋯O and O—H⋯N hydrogen bonds.

1. Chemical context

Serotonin, C10H12N2O, systematic name 3-(2-amino­eth­yl)-1H-indol-5-ol, is the primary neurotransmitter in humans, regulating mood, anxiety and happiness (Young & Leyton, 2002[Young, S. N. & Leyton, M. (2002). Pharmacol. Biochem. Behav. 71, 857-865.]). While it is best known for its role in the central nervous system, serotonin is found throughout the human body and impacts a wide array of bodily functions. Roughly ninety-five percent of the body's serotonin is actually found in the gastrointestinal tract, where it regulates intestinal movement (Berger et al., 2009[Berger, M., Gray, J. A. & Roth, B. L. (2009). Annu. Rev. Med. 60, 355-366.]). Serotonin is produced in the human body through biosynthesis from the essential amino acid tryptophan (Fitzpatrick, 1999[Fitzpatrick, P. F. (1999). Annu. Rev. Biochem. 68, 355-381.]), and broken down by mono­amine oxidase to generate 5-hy­droxy­indole­acetic acid. As such, mono­amine oxidase inhibitors and other compounds that increase serotonin concentration have been used to treat depression (Suchting et al., 2021[Suchting, R., Tirumalaraju, V., Gareeb, R., Bockmann, T., de Dios, C., Aickareth, J., Pinjari, O., Soares, J. C., Cowen, P. J. & Selvaraj, S. (2021). J. Affect. Disord. 282, 1153-1160.]).

[Scheme 1]

Serotonin is not unique to humans, but is found throughout life on Earth including all bilateral animals, where it also functions as a neurotransmitter (Bacqué-Cazenave et al., 2020[Bacqué-Cazenave, J., Bharatiya, R., Barrière, G., Delbecque, J.-P., Bouguiyoud, N., Di Giovanni, G., Cattaert, D. & De Deurwaerdère, P. (2020). Int. J. Mol. Sci. 21, 1649.]). It is found in plants, notably in seeds, where serotonin stimulates the digestive tract of animals, leading to excretion of the seeds (Akula et al., 2011[Akula, R., Giridhar, P. & Ravishankar, G. A. (2011). Plant Signal. Behav. 6, 800-809.]). Serotonin and related tryptamines are well known to be present in a number of fungi (Tyler, 1958[Tyler, V. E. (1958). Science, 128, 718.]; Sherwood et al., 2020[Sherwood, A. M., Halberstadt, A. L., Klein, A. K., McCorvy, J. D., Kaylo, K. W., Kargbo, R. B. & Meisenheimer, P. (2020). J. Nat. Prod. 83, 461-467.]). A variety of related tryptamines found in plants, fungi, and toads, which are active at serotonin receptors, have garnered significant attention as psychedelic drugs to treat mood disorders including anxiety, depression, and addiction (Carhart-Harris & Goodwin, 2017[Carhart-Harris, R. L. & Goodwin, G. M. (2017). Neuropsychopharmacol, 42, 2105-2113.]). Serotonin was discovered by Vittorio Erspaner in 1935, characterized as 5-hy­droxy­tryptamine (5-HT) in 1949 by Rapport, and synthesized by Upjohn pharmaceutical in 1951 (Whitaker-Azmitia, 1999[Whitaker-Azmitia, P. M. (1999). Neuropsychopharmacology, 21, 2S8S.]). Despite the simplicity of its structure and universally recognized biological significance, the single-crystal structure of pure free base serotonin has never been reported. Herein, we report this structure to fill in the gap from the scientific record.

