research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of racemic (R/S,E)-2-(4-hy­dr­oxy­phen­yl)-4-(2-phenyl­hydrazin-1-yl­­idene)chromane-5,7-diol ethanol monosolvate

crossmark logo

aDepartment of Biochemistry and Molecular Biology, 108 Althouse Laboratory, Pennsylvania State University, University Park, PA 16802, USA, and bPennsylvania State University, Brandywine Campus, 25 Yearsley Mill Rd., Media, PA 19063, USA
*Correspondence e-mail: ajs8621@psu.edu

Edited by J. Reibenspies, Texas A & M University, USA (Received 10 January 2022; accepted 21 February 2022; online 1 March 2022)

The crystal structure of racemic (R/S,E)-2-(4-hy­droxy­phen­yl)-4-(2-phenyl­hydrazin-1-yl­idene)chromane-5,7-diol ethanol monosolvate, C21H18N2O4·C2H6O, in a centrosymmetric lattice is reported. The two racemates occupy the same position in the asymmetric unita disordered mixed enanti­omeric structure. Hydrogen bonds of the type O—H⋯C(π) in addition to typical C—H⋯O, O—H⋯O and O—H⋯N are identified. A positional disorder is seen in the solvent mol­ecule (ethanol) as well. The phenyl­hydrazone group is nearly coplanar with the chromane ring system [dihedral angle = 15.5 (1)°], while the the 4-hy­droxy­phenyl ring is perpendicular [dihedral angle = 87.2 (1)°] to the chromane. The pyran ring has an envelope pucker [Q = 0.363 (3) Å, θ = 57.6 (3)°; and for the enanti­omer: Q = 0.364 (3) Å, θ = 127.4 (4)°].

1. Chemical context

Naringenin is a naturally occurring flavanone compound found in citrus fruits, bergamot and tomatoes (Cai et al., 2004[Cai, Y. Z., Luo, Q., Sun, M. & Corke, H. (2004). Life Sci. 74, 2157-2184.]). It has been reported to have a wide range of biological activities, including anti-viral, anti-inflammatory and anti-aging properties (Heim et al., 2002[Heim, K. E., Tagliaferro, A. R. & Bobilya, D. J. (2002). J. Nutr. Biochem. 13, 572-584.]). Due to its inherent medicinal properties, derivatives of naringenin have also been synthesized and studied as potential treatments for disease. The title compound, (R/S,E)-2-(4-hy­droxy­phen­yl)-4-(2-phenyl­hydrazineyl­idene)chromane-5,7-diol, is a hydrazone naringenin derivative that has been reported to induce apoptosis in human cervical cancer cells (Kim et al., 2012[Kim, J. H., Kang, J., Kim, M., Bak, Y., Park, Y., Jung, K. Y., Lim, Y. & Yoon, D. Y. (2012). Toxicol. In Vitro, 26, 67-73.]). Its close structural analog, 5-hy­droxy-7,4′-di­acetyl­oxyflavanone-N-phenyl­hydrazone, exhibits cytotoxicity against non-small-cell lung cancer cells (Bak et al., 2011[Bak, Y., Kim, H., Kang, J. W., Lee, D., Kim, M., Park, Y., Kim, J. H., Jung, K. Y., Lim, Y., Hong, J. & Yoon, D. Y. (2011). J. Agric. Food Chem. 59, 10286-10297.]). Despite their biological value, crystal structures have not been reported to date of any hydrazone derivatives of naringenin. Herein, we report the first crystal structure of a hydrazone derivative of naringenin.

[Scheme 1]

1.1. Structural commentary

The title compound along with the solvent (ethanol) mol­ecule in 1:1 ratio, yielded a disordered mixed enanti­omeric crystal in a centrosymmetric lattice (P[\overline{1}], Fig. 1[link]). The structure was solved and refined in P1 and a distorted structure was found. The asymmetric unit has two racemates occupying the same position in a ratio of 0.562 (6):0.438 (6). Enanti­omeric structures in centrosymmetric lattices have been discussed by Flack (2003[Flack, H. D. (2003). Helv. Chim. Acta, 86, 905-921.]). The title mol­ecule has three phenyl rings, one of which is fused with a pyran ring. The mol­ecule in the asymmetric unit is a superposition of the two enanti­omers in the ratio of 0.562 (6):0.438 (6). The phenyl­hydrazone group is nearly coplanar with the chromane ring system [dihedral angle = 15.5 (1)°], while the the 4-hy­droxy­phenyl ring is perpendicular [dihedral angle = 87.2 (1)°] to the chromane. The pyran ring has an envelope pucker [Q = 0.363 (3) Å, θ = 57.6 (3)°; and for the enanti­omer: Q = 0.364 (3) Å, θ = 127.4 (4)°]. An intra­molecular O—H⋯N hydrogen bond exists between one of the hy­droxy groups on the chromane ring and the nitro­gen of the hydrazone group (Table 1[link]). The carbon–nitro­gen double bond [N1=C7 = 1.295 (2) Å] exists as the E isomer.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5A—H5A⋯C17 0.82 2.56 3.363 (15) 166
O5A—H5A⋯C18 0.82 2.47 3.263 (16) 162
O5B—H5B⋯C19i 0.82 2.59 3.405 (11) 173
O1—H1⋯O5Ai 0.82 1.79 2.590 (12) 166
O1—H1⋯O5B 0.82 1.90 2.709 (8) 170
C8—H8BC⋯O4Bii 0.97 2.49 3.440 (17) 168
O4A—H4A⋯O1iii 0.82 1.89 2.677 (13) 160
C9B—H9B⋯O2i 0.98 2.39 3.347 (5) 165
O2—H2⋯N1 0.82 1.87 2.5975 (18) 147
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, -y+2, -z+2]; (iii) x, y+1, z+1.
[Figure 1]
Figure 1
Displacement ellipsoid drawing at 50% probability level of the asymmetric unit showing the superposition of two enanti­omers in the asymmetric unit. The disorder in the solvent (ethanol) mol­ecule is resolved here, shown in two partial-occupancy locations.

1.2. Supra­molecular features

In the crystal, O—H⋯C(π) type hydrogen-bond inter­actions between the solvent ethanol and phenyl ring are observed (Table 1[link], Fig. 2[link]). The phenyl ring is expected to have a partial negative charge because of the two nitro­gen atoms (known electron-releasing groups) just before the phenyl ring (Stewart, 1985[Stewart, R. (1985). The Proton: Applications to Organic Chemistry, vol. 46, pp. 233-234. New York: Academic Press.]). A database analysis of such inter­actions was reported by Viswamitra et al. (1993[Viswamitra, M. A., Radhakrishnan, R., Bandekar, J. & Desiraju, G. R. (1993). J. Am. Chem. Soc. 115, 4868-4869.]). The structure also has the not-so-rare C—H⋯O, O—H⋯O and O—H⋯N type hydrogen bonds. Extensive ππ stacking inter­actions [centroid–centroid distances in the range 4.223 (7) to 4.599 (5) Å] along the [1[\overline{1}]1] direction between the planar cores of neighboring mol­ecules further stabilize the lattice (Fig. 2[link]).

[Figure 2]
Figure 2
Crystal packing diagram showing intra­molecular O—H⋯N and inter­molecular O—H⋯O, C—H⋯O and (O—H⋯C(π) hydrogen bonds, as well as extensive ππ stacking inter­actions.

2. Database survey

A structure search was performed in Scifinder and Reaxys. A text search (`flavanone' and `chroman-4-yl­idene' and `di­hydro­chromen-4-phenyl­hydrazone') was performed in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; accessed January 2022). To date, no crystal structures have been reported for a hydrazone derivative of naringenin, including the two flavanones mentioned in the Chemical context section. The most similar structures for which crystal data have been reported include acyl hydrazone derivatives of 2-phenyl­chroman-4-one and hesperetin. In particular, crystal structures for 2′-[2-(4-fluoro­phen­yl)chroman-4-yl­idene]isonicotino­hydra­zide (Nie et al., 2006[Nie, A., Ghosh, S. & Huang, Z. (2006). Acta Cryst. E62, o1824-o1825.]) and N-{(±)-[5,7-dihy­droxy-2-(3-hy­droxy-4-meth­oxy­phen­yl)chroman-4-yl­idene]amino}­benz­a­mide (Lodyga-Chruscinska et al., 2015[Lodyga-Chruscinska, E., Symonowicz, M., Sykula, A., Bujacz, A., Garribba, E., Rowinska-Zyrek, M., Oldziej, S., Klewicka, E., Janicka, M., Krolewska, K., Cieslak, M., Brodowska, K. & Chruscinski, L. (2015). J. Inorg. Biochem. 143, 34-47.]) have been reported.

3. Synthesis and crystallization

The title compound was synthesized according to a previously reported procedure (Bak et al., 2011[Bak, Y., Kim, H., Kang, J. W., Lee, D., Kim, M., Park, Y., Kim, J. H., Jung, K. Y., Lim, Y., Hong, J. & Yoon, D. Y. (2011). J. Agric. Food Chem. 59, 10286-10297.]).

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The superposition of two enanti­omers in the asymmetric unit, and the disorder in the solvent (ethanol mol­ecule) necessitated 183 constraints. The hydrogen atoms were placed in their geometrically calculated positions and their coordinates refined using the riding model with parent-atom—H lengths of 0.93 Å (CH), 0.98 Å (chiral-CH), 0.96 Å (CH3), 0.97 Å (CH2), 0.86 Å (NH) or 0.82 Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, NH) or 1.5 (CH3, OH) times Ueq of the parent atom. Idealized Me of the ethanol mol­ecule were refined as rotating group(s): C22A and C22B (H22A through F) and its idealized tetra­hedral OH refined as a rotating group: O5A and O5B (H5A, H5B).

Table 2
Experimental details

Crystal data
Chemical formula C21H18N2O4·C2H6O
Mr 408.44
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 9.4329 (3), 10.9974 (4), 11.9310 (3)
α, β, γ (°) 115.244 (3), 93.939 (2), 104.180 (3)
V3) 1064.01 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.74
Crystal size (mm) 0.2 × 0.19 × 0.13
 
Data collection
Diffractometer Rigaku Oxford Diffraction, Synergy Custom system, HyPix-Arc 150
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.638, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14477, 4067, 3077
Rint 0.020
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.161, 1.07
No. of reflections 4067
No. of parameters 381
No. of restraints 183
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.17
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(R/S,E)-2-(4-Hydroxyphenyl)-4-(2-phenylhydrazin-1-ylidene)chromane-5,7-diol ethanol monosolvate top
Crystal data top
C21H18N2O4·C2H6OZ = 2
Mr = 408.44F(000) = 432
Triclinic, P1Dx = 1.275 Mg m3
a = 9.4329 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.9974 (4) ÅCell parameters from 8481 reflections
c = 11.9310 (3) Åθ = 4.1–73.4°
α = 115.244 (3)°µ = 0.74 mm1
β = 93.939 (2)°T = 293 K
γ = 104.180 (3)°Block, yellow
V = 1064.01 (6) Å30.2 × 0.19 × 0.13 mm
Data collection top
Rigaku Oxford Diffraction, Synergy Custom system, HyPix-Arc 150
diffractometer
4067 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source3077 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 10.0000 pixels mm-1θmax = 74.0°, θmin = 4.2°
ω scansh = 1111
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2021)
k = 1313
Tmin = 0.638, Tmax = 1.000l = 1214
14477 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0996P)2 + 0.0482P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.161(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.24 e Å3
4067 reflectionsΔρmin = 0.17 e Å3
381 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
183 restraintsExtinction coefficient: 0.0070 (13)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. In light of the crystal structure with two enantiomer molecules sharing the same site in the asymmetric unit of P1, we tried refining the structure non-centrosymmetric P1 space-group, and saw the disorder in the chiral carbon persist even there, in both the independent molecules.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.63930 (15)0.57227 (12)0.15536 (11)0.0762 (4)
H10.7020630.6484640.1765300.114*
O20.23838 (15)0.35612 (12)0.28729 (11)0.0818 (4)
H20.2037450.3654380.3506120.123*
O30.56642 (13)0.82028 (11)0.57204 (10)0.0708 (4)
N10.20641 (15)0.48554 (13)0.51936 (12)0.0602 (3)
N20.12754 (15)0.49326 (14)0.61217 (12)0.0680 (4)
H2A0.1421150.5728680.6777600.082*
C10.56086 (19)0.58198 (16)0.24987 (14)0.0620 (4)
C20.43809 (19)0.46783 (16)0.22400 (15)0.0661 (4)
H2B0.4101350.3898680.1445500.079*
C30.35768 (19)0.47058 (16)0.31680 (15)0.0624 (4)
C40.39633 (17)0.58758 (15)0.43746 (14)0.0549 (4)
C50.52020 (17)0.70112 (15)0.45827 (14)0.0566 (4)
C60.60281 (18)0.69960 (15)0.36667 (14)0.0625 (4)
H60.6849120.7761590.3833120.075*
C70.31398 (16)0.59550 (15)0.53822 (14)0.0556 (4)
C80.36188 (19)0.73182 (16)0.65742 (15)0.0638 (4)
H8A0.2737830.7549780.6860790.077*0.562 (6)
H8B0.4158960.7195160.7220280.077*0.562 (6)
H8BC0.3463400.7128820.7286780.077*0.438 (6)
H8BD0.3007540.7899280.6541840.077*0.438 (6)
C160.02353 (17)0.37295 (17)0.60136 (15)0.0623 (4)
C170.0611 (2)0.3883 (2)0.69450 (18)0.0748 (5)
H170.0468790.4769570.7615430.090*
C180.1667 (2)0.2717 (2)0.6877 (2)0.0878 (6)
H180.2233270.2829240.7501620.105*
C190.1889 (2)0.1394 (2)0.5899 (2)0.0914 (6)
H190.2594640.0613860.5860850.110*
C200.1055 (2)0.1245 (2)0.4981 (2)0.0850 (6)
H200.1204450.0353490.4315970.102*
C210.0010 (2)0.23960 (18)0.50212 (17)0.0721 (5)
H210.0566750.2274150.4389260.087*
O4A0.7311 (17)1.3456 (9)1.1039 (9)0.081 (3)0.562 (6)
H4A0.7031781.4096451.1017610.121*0.562 (6)
C9A0.4577 (4)0.8518 (3)0.6438 (3)0.0590 (10)0.562 (6)
H9A0.3911420.8787670.5981300.071*0.562 (6)
C10A0.5317 (5)0.9817 (5)0.7668 (4)0.0543 (10)0.562 (6)
C11A0.6354 (6)0.9803 (5)0.8543 (5)0.0658 (12)0.562 (6)
H11A0.6605380.8983870.8374840.079*0.562 (6)
C12A0.7007 (13)1.1010 (7)0.9660 (7)0.0732 (17)0.562 (6)
H12A0.7667111.0981881.0258430.088*0.562 (6)
C13A0.671 (2)1.2248 (10)0.9914 (13)0.0566 (18)0.562 (6)
C14A0.5663 (11)1.2260 (6)0.9061 (7)0.0598 (13)0.562 (6)
H14A0.5411701.3080110.9234970.072*0.562 (6)
C15A0.4986 (6)1.1050 (5)0.7947 (5)0.0599 (11)0.562 (6)
H15A0.4288621.1070690.7370420.072*0.562 (6)
O4B0.751 (2)1.3415 (10)1.1041 (12)0.0660 (19)0.438 (6)
H4B0.8110161.3298691.1487700.099*0.438 (6)
C9B0.5225 (5)0.8106 (4)0.6767 (3)0.0556 (12)0.438 (6)
H9B0.5790370.7551480.6948660.067*0.438 (6)
C10B0.5752 (7)0.9547 (5)0.7898 (5)0.0511 (12)0.438 (6)
C11B0.6689 (9)0.9752 (6)0.8945 (6)0.0663 (15)0.438 (6)
H11B0.6967260.8997410.8945020.080*0.438 (6)
C12B0.7214 (16)1.1043 (8)0.9980 (8)0.0658 (18)0.438 (6)
H12B0.7885941.1172991.0659560.079*0.438 (6)
C13B0.676 (3)1.2142 (13)1.0021 (16)0.061 (2)0.438 (6)
C14B0.5818 (16)1.1960 (9)0.8993 (10)0.070 (2)0.438 (6)
H14B0.5529141.2715690.9006300.084*0.438 (6)
C15B0.5302 (8)1.0657 (7)0.7936 (6)0.0631 (15)0.438 (6)
H15B0.4646551.0532700.7249790.076*0.438 (6)
O5A0.1303 (15)0.2093 (13)0.7784 (9)0.115 (3)0.487 (7)
H5A0.0705390.2404310.7544210.172*0.487 (7)
C22A0.0763 (14)0.0563 (13)0.8743 (13)0.225 (5)0.487 (7)
H22A0.1381470.0106410.8207310.338*0.487 (7)
H22B0.0228030.0078940.8505520.338*0.487 (7)
H22C0.1166840.0840830.9606800.338*0.487 (7)
C23A0.0723 (17)0.1585 (15)0.8628 (12)0.169 (4)0.487 (7)
H23A0.1154680.2368410.9463430.203*0.487 (7)
H23B0.0329500.1502560.8493700.203*0.487 (7)
O5B0.8710 (12)0.8064 (8)0.2186 (6)0.0826 (19)0.513 (7)
H5B0.9510870.8262390.2638050.124*0.513 (7)
C22B0.9159 (9)0.7123 (10)0.0163 (6)0.188 (4)0.513 (7)
H22D1.0065010.6979370.0422310.282*0.513 (7)
H22E0.9224110.7273880.0569310.282*0.513 (7)
H22F0.8332540.6304780.0037160.282*0.513 (7)
C23B0.8974 (16)0.8167 (14)0.1032 (9)0.170 (5)0.513 (7)
H23C0.8132800.8369180.0712980.204*0.513 (7)
H23D0.9848340.8967240.1254380.204*0.513 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0905 (9)0.0628 (7)0.0673 (7)0.0139 (6)0.0337 (6)0.0250 (5)
O20.0838 (8)0.0538 (6)0.0756 (7)0.0089 (6)0.0211 (6)0.0162 (5)
O30.0715 (7)0.0538 (6)0.0615 (6)0.0053 (5)0.0229 (5)0.0151 (5)
N10.0566 (7)0.0533 (7)0.0646 (7)0.0045 (5)0.0143 (6)0.0278 (6)
N20.0672 (8)0.0553 (7)0.0673 (8)0.0019 (6)0.0197 (6)0.0255 (6)
C10.0715 (10)0.0543 (8)0.0617 (9)0.0184 (7)0.0221 (7)0.0270 (7)
C20.0749 (10)0.0510 (8)0.0595 (9)0.0105 (7)0.0164 (7)0.0180 (7)
C30.0643 (9)0.0473 (7)0.0662 (9)0.0058 (6)0.0128 (7)0.0236 (7)
C40.0552 (8)0.0470 (7)0.0594 (8)0.0096 (6)0.0120 (6)0.0246 (6)
C50.0579 (8)0.0468 (7)0.0584 (8)0.0077 (6)0.0128 (6)0.0224 (6)
C60.0648 (9)0.0510 (8)0.0658 (9)0.0066 (7)0.0203 (7)0.0264 (7)
C70.0537 (8)0.0492 (7)0.0621 (8)0.0076 (6)0.0110 (6)0.0282 (6)
C80.0634 (9)0.0544 (8)0.0630 (9)0.0046 (7)0.0191 (7)0.0235 (7)
C160.0520 (8)0.0596 (9)0.0731 (10)0.0040 (7)0.0110 (7)0.0357 (8)
C170.0671 (10)0.0711 (10)0.0861 (11)0.0114 (8)0.0254 (9)0.0396 (9)
C180.0708 (11)0.0944 (14)0.1048 (14)0.0091 (10)0.0332 (10)0.0577 (12)
C190.0731 (12)0.0769 (12)0.1180 (16)0.0086 (10)0.0166 (11)0.0561 (12)
C200.0793 (12)0.0613 (10)0.0965 (13)0.0043 (9)0.0089 (10)0.0351 (9)
C210.0682 (10)0.0605 (9)0.0770 (10)0.0025 (8)0.0145 (8)0.0310 (8)
O4A0.089 (5)0.074 (4)0.057 (3)0.015 (2)0.014 (2)0.015 (2)
C9A0.0606 (17)0.0528 (15)0.0582 (15)0.0097 (13)0.0137 (12)0.0244 (12)
C10A0.057 (2)0.047 (2)0.0600 (18)0.0111 (16)0.0153 (15)0.0274 (15)
C11A0.076 (3)0.0520 (18)0.068 (3)0.0192 (18)0.007 (2)0.027 (2)
C12A0.075 (3)0.069 (3)0.068 (3)0.020 (2)0.000 (3)0.028 (2)
C13A0.064 (3)0.046 (2)0.056 (3)0.010 (2)0.020 (3)0.023 (2)
C14A0.072 (3)0.045 (2)0.061 (2)0.016 (2)0.0172 (17)0.0237 (17)
C15A0.069 (2)0.050 (2)0.0616 (18)0.0167 (16)0.0118 (16)0.0281 (17)
O4B0.071 (3)0.043 (3)0.065 (4)0.010 (2)0.008 (2)0.012 (2)
C9B0.060 (2)0.0465 (17)0.0572 (19)0.0071 (15)0.0107 (15)0.0258 (14)
C10B0.056 (3)0.044 (2)0.057 (3)0.0135 (18)0.015 (2)0.0265 (18)
C11B0.080 (4)0.053 (2)0.065 (3)0.019 (2)0.008 (2)0.027 (2)
C12B0.074 (4)0.054 (2)0.058 (4)0.016 (2)0.001 (3)0.020 (2)
C13B0.069 (4)0.051 (3)0.052 (3)0.007 (3)0.025 (3)0.017 (3)
C14B0.086 (4)0.049 (3)0.078 (3)0.025 (3)0.022 (3)0.029 (3)
C15B0.074 (3)0.052 (3)0.066 (2)0.020 (3)0.009 (2)0.030 (2)
O5A0.096 (5)0.144 (6)0.142 (6)0.022 (4)0.043 (4)0.105 (5)
C22A0.240 (10)0.303 (12)0.320 (11)0.152 (9)0.161 (9)0.258 (10)
C23A0.192 (9)0.210 (9)0.186 (8)0.048 (7)0.103 (7)0.160 (7)
O5B0.083 (4)0.072 (2)0.075 (3)0.003 (2)0.018 (3)0.029 (2)
C22B0.144 (6)0.257 (9)0.089 (4)0.003 (6)0.035 (4)0.045 (5)
C23B0.132 (6)0.170 (7)0.108 (5)0.040 (5)0.033 (4)0.019 (5)
Geometric parameters (Å, º) top
O1—H10.8200C9A—C10A1.505 (4)
O1—C11.3715 (18)C10A—C11A1.388 (5)
O2—H20.8200C10A—C15A1.373 (5)
O2—C31.3595 (18)C11A—H11A0.9300
O3—C51.3680 (17)C11A—C12A1.377 (5)
O3—C9A1.395 (3)C12A—H12A0.9300
O3—C9B1.380 (4)C12A—C13A1.368 (5)
N1—N21.3604 (18)C13A—C14A1.375 (6)
N1—C71.2953 (19)C14A—H14A0.9300
N2—H2A0.8600C14A—C15A1.380 (5)
N2—C161.3896 (18)C15A—H15A0.9300
C1—C21.386 (2)O4B—H4B0.8200
C1—C61.381 (2)O4B—C13B1.374 (7)
C2—H2B0.9300C9B—H9B0.9800
C2—C31.378 (2)C9B—C10B1.509 (5)
C3—C41.407 (2)C10B—C11B1.380 (6)
C4—C51.402 (2)C10B—C15B1.371 (6)
C4—C71.459 (2)C11B—H11B0.9300
C5—C61.382 (2)C11B—C12B1.365 (6)
C6—H60.9300C12B—H12B0.9300
C7—C81.495 (2)C12B—C13B1.363 (7)
C8—H8A0.9700C13B—C14B1.372 (7)
C8—H8B0.9700C14B—H14B0.9300
C8—H8BC0.9700C14B—C15B1.383 (6)
C8—H8BD0.9700C15B—H15B0.9300
C8—C9A1.484 (3)O5A—H5A0.8200
C8—C9B1.496 (4)O5A—C23A1.425 (7)
C16—C171.389 (2)C22A—H22A0.9600
C16—C211.389 (2)C22A—H22B0.9600
C17—H170.9300C22A—H22C0.9600
C17—C181.384 (2)C22A—C23A1.198 (13)
C18—H180.9300C23A—H23A0.9700
C18—C191.375 (3)C23A—H23B0.9700
C19—H190.9300O5B—H5B0.8200
C19—C201.368 (3)O5B—C23B1.462 (7)
C20—H200.9300C22B—H22D0.9600
C20—C211.390 (2)C22B—H22E0.9600
C21—H210.9300C22B—H22F0.9600
O4A—H4A0.8200C22B—C23B1.237 (14)
O4A—C13A1.376 (6)C23B—H23C0.9700
C9A—H9A0.9800C23B—H23D0.9700
C1—O1—H1109.5C15A—C10A—C11A118.4 (3)
C3—O2—H2109.5C10A—C11A—H11A120.2
C5—O3—C9A116.51 (15)C12A—C11A—C10A119.5 (4)
C5—O3—C9B117.93 (16)C12A—C11A—H11A120.2
C7—N1—N2118.79 (13)C11A—C12A—H12A119.1
N1—N2—H2A119.9C13A—C12A—C11A121.8 (5)
N1—N2—C16120.22 (13)C13A—C12A—H12A119.1
C16—N2—H2A119.9C12A—C13A—O4A122.9 (8)
O1—C1—C2117.22 (14)C12A—C13A—C14A118.8 (6)
O1—C1—C6121.70 (14)C14A—C13A—O4A118.0 (8)
C6—C1—C2121.08 (14)C13A—C14A—H14A120.1
C1—C2—H2B120.2C13A—C14A—C15A119.8 (5)
C3—C2—C1119.57 (14)C15A—C14A—H14A120.1
C3—C2—H2B120.2C10A—C15A—C14A121.6 (4)
O2—C3—C2117.53 (14)C10A—C15A—H15A119.2
O2—C3—C4120.95 (14)C14A—C15A—H15A119.2
C2—C3—C4121.52 (14)C13B—O4B—H4B109.5
C3—C4—C7123.41 (13)O3—C9B—C8115.2 (3)
C5—C4—C3116.68 (13)O3—C9B—H9B105.5
C5—C4—C7119.91 (13)O3—C9B—C10B109.5 (3)
O3—C5—C4121.29 (13)C8—C9B—H9B105.5
O3—C5—C6116.16 (13)C8—C9B—C10B114.6 (3)
C6—C5—C4122.55 (13)C10B—C9B—H9B105.5
C1—C6—C5118.60 (14)C11B—C10B—C9B119.1 (5)
C1—C6—H6120.7C15B—C10B—C9B122.3 (5)
C5—C6—H6120.7C15B—C10B—C11B118.6 (5)
N1—C7—C4118.58 (13)C10B—C11B—H11B119.4
N1—C7—C8124.66 (14)C12B—C11B—C10B121.1 (6)
C4—C7—C8116.75 (12)C12B—C11B—H11B119.4
C7—C8—H8A108.8C11B—C12B—H12B119.9
C7—C8—H8B108.8C13B—C12B—C11B120.1 (7)
C7—C8—H8BC109.3C13B—C12B—H12B119.9
C7—C8—H8BD109.3C12B—C13B—O4B113.9 (10)
C7—C8—C9B111.81 (17)C12B—C13B—C14B119.6 (7)
H8A—C8—H8B107.7C14B—C13B—O4B125.5 (11)
H8BC—C8—H8BD107.9C13B—C14B—H14B119.9
C9A—C8—C7113.85 (15)C13B—C14B—C15B120.2 (7)
C9A—C8—H8A108.8C15B—C14B—H14B119.9
C9A—C8—H8B108.8C10B—C15B—C14B120.2 (6)
C9B—C8—H8BC109.3C10B—C15B—H15B119.9
C9B—C8—H8BD109.3C14B—C15B—H15B119.9
C17—C16—N2117.90 (15)C23A—O5A—H5A109.5
C17—C16—C21119.15 (15)H22A—C22A—H22B109.5
C21—C16—N2122.94 (15)H22A—C22A—H22C109.5
C16—C17—H17120.0H22B—C22A—H22C109.5
C18—C17—C16120.09 (18)C23A—C22A—H22A109.5
C18—C17—H17120.0C23A—C22A—H22B109.5
C17—C18—H18119.5C23A—C22A—H22C109.5
C19—C18—C17120.91 (18)O5A—C23A—H23A104.5
C19—C18—H18119.5O5A—C23A—H23B104.5
C18—C19—H19120.5C22A—C23A—O5A130.9 (14)
C20—C19—C18118.93 (17)C22A—C23A—H23A104.5
C20—C19—H19120.5C22A—C23A—H23B104.5
C19—C20—H20119.2H23A—C23A—H23B105.7
C19—C20—C21121.52 (19)C23B—O5B—H5B109.5
C21—C20—H20119.2H22D—C22B—H22E109.5
C16—C21—C20119.38 (17)H22D—C22B—H22F109.5
C16—C21—H21120.3H22E—C22B—H22F109.5
C20—C21—H21120.3C23B—C22B—H22D109.5
C13A—O4A—H4A109.5C23B—C22B—H22E109.5
O3—C9A—C8115.0 (2)C23B—C22B—H22F109.5
O3—C9A—H9A106.1O5B—C23B—H23C108.1
O3—C9A—C10A108.3 (2)O5B—C23B—H23D108.1
C8—C9A—H9A106.1C22B—C23B—O5B116.8 (12)
C8—C9A—C10A114.4 (2)C22B—C23B—H23C108.1
C10A—C9A—H9A106.1C22B—C23B—H23D108.1
C11A—C10A—C9A121.1 (4)H23C—C23B—H23D107.3
C15A—C10A—C9A120.5 (4)
O1—C1—C2—C3178.29 (15)C7—C8—C9A—O342.0 (3)
O1—C1—C6—C5178.82 (15)C7—C8—C9A—C10A168.4 (3)
O2—C3—C4—C5179.31 (15)C7—C8—C9B—O346.7 (4)
O2—C3—C4—C70.1 (3)C7—C8—C9B—C10B175.3 (3)
O3—C5—C6—C1179.85 (14)C8—C9A—C10A—C11A64.1 (5)
O3—C9A—C10A—C11A65.7 (5)C8—C9A—C10A—C15A116.3 (4)
O3—C9A—C10A—C15A113.9 (4)C8—C9B—C10B—C11B107.9 (6)
O3—C9B—C10B—C11B120.8 (6)C8—C9B—C10B—C15B70.3 (6)
O3—C9B—C10B—C15B61.0 (6)C16—C17—C18—C190.4 (3)
N1—N2—C16—C17175.73 (15)C17—C16—C21—C200.0 (3)
N1—N2—C16—C214.2 (3)C17—C18—C19—C200.5 (3)
N1—C7—C8—C9A164.3 (2)C18—C19—C20—C210.3 (3)
N1—C7—C8—C9B153.3 (2)C19—C20—C21—C160.0 (3)
N2—N1—C7—C4178.82 (13)C21—C16—C17—C180.2 (3)
N2—N1—C7—C81.6 (2)O4A—C13A—C14A—C15A177.1 (16)
N2—C16—C17—C18179.73 (17)C9A—O3—C5—C426.8 (3)
N2—C16—C21—C20179.91 (17)C9A—O3—C5—C6153.5 (2)
C1—C2—C3—O2179.82 (15)C9A—C10A—C11A—C12A179.9 (7)
C1—C2—C3—C40.7 (3)C9A—C10A—C15A—C14A179.2 (6)
C2—C1—C6—C50.4 (3)C10A—C11A—C12A—C13A2.8 (18)
C2—C3—C4—C50.2 (2)C11A—C10A—C15A—C14A0.4 (9)
C2—C3—C4—C7179.60 (15)C11A—C12A—C13A—O4A177.8 (18)
C3—C4—C5—O3179.56 (14)C11A—C12A—C13A—C14A4 (3)
C3—C4—C5—C60.8 (2)C12A—C13A—C14A—C15A3 (3)
C3—C4—C7—N15.3 (2)C13A—C14A—C15A—C10A0.8 (18)
C3—C4—C7—C8175.16 (15)C15A—C10A—C11A—C12A0.6 (9)
C4—C5—C6—C10.5 (3)O4B—C13B—C14B—C15B170 (2)
C4—C7—C8—C9A16.1 (3)C9B—O3—C5—C420.7 (3)
C4—C7—C8—C9B26.2 (3)C9B—O3—C5—C6159.0 (3)
C5—O3—C9A—C848.0 (3)C9B—C10B—C11B—C12B178.9 (9)
C5—O3—C9A—C10A177.4 (2)C9B—C10B—C15B—C14B179.8 (9)
C5—O3—C9B—C844.8 (4)C10B—C11B—C12B—C13B3 (2)
C5—O3—C9B—C10B175.9 (3)C11B—C10B—C15B—C14B1.9 (12)
C5—C4—C7—N1175.36 (14)C11B—C12B—C13B—O4B172 (2)
C5—C4—C7—C84.2 (2)C11B—C12B—C13B—C14B3 (4)
C6—C1—C2—C31.0 (3)C12B—C13B—C14B—C15B2 (4)
C7—N1—N2—C16172.39 (14)C13B—C14B—C15B—C10B2 (2)
C7—C4—C5—O30.1 (2)C15B—C10B—C11B—C12B2.8 (12)
C7—C4—C5—C6179.81 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5A—H5A···C170.822.563.363 (15)166
O5A—H5A···C180.822.473.263 (16)162
O5B—H5B···C19i0.822.593.405 (11)173
O1—H1···O5Ai0.821.792.590 (12)166
O1—H1···O5B0.821.902.709 (8)170
C8—H8BC···O4Bii0.972.493.440 (17)168
O4A—H4A···O1iii0.821.892.677 (13)160
C9B—H9B···O2i0.982.393.347 (5)165
O2—H2···N10.821.872.5975 (18)147
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x, y+1, z+1.
 

Acknowledgements

Research reported here was conducted on instrumentation funded by SIG S10 grants of the National Institutes of Health under award Nos. 1S10OD028589–01 and 1S10RR023439–01 to Dr Neela Yennawar.

Funding information

Funding for this research was provided by: National Institutes of Health (grant No. 1S10OD028589-01 to Neela Yennawar; grant No. 1S10RR023439-01 to Neela Yennawar); Huck Institutes of the Life Sciences (grant No. 150000005862 to Anna Sigmon).

References

First citationBak, Y., Kim, H., Kang, J. W., Lee, D., Kim, M., Park, Y., Kim, J. H., Jung, K. Y., Lim, Y., Hong, J. & Yoon, D. Y. (2011). J. Agric. Food Chem. 59, 10286–10297.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCai, Y. Z., Luo, Q., Sun, M. & Corke, H. (2004). Life Sci. 74, 2157–2184.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (2003). Helv. Chim. Acta, 86, 905–921.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHeim, K. E., Tagliaferro, A. R. & Bobilya, D. J. (2002). J. Nutr. Biochem. 13, 572–584.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, J. H., Kang, J., Kim, M., Bak, Y., Park, Y., Jung, K. Y., Lim, Y. & Yoon, D. Y. (2012). Toxicol. In Vitro, 26, 67–73.  Web of Science CrossRef PubMed Google Scholar
First citationLodyga-Chruscinska, E., Symonowicz, M., Sykula, A., Bujacz, A., Garribba, E., Rowinska-Zyrek, M., Oldziej, S., Klewicka, E., Janicka, M., Krolewska, K., Cieslak, M., Brodowska, K. & Chruscinski, L. (2015). J. Inorg. Biochem. 143, 34–47.  Web of Science CAS PubMed Google Scholar
First citationNie, A., Ghosh, S. & Huang, Z. (2006). Acta Cryst. E62, o1824–o1825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStewart, R. (1985). The Proton: Applications to Organic Chemistry, vol. 46, pp. 233–234. New York: Academic Press.  Google Scholar
First citationViswamitra, M. A., Radhakrishnan, R., Bandekar, J. & Desiraju, G. R. (1993). J. Am. Chem. Soc. 115, 4868–4869.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds