research communications
of serotonin
aUniversity of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and bCaaMTech, Inc., 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA
*Correspondence e-mail: dmanke@umassd.edu
The title compound, serotonin or 5-hydroxytryptamine (5-HT) [systematic name: 3-(2-aminoethyl)-1H-indol-5-ol], C10H12N2O, has one molecule in the The conformation of the ethylamino side chain is gauche–gauche [Ca—Ca—Cm—Cm and Ca—Cm—Cm—N (a = aromatic, m = methylene) torsion angles = −64.2 (3) and −61.9 (2)°, respectively]. In the crystal, the molecules are linked into a three-dimensional network by N—H⋯O and O—H⋯N hydrogen bonds.
Keywords: crystal structure; serotonin; tryptamine; indole; free base.
CCDC reference: 2156646
1. Chemical context
Serotonin, C10H12N2O, 3-(2-aminoethyl)-1H-indol-5-ol, is the primary neurotransmitter in humans, regulating mood, anxiety and happiness (Young & Leyton, 2002). While it is best known for its role in the central nervous system, serotonin is found throughout the human body and impacts a wide array of bodily functions. Roughly ninety-five percent of the body's serotonin is actually found in the gastrointestinal tract, where it regulates intestinal movement (Berger et al., 2009). Serotonin is produced in the human body through biosynthesis from the essential amino acid tryptophan (Fitzpatrick, 1999), and broken down by monoamine oxidase to generate 5-hydroxyindoleacetic acid. As such, monoamine oxidase inhibitors and other compounds that increase serotonin concentration have been used to treat depression (Suchting et al., 2021).
Serotonin is not unique to humans, but is found throughout life on Earth including all bilateral animals, where it also functions as a neurotransmitter (Bacqué-Cazenave et al., 2020). It is found in plants, notably in seeds, where serotonin stimulates the digestive tract of animals, leading to excretion of the seeds (Akula et al., 2011). Serotonin and related tryptamines are well known to be present in a number of fungi (Tyler, 1958; Sherwood et al., 2020). A variety of related tryptamines found in plants, fungi, and toads, which are active at serotonin receptors, have garnered significant attention as psychedelic drugs to treat mood disorders including anxiety, depression, and addiction (Carhart-Harris & Goodwin, 2017). Serotonin was discovered by Vittorio Erspaner in 1935, characterized as 5-hydroxytryptamine (5-HT) in 1949 by Rapport, and synthesized by Upjohn pharmaceutical in 1951 (Whitaker-Azmitia, 1999). Despite the simplicity of its structure and universally recognized biological significance, the single-crystal structure of pure free base serotonin has never been reported. Herein, we report this structure to fill in the gap from the scientific record.
2. Structural commentary
Serotonin or 5-hydroxytryptamine (5-HT) is an indolamine with a 5-hydroxy substitution. In the solid state, serotonin crystallizes with one molecule in the ) in the P212121. The 5-hydroxyindole fused-ring unit is almost planar with the non-hydrogen atoms showing an r.m.s. deviation from planarity of 0.030 Å. The ethylamino arm is turned away from the indole ring, with a C7—C8—C9—C10 torsion angle of −64.2 (3)°. The ethylamino arm itself turns back toward the indole ring with a C8—C9—C10—N2 torsion angle of −61.9 (2)°.
(Fig. 13. Supramolecular features
In the crystal, the serotonin molecules are linked by a series of hydrogen bonds that produce a three-dimensional network in the solid state. The hydroxy groups form hydrogen bonds to the amine N atoms on an adjacent serotonin molecules forming O1—H1⋯N2 hydrogen bonds. The indole N atoms form hydrogen bonds to the hydroxy groups of adjacent serotonin molecules through N1—H1A⋯O1 hydrogen bonds. Half of the amine H atoms link to the hydroxy groups of nearby molecules through N2—H2B⋯O1 hydrogen bonds. There are no observed π–π stacking interactions. Fig. 2 outlines the hydrogen bonds, which are detailed in Table 1. The crystal packing of serotonin is shown in Fig. 3.
4. Database survey
The previous structural reports of serotonin are all complex mixtures containing serotonin in its C10H13N2O+ cationic form. These include the creatine sulfate monohydrate (Karle et al., 1965: Cambridge Structural Database refcode HTRCRS), the hydrogen oxalate salt (Amit et al., 1978: SERHOX), the hydroadipate salt (Rychkov et al., 2013: VIKWIX), the picrate monohydrate (Thewalt & Bugg, 1972: SERPIC) and two compounds where it is co-crystallized with 1,3,6,8-tetrasulfonatopyrene (Feng et al., 2017: RAWDIF, RAWDOL). The two most closely reported free-base structures to serotonin are the natural product bufotenine, 5-hydroxy-N,N-dimethyltryptamine (Falkenberg, 1972: BUFTEN) and 5-methoxytryptamine (Quarles et al., 1974: MXTRYP). 5-Methoxytryptamine has also been reported as its picrate (Nagata et al., 1995: ZILMIQ) and chloride (Pham et al., 2021: CCDC 2106050) salts. The free base reported here shows the ethylamino arm turned away from the indole plane. The majority of the cationic tryptamine structures show ethylamino arms that are nearly in-plane with the indole ring. Only the picrate salt has a structure similar to that of the title compound, showing an ethylamino arm turned similarly away from the indole ring. The torsion angles associated with the ethylamino arms of the different structures are summarized in Table 2.
5. Synthesis and crystallization
Single crystals suitable for X-ray diffraction studies were grown from the slow evaporation of a tetrahydrofuran solution of a commercial sample of serotonin free base (Chem-Impex).
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms H1, H1A, H2A and H2B were found from a difference-Fourier map and were refined isotropically, using DFIX restraints with an N—H(indole) distance of 0.87 (1) Å, N—H(amine) distances of 0.90 (1) Å, and an O—H distance of 0.86 (1) Å. Isotropic displacement parameters were set to 1.2 Ueq of the parent nitrogen atoms and 1.5 Ueq of the parent oxygen atom. All other hydrogen atoms were placed in calculated positions with C—H = 0.93 Å (sp2) or 0.97 Å (sp3). Isotropic displacement parameters were set to 1.2 Ueq of the parent carbon atoms. The of the crystal chosen for data collection was indeterminate in the present refinement.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2156646
https://doi.org/10.1107/S2056989022002559/hb8014sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022002559/hb8014Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022002559/hb8014Isup3.cml
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C10H12N2O | Dx = 1.244 Mg m−3 |
Mr = 176.22 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 6263 reflections |
a = 8.2248 (6) Å | θ = 3.1–25.4° |
b = 8.7542 (6) Å | µ = 0.08 mm−1 |
c = 13.0712 (10) Å | T = 297 K |
V = 941.15 (12) Å3 | Block, colourless |
Z = 4 | 0.18 × 0.10 × 0.02 mm |
F(000) = 376 |
Bruker D8 Venture CMOS diffractometer | 1590 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.052 |
Absorption correction: multi-scan (SADABS; Bruker, 2018) | θmax = 25.7°, θmin = 2.8° |
Tmin = 0.711, Tmax = 0.745 | h = −10→10 |
25138 measured reflections | k = −10→10 |
1783 independent reflections | l = −15→15 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.0372P)2 + 0.1115P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.073 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.13 e Å−3 |
1783 reflections | Δρmin = −0.13 e Å−3 |
134 parameters | Absolute structure: Flack x determined using 609 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
4 restraints | Absolute structure parameter: −1.2 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.91964 (18) | 0.18734 (16) | 0.08462 (10) | 0.0398 (4) | |
H1 | 0.868 (3) | 0.263 (2) | 0.054 (2) | 0.078 (9)* | |
N1 | 0.6390 (2) | 0.0903 (2) | 0.45983 (14) | 0.0445 (5) | |
H1A | 0.633 (3) | 0.012 (2) | 0.5016 (15) | 0.051 (7)* | |
N2 | 0.7279 (2) | 0.6020 (2) | 0.47447 (15) | 0.0458 (5) | |
H2A | 0.725 (3) | 0.5092 (18) | 0.5030 (18) | 0.050 (7)* | |
H2B | 0.8312 (19) | 0.638 (3) | 0.465 (2) | 0.072 (9)* | |
C1 | 0.5533 (3) | 0.2238 (2) | 0.47087 (16) | 0.0433 (5) | |
H1B | 0.487070 | 0.246998 | 0.526412 | 0.052* | |
C2 | 0.7237 (2) | 0.0960 (2) | 0.36910 (15) | 0.0343 (4) | |
C3 | 0.8303 (2) | −0.0077 (2) | 0.32446 (16) | 0.0388 (5) | |
H3 | 0.856712 | −0.098830 | 0.357097 | 0.047* | |
C4 | 0.8956 (2) | 0.0283 (2) | 0.23057 (16) | 0.0375 (5) | |
H4 | 0.967797 | −0.039127 | 0.199600 | 0.045* | |
C5 | 0.8552 (2) | 0.1654 (2) | 0.18068 (14) | 0.0316 (4) | |
C6 | 0.7543 (2) | 0.27075 (19) | 0.22632 (14) | 0.0304 (4) | |
H6 | 0.731045 | 0.362796 | 0.193965 | 0.036* | |
C7 | 0.6874 (2) | 0.2373 (2) | 0.32214 (14) | 0.0300 (4) | |
C8 | 0.5785 (2) | 0.3173 (2) | 0.38953 (14) | 0.0349 (4) | |
C9 | 0.5130 (2) | 0.4756 (2) | 0.37352 (17) | 0.0391 (5) | |
H9A | 0.434413 | 0.497950 | 0.426806 | 0.047* | |
H9B | 0.456668 | 0.479381 | 0.308368 | 0.047* | |
C10 | 0.6446 (3) | 0.5971 (2) | 0.37477 (16) | 0.0412 (5) | |
H10A | 0.723268 | 0.575700 | 0.321372 | 0.049* | |
H10B | 0.596386 | 0.696063 | 0.360712 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0473 (8) | 0.0370 (8) | 0.0351 (7) | 0.0049 (7) | 0.0058 (6) | −0.0021 (6) |
N1 | 0.0536 (11) | 0.0411 (10) | 0.0390 (10) | 0.0009 (9) | 0.0040 (9) | 0.0125 (8) |
N2 | 0.0465 (11) | 0.0406 (10) | 0.0502 (12) | 0.0012 (9) | −0.0064 (9) | −0.0055 (9) |
C1 | 0.0441 (11) | 0.0456 (13) | 0.0402 (11) | 0.0009 (10) | 0.0064 (9) | 0.0025 (9) |
C2 | 0.0378 (10) | 0.0309 (9) | 0.0342 (10) | −0.0019 (8) | −0.0068 (9) | 0.0044 (8) |
C3 | 0.0434 (11) | 0.0268 (9) | 0.0461 (11) | 0.0031 (8) | −0.0094 (10) | 0.0058 (8) |
C4 | 0.0366 (10) | 0.0325 (10) | 0.0435 (11) | 0.0061 (8) | −0.0055 (9) | −0.0036 (9) |
C5 | 0.0322 (9) | 0.0299 (9) | 0.0328 (9) | −0.0033 (7) | −0.0037 (8) | −0.0034 (8) |
C6 | 0.0360 (9) | 0.0230 (8) | 0.0323 (9) | −0.0004 (8) | −0.0052 (8) | 0.0010 (7) |
C7 | 0.0304 (9) | 0.0282 (9) | 0.0315 (9) | −0.0012 (7) | −0.0060 (7) | 0.0001 (7) |
C8 | 0.0348 (9) | 0.0347 (10) | 0.0353 (10) | 0.0004 (8) | −0.0024 (9) | −0.0004 (8) |
C9 | 0.0377 (10) | 0.0390 (11) | 0.0406 (11) | 0.0078 (9) | −0.0006 (9) | −0.0009 (9) |
C10 | 0.0493 (12) | 0.0340 (10) | 0.0404 (11) | 0.0045 (9) | −0.0001 (10) | −0.0030 (9) |
O1—H1 | 0.878 (13) | C3—C4 | 1.376 (3) |
O1—C5 | 1.376 (2) | C4—H4 | 0.9300 |
N1—H1A | 0.879 (12) | C4—C5 | 1.406 (3) |
N1—C1 | 1.373 (3) | C5—C6 | 1.376 (3) |
N1—C2 | 1.376 (3) | C6—H6 | 0.9300 |
N2—H2A | 0.894 (12) | C6—C7 | 1.399 (3) |
N2—H2B | 0.914 (13) | C7—C8 | 1.438 (3) |
N2—C10 | 1.473 (3) | C8—C9 | 1.501 (3) |
C1—H1B | 0.9300 | C9—H9A | 0.9700 |
C1—C8 | 1.358 (3) | C9—H9B | 0.9700 |
C2—C3 | 1.391 (3) | C9—C10 | 1.518 (3) |
C2—C7 | 1.412 (3) | C10—H10A | 0.9700 |
C3—H3 | 0.9300 | C10—H10B | 0.9700 |
C5—O1—H1 | 109.1 (19) | C5—C6—H6 | 120.5 |
C1—N1—H1A | 124.8 (16) | C5—C6—C7 | 119.01 (16) |
C1—N1—C2 | 108.64 (16) | C7—C6—H6 | 120.5 |
C2—N1—H1A | 126.4 (16) | C2—C7—C8 | 107.00 (17) |
H2A—N2—H2B | 113 (2) | C6—C7—C2 | 119.27 (17) |
C10—N2—H2A | 109.3 (16) | C6—C7—C8 | 133.72 (17) |
C10—N2—H2B | 108.5 (18) | C1—C8—C7 | 106.30 (17) |
N1—C1—H1B | 124.7 | C1—C8—C9 | 127.65 (19) |
C8—C1—N1 | 110.65 (19) | C7—C8—C9 | 126.01 (17) |
C8—C1—H1B | 124.7 | C8—C9—H9A | 109.0 |
N1—C2—C3 | 131.04 (18) | C8—C9—H9B | 109.0 |
N1—C2—C7 | 107.41 (16) | C8—C9—C10 | 112.92 (16) |
C3—C2—C7 | 121.54 (18) | H9A—C9—H9B | 107.8 |
C2—C3—H3 | 121.0 | C10—C9—H9A | 109.0 |
C4—C3—C2 | 118.04 (17) | C10—C9—H9B | 109.0 |
C4—C3—H3 | 121.0 | N2—C10—C9 | 111.17 (17) |
C3—C4—H4 | 119.4 | N2—C10—H10A | 109.4 |
C3—C4—C5 | 121.14 (18) | N2—C10—H10B | 109.4 |
C5—C4—H4 | 119.4 | C9—C10—H10A | 109.4 |
O1—C5—C4 | 116.80 (17) | C9—C10—H10B | 109.4 |
C6—C5—O1 | 122.29 (17) | H10A—C10—H10B | 108.0 |
C6—C5—C4 | 120.90 (17) | ||
O1—C5—C6—C7 | 177.03 (16) | C3—C2—C7—C6 | 2.9 (3) |
N1—C1—C8—C7 | 0.2 (2) | C3—C2—C7—C8 | −178.28 (17) |
N1—C1—C8—C9 | −177.44 (19) | C3—C4—C5—O1 | −176.50 (17) |
N1—C2—C3—C4 | 178.8 (2) | C3—C4—C5—C6 | 2.8 (3) |
N1—C2—C7—C6 | −178.03 (16) | C4—C5—C6—C7 | −2.3 (3) |
N1—C2—C7—C8 | 0.8 (2) | C5—C6—C7—C2 | −0.5 (2) |
C1—N1—C2—C3 | 178.3 (2) | C5—C6—C7—C8 | −178.96 (18) |
C1—N1—C2—C7 | −0.7 (2) | C6—C7—C8—C1 | 178.0 (2) |
C1—C8—C9—C10 | 113.0 (2) | C6—C7—C8—C9 | −4.4 (3) |
C2—N1—C1—C8 | 0.3 (3) | C7—C2—C3—C4 | −2.4 (3) |
C2—C3—C4—C5 | −0.5 (3) | C7—C8—C9—C10 | −64.2 (3) |
C2—C7—C8—C1 | −0.6 (2) | C8—C9—C10—N2 | −61.9 (2) |
C2—C7—C8—C9 | 177.08 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N2i | 0.88 (1) | 1.77 (1) | 2.636 (2) | 170 (3) |
N1—H1A···O1ii | 0.88 (1) | 2.10 (1) | 2.967 (2) | 169 (2) |
N2—H2B···O1iii | 0.91 (1) | 2.19 (1) | 3.092 (3) | 168 (2) |
Symmetry codes: (i) −x+3/2, −y+1, z−1/2; (ii) −x+3/2, −y, z+1/2; (iii) −x+2, y+1/2, −z+1/2. |
Space group | C7—C8—C9—C10 | C8—C9—C10—N2 | Reference | |
5-HT free base | P212121 | -64.2 (3) | -61.9 (2) | This work |
HTRCRS | C2/c | 166.7 | 172.6 | Karle et al. (1965) |
SERHOX | P21/n | 171.7 | 179.7 | Amit et al. (1978) |
SERPIC | P21/c | 67.5 | 66.6 | Thewalt & Bugg (1972) |
VIKWIX | P1 | 178.7 | 177.2 | Rychkov et al. (2013) |
RAWDIF | Pca21 | 177.8 | 177.6 | Feng et al. (2017) |
RAWDOLa | Cc | 178.7 | 175.1 | Feng et al. (2017) |
RAWDOLb | Cc | 102 | 43 | Feng et al. (2017) |
Notes: (a, b) RAWDOL contains two molecules in the asymmetric unit. The b molecule is probably disordered and the geometrical data are less certain. |
Acknowledgements
Financial statements and conflict of interest: This study was funded by CaaMTech, Inc. ARC reports an ownership interest in CaaMTech, Inc., which owns US and worldwide patent applications, covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making and using the same.
Funding information
Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086).
References
Akula, R., Giridhar, P. & Ravishankar, G. A. (2011). Plant Signal. Behav. 6, 800–809. CrossRef PubMed Google Scholar
Amit, A., Mester, L., Klewe, B. & Furberg, S. (1978). Acta Chem. Scand. 32a, 267–270. CSD CrossRef Web of Science Google Scholar
Bacqué-Cazenave, J., Bharatiya, R., Barrière, G., Delbecque, J.-P., Bouguiyoud, N., Di Giovanni, G., Cattaert, D. & De Deurwaerdère, P. (2020). Int. J. Mol. Sci. 21, 1649. Google Scholar
Berger, M., Gray, J. A. & Roth, B. L. (2009). Annu. Rev. Med. 60, 355–366. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carhart-Harris, R. L. & Goodwin, G. M. (2017). Neuropsychopharmacol, 42, 2105–2113. CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Falkenberg, G. (1972). Acta Cryst. B28, 3219–3228. CSD CrossRef IUCr Journals Web of Science Google Scholar
Feng, W.-X., van der Lee, A., Legrand, Y.-M., Petit, E., Su, C.-Y. & Barboiu, M. (2017). Chem. Eur. J. 23, 4037–4041. Web of Science CSD CrossRef CAS PubMed Google Scholar
Fitzpatrick, P. F. (1999). Annu. Rev. Biochem. 68, 355–381. Web of Science CrossRef PubMed CAS Google Scholar
Karle, I. L., Dragonette, K. S. & Brenner, S. A. (1965). Acta Cryst. 19, 713–716. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Nagata, H., In, Y., Doi, M., Ishida, T. & Wakahara, A. (1995). Acta Cryst. B51, 1051–1058. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pham, D. N. K., Belanger, Z. S., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). Acta Cryst. C77, 615–620. Web of Science CSD CrossRef IUCr Journals Google Scholar
Quarles, W. G., Templeton, D. H. & Zalkin, A. (1974). Acta Cryst. B30, 95–98. CSD CrossRef IUCr Journals Web of Science Google Scholar
Rychkov, D., Boldyreva, E. V. & Tumanov, N. A. (2013). Acta Cryst. C69, 1055–1061. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sherwood, A. M., Halberstadt, A. L., Klein, A. K., McCorvy, J. D., Kaylo, K. W., Kargbo, R. B. & Meisenheimer, P. (2020). J. Nat. Prod. 83, 461–467. Web of Science CrossRef CAS PubMed Google Scholar
Suchting, R., Tirumalaraju, V., Gareeb, R., Bockmann, T., de Dios, C., Aickareth, J., Pinjari, O., Soares, J. C., Cowen, P. J. & Selvaraj, S. (2021). J. Affect. Disord. 282, 1153–1160. Web of Science CrossRef CAS PubMed Google Scholar
Thewalt, U. & Bugg, C. E. (1972). Acta Cryst. B28, 82–92. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Tyler, V. E. (1958). Science, 128, 718. CrossRef PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Whitaker-Azmitia, P. M. (1999). Neuropsychopharmacology, 21, 2S8S. Google Scholar
Young, S. N. & Leyton, M. (2002). Pharmacol. Biochem. Behav. 71, 857–865. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.