research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-3-({6-[2-(4-chloro­phen­yl)ethen­yl]-3-oxo-2,3-di­hydro­pyridazin-4-yl}meth­yl)pyridin-1-ium chloride dihydrate

crossmark logo

aLaboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohamed I University, 60000 Oujda, Morocco, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55200, Turkey, cDepartment of Computer and Electronic Engineering, Sana'a Community College, Sana'a, Yemen, and dLaboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
*Correspondence e-mail: emineberrin.cinar@omu.edu.tr, eiad.saif@scc.edu.ye

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 4 January 2022; accepted 24 March 2022; online 31 March 2022)

In the title compound, C18H15ClN3O+·Cl·2H2O, three intra­mol­ecular hydrogen bonds are observed, N—H⋯O, O—H⋯Cl and O—H⋯O. In the crystal, mol­ecules are connected by C—H⋯Cl and N—H⋯O hydrogen bonds. Strong C—H⋯Cl, N—H⋯O, O—H⋯Cl and O—H⋯O hydrogen-bonding inter­actions are implied by the Hirshfeld surface analysis, which indicate that H⋯H contacts make the largest contribution to the overall crystal packing at 33.0%.

1. Chemical context

Pyridazine derivatives are an important class of heterocyclic chemicals that exhibit a wide range of biological actions. For example, their biological activity and anti­microbial properties have been researched extensively (Neumann et al., 2018[Neumann, K., Gambardella, A., Lilienkampf, A. & Bradley, M. (2018). Chem. Sci. 9, 7198-7203.]). As a result, the pyridazine ring can be found in a range of commercial medicinal compounds, including Cadralazine and Hydralazine, Minaprine, Pipofezine and others (Abu-Hashem et al., 2020[Abu-Hashem, A. A., Fathy, U. & Gouda, M. A. (2020). J. Heterocycl. Chem. 57, 3461-3474.]). Pyridazine derivatives can be found also in the backbones of several organic light-emitting diodes (OLEDs) (Liu et al., 2017[Liu, S., Zhang, X., Ou, C., Wang, S., Yang, X., Zhou, X., Mi, B., Cao, D. & Gao, Z. (2017). ACS Appl. Mater. Interfaces. 9, 26242-26251.]), organic solar cells (OSCs) (Knall et al., 2021[Knall, A. C., Rabensteiner, S., Hoefler, S. F., Reinfelds, M., Hobisch, M., Ehmann, H. M. A., Pastukhova, N., Pavlica, E., Bratina, G., Honzu, I., Wen, S., Yang, R., Trimmel, G. & Rath, T. (2021). New J. Chem. 45, 1001-1009.]), chemosensors (Peng et al., 2020[Peng, S., Lv, J., Liu, G., Fan, C. & Pu, S. (2020). Tetrahedron, 76, 131618-131627.]), tri­fluoro­acetic acid (TFA) sensors (Li et al., 2018[Li, M., Yuan, Y. & Chen, Y. (2018). ACS Appl. Mater. Interfaces. 10, 1237-1243.]), bioconjugates (Bahou et al., 2021[Bahou, C., Szijj, P. A., Spears, R. J., Wall, A., Javid, F., Sattikar, A., Love, E. A., Baker, J. R. & Chudasama, V. (2021). Bioconjugate Chem. 32, 672-679.]), low carbon steel corrosion inhibitors (Khadiria et al., 2016[Khadiria, A., Saddik, R., Bekkouchea, K., Aouniti, A., Hammouti, B., Benchat, N., Bouachrine, M. & Solmaz, R. (2016). J. Taiwan Inst. Chem. Eng. 58, 552-564.]), and several other materials. They have also been used as starting materials in organic synthesis (Llona-Minguez et al., 2017[Llona-Minguez, S., Höglund, A., Ghassemian, A., Desroses, M., Calderón, J. M., Valerie, N. C. K., Witta, E., Almlöf, I., Koolmeister, T., Mateus, A., Cazares-Körner, C., Sanjiv, K., Homan, E., Loseva, O., Baranczewski, P., Darabi, M., Mehdizadeh, A., Fayezi, S., Jemth, A. S., Berglund, U. W., Sigmundsson, K., Lundbäck, T., Jensen, A. J., Artursson, P., Scobie, M. & Helleday, T. J. (2017). Med. Chem. 60, 4279-4292.]), acyl­ating agents (Kung et al., 2002[Kung, Y. J., Chung, H. A., Kim, J. J. & Yoon, Y. J. (2002). Synthesis, 6, 733-738.]), precursors for N-heterocyclic carbenes (NHCs) (Liu et al., 2012[Liu, X. & Chen, W. (2012). Organometallics, 31, 6614-6622.]) and metallocarbene precursors. An overview of aryl­glyoxal monohydrates-based one-pot multi-component synthesis of potentially biologically active pyridazines is given by Mousavi (2022[Mousavi, H. (2022). J. Mol. Struct. 1251, 131742-131771.]).

[Scheme 1]

2. Structural commentary

A perspective view of the title mol­ecule is shown in Fig. 1[link]. The pyridazine and pyridine rings subtend a dihedral angle of 57.27 (5)°. The other two rings, pyridazine and chloro­benzene, are almost planar, making an angle of 8.54 (11)°. The lengths of the C=C [1.349 (3) Å], C=N [1.313 (2) Å], N—N [1.351 (2) Å] and C=O [1.237 (2) Å] bonds are comparable with values published for other pyridazinones (see the Database survey section). Three intra­mol­ecular hydrogen bonds are observed, N2—H2C⋯O2, O2—H2A⋯Cl2 and O2—H2B⋯O3 (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cl2i 0.93 2.72 3.6387 (19) 168
C18—H18⋯Cl2ii 0.93 2.94 3.622 (2) 132
N3—H3⋯O2iii 0.80 (3) 2.35 (3) 2.965 (2) 135 (2)
N3—H3⋯O1iii 0.80 (3) 2.25 (3) 2.855 (2) 133 (3)
N2—H2C⋯O2 0.86 (2) 1.97 (2) 2.801 (2) 161 (2)
O2—H2A⋯Cl2 0.83 (2) 2.35 (2) 3.170 (2) 175 (3)
O2—H2B⋯O3 0.84 (2) 1.92 (2) 2.739 (3) 167 (3)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y, -z+1].
[Figure 1]
Figure 1
Perspective view and atom labelling of the mol­ecule. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The water mol­ecules and chloride anions are located in channels between the organic cations and are connected by O—H⋯O and O—H⋯Cl hydrogen bonds (Table 1[link]) into chains, which are further connected via N—H⋯O and C—H⋯Cl hydrogen bonds into a three-dimensional supra­molecular architecture. Fig. 2[link]a shows a view of the hydrogen bonds along the b-axis direction. ππ inter­actions are present (Fig. 2[link]b) between the pyridazine rings [centroid–centroid distance = 3.4902 (12) Å], and also between the pyridine and benzene rings [3.7293 (13) and 3.8488 (13) Å], forming sheets.

[Figure 2]
Figure 2
(a)View along the b axis of the unit cell showing the mol­ecular sheets. (b) ππ inter­actions.

4. Database survey

There are no direct precedents for the structure of the title compound in the crystallographic literature. A search of the Cambridge Structural Database (ConQuest version 2021.3.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 2,3-di­hydro­pyridazin-4-yl moiety gave various hits, four of them for similar pyridazine compounds but with different substituents on the pyridazine ring: 5-(2-chloro­benz­yl)-6-methyl-3(2H)pyridazinone (ZAYJIS; Moreau et al., 1995[Moreau, S., Metin, J., Coudert, P. & Couquelet, J. (1995). Acta Cryst. C51, 1834-1836.]), 2-{4-[(5-chloro- 1-benzo­furan-2-yl)meth­yl]-3-methyl-6- oxo-1,6-di­hydro­pyridazin-1-yl}acetate (XULSEE; Boukharsa et al., 2015[Boukharsa, Y., El Ammari, L., Taoufik, J., Saadi, M. & Ansar, M. (2015). Acta Cryst. E71, o291-o292.]) , 4-[3-(tri­fluoro­meth­yl)phen­yl]-5,6,7,8-tetra­hydro­cinnolin-3(2H)-one (GISZAK; Wang et al., 2008[Wang, X., Zou, X.-M., Zhu, Y.-Q., Hu, X.-H. & Yang, H.-Z. (2008). Acta Cryst. E64, o464.]) and 5-(2-Chloro­benz­yl)-2-(2-hy­droxy­eth­yl)-6-methyl­pyridazin-3(2H)-one (IJEMOZ; Abourichaa et al., 2003[Abourichaa, S., Benchat, N., Anaflous, A., Melhaoui, A., Ben-Hadda, T., Oussaid, B., Mimouni, M., El Bali, B. & Bolte, M. (2003). Acta Cryst. E59, o1041-o1042.]). In ZAYJIS, the lengths of the C=C [1.343 (3) Å], C=N [1.301 (4) Å], N—N [1.357 (3) Å] and C=O [1.255 (3) Å] bonds in the pyridazinone ring are very similar to those in the title compound. In XULSEE, te Cl—C1 bond length is 1.742 (2) Å while in the pyridazine ring, the N1—N2 bond length is 1.365 (2) Å and O2=C2 is 1.228 (2) Å. In GISZAK, the N1—N2 bond is 1.343 (5) Å whereas the C8=O1 bond is 1.246 (5) Å. In IJEMOZ, the pyridazinone ring has a similar value for the N4—N5 bond of 1.367 (2) Å.

5. Hirshfeld surface analysis

To investigate the effect of the mol­ecular inter­actions on the crystal packing, the Hirshfeld surface (Fig. 3[link]) and fingerprint plots of the organic cation were analysed (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17.5. University of Western Australia. https://hirshfeldsurface.net.]). In Fig. 4[link]a, the circular depressions (deep red) on the Hirshfeld surface imply strong hydrogen-bonding inter­actions of types C—H⋯Cl, N—H⋯O, O—H⋯Cl and O—H⋯O. In the shape-index map (Fig. 4[link]b), the ππ inter­actions are indicated by the red and blue triangles. Fig. 4[link]c and Fig. 4[link]d show di and de surfaces and Fig. 4[link]e and 4f the curvedness and fragment path surfaces. Fig. 5[link]a shows the overall two-dimensional fingerprint plot. The fingerprint plot delineated into H⋯H contacts (33.0% contribution, Fig. 5[link]b) has a point with the tip at de + di = 2.05 Å. The pair of wings in the fingerprint plot defined into H⋯C/C⋯H contacts (19.3 percent contribution to the HS), Fig.5c, has a pair of thin edges at de + di ∼2.99 Å while the pair of wings for the H⋯Cl/Cl⋯H contacts (15.9% contribution, Fig. 5[link]d) are seen as two spikes with the points at de + di = 2.97 Å and de + di = 2.41 Å. The fingerprint plot for H⋯O/O⋯H contacts (11.5% contribution, Fig. 5[link]e) has two spikes with the tips at de + di = 2.11 Å and de + di = 1.83 Å. As seen in Fig. 5[link]f the C⋯C contacts (7.4%) have an arrow-shaped distribution of points with tips at de + di = 3.37 Å. The contributions of the N⋯H/H⋯N contacts to the Hirshfeld surface (5.8%) are less important (Fig. 5[link]g). Fig. 6[link] shows a pie chart of all inter­actions with their percentage contributions.

[Figure 3]
Figure 3
Inter­molecular inter­actions with dnorm surface.
[Figure 4]
Figure 4
Graphical depictions of the mol­ecular Hirshfeld surfaces; (a) dnorm, (b)shape-index, (c) di, (d) de,(e) curvedness and (f) fragment-path.
[Figure 5]
Figure 5
Fingerprint plots of the inter­actions involving the organic cation. (a) All contributions and decomposed into the main contributions: (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯Cl/Cl⋯H, (e) H⋯O/O⋯H, (f) C⋯C and (g) N⋯H/H⋯N inter­actions
[Figure 6]
Figure 6
All inter­actions with percentage contributions.

6. Synthesis and crystallization

The title compound was synthesized according to a previously published procedure (Daoui et al., 2019[Daoui, S., Baydere, C., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 1734-1737.], 2021[Daoui, S., Cinar, E. B., Dege, N., Chelfi, T., El Kalai, F., Abudunia, A., Karrouchi, K. & Benchat, N. (2021). Acta Cryst. E77, 23-27.]). To a solution of (E)-6-(4-chloro­styr­yl)-4,5-di­hydro­pyridazin-3(2H)-one (0.23 g, 1 mmol) and nicotinaldehyde (0.107 g, 1 mmol) in 30 ml of ethanol, sodium ethano­ate (0.23 g, 2.8 mmol) was added. The mixture was refluxed for 3 h. The reaction mixture was cooled, diluted with cold water and acidified with concentrated hydro­chloric acid. The precipitate was filtered, washed with water, dried and recrystallized from ethanol. White single crystals were obtained by slow evaporation at room temperature, yield 86%; m.p. 453 K; FT–IR (KBr): ν 3322 (NH), 1651 (C=O), 1584 cm−1 (C=N); 1H NMR (300 MHz, DMSO-d6) δ 13.20 (s, 1H, H-pyrid­yl) , 8.98 (d, J = 1.8 Hz, 1H, H-pyrid­yl), 8.83 (d, J = 5.6 Hz, 1H, H-pyrid­yl), 8.57 (dt, J = 8.1, 1.8 Hz, 1H, H-pyrid­yl), 8.05 (s, 1H, H-pyridazinone) 8.02 (dd, J = 8.1, 5.6 Hz, 1H, H-pyrid­yl), 7.65 (d, J = 8.4 Hz, 2H, H1, H-Ar), 7.45 (d, J = 8.4 Hz, 2H, H 4, H-Ar), 7.36 (d, J = 16.7 Hz, 1H, CH=CH), 7.08 (,d J = 16.7 Hz, 1H, CH=CH), 4.09 ppm (s, 2H, CH2); 13C NMR (75 MHz, DMSO-d6) δ 160.43, 145.98, 143.89, 141.87, 140.05, 139.25, 137.97, 134.90, 132.84,130.85, 128.82, 128.62, 128.54, 126.80, 125.08, 32.33 ppm. ESI-MS: m/z = 324.08 [M+H]+.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and thereafter treated as riding. A torsional parameter was refined for the methyl group. The positions of N- and O-bound H atoms were refined freely (distances are in Table 1[link]). For all H atoms, Uiso(H) = 1.2 Ueq(C,N,O).

Table 2
Experimental details

Crystal data
Chemical formula C18H15ClN3O+·Cl·2H2O
Mr 396.26
Crystal system, space group Monoclinic, I2/a
Temperature (K) 296
a, b, c (Å) 19.6562 (14), 7.5587 (3), 26.4903 (16)
β (°) 109.762 (5)
V3) 3704.0 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.37
Crystal size (mm) 0.68 × 0.41 × 0.16
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Numerical (X-RED32; Stoe & Cie, 2002[Stoe & Cie. (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.818, 0.961
No. of measured, independent and observed [I > 2σ(I)] reflections 13762, 5273, 3083
Rint 0.064
(sin θ/λ)max−1) 0.702
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.142, 0.98
No. of reflections 5273
No. of parameters 265
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.43
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie. (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL2018/3 (Sheldrick, 2015b), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

(E)-3-({6-[2-(4-Chlorophenyl)ethenyl]-3-oxo-2,3-dihydropyridazin-4-yl}methyl)pyridin-1-ium chloride dihydrate top
Crystal data top
C18H15ClN3O+·Cl·2H2OF(000) = 1648
Mr = 396.26Dx = 1.421 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 19.6562 (14) ÅCell parameters from 18653 reflections
b = 7.5587 (3) Åθ = 1.6–30.3°
c = 26.4903 (16) ŵ = 0.37 mm1
β = 109.762 (5)°T = 296 K
V = 3704.0 (4) Å3Prism, colorless
Z = 80.68 × 0.41 × 0.16 mm
Data collection top
Stoe IPDS 2
diffractometer
5273 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3083 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.064
Detector resolution: 6.67 pixels mm-1θmax = 29.9°, θmin = 1.6°
rotation method scansh = 2127
Absorption correction: numerical
(X-RED32; Stoe & Cie, 2002)
k = 810
Tmin = 0.818, Tmax = 0.961l = 3636
13762 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: mixed
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0709P)2]
where P = (Fo2 + 2Fc2)/3
5273 reflections(Δ/σ)max < 0.001
265 parametersΔρmax = 0.26 e Å3
2 restraintsΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.43892 (4)0.44826 (8)0.29544 (2)0.06204 (18)
Cl10.16095 (4)0.93975 (11)0.67565 (3)0.0831 (2)
O20.51631 (9)0.7860 (3)0.36086 (6)0.0569 (4)
O10.63332 (8)0.6580 (2)0.47656 (6)0.0603 (4)
N20.52423 (9)0.7727 (2)0.46837 (7)0.0440 (4)
N10.46811 (9)0.8166 (2)0.48443 (6)0.0437 (4)
O30.47043 (12)1.0366 (3)0.28189 (9)0.0724 (5)
N30.83161 (10)0.6802 (3)0.61940 (8)0.0521 (4)
C110.58620 (10)0.6148 (3)0.54755 (7)0.0414 (4)
C90.47235 (10)0.7645 (3)0.53269 (7)0.0427 (4)
C120.58492 (10)0.6822 (3)0.49587 (7)0.0434 (4)
C150.71539 (10)0.5767 (3)0.61025 (7)0.0420 (4)
C60.34431 (11)0.8182 (3)0.61458 (8)0.0470 (5)
C100.53148 (11)0.6600 (3)0.56490 (7)0.0441 (4)
H100.53230.62230.59850.053*
C80.41189 (11)0.8140 (3)0.54971 (8)0.0477 (5)
H80.37470.87850.52560.057*
C70.40518 (11)0.7752 (3)0.59642 (8)0.0481 (5)
H70.44340.71360.62060.058*
C140.76951 (11)0.6075 (3)0.58944 (8)0.0479 (5)
H140.76260.57720.55400.057*
C130.64570 (11)0.4898 (3)0.57732 (8)0.0496 (5)
H13A0.65540.41160.55150.060*
H13B0.62880.41730.60090.060*
C50.34973 (12)0.7804 (3)0.66698 (9)0.0540 (5)
H50.39190.72880.68980.065*
C160.72876 (12)0.6223 (3)0.66349 (8)0.0514 (5)
H160.69360.60250.67920.062*
C180.84516 (12)0.7257 (3)0.67006 (9)0.0577 (5)
H180.88920.77680.68970.069*
C30.23208 (13)0.8927 (3)0.65221 (9)0.0566 (6)
C20.22442 (12)0.9330 (3)0.60014 (9)0.0583 (6)
H20.18200.98400.57760.070*
C10.28082 (12)0.8966 (3)0.58179 (9)0.0561 (5)
H10.27620.92520.54660.067*
C170.79392 (13)0.6969 (3)0.69313 (9)0.0593 (6)
H170.80290.72740.72880.071*
C40.29405 (13)0.8174 (3)0.68616 (9)0.0600 (6)
H40.29860.79170.72150.072*
H30.8616 (16)0.701 (4)0.6061 (11)0.070 (8)*
H2C0.5201 (13)0.802 (3)0.4362 (10)0.053 (6)*
H2A0.4937 (17)0.700 (3)0.3444 (12)0.094 (11)*
H2B0.5030 (16)0.874 (3)0.3409 (10)0.079 (9)*
H3A0.495 (3)1.018 (6)0.2630 (17)0.127 (16)*
H3B0.466 (2)1.141 (6)0.2847 (14)0.095 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0694 (4)0.0648 (4)0.0496 (3)0.0006 (3)0.0170 (2)0.0021 (2)
Cl10.0642 (4)0.1042 (6)0.0982 (5)0.0103 (4)0.0502 (4)0.0206 (4)
O20.0539 (9)0.0660 (12)0.0463 (8)0.0028 (9)0.0111 (7)0.0035 (8)
O10.0471 (8)0.0848 (12)0.0534 (8)0.0146 (8)0.0229 (7)0.0071 (8)
N20.0415 (8)0.0494 (10)0.0429 (8)0.0012 (8)0.0168 (7)0.0023 (7)
N10.0375 (8)0.0469 (10)0.0463 (8)0.0001 (7)0.0138 (7)0.0001 (7)
O30.0801 (14)0.0676 (14)0.0748 (12)0.0046 (11)0.0331 (10)0.0102 (10)
N30.0397 (9)0.0596 (12)0.0591 (10)0.0003 (9)0.0195 (8)0.0078 (8)
C110.0363 (9)0.0416 (10)0.0427 (9)0.0032 (8)0.0089 (7)0.0017 (7)
C90.0394 (9)0.0448 (11)0.0431 (9)0.0026 (9)0.0128 (7)0.0010 (8)
C120.0385 (9)0.0455 (11)0.0454 (9)0.0018 (8)0.0130 (8)0.0034 (8)
C150.0373 (9)0.0417 (11)0.0445 (9)0.0049 (8)0.0107 (7)0.0040 (7)
C60.0431 (10)0.0513 (12)0.0468 (10)0.0051 (9)0.0153 (8)0.0065 (8)
C100.0424 (10)0.0486 (12)0.0396 (9)0.0033 (9)0.0116 (8)0.0009 (8)
C80.0402 (10)0.0529 (12)0.0479 (10)0.0024 (9)0.0123 (8)0.0003 (8)
C70.0390 (10)0.0570 (13)0.0463 (10)0.0018 (9)0.0119 (8)0.0015 (8)
C140.0458 (11)0.0560 (12)0.0423 (9)0.0039 (10)0.0154 (8)0.0037 (8)
C130.0397 (10)0.0481 (12)0.0552 (10)0.0008 (9)0.0085 (9)0.0019 (9)
C50.0495 (11)0.0632 (14)0.0496 (11)0.0041 (11)0.0171 (9)0.0003 (9)
C160.0483 (11)0.0615 (13)0.0473 (10)0.0002 (10)0.0200 (9)0.0003 (9)
C180.0437 (11)0.0615 (14)0.0594 (12)0.0045 (10)0.0062 (9)0.0012 (10)
C30.0494 (11)0.0620 (14)0.0662 (13)0.0148 (11)0.0297 (10)0.0187 (10)
C20.0414 (11)0.0720 (16)0.0589 (12)0.0006 (11)0.0133 (9)0.0128 (11)
C10.0500 (11)0.0731 (15)0.0453 (10)0.0025 (11)0.0163 (9)0.0048 (10)
C170.0588 (13)0.0703 (16)0.0449 (10)0.0028 (12)0.0125 (10)0.0049 (10)
C40.0611 (14)0.0736 (16)0.0527 (12)0.0123 (12)0.0290 (11)0.0046 (10)
Geometric parameters (Å, º) top
Cl1—C31.748 (2)C6—C11.389 (3)
O2—H2A0.825 (18)C6—C71.469 (3)
O2—H2B0.837 (18)C10—H100.9300
O1—C121.237 (2)C8—C71.321 (3)
N2—N11.351 (2)C8—H80.9300
N2—C121.354 (3)C7—H70.9300
N2—H2C0.86 (2)C14—H140.9300
N1—C91.313 (2)C13—H13A0.9700
O3—H3A0.81 (5)C13—H13B0.9700
O3—H3B0.80 (4)C5—C41.382 (3)
N3—C181.322 (3)C5—H50.9300
N3—C141.329 (3)C16—C171.376 (3)
N3—H30.80 (3)C16—H160.9300
C11—C101.349 (3)C18—C171.361 (3)
C11—C121.453 (3)C18—H180.9300
C11—C131.503 (3)C3—C41.369 (4)
C9—C101.426 (3)C3—C21.370 (3)
C9—C81.455 (3)C2—C11.380 (3)
C15—C141.373 (3)C2—H20.9300
C15—C161.388 (3)C1—H10.9300
C15—C131.504 (3)C17—H170.9300
C6—C51.386 (3)C4—H40.9300
H2A—O2—H2B107 (3)N3—C14—C15120.65 (18)
N1—N2—C12128.25 (16)N3—C14—H14119.7
N1—N2—H2C116.0 (16)C15—C14—H14119.7
C12—N2—H2C115.7 (16)C11—C13—C15115.12 (17)
C9—N1—N2116.31 (16)C11—C13—H13A108.5
H3A—O3—H3B109 (4)C15—C13—H13A108.5
C18—N3—C14122.87 (19)C11—C13—H13B108.5
C18—N3—H3118 (2)C15—C13—H13B108.5
C14—N3—H3119 (2)H13A—C13—H13B107.5
C10—C11—C12118.06 (18)C4—C5—C6121.6 (2)
C10—C11—C13123.32 (18)C4—C5—H5119.2
C12—C11—C13118.51 (17)C6—C5—H5119.2
N1—C9—C10121.28 (17)C17—C16—C15120.08 (19)
N1—C9—C8115.79 (17)C17—C16—H16120.0
C10—C9—C8122.88 (17)C15—C16—H16120.0
O1—C12—N2120.86 (17)N3—C18—C17119.2 (2)
O1—C12—C11124.57 (18)N3—C18—H18120.4
N2—C12—C11114.55 (16)C17—C18—H18120.4
C14—C15—C16117.37 (19)C4—C3—C2121.6 (2)
C14—C15—C13121.23 (17)C4—C3—Cl1119.49 (17)
C16—C15—C13121.36 (18)C2—C3—Cl1118.91 (19)
C5—C6—C1117.58 (18)C3—C2—C1118.8 (2)
C5—C6—C7119.16 (19)C3—C2—H2120.6
C1—C6—C7123.26 (18)C1—C2—H2120.6
C11—C10—C9121.28 (17)C2—C1—C6121.6 (2)
C11—C10—H10119.4C2—C1—H1119.2
C9—C10—H10119.4C6—C1—H1119.2
C7—C8—C9125.74 (19)C18—C17—C16119.8 (2)
C7—C8—H8117.1C18—C17—H17120.1
C9—C8—H8117.1C16—C17—H17120.1
C8—C7—C6127.5 (2)C3—C4—C5118.8 (2)
C8—C7—H7116.3C3—C4—H4120.6
C6—C7—H7116.3C5—C4—H4120.6
C12—N2—N1—C90.4 (3)C13—C15—C14—N3178.22 (19)
N2—N1—C9—C103.0 (3)C10—C11—C13—C15100.2 (2)
N2—N1—C9—C8179.47 (17)C12—C11—C13—C1583.7 (2)
N1—N2—C12—O1177.03 (19)C14—C15—C13—C1192.5 (2)
N1—N2—C12—C114.6 (3)C16—C15—C13—C1190.2 (2)
C10—C11—C12—O1176.3 (2)C1—C6—C5—C40.5 (3)
C13—C11—C12—O17.4 (3)C7—C6—C5—C4179.8 (2)
C10—C11—C12—N25.4 (3)C14—C15—C16—C170.6 (3)
C13—C11—C12—N2170.88 (18)C13—C15—C16—C17178.0 (2)
C12—C11—C10—C92.6 (3)C14—N3—C18—C170.3 (4)
C13—C11—C10—C9173.49 (19)C4—C3—C2—C10.0 (4)
N1—C9—C10—C111.8 (3)Cl1—C3—C2—C1179.66 (18)
C8—C9—C10—C11179.15 (19)C3—C2—C1—C60.9 (4)
N1—C9—C8—C7179.9 (2)C5—C6—C1—C21.1 (3)
C10—C9—C8—C72.5 (3)C7—C6—C1—C2179.2 (2)
C9—C8—C7—C6178.2 (2)N3—C18—C17—C160.5 (4)
C5—C6—C7—C8174.2 (2)C15—C16—C17—C180.0 (4)
C1—C6—C7—C85.4 (4)C2—C3—C4—C50.5 (4)
C18—N3—C14—C150.3 (3)Cl1—C3—C4—C5179.77 (19)
C16—C15—C14—N30.8 (3)C6—C5—C4—C30.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cl2i0.932.723.6387 (19)168
C18—H18···Cl2ii0.932.943.622 (2)132
N3—H3···O2iii0.80 (3)2.35 (3)2.965 (2)135 (2)
N3—H3···O1iii0.80 (3)2.25 (3)2.855 (2)133 (3)
N2—H2C···O20.86 (2)1.97 (2)2.801 (2)161 (2)
O2—H2A···Cl20.83 (2)2.35 (2)3.170 (2)175 (3)
O2—H2B···O30.84 (2)1.92 (2)2.739 (3)167 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y, z+1.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer. The authors' contributions are as follows. Conceptualization, SD, EBÇ, ND, and ES; methodology, KK, EBÇ, and ND; investigation, NB and ND; writing (original draft), EBÇ and SD; writing (review and editing of the manuscript), SD, NB, ES, KK and EBÇ; visualization, EBÇ, and KK; funding acquisition, ND; resources, ND and KK; supervision, SD and NB.

Funding information

Funding for this research was provided by: Ondokuz Mayıs University under Project No. PYO.FEN.1906.19.001 .

References

First citationAbourichaa, S., Benchat, N., Anaflous, A., Melhaoui, A., Ben-Hadda, T., Oussaid, B., Mimouni, M., El Bali, B. & Bolte, M. (2003). Acta Cryst. E59, o1041–o1042.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAbu-Hashem, A. A., Fathy, U. & Gouda, M. A. (2020). J. Heterocycl. Chem. 57, 3461–3474.  CAS Google Scholar
First citationBahou, C., Szijj, P. A., Spears, R. J., Wall, A., Javid, F., Sattikar, A., Love, E. A., Baker, J. R. & Chudasama, V. (2021). Bioconjugate Chem. 32, 672–679.  CrossRef CAS Google Scholar
First citationBoukharsa, Y., El Ammari, L., Taoufik, J., Saadi, M. & Ansar, M. (2015). Acta Cryst. E71, o291–o292.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDaoui, S., Baydere, C., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 1734–1737.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDaoui, S., Cinar, E. B., Dege, N., Chelfi, T., El Kalai, F., Abudunia, A., Karrouchi, K. & Benchat, N. (2021). Acta Cryst. E77, 23–27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhadiria, A., Saddik, R., Bekkouchea, K., Aouniti, A., Hammouti, B., Benchat, N., Bouachrine, M. & Solmaz, R. (2016). J. Taiwan Inst. Chem. Eng. 58, 552–564.  Google Scholar
First citationKnall, A. C., Rabensteiner, S., Hoefler, S. F., Reinfelds, M., Hobisch, M., Ehmann, H. M. A., Pastukhova, N., Pavlica, E., Bratina, G., Honzu, I., Wen, S., Yang, R., Trimmel, G. & Rath, T. (2021). New J. Chem. 45, 1001–1009.  CrossRef CAS Google Scholar
First citationKung, Y. J., Chung, H. A., Kim, J. J. & Yoon, Y. J. (2002). Synthesis, 6, 733–738.  Google Scholar
First citationLi, M., Yuan, Y. & Chen, Y. (2018). ACS Appl. Mater. Interfaces. 10, 1237–1243.  CrossRef CAS PubMed Google Scholar
First citationLiu, S., Zhang, X., Ou, C., Wang, S., Yang, X., Zhou, X., Mi, B., Cao, D. & Gao, Z. (2017). ACS Appl. Mater. Interfaces. 9, 26242–26251.  CrossRef CAS PubMed Google Scholar
First citationLiu, X. & Chen, W. (2012). Organometallics, 31, 6614–6622.  CrossRef CAS Google Scholar
First citationLlona-Minguez, S., Höglund, A., Ghassemian, A., Desroses, M., Calderón, J. M., Valerie, N. C. K., Witta, E., Almlöf, I., Koolmeister, T., Mateus, A., Cazares-Körner, C., Sanjiv, K., Homan, E., Loseva, O., Baranczewski, P., Darabi, M., Mehdizadeh, A., Fayezi, S., Jemth, A. S., Berglund, U. W., Sigmundsson, K., Lundbäck, T., Jensen, A. J., Artursson, P., Scobie, M. & Helleday, T. J. (2017). Med. Chem. 60, 4279–4292.  CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoreau, S., Metin, J., Coudert, P. & Couquelet, J. (1995). Acta Cryst. C51, 1834–1836.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMousavi, H. (2022). J. Mol. Struct. 1251, 131742–131771.  CrossRef CAS Google Scholar
First citationNeumann, K., Gambardella, A., Lilienkampf, A. & Bradley, M. (2018). Chem. Sci. 9, 7198–7203.  CrossRef CAS PubMed Google Scholar
First citationPeng, S., Lv, J., Liu, G., Fan, C. & Pu, S. (2020). Tetrahedron, 76, 131618–131627.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie. (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17.5. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationWang, X., Zou, X.-M., Zhu, Y.-Q., Hu, X.-H. & Yang, H.-Z. (2008). Acta Cryst. E64, o464.  CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds