research communications
H-benzo[f]isoindole-1,5(2H)-dione
and Hirshfeld surface analysis of 7,7-dimethyl-2-phenyl-3,3a,4,6,7,8,9,9a-octahydro-1aDepartment of Chemical and Material Engineering, Chaohu College, Chaohu, People's Republic of China
*Correspondence e-mail: mxzcd79@163.com
The title compound, C20H23NO2, was obtained via the reaction of N-allyl-N-phenylacrylamide with 3-iodocyclohex-2-en-1-one using PdCl2(PPh3)2 as a catalyst. The compound crystallizes in the monoclinic P21/c. The fused-ring system is not planar and the five- and six-membered rings are trans-fused. The molecular geometry is partially stabilized by an intramolecular C—H⋯O hydrogen bond, forming an S(6) ring motif. In the crystal, molecules are linked by C—H⋯O and C—H⋯π interactions into a three-dimensional network. To further analyse the intermolecular interactions, a Hirshfeld surface analysis was performed. The results indicate that the most important contributions to the overall surface are from H⋯H (65.5%), O⋯H/H⋯O (17.5%) and C⋯H/H⋯C (14.3%) interactions.
Keywords: crystal structure; tricyclic oxoisochromene derivatives; Hirshfeld surface analysis; cascade reactions; C—H⋯ interactions.
CCDC reference: 2155680
1. Chemical context
A cascade reaction is a chemical process that comprises at least two et al., 2010; Jash et al., 2019; Knowles et al., 2021). Although cascade reactions have been successfully employed for the synthesis of the core skeleton of many important natural products, the design and performance of cascade reactions remain a challenging aspect of organic chemistry (Zhang et al., 2022; Xie & She, 2021). Meanwhile, alkylation of the α position of enones and their derivatives has have drawn considerable attention (Krafft et al., 2005; Muimhneacháin et al., 2017; Shen & Huang, 2008; Zhang et al., 2010; Jana et al., 2021). McGlacken described a Pd-catalysed coupling procedure for tricyclic oxoisochromene derivatives, which represents an example of the α arylation of activated carbocyclic enone-based substrates (Muimhneacháin et al., 2017). Huang and co-workers have realized a series of reactions including Sonogashira coupling, propargyl-allenyl isomerization, and [4 + 2] cycloaddition combined via α alkylation of carbocyclic enone-based substrates, affording an efficient and of polycyclic skeletons (Shen & Huang, 2008). Given this background, we report herein the synthesis and of the title compound.
such that each subsequent reaction occurs only by virtue of the chemical functionality formed in the previous step (Nicolaou2. Structural commentary
The title compound crystallizes in the monoclinic P21/c. Its molecular structure is shown in Fig. 1. The structure of a possesses a disordered enantiomer layout (Jacques et al., 1994) and atoms C8 and C9 are found to be disordered. They were both split into two fragments (C8/C22 and C9/C21) and were refined. This led to a 0.805 (10): 0.195 (10) occupancy ratio over two positions for C8 and C9. The site occupancies of C8, C9 and C21, C22 are 0.805 (10) and 0.195 (10), respectively. The fused ring system is not planar. The sp2-hybridized character of atoms C12 and C13 is confirmed by the C12—C13 [1.350 (3) Å] bond length, and the C11—C12—C15 [114.9 (2)°] and C14—C13—C18 [116.3 (2)°] bond angles. There is a strong intramolecular hydrogen bond (C2—H2⋯O1; Table 1), forming an S(6) ring motif.
in3. Supramolecular features
The crystal packing of the title compound (Fig. 2) features intermolecular C—H⋯O hydrogen bonds and C—H⋯π interactions (C3—H3⋯O2i; C11—H11⋯Cg3ii and C14—H14A⋯Cg3iii or C11—H11D⋯Cg3ii and C14—H14D⋯Cg3iii; symmetry codes are given in Table 1). In the crystal, molecules are stacked together layer by layer. Molecules in same layer are linked by C3—H3⋯O2 interactions, forming a layer parallel to the ab plane (Fig. 2); Molecules in different layers are linked by C11—H11A⋯Cg3 and C14—H14A⋯Cg3 or C11—H11D⋯Cg3 and C14—H14D⋯Cg3 interactions (Fig. 2). In order to investigate the intermolecular interactions in a visual manner, a Hirshfeld surface analysis was performed using CrystalExplorer (Spackman & Jayatilaka, 2009; Turner et al., 2017). The bright-red spots on the Hirshfeld surface mapped over dnorm (Fig. 3) indicate the presence of C—H⋯π and C—H⋯O interactions. The absence of adjacent red and blue triangles on the shape-index map (Fig. 4) suggests that there are no notable π–π interactions. The fingerprint plots (Fig. 5) are given for all contacts, and those delineated into C⋯O/O⋯C (0.4%), O⋯N/N⋯O (0.5%), C⋯C (0.7%), N⋯H/ H⋯N (1.0%), C⋯H/H⋯C (14.3%), H⋯O/O⋯H (17.5%) and H⋯H (65.5%). The most important contributions to the crystal packing are H⋯H and O⋯H/H⋯O contacts.
4. Database survey
A search of the Cambridge Structural Database (Version 2021.1; Groom et al., 2016) for compounds having a 3,3a,4,6,7,8,9,9a-octahydro-1H-benzo[f]isoindole-1,5(2H)-dione fragment gave two hits, including 2a,8,9b-trimethyl-3,4,6,6a,9a,9b-hexahydro[2]benzofuro[1,7-ef]isoindole-2,5,7,9(2aH,8H)-tetrone (I) (Florke, 2019) and 2-ethyl-12,12-dimethyl-4,6,7,8,9,9a-hexahydro-1H-4,9-[1,2]-epicyclobutabenzo[f]isoindole-1,3,5(2H,3aH)trione (II) (Ma & Gu, 2006). In these two structures, the fused-ring systems are not planar. Compound I crystallizes in the monoclinic P21. The five- and six-membered rings are cis-fused. The is characterized by the presence of C—H⋯O hydrogen bonds. Compound II crystallizes in the orthorhombic Pbca. The molecules are linked by C—H⋯O hydrogen bonds, and the crystal packing also features C—H⋯π interactions.
5. Synthesis and crystallization
N-Allyl-N-phenylacrylamide (0.30 mmol), 3-iodocyclohex-2-en-1-one (0.36 mmol), PdCl2(PPh3)2 (5 mol%, 0.015 mmol, 10.5 mg), TCAB (3,4,3′.4′-tetrachloroazobenzene) (10 mol%, 0.03 mmol, 8.33 mg) and K2CO3 (0.36 mmol, 49.68 mg) were stirred in DMSO (5.0 mL) at 403 K in a 20 mL tube under an N2 atmosphere. When the reaction was complete (detected by TLC), the mixture was cooled to room temperature. The reaction was quenched with HCl (5%, 10 mL) and extracted with Et2O (3 × 10 mL). The combined organic layers were dried over anhydrous MgSO4 and then evaporated under vacuum. The residue was purified by on silica gel using n-hexane/ethyl acetate (10:1 v:v) as to afford the compound as a white solid. Part of the purified product was redissolved in n-hexane/ethyl acetate and colourless crystals suitable for X-ray diffraction were formed after slow evaporation for several days.
Spectroscopic data: IR (film) 2962, 2920, 2885, 1687, 1662, 1619, 1169, 757 cm−1; 1H NMR (500 MHz, CDCl3): δ = 7.64–7.62 (m, 2H), 7.41–7.37 (m, 2H), 7.18–7.15 (m, 1H), 3.96–3.93 (m, 1H), 3.68–3.64 (m, 1H), 2.92–2.90 (m, 1H), 2.64–2.61 (m, 1H), 2.43–2.27 (m, 6H), 2.12–2.09 (m, 2H), 1.10 (s, 3H), 1.03 (s, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ = 198.8, 173.7, 153.8, 139.6, 130.7, 128.9, 124.4, 119.6, 53.0, 51.4, 45.7, 45.1, 36.6, 33.1, 32.3, 29.4, 27.1, 26.3 ppm.
6. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically with C—H = 0.93–0.98 Å and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl) was applied in all case. Atoms C8 and C9 are disordered over two positions (A and B) in a 0.805 (10):0.195 (10) occupancy ratio.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2155680
https://doi.org/10.1107/S2056989022002353/jy2017sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022002353/jy2017Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022002353/jy2017Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C20H23NO2 | F(000) = 664 |
Mr = 309.39 | Dx = 1.258 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 5.7062 (4) Å | Cell parameters from 2123 reflections |
b = 34.009 (3) Å | θ = 2.4–27.9° |
c = 8.5042 (8) Å | µ = 0.08 mm−1 |
β = 98.178 (7)° | T = 200 K |
V = 1633.5 (2) Å3 | Block, colourless |
Z = 4 | 0.12 × 0.1 × 0.08 mm |
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, AtlasS2 diffractometer | 2874 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 2046 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.035 |
Detector resolution: 10.5368 pixels mm-1 | θmax = 25.0°, θmin = 2.4° |
ω scans | h = −6→6 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) | k = −40→24 |
Tmin = 0.621, Tmax = 1.000 | l = −10→8 |
6736 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.056 | H-atom parameters constrained |
wR(F2) = 0.143 | w = 1/[σ2(Fo2) + (0.0507P)2 + 0.6477P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2874 reflections | Δρmax = 0.33 e Å−3 |
229 parameters | Δρmin = −0.31 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The C(8) and C(9) is disordered over two positions, site occupancies were refined. This refinement led to a 0.805 : 0.195 ratio in occupancy over two positions for C(8)and C(9). |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 1.0478 (3) | 0.74574 (5) | 0.8516 (3) | 0.0677 (7) | |
O2 | 0.3270 (3) | 0.58244 (5) | 0.4595 (2) | 0.0497 (5) | |
N1 | 0.6935 (3) | 0.75875 (5) | 0.6917 (2) | 0.0319 (5) | |
C1 | 0.6910 (4) | 0.80046 (6) | 0.6875 (3) | 0.0312 (5) | |
C2 | 0.8854 (4) | 0.82281 (7) | 0.7539 (3) | 0.0369 (6) | |
H2 | 1.021910 | 0.810308 | 0.802034 | 0.044* | |
C3 | 0.8762 (4) | 0.86346 (7) | 0.7484 (3) | 0.0414 (6) | |
H3 | 1.006620 | 0.878040 | 0.793348 | 0.050* | |
C4 | 0.6759 (4) | 0.88257 (8) | 0.6770 (3) | 0.0444 (6) | |
H4 | 0.670204 | 0.909893 | 0.674013 | 0.053* | |
C5 | 0.4839 (4) | 0.86066 (7) | 0.6099 (3) | 0.0427 (6) | |
H5 | 0.348529 | 0.873425 | 0.561404 | 0.051* | |
C6 | 0.4895 (4) | 0.81998 (7) | 0.6137 (3) | 0.0377 (6) | |
H6 | 0.359101 | 0.805634 | 0.567117 | 0.045* | |
C7 | 0.5009 (4) | 0.73534 (7) | 0.6012 (3) | 0.0359 (6) | |
H7AA | 0.506687 | 0.736741 | 0.487905 | 0.043* | 0.805 (10) |
H7AB | 0.346778 | 0.744172 | 0.622299 | 0.043* | 0.805 (10) |
H7BC | 0.454955 | 0.745403 | 0.494562 | 0.043* | 0.195 (10) |
H7BD | 0.363048 | 0.733512 | 0.655672 | 0.043* | 0.195 (10) |
C8 | 0.5547 (7) | 0.69357 (9) | 0.6649 (5) | 0.0308 (10) | 0.805 (10) |
H8 | 0.492969 | 0.690922 | 0.766149 | 0.037* | 0.805 (10) |
C9 | 0.8232 (7) | 0.69415 (9) | 0.6983 (5) | 0.0314 (10) | 0.805 (10) |
H9 | 0.884344 | 0.692311 | 0.596540 | 0.038* | 0.805 (10) |
C10 | 0.8715 (4) | 0.73524 (7) | 0.7629 (3) | 0.0436 (6) | |
C11 | 0.9147 (4) | 0.65947 (6) | 0.7982 (3) | 0.0346 (6) | |
H11A | 0.872712 | 0.662201 | 0.904263 | 0.042* | 0.805 (10) |
H11B | 1.085889 | 0.658342 | 0.806781 | 0.042* | 0.805 (10) |
H11C | 1.058398 | 0.665781 | 0.754796 | 0.042* | 0.195 (10) |
H11D | 0.955968 | 0.655544 | 0.911742 | 0.042* | 0.195 (10) |
C12 | 0.8083 (4) | 0.62222 (6) | 0.7226 (3) | 0.0314 (5) | |
C13 | 0.6101 (4) | 0.62233 (6) | 0.6149 (3) | 0.0320 (5) | |
C14 | 0.4699 (4) | 0.65896 (6) | 0.5612 (3) | 0.0336 (6) | |
H14A | 0.487383 | 0.664745 | 0.451778 | 0.040* | 0.805 (10) |
H14B | 0.303290 | 0.654397 | 0.566237 | 0.040* | 0.805 (10) |
H14C | 0.331267 | 0.660746 | 0.614939 | 0.040* | 0.195 (10) |
H14D | 0.417279 | 0.657741 | 0.447692 | 0.040* | 0.195 (10) |
C15 | 0.9447 (4) | 0.58530 (7) | 0.7721 (3) | 0.0384 (6) | |
H15A | 0.988461 | 0.585847 | 0.886542 | 0.046* | |
H15B | 1.089994 | 0.585636 | 0.725204 | 0.046* | |
C16 | 0.8167 (4) | 0.54667 (7) | 0.7271 (3) | 0.0410 (6) | |
C17 | 0.6913 (4) | 0.55090 (7) | 0.5575 (3) | 0.0454 (7) | |
H17A | 0.808661 | 0.554226 | 0.486470 | 0.055* | |
H17B | 0.603869 | 0.526973 | 0.527100 | 0.055* | |
C18 | 0.5238 (4) | 0.58520 (7) | 0.5385 (3) | 0.0370 (6) | |
C19 | 0.6359 (4) | 0.53812 (8) | 0.8399 (4) | 0.0534 (7) | |
H19A | 0.716904 | 0.534762 | 0.945931 | 0.080* | |
H19B | 0.550517 | 0.514530 | 0.806668 | 0.080* | |
H19C | 0.527086 | 0.559706 | 0.837605 | 0.080* | |
C20 | 0.9935 (4) | 0.51259 (7) | 0.7373 (4) | 0.0546 (8) | |
H20A | 1.107312 | 0.517452 | 0.666574 | 0.082* | |
H20B | 0.910590 | 0.488566 | 0.707522 | 0.082* | |
H20C | 1.073535 | 0.510389 | 0.844127 | 0.082* | |
C21 | 0.733 (3) | 0.6949 (3) | 0.766 (2) | 0.029 (4) | 0.195 (10) |
H21 | 0.613612 | 0.695152 | 0.838586 | 0.035* | 0.195 (10) |
C22 | 0.633 (3) | 0.6964 (4) | 0.602 (2) | 0.032 (4) | 0.195 (10) |
H22 | 0.757910 | 0.697703 | 0.533654 | 0.039* | 0.195 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0528 (11) | 0.0479 (12) | 0.0885 (16) | −0.0036 (9) | −0.0382 (11) | −0.0010 (11) |
O2 | 0.0419 (10) | 0.0464 (11) | 0.0556 (12) | −0.0054 (8) | −0.0106 (9) | −0.0023 (9) |
N1 | 0.0279 (10) | 0.0344 (11) | 0.0323 (11) | −0.0017 (8) | 0.0003 (8) | −0.0006 (9) |
C1 | 0.0305 (12) | 0.0376 (13) | 0.0257 (12) | −0.0018 (10) | 0.0050 (9) | −0.0018 (10) |
C2 | 0.0308 (12) | 0.0440 (15) | 0.0351 (14) | −0.0022 (10) | 0.0022 (10) | 0.0006 (11) |
C3 | 0.0404 (14) | 0.0455 (15) | 0.0379 (15) | −0.0094 (11) | 0.0039 (11) | −0.0036 (12) |
C4 | 0.0539 (16) | 0.0395 (14) | 0.0394 (15) | −0.0004 (12) | 0.0056 (12) | −0.0007 (12) |
C5 | 0.0424 (14) | 0.0428 (15) | 0.0419 (15) | 0.0069 (11) | 0.0020 (12) | 0.0019 (12) |
C6 | 0.0333 (12) | 0.0429 (14) | 0.0358 (14) | −0.0011 (10) | 0.0012 (10) | −0.0022 (11) |
C7 | 0.0264 (11) | 0.0390 (14) | 0.0394 (15) | −0.0007 (10) | −0.0051 (10) | −0.0027 (11) |
C8 | 0.022 (2) | 0.0399 (18) | 0.030 (2) | −0.0030 (13) | 0.0017 (16) | 0.0019 (15) |
C9 | 0.022 (2) | 0.0405 (18) | 0.031 (2) | 0.0015 (13) | 0.0032 (16) | −0.0008 (14) |
C10 | 0.0362 (13) | 0.0404 (14) | 0.0488 (17) | −0.0015 (11) | −0.0122 (12) | 0.0034 (12) |
C11 | 0.0277 (11) | 0.0396 (14) | 0.0348 (14) | 0.0007 (9) | −0.0013 (10) | 0.0007 (11) |
C12 | 0.0259 (11) | 0.0365 (13) | 0.0327 (13) | 0.0002 (9) | 0.0072 (10) | 0.0003 (10) |
C13 | 0.0275 (11) | 0.0371 (13) | 0.0318 (13) | 0.0006 (9) | 0.0058 (10) | −0.0008 (10) |
C14 | 0.0274 (11) | 0.0391 (14) | 0.0327 (14) | −0.0018 (9) | −0.0011 (10) | −0.0007 (11) |
C15 | 0.0301 (12) | 0.0413 (14) | 0.0426 (15) | 0.0033 (10) | 0.0008 (10) | 0.0016 (12) |
C16 | 0.0328 (13) | 0.0385 (14) | 0.0507 (17) | 0.0037 (10) | 0.0028 (11) | 0.0028 (12) |
C17 | 0.0430 (14) | 0.0365 (14) | 0.0545 (18) | 0.0007 (11) | −0.0010 (12) | −0.0057 (13) |
C18 | 0.0356 (13) | 0.0407 (14) | 0.0340 (14) | −0.0042 (10) | 0.0020 (11) | 0.0029 (11) |
C19 | 0.0433 (15) | 0.0527 (17) | 0.064 (2) | 0.0019 (12) | 0.0058 (13) | 0.0148 (14) |
C20 | 0.0474 (15) | 0.0400 (15) | 0.074 (2) | 0.0076 (12) | −0.0004 (14) | −0.0008 (14) |
C21 | 0.025 (8) | 0.035 (7) | 0.031 (9) | 0.009 (5) | 0.016 (7) | 0.005 (6) |
C22 | 0.034 (9) | 0.028 (7) | 0.041 (10) | −0.008 (5) | 0.027 (7) | −0.001 (6) |
O1—C10 | 1.222 (3) | C11—H11C | 0.9700 |
O2—C18 | 1.228 (3) | C11—H11D | 0.9700 |
N1—C1 | 1.419 (3) | C11—C12 | 1.509 (3) |
N1—C7 | 1.481 (3) | C11—C21 | 1.587 (13) |
N1—C10 | 1.365 (3) | C12—C13 | 1.350 (3) |
C1—C2 | 1.396 (3) | C12—C15 | 1.505 (3) |
C1—C6 | 1.397 (3) | C13—C14 | 1.515 (3) |
C2—H2 | 0.9300 | C13—C18 | 1.472 (3) |
C2—C3 | 1.384 (3) | C14—H14A | 0.9700 |
C3—H3 | 0.9300 | C14—H14B | 0.9700 |
C3—C4 | 1.379 (3) | C14—H14C | 0.9700 |
C4—H4 | 0.9300 | C14—H14D | 0.9700 |
C4—C5 | 1.379 (3) | C14—C22 | 1.588 (14) |
C5—H5 | 0.9300 | C15—H15A | 0.9700 |
C5—C6 | 1.384 (3) | C15—H15B | 0.9700 |
C6—H6 | 0.9300 | C15—C16 | 1.525 (3) |
C7—H7AA | 0.9700 | C16—C17 | 1.523 (4) |
C7—H7AB | 0.9700 | C16—C19 | 1.533 (3) |
C7—H7BC | 0.9700 | C16—C20 | 1.531 (3) |
C7—H7BD | 0.9700 | C17—H17A | 0.9700 |
C7—C8 | 1.535 (4) | C17—H17B | 0.9700 |
C7—C22 | 1.524 (14) | C17—C18 | 1.502 (3) |
C8—H8 | 0.9800 | C19—H19A | 0.9600 |
C8—C9 | 1.518 (7) | C19—H19B | 0.9600 |
C8—C14 | 1.509 (4) | C19—H19C | 0.9600 |
C9—H9 | 0.9800 | C20—H20A | 0.9600 |
C9—C10 | 1.513 (4) | C20—H20B | 0.9600 |
C9—C11 | 1.503 (4) | C20—H20C | 0.9600 |
C10—C21 | 1.586 (14) | C21—H21 | 0.9800 |
C11—H11A | 0.9700 | C21—C22 | 1.43 (3) |
C11—H11B | 0.9700 | C22—H22 | 0.9800 |
C1—N1—C7 | 121.36 (17) | C13—C12—C15 | 122.8 (2) |
C10—N1—C1 | 126.93 (19) | C15—C12—C11 | 114.87 (19) |
C10—N1—C7 | 111.47 (18) | C12—C13—C14 | 124.2 (2) |
C2—C1—N1 | 122.0 (2) | C12—C13—C18 | 119.5 (2) |
C2—C1—C6 | 118.6 (2) | C18—C13—C14 | 116.28 (19) |
C6—C1—N1 | 119.41 (19) | C8—C14—C13 | 110.7 (2) |
C1—C2—H2 | 119.8 | C8—C14—H14A | 109.5 |
C3—C2—C1 | 120.4 (2) | C8—C14—H14B | 109.5 |
C3—C2—H2 | 119.8 | C13—C14—H14A | 109.5 |
C2—C3—H3 | 119.6 | C13—C14—H14B | 109.5 |
C4—C3—C2 | 120.7 (2) | C13—C14—H14C | 109.9 |
C4—C3—H3 | 119.6 | C13—C14—H14D | 109.9 |
C3—C4—H4 | 120.4 | C13—C14—C22 | 108.9 (6) |
C3—C4—C5 | 119.2 (2) | H14A—C14—H14B | 108.1 |
C5—C4—H4 | 120.4 | H14C—C14—H14D | 108.3 |
C4—C5—H5 | 119.5 | C22—C14—H14C | 109.9 |
C4—C5—C6 | 121.1 (2) | C22—C14—H14D | 109.9 |
C6—C5—H5 | 119.5 | C12—C15—H15A | 108.3 |
C1—C6—H6 | 120.0 | C12—C15—H15B | 108.3 |
C5—C6—C1 | 120.0 (2) | C12—C15—C16 | 116.00 (19) |
C5—C6—H6 | 120.0 | H15A—C15—H15B | 107.4 |
N1—C7—H7AA | 111.3 | C16—C15—H15A | 108.3 |
N1—C7—H7AB | 111.3 | C16—C15—H15B | 108.3 |
N1—C7—H7BC | 112.2 | C15—C16—C19 | 110.3 (2) |
N1—C7—H7BD | 112.2 | C15—C16—C20 | 110.48 (19) |
N1—C7—C8 | 102.57 (19) | C17—C16—C15 | 107.5 (2) |
N1—C7—C22 | 97.7 (6) | C17—C16—C19 | 110.1 (2) |
H7AA—C7—H7AB | 109.2 | C17—C16—C20 | 110.0 (2) |
H7BC—C7—H7BD | 109.8 | C20—C16—C19 | 108.5 (2) |
C8—C7—H7AA | 111.3 | C16—C17—H17A | 109.1 |
C8—C7—H7AB | 111.3 | C16—C17—H17B | 109.1 |
C22—C7—H7BC | 112.2 | H17A—C17—H17B | 107.9 |
C22—C7—H7BD | 112.2 | C18—C17—C16 | 112.4 (2) |
C7—C8—H8 | 108.4 | C18—C17—H17A | 109.1 |
C9—C8—C7 | 101.5 (3) | C18—C17—H17B | 109.1 |
C9—C8—H8 | 108.4 | O2—C18—C13 | 122.0 (2) |
C14—C8—C7 | 119.0 (3) | O2—C18—C17 | 121.2 (2) |
C14—C8—H8 | 108.4 | C13—C18—C17 | 116.8 (2) |
C14—C8—C9 | 110.5 (4) | C16—C19—H19A | 109.5 |
C8—C9—H9 | 108.1 | C16—C19—H19B | 109.5 |
C10—C9—C8 | 101.9 (3) | C16—C19—H19C | 109.5 |
C10—C9—H9 | 108.1 | H19A—C19—H19B | 109.5 |
C11—C9—C8 | 110.8 (4) | H19A—C19—H19C | 109.5 |
C11—C9—H9 | 108.1 | H19B—C19—H19C | 109.5 |
C11—C9—C10 | 119.3 (3) | C16—C20—H20A | 109.5 |
O1—C10—N1 | 126.8 (2) | C16—C20—H20B | 109.5 |
O1—C10—C9 | 125.9 (2) | C16—C20—H20C | 109.5 |
O1—C10—C21 | 127.6 (5) | H20A—C20—H20B | 109.5 |
N1—C10—C9 | 107.1 (2) | H20A—C20—H20C | 109.5 |
N1—C10—C21 | 100.0 (5) | H20B—C20—H20C | 109.5 |
C9—C11—H11A | 109.8 | C10—C21—H21 | 113.3 |
C9—C11—H11B | 109.8 | C11—C21—C10 | 110.2 (10) |
C9—C11—C12 | 109.4 (2) | C11—C21—H21 | 113.3 |
H11A—C11—H11B | 108.2 | C22—C21—C10 | 94.6 (12) |
H11C—C11—H11D | 108.1 | C22—C21—C11 | 110.6 (14) |
C12—C11—H11A | 109.8 | C22—C21—H21 | 113.3 |
C12—C11—H11B | 109.8 | C7—C22—C14 | 114.8 (10) |
C12—C11—H11C | 109.5 | C7—C22—H22 | 111.1 |
C12—C11—H11D | 109.5 | C14—C22—H22 | 111.1 |
C12—C11—C21 | 110.6 (5) | C21—C22—C7 | 99.4 (13) |
C21—C11—H11C | 109.5 | C21—C22—C14 | 108.8 (14) |
C21—C11—H11D | 109.5 | C21—C22—H22 | 111.1 |
C13—C12—C11 | 122.3 (2) | ||
O1—C10—C21—C11 | −41.8 (15) | C10—N1—C7—C22 | −13.4 (8) |
O1—C10—C21—C22 | −155.8 (9) | C10—C9—C11—C12 | 169.8 (3) |
N1—C1—C2—C3 | −179.6 (2) | C10—C21—C22—C7 | −58.3 (14) |
N1—C1—C6—C5 | 179.5 (2) | C10—C21—C22—C14 | −178.7 (7) |
N1—C7—C8—C9 | −33.0 (4) | C11—C9—C10—O1 | 32.6 (6) |
N1—C7—C8—C14 | −154.5 (3) | C11—C9—C10—N1 | −153.1 (3) |
N1—C7—C22—C14 | 162.6 (11) | C11—C12—C13—C14 | −1.6 (3) |
N1—C7—C22—C21 | 46.7 (14) | C11—C12—C13—C18 | 176.29 (19) |
N1—C10—C21—C11 | 163.7 (8) | C11—C12—C15—C16 | 167.2 (2) |
N1—C10—C21—C22 | 49.7 (14) | C11—C21—C22—C7 | −171.9 (7) |
C1—N1—C7—C8 | −170.1 (3) | C11—C21—C22—C14 | 67.7 (19) |
C1—N1—C7—C22 | 161.4 (8) | C12—C11—C21—C10 | −151.1 (7) |
C1—N1—C10—O1 | 9.5 (4) | C12—C11—C21—C22 | −47.8 (17) |
C1—N1—C10—C9 | −164.7 (3) | C12—C13—C14—C8 | −10.3 (4) |
C1—N1—C10—C21 | 164.3 (7) | C12—C13—C14—C22 | 19.4 (8) |
C1—C2—C3—C4 | −0.3 (3) | C12—C13—C18—O2 | 168.4 (2) |
C2—C1—C6—C5 | −1.2 (3) | C12—C13—C18—C17 | −13.5 (3) |
C2—C3—C4—C5 | −0.3 (4) | C12—C15—C16—C17 | 42.8 (3) |
C3—C4—C5—C6 | 0.2 (4) | C12—C15—C16—C19 | −77.2 (3) |
C4—C5—C6—C1 | 0.6 (3) | C12—C15—C16—C20 | 162.8 (2) |
C6—C1—C2—C3 | 1.0 (3) | C13—C12—C15—C16 | −14.9 (3) |
C7—N1—C1—C2 | −171.0 (2) | C13—C14—C22—C7 | −162.6 (9) |
C7—N1—C1—C6 | 8.4 (3) | C13—C14—C22—C21 | −52.3 (17) |
C7—N1—C10—O1 | −176.1 (3) | C14—C8—C9—C10 | 165.6 (2) |
C7—N1—C10—C9 | 9.7 (3) | C14—C8—C9—C11 | −66.4 (5) |
C7—N1—C10—C21 | −21.3 (7) | C14—C13—C18—O2 | −13.5 (3) |
C7—C8—C9—C10 | 38.4 (5) | C14—C13—C18—C17 | 164.6 (2) |
C7—C8—C9—C11 | 166.4 (2) | C15—C12—C13—C14 | −179.4 (2) |
C7—C8—C14—C13 | 159.4 (3) | C15—C12—C13—C18 | −1.4 (3) |
C8—C9—C10—O1 | 155.0 (3) | C15—C16—C17—C18 | −56.9 (2) |
C8—C9—C10—N1 | −30.7 (4) | C16—C17—C18—O2 | −137.6 (2) |
C8—C9—C11—C12 | 52.0 (5) | C16—C17—C18—C13 | 44.2 (3) |
C9—C8—C14—C13 | 42.5 (5) | C18—C13—C14—C8 | 171.7 (3) |
C9—C11—C12—C13 | −19.3 (4) | C18—C13—C14—C22 | −158.6 (8) |
C9—C11—C12—C15 | 158.6 (3) | C19—C16—C17—C18 | 63.3 (3) |
C10—N1—C1—C2 | 2.9 (3) | C20—C16—C17—C18 | −177.2 (2) |
C10—N1—C1—C6 | −177.7 (2) | C21—C11—C12—C13 | 13.7 (8) |
C10—N1—C7—C8 | 15.1 (3) | C21—C11—C12—C15 | −168.4 (8) |
Cg3 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1 | 0.93 | 2.24 | 2.864 (3) | 124 |
C3—H3···O2i | 0.93 | 2.53 | 3.4513 (3) | 170 |
C11—H11A···Cg3ii | 0.97 | 2.73 | 3.688 (3) | 168 |
C11—H11D···Cg3ii | 0.97 | 2.95 | 3.688 (3) | 134 |
C14—H14A···Cg3iii | 0.97 | 2.70 | 3.609 (3) | 156 |
C14—H14D···Cg3iii | 0.97 | 2.90 | 3.609 (3) | 131 |
Symmetry codes: (i) x+1, −y+3/2, z+1/2; (ii) x, −y+3/2, z+1/2; (iii) x, −y+3/2, z−1/2. |
Funding information
Funding for this research was provided by: the Key Natural Science Foundation of Anhui Higher Education Institution (scholarship No. KJ2017A446); the Excellent Young Talents Support Program of Anhui Higher Education Institutions (scholarship No. gxyq2018075); Innovation and entrepreneurship project of college students in Anhui Province (studentship No. PX-36217095).
References
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
U.Florke (2019). CSD Communication (CCDC 1893073). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc21jwwc Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jacques, J., Collet, A. & Wilen, S. (1994). Enantiomers, Racemates, and Resolutions. New York: John Wiley & Sons. Google Scholar
Jana, K., Mizota, I. & Studer, A. (2021). Org. Lett. 23, 1280–1284. Web of Science CrossRef CAS PubMed Google Scholar
Jash, M., De, S., Pramanik, S. & Chowdhury, C. (2019). J. Org. Chem. 84, 8959–8975. Web of Science CSD CrossRef CAS PubMed Google Scholar
Knowles, J. P., Steeds, H. G., Schwarz, M., Latter, F. & Booker-Milburn, K. I. (2021). Org. Lett. 23, 4986–4990. Web of Science CSD CrossRef CAS Google Scholar
Krafft, M., Seibert, K., Haxell, T. & Hirosawa, C. (2005). Chem. Commun. pp. 5772–5774. Web of Science CrossRef Google Scholar
Ma, S. & Gu, Z. (2006). J. Am. Chem. Soc. 128, 4942–4943. Web of Science CSD CrossRef PubMed CAS Google Scholar
Muimhneacháin, E. Ó., Pardo, L. M., Bateman, L. M., Rao Khandavilli, U. B., Lawrence, S. E. & McGlacken, G. P. (2017). Adv. Synth. Catal. 359, 1529–1534. Google Scholar
Nicolaou, K. C., Edmonds, D. J. & Bulger, P. G. (2010). Angew. Chem. Int. Ed. 45, 7134–7186. Web of Science CrossRef Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shen, R. & Huang, X. (2008). Org. Lett. 10, 3283–3286. Web of Science CrossRef PubMed CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilak, D. & Spackman, M. A. (2017). CrvstalExplorer17.The University of Western Australia. Google Scholar
Xie, X. & She, X. (2021). Chin. J. Chem. 39, 795–801. Web of Science CrossRef CAS Google Scholar
Zhang, C., Yu, S. B., Hu, X. P., Wang, D. Y. & Zheng, Z. (2010). Org. Lett. 12, 5542–5545. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhang, P., Zeng, J., Pan, P., Zhang, X. J. & Yan, M. (2022). Org. Lett. 24, 536–541. Web of Science CSD CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.