2. Structural commentary

Serotonin or 5-hy­droxy­tryptamine (5-HT) is an indolamine with a 5-hy­droxy substitution. In the solid state, serotonin crystallizes with one mol­ecule in the asymmetric unit (Fig. 1[link]) in the chiral space group P212121. The 5-hy­droxy­indole fused-ring unit is almost planar with the non-hydrogen atoms showing an r.m.s. deviation from planarity of 0.030 Å. The ethyl­amino arm is turned away from the indole ring, with a C7—C8—C9—C10 torsion angle of −64.2 (3)°. The ethyl­amino arm itself turns back toward the indole ring with a C8—C9—C10—N2 torsion angle of −61.9 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of serotonin free base showing the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the serotonin mol­ecules are linked by a series of hydrogen bonds that produce a three-dimensional network in the solid state. The hy­droxy groups form hydrogen bonds to the amine N atoms on an adjacent serotonin mol­ecules forming O1—H1⋯N2 hydrogen bonds. The indole N atoms form hydrogen bonds to the hy­droxy groups of adjacent serotonin mol­ecules through N1—H1A⋯O1 hydrogen bonds. Half of the amine H atoms link to the hy­droxy groups of nearby mol­ecules through N2—H2B⋯O1 hydrogen bonds. There are no observed ππ stacking inter­actions. Fig. 2[link] outlines the hydrogen bonds, which are detailed in Table 1[link]. The crystal packing of serotonin is shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.88 (1) 1.77 (1) 2.636 (2) 170 (3)
N1—H1A⋯O1ii 0.88 (1) 2.10 (1) 2.967 (2) 169 (2)
N2—H2B⋯O1iii 0.91 (1) 2.19 (1) 3.092 (3) 168 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The different hydrogen-bonding inter­actions between the serotonin mol­ecules. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Symmetry codes: (i) [{3\over 2}] − x, 1 − y, [{1\over 2}] + z (ii) 2 − x, −[{1\over 2}] + y, [{1\over 2}] − z (iii) 3/2 − x, −y, −[{1\over 2}] + z.
[Figure 3]
Figure 3
The crystal packing of serotonin free base viewed along the a-axis. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonds are omitted for clarity.

4. Database survey

The previous structural reports of serotonin are all complex mixtures containing serotonin in its C10H13N2O+ cationic form. These include the creatine sulfate monohydrate (Karle et al., 1965[Karle, I. L., Dragonette, K. S. & Brenner, S. A. (1965). Acta Cryst. 19, 713-716.]: Cambridge Structural Database refcode HTRCRS), the hydrogen oxalate salt (Amit et al., 1978[Amit, A., Mester, L., Klewe, B. & Furberg, S. (1978). Acta Chem. Scand. 32a, 267-270.]: SERHOX), the hydro­adipate salt (Rychkov et al., 2013[Rychkov, D., Boldyreva, E. V. & Tumanov, N. A. (2013). Acta Cryst. C69, 1055-1061.]: VIKWIX), the picrate monohydrate (Thewalt & Bugg, 1972[Thewalt, U. & Bugg, C. E. (1972). Acta Cryst. B28, 82-92.]: SERPIC) and two compounds where it is co-crystallized with 1,3,6,8-tetra­sulfonato­pyrene (Feng et al., 2017[Feng, W.-X., van der Lee, A., Legrand, Y.-M., Petit, E., Su, C.-Y. & Barboiu, M. (2017). Chem. Eur. J. 23, 4037-4041.]: RAWDIF, RAWDOL). The two most closely reported free-base structures to serotonin are the natural product bufotenine, 5-hy­droxy-N,N-di­methyl­tryptamine (Falkenberg, 1972[Falkenberg, G. (1972). Acta Cryst. B28, 3219-3228.]: BUFTEN) and 5-meth­oxy­tryptamine (Quarles et al., 1974[Quarles, W. G., Templeton, D. H. & Zalkin, A. (1974). Acta Cryst. B30, 95-98.]: MXTRYP). 5-Meth­oxy­tryptamine has also been reported as its picrate (Nagata et al., 1995[Nagata, H., In, Y., Doi, M., Ishida, T. & Wakahara, A. (1995). Acta Cryst. B51, 1051-1058.]: ZILMIQ) and chloride (Pham et al., 2021[Pham, D. N. K., Belanger, Z. S., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). Acta Cryst. C77, 615-620.]: CCDC 2106050) salts. The free base reported here shows the ethyl­amino arm turned away from the indole plane. The majority of the cationic tryptamine structures show ethyl­amino arms that are nearly in-plane with the indole ring. Only the picrate salt has a structure similar to that of the title compound, showing an ethyl­amino arm turned similarly away from the indole ring. The torsion angles associated with the ethyl­amino arms of the different structures are summarized in Table 2[link].

Table 2
Torsion angles of the ethyl­amino arms of different serotonin structures (our atom-numbering scheme)

  Space group C7—C8—C9—C10 C8—C9—C10—N2 Reference
5-HT free base P212121 −64.2 (3) −61.9 (2) This work
HTRCRS C2/c 166.7 172.6 Karle et al. (1965[Karle, I. L., Dragonette, K. S. & Brenner, S. A. (1965). Acta Cryst. 19, 713-716.])
SERHOX P21/n 171.7 179.7 Amit et al. (1978[Amit, A., Mester, L., Klewe, B. & Furberg, S. (1978). Acta Chem. Scand. 32a, 267-270.])
SERPIC P21/c 67.5 66.6 Thewalt & Bugg (1972[Thewalt, U. & Bugg, C. E. (1972). Acta Cryst. B28, 82-92.])
VIKWIX P[\overline{1}] 178.7 177.2 Rychkov et al. (2013[Rychkov, D., Boldyreva, E. V. & Tumanov, N. A. (2013). Acta Cryst. C69, 1055-1061.])
RAWDIF Pca21 177.8 177.6 Feng et al. (2017[Feng, W.-X., van der Lee, A., Legrand, Y.-M., Petit, E., Su, C.-Y. & Barboiu, M. (2017). Chem. Eur. J. 23, 4037-4041.])
RAWDOLa Cc 178.7 175.1 Feng et al. (2017[Feng, W.-X., van der Lee, A., Legrand, Y.-M., Petit, E., Su, C.-Y. & Barboiu, M. (2017). Chem. Eur. J. 23, 4037-4041.])
RAWDOLb Cc 102 43 Feng et al. (2017[Feng, W.-X., van der Lee, A., Legrand, Y.-M., Petit, E., Su, C.-Y. & Barboiu, M. (2017). Chem. Eur. J. 23, 4037-4041.])
Notes: (a, b) RAWDOL contains two mol­ecules in the asymmetric unit. The b mol­ecule is probably disordered and the geometrical data are less certain.

5. Synthesis and crystallization

Single crystals suitable for X-ray diffraction studies were grown from the slow evaporation of a tetra­hydro­furan solution of a commercial sample of serotonin free base (Chem-Impex).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms H1, H1A, H2A and H2B were found from a difference-Fourier map and were refined isotropically, using DFIX restraints with an N—H(indole) distance of 0.87 (1) Å, N—H(amine) distances of 0.90 (1) Å, and an O—H distance of 0.86 (1) Å. Isotropic displacement parameters were set to 1.2 Ueq of the parent nitro­gen atoms and 1.5 Ueq of the parent oxygen atom. All other hydrogen atoms were placed in calculated positions with C—H = 0.93 Å (sp2) or 0.97 Å (sp3). Isotropic displacement parameters were set to 1.2 Ueq of the parent carbon atoms. The absolute structure of the crystal chosen for data collection was indeterminate in the present refinement.

Table 3
Experimental details

Crystal data
Chemical formula C10H12N2O
Mr 176.22
Crystal system, space group Orthorhombic, P212121
Temperature (K) 297
a, b, c (Å) 8.2248 (6), 8.7542 (6), 13.0712 (10)
V3) 941.15 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.18 × 0.10 × 0.02
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.711, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 25138, 1783, 1590
Rint 0.052
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.073, 1.05
No. of reflections 1783
No. of parameters 134
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.13, −0.13
Absolute structure Flack x determined using 609 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −1.2 (6)
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

3-(2-Aminoethyl)-1H-indol-5-ol top
Crystal data top
C10H12N2ODx = 1.244 Mg m3
Mr = 176.22Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 6263 reflections
a = 8.2248 (6) Åθ = 3.1–25.4°
b = 8.7542 (6) ŵ = 0.08 mm1
c = 13.0712 (10) ÅT = 297 K
V = 941.15 (12) Å3Block, colourless
Z = 40.18 × 0.10 × 0.02 mm
F(000) = 376
Data collection top
Bruker D8 Venture CMOS
diffractometer
1590 reflections with I > 2σ(I)
φ and ω scansRint = 0.052
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 25.7°, θmin = 2.8°
Tmin = 0.711, Tmax = 0.745h = 1010
25138 measured reflectionsk = 1010
1783 independent reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.1115P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.13 e Å3
1783 reflectionsΔρmin = 0.13 e Å3
134 parametersAbsolute structure: Flack x determined using 609 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
4 restraintsAbsolute structure parameter: 1.2 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.91964 (18)0.18734 (16)0.08462 (10)0.0398 (4)
H10.868 (3)0.263 (2)0.054 (2)0.078 (9)*
N10.6390 (2)0.0903 (2)0.45983 (14)0.0445 (5)
H1A0.633 (3)0.012 (2)0.5016 (15)0.051 (7)*
N20.7279 (2)0.6020 (2)0.47447 (15)0.0458 (5)
H2A0.725 (3)0.5092 (18)0.5030 (18)0.050 (7)*
H2B0.8312 (19)0.638 (3)0.465 (2)0.072 (9)*
C10.5533 (3)0.2238 (2)0.47087 (16)0.0433 (5)
H1B0.4870700.2469980.5264120.052*
C20.7237 (2)0.0960 (2)0.36910 (15)0.0343 (4)
C30.8303 (2)0.0077 (2)0.32446 (16)0.0388 (5)
H30.8567120.0988300.3570970.047*
C40.8956 (2)0.0283 (2)0.23057 (16)0.0375 (5)
H40.9677970.0391270.1996000.045*
C50.8552 (2)0.1654 (2)0.18068 (14)0.0316 (4)
C60.7543 (2)0.27075 (19)0.22632 (14)0.0304 (4)
H60.7310450.3627960.1939650.036*
C70.6874 (2)0.2373 (2)0.32214 (14)0.0300 (4)
C80.5785 (2)0.3173 (2)0.38953 (14)0.0349 (4)
C90.5130 (2)0.4756 (2)0.37352 (17)0.0391 (5)
H9A0.4344130.4979500.4268060.047*
H9B0.4566680.4793810.3083680.047*
C100.6446 (3)0.5971 (2)0.37477 (16)0.0412 (5)
H10A0.7232680.5757000.3213720.049*
H10B0.5963860.6960630.3607120.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0473 (8)0.0370 (8)0.0351 (7)0.0049 (7)0.0058 (6)0.0021 (6)
N10.0536 (11)0.0411 (10)0.0390 (10)0.0009 (9)0.0040 (9)0.0125 (8)
N20.0465 (11)0.0406 (10)0.0502 (12)0.0012 (9)0.0064 (9)0.0055 (9)
C10.0441 (11)0.0456 (13)0.0402 (11)0.0009 (10)0.0064 (9)0.0025 (9)
C20.0378 (10)0.0309 (9)0.0342 (10)0.0019 (8)0.0068 (9)0.0044 (8)
C30.0434 (11)0.0268 (9)0.0461 (11)0.0031 (8)0.0094 (10)0.0058 (8)
C40.0366 (10)0.0325 (10)0.0435 (11)0.0061 (8)0.0055 (9)0.0036 (9)
C50.0322 (9)0.0299 (9)0.0328 (9)0.0033 (7)0.0037 (8)0.0034 (8)
C60.0360 (9)0.0230 (8)0.0323 (9)0.0004 (8)0.0052 (8)0.0010 (7)
C70.0304 (9)0.0282 (9)0.0315 (9)0.0012 (7)0.0060 (7)0.0001 (7)
C80.0348 (9)0.0347 (10)0.0353 (10)0.0004 (8)0.0024 (9)0.0004 (8)
C90.0377 (10)0.0390 (11)0.0406 (11)0.0078 (9)0.0006 (9)0.0009 (9)
C100.0493 (12)0.0340 (10)0.0404 (11)0.0045 (9)0.0001 (10)0.0030 (9)
Geometric parameters (Å, º) top
O1—H10.878 (13)C3—C41.376 (3)
O1—C51.376 (2)C4—H40.9300
N1—H1A0.879 (12)C4—C51.406 (3)
N1—C11.373 (3)C5—C61.376 (3)
N1—C21.376 (3)C6—H60.9300
N2—H2A0.894 (12)C6—C71.399 (3)
N2—H2B0.914 (13)C7—C81.438 (3)
N2—C101.473 (3)C8—C91.501 (3)
C1—H1B0.9300C9—H9A0.9700
C1—C81.358 (3)C9—H9B0.9700
C2—C31.391 (3)C9—C101.518 (3)
C2—C71.412 (3)C10—H10A0.9700
C3—H30.9300C10—H10B0.9700
C5—O1—H1109.1 (19)C5—C6—H6120.5
C1—N1—H1A124.8 (16)C5—C6—C7119.01 (16)
C1—N1—C2108.64 (16)C7—C6—H6120.5
C2—N1—H1A126.4 (16)C2—C7—C8107.00 (17)
H2A—N2—H2B113 (2)C6—C7—C2119.27 (17)
C10—N2—H2A109.3 (16)C6—C7—C8133.72 (17)
C10—N2—H2B108.5 (18)C1—C8—C7106.30 (17)
N1—C1—H1B124.7C1—C8—C9127.65 (19)
C8—C1—N1110.65 (19)C7—C8—C9126.01 (17)
C8—C1—H1B124.7C8—C9—H9A109.0
N1—C2—C3131.04 (18)C8—C9—H9B109.0
N1—C2—C7107.41 (16)C8—C9—C10112.92 (16)
C3—C2—C7121.54 (18)H9A—C9—H9B107.8
C2—C3—H3121.0C10—C9—H9A109.0
C4—C3—C2118.04 (17)C10—C9—H9B109.0
C4—C3—H3121.0N2—C10—C9111.17 (17)
C3—C4—H4119.4N2—C10—H10A109.4
C3—C4—C5121.14 (18)N2—C10—H10B109.4
C5—C4—H4119.4C9—C10—H10A109.4
O1—C5—C4116.80 (17)C9—C10—H10B109.4
C6—C5—O1122.29 (17)H10A—C10—H10B108.0
C6—C5—C4120.90 (17)
O1—C5—C6—C7177.03 (16)C3—C2—C7—C62.9 (3)
N1—C1—C8—C70.2 (2)C3—C2—C7—C8178.28 (17)
N1—C1—C8—C9177.44 (19)C3—C4—C5—O1176.50 (17)
N1—C2—C3—C4178.8 (2)C3—C4—C5—C62.8 (3)
N1—C2—C7—C6178.03 (16)C4—C5—C6—C72.3 (3)
N1—C2—C7—C80.8 (2)C5—C6—C7—C20.5 (2)
C1—N1—C2—C3178.3 (2)C5—C6—C7—C8178.96 (18)
C1—N1—C2—C70.7 (2)C6—C7—C8—C1178.0 (2)
C1—C8—C9—C10113.0 (2)C6—C7—C8—C94.4 (3)
C2—N1—C1—C80.3 (3)C7—C2—C3—C42.4 (3)
C2—C3—C4—C50.5 (3)C7—C8—C9—C1064.2 (3)
C2—C7—C8—C10.6 (2)C8—C9—C10—N261.9 (2)
C2—C7—C8—C9177.08 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.88 (1)1.77 (1)2.636 (2)170 (3)
N1—H1A···O1ii0.88 (1)2.10 (1)2.967 (2)169 (2)
N2—H2B···O1iii0.91 (1)2.19 (1)3.092 (3)168 (2)
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+3/2, y, z+1/2; (iii) x+2, y+1/2, z+1/2.
Torsion angles of the ethylamino arms of different serotonin structures (our atom-numbering scheme) top
Space groupC7—C8—C9—C10C8—C9—C10—N2Reference
5-HT free baseP212121-64.2 (3)-61.9 (2)This work
HTRCRSC2/c166.7172.6Karle et al. (1965)
SERHOXP21/n171.7179.7Amit et al. (1978)
SERPICP21/c67.566.6Thewalt & Bugg (1972)
VIKWIXP1178.7177.2Rychkov et al. (2013)
RAWDIFPca21177.8177.6Feng et al. (2017)
RAWDOLaCc178.7175.1Feng et al. (2017)
RAWDOLbCc10243Feng et al. (2017)
Notes: (a, b) RAWDOL contains two molecules in the asymmetric unit. The b molecule is probably disordered and the geometrical data are less certain.
 

Acknowledgements

Financial statements and conflict of inter­est: This study was funded by CaaMTech, Inc. ARC reports an ownership inter­est in CaaMTech, Inc., which owns US and worldwide patent applications, covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making and using the same.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086).

References

First citationAkula, R., Giridhar, P. & Ravishankar, G. A. (2011). Plant Signal. Behav. 6, 800–809.  CrossRef PubMed Google Scholar
First citationAmit, A., Mester, L., Klewe, B. & Furberg, S. (1978). Acta Chem. Scand. 32a, 267–270.  CSD CrossRef Web of Science Google Scholar
First citationBacqué-Cazenave, J., Bharatiya, R., Barrière, G., Delbecque, J.-P., Bouguiyoud, N., Di Giovanni, G., Cattaert, D. & De Deurwaerdère, P. (2020). Int. J. Mol. Sci. 21, 1649.  Google Scholar
First citationBerger, M., Gray, J. A. & Roth, B. L. (2009). Annu. Rev. Med. 60, 355–366.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarhart-Harris, R. L. & Goodwin, G. M. (2017). Neuropsychopharmacol, 42, 2105–2113.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFalkenberg, G. (1972). Acta Cryst. B28, 3219–3228.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationFeng, W.-X., van der Lee, A., Legrand, Y.-M., Petit, E., Su, C.-Y. & Barboiu, M. (2017). Chem. Eur. J. 23, 4037–4041.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFitzpatrick, P. F. (1999). Annu. Rev. Biochem. 68, 355–381.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKarle, I. L., Dragonette, K. S. & Brenner, S. A. (1965). Acta Cryst. 19, 713–716.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNagata, H., In, Y., Doi, M., Ishida, T. & Wakahara, A. (1995). Acta Cryst. B51, 1051–1058.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPham, D. N. K., Belanger, Z. S., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). Acta Cryst. C77, 615–620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuarles, W. G., Templeton, D. H. & Zalkin, A. (1974). Acta Cryst. B30, 95–98.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationRychkov, D., Boldyreva, E. V. & Tumanov, N. A. (2013). Acta Cryst. C69, 1055–1061.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSherwood, A. M., Halberstadt, A. L., Klein, A. K., McCorvy, J. D., Kaylo, K. W., Kargbo, R. B. & Meisenheimer, P. (2020). J. Nat. Prod. 83, 461–467.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSuchting, R., Tirumalaraju, V., Gareeb, R., Bockmann, T., de Dios, C., Aickareth, J., Pinjari, O., Soares, J. C., Cowen, P. J. & Selvaraj, S. (2021). J. Affect. Disord. 282, 1153–1160.  Web of Science CrossRef CAS PubMed Google Scholar
First citationThewalt, U. & Bugg, C. E. (1972). Acta Cryst. B28, 82–92.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationTyler, V. E. (1958). Science, 128, 718.  CrossRef PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhitaker-Azmitia, P. M. (1999). Neuropsychopharmacology, 21, 2S8S.  Google Scholar
First citationYoung, S. N. & Leyton, M. (2002). Pharmacol. Biochem. Behav. 71, 857–865.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